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Abstract. In this paper, we study complete open n-dimensional Riemannian manifolds with
nonnegative Ricci curvature and large volume growth. We prove among other things that such
a manifold is diffeomorphic to a Euclidean n-space Rn if its sectional curvature is bounded from
below and the volume growth of geodesic balls around some point is not too far from that of the
balls in Rn.
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1. Introduction

Let (M, g) be an n-dimensional complete Riemannian manifold with nonnegative
Ricci curvature. The relative volume comparison theorem [BC, GLP] says that
the function r → vol[B(p,r)]

ωnrn
is monotone decreasing, where B(p, r) denotes the

geodesic ball around p ∈M with radius r and ωn is the volume of the unit ball in
the Euclidean space Rn. Define αM by

αM = lim
r→∞

vol[B(p, r)]
ωnrn

.

It is easy to show that αM is independent of p ∈M , hence it is a global geometric
invariant of M . We always have

αMωnr
n ≤ vol[B(x, r)] ≤ ωnrn, ∀r > 0, ∀x ∈M. (1.1)

We say (M, g) has large volume growth if αM > 0. It should be noticed that, in
this case, 0 < αM ≤ 1 and when αM = 1, M is isometric to Rn by Bishop-Gromov
comparison theorem [BC, GLP].

A manifoldM is said to have finite topological type if there is a compact domain
Ω whose boundary ∂Ω is a topological manifold such that M \Ω is homeomorphic
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to ∂Ω × [0,∞). Abresch-Gromoll [AG] first obtain the finiteness of topological
type for complete n-manifolds (M, g) with RicM ≥ 0 and small diameter growth
diam(p, r) = o( 1

rn ), provided that the sectional curvature KM ≥ K0 > −∞.
Let (M, g) be an n-dimensional complete manifold with RicM ≥ 0 and αM > 0.

It has been proved by Li [L] that M has finite fundamental group. Anderson
[A] has showed that the order of the fundamental group of M is bounded from
above by 1

αM
. Perelman [P] has proved that there is a small constant ε(n) > 0

depending only on n such that if αM > 1 − ε(n), then M is contractible. It
has been shown by Shen [S2] that M has finite topological type, provided that
vol[B(p,r)]
ωnrn

= αM + o
( 1
rn−1

)
and, either the conjugate radius conjM ≥ c > 0

or the sectional curvature KM ≥ K0 > −∞. Petersen [Pe] conjectured that if
αM > 1

2 then M is diffeomorphic to Rn. Recently, Cheeger and Colding [CC] gave
a partial answer to Petersen’s conjecture. In fact, they proved that there exists a
small constant δ(n) > 0 such that if αM ≥ 1−δ(n), then M is diffeomorphic to Rn.
Another result which supports stongly Petersen’s conjecture has been obtained by
do Carmo and the author recently in [CX].

In the present paper, we study complete manifolds with nonnegative Ricci
curvature and large volume growth. Let M be a complete manifold and p ∈ M
be fixed; we say that Kmin

p ≥ c if for any minimal geodesic γ issuing from p all
sectional curvatures of the planes which are tangent to γ are greater than or equal
to c. This notion was first introduced by Klingenberg [K].

Theorem 1.1. Let (M, g) be a complete Riemannian n-manifold with Ricci cur-
vature RicM ≥ 0, αM > 0. Suppose that Kmin

p ≥ −C for some point p ∈ M and
some positive constant C. If for all r > 0, we have

vol[B(p, r)]
ωnrn

<

{
1 + 2−n

(
1

8
√
Cr

log
(

2
1 + e−2

√
Cr

))n−1
}
αM , (1.2)

then M is diffeomorphic to Rn.

The following result is a generalization of Shen’s theorem mentioned above.

Theorem 1.2. Let (M, g) be a complete Riemannian n-manifold with Ricci cur-
vature RicM ≥ 0, αM > 0. Suppose that Kmin

p ≥ −C for some p ∈M and C > 0.
If

lim sup
r→+∞

{(
vol[B(p, r)]

ωnrn
− αM

)
rn−1

}
< 2−n

(
log 2
8
√
C

)n−1
αM , (1.3)

then M has finite topological type.

Let (M, g) be an n-dimensional complete noncompact Riemannian manifold.
Fix a point p ∈M . For any r > 0, let

kp(r) := inf
M\B(p,r)

K
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where B(p, r) is the open geodesic ball around p with radius r, K denotes the
sectional curvature of M , and the infimum is taken over all the sections at all
points on M\B(p, r). It is easy to see that kp(r) ≤ 0 and that kp(r) is a monotone
function of r.

U. Abresch [A] proved that if
∫∞
0 rkp(r)dr > −∞, thenM is of finite topological

type. Recently, Sha and Shen [SS] showed that a complete open Riemannian
manifold M has finite topological type if RicM ≥ 0, αM > 0 and

kp(r) ≥ −
C

1 + r2 (1.4)

for some constant C > 0 and all r > 0.
In this paper we then prove the

Theorem 1.3. Given C > 0, and an integer n ≥ 2, there is a positive constant
ε = ε(n,C) such that any complete Riemannian n-manifold M with Ricci curvature
RicM ≥ 0, αM > 0, kp(r) ≥ − C

1+r2 and

vol[B(p, r)]
ωnrn

≤ (1 + ε)αM (1.5)

for some p ∈M and all r > 0 is diffeomorphic to Rn.

Now we list the following Toponogov-type comparison theorem for complete
manifolds with Kmin

p ≥ c obtained by Machigashira which will be used in this
paper. Let M2(c) be the complete simply connected surface of constant curvature
c. Throughout this paper, all geodesics are assumed to have unit speed.

Lemma 1.1 ([M1], [M2]) Let M be a complete Riemannian manifold and p be a
point of M with Kmin

p ≥ c.
(i) Let γi : [0, li] → M, i = 0, 1, 2 be minimal geodesics with γ1(0) = γ2(l2) =

p, γ0(0) = γ1(l1) and γ0(l0) = γ2(0). Then, there exist minimal geodesics γ̃i :
[0, li]→M2(c), i = 0, 1, 2 with γ̃1(0) = γ̃2(l2), γ̃0(0) = γ̃1(l1) and γ̃0(l0) = γ̃2(0)
which are such that

L(γi) = L(γ̃i) for i = 0, 1, 2

and
∠(−γ′1(l1), γ′0(0)) ≥ ∠(−γ̃1

′(l1), γ̃0
′(0)),

∠(−γ′0(l0), γ′2(0)) ≥ ∠(−γ̃0
′(l0), γ̃2

′(0)).

(ii) Let γi : [0, li] → M, i = 1, 2 be two minimizing geodesics starting from
p. Let γ̃i : [0, li] → M2(c) for i = 1, 2 be minimizing geodesics starting from
same point such that ∠(γ′1(0), γ′2(0)) = ∠(γ̃1

′(0), γ̃2
′(0)). Then d(γ1(l1), γ2(l2)) ≤

dc(γ̃1(l1), γ̃2(l2)), where dc denotes the distance function in M2(c).
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2. Proof of Theorem 1.1 and Theorem 1.2

Let M be an n-dimensional Riemannian manifold and 1 ≤ k ≤ n − 1. If for any
point x ∈M and any (k+1)-mutually orthogonal unit tangent vectors e, e1, ..., ek ∈
TxM , we have

∑k
i=1 K(e ∧ ei) ≥ 0, we say that the k-th Ricci curvature of M

is nonnegative and denote this fact by Ric(k)
M ≥ 0. Here, K(e ∧ ei) denote the

sectional curvature of the plane spanned by e and ei(1 ≤ i ≤ k). Notice that if
Ric(k)

M ≥ 0 then RicM ≥ 0.
We shall prove the following more general theorem than Theorem 1.1.

Theorem 2.1. Let (M, g) be a complete Riemannian n-manifold with Ric(k)
M ≥

0, αM > 0. Suppose that Kmin
p ≥ −C for some C > 0 and p ∈ M . If for all

r > 0, we have

vol[B(p, r)]
ωnrn

<

{
1 + 2−n

(
1

8
√
Cr

log
(

2

1 + e−2
√
Cr

)) kn
k+1
}
αM , (2.1)

then M is diffeomorphic to Rn.

For a point p ∈ M ; we set dp(x) = d(p, x). Notice that the distance function
dp is not a smooth function (on the cut locus of p). Hence the critical points of dp
are not defined in a usual sense. The notion of critical points of dp was introduced
by Grove-Shiohama [GS].

A point q(6= p) ∈M is called a critical point of dp if there is, for any non-zero
vector v ∈ TqM , a minimal geodesic γ from q to p making an angle ∠(v, γ′(0)) ≤ π

2
with v. We simply say that q is a critical point of p. It is now well-known that a
complete noncompact Riemannian n-manifold M is diffeomorphic to Rn if there
is a p ∈M such that p has no critical points other than p.

Let Σ be a closed subset of the unit tangent sphere SpM at p ∈M . Let BΣ(p, r)
denote the set of points x ∈ B(p, r) such that there is a minimizing geodesic γ from
p to x with dγ

dt (0) ∈ Σ. For 0 < r ≤ ∞, let Σp(r) denote the set of unit vectors
v ∈ Σ such that the geodesic γ(t) = expp(tv) is minimizing on [0, r). Notice that

Σp(r2) ⊂ Σp(r1), 0 < r1 < r2; Σp(∞) =
⋂
r>0

Σp(r). (2.2)

The following generalized Bishop-Gromov volume comparison theorem was ob-
served in [S2].

Lemma 2.1. ([S2]) Let (M,g) be a complete n-manifold with RicM ≥ 0. Let
Σ ⊂ SpM be a closed subset. Then the function r → vol[BΣ(p,r)]

ωnrn
is monotone

decreasing.



460 Ch. Xia CMH

Lemma 2.2. ([S2]) Let (M,g) be a complete n-manifold with RicM ≥ 0. The
function

r →
vol[BΣp(r)(p, r)]

ωnrn

is monotone decreasing. If in addtion that M has large volume growth, then

vol[BΣp(r)(p, r)]

ωnrn
≥ αM , ∀r > 0. (2.3)

Lemma 2.3. Let (M,g) be a complete n-manifold with RicM ≥ 0 and αM > 0.
Then

vol[BΣp(∞)(p, r)]

ωnrn
≥ αM , ∀r > 0. (2.4)

Proof. Observe that

vol[BΣp(r)(p, r)]

ωnrn
=

vol[BΣp(∞)(p, r)] + vol[BΣp(r)\Σp(∞)(p, r)]

ωnrn
. (2.5)

By the standard argument, we have

vol[BΣp(r)\Σp(∞)(p, r)] ≤
rn

n
· vol(Σp(r) \ Σp(∞)) (2.6)

It follows from (2.2) that

lim
r→∞

vol(Σp(r) \ Σp(∞)) = 0. (2.7)

Substituting (2.6) into (2.5) and letting r →∞, one obtains by virtue of (2.7) and
(2.3)

lim
r→∞

vol[BΣp(∞)(p, r)]

ωnrn
≥ lim
r→∞

Vol[BΣp(r)(p, r)]

ωnrn

≥ αM .

Using Lemma 2.1, one obtains (2.4). �

Lemma 2.4. Let (M, g) be a complete n-manifold with RicM ≥ 0 and αM > 0.
Let Rp denote the(point set) union of rays issuing from p. Then for any r > 0
and any x ∈ ∂B(p, r),

d(x,Rp) ≤ 2α−
1
n

M

{
vol[B(p, r)]

ωnrn
− αM

} 1
n

r. (2.9)
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Proof. Let s = d(x,Rp); then s ≤ r and

B(x, s) ∪BΣp(∞)(p, 2r) ⊂ B(p, 2r). (2.10)

The left hand side of (2.10) is a disjoint union. By (1.1), we have

vol(B(x, s)) ≥ αMωnsn.

From Lemma 2.1 and Lemma (2.3), one obtains

2nvol[B(p, r)] ≥ vol[B(p, 2r)] (2.11)
≥ vol[B(x, s)] + vol[BΣp(∞)(p, 2r)]

≥ αMωnsn + αMωn(2r)n.

thus

sn ≤ 2nrnα−1
M

{
vol[B(p, r)]

ωnrn
− αM

}
.

This proves (2.9). �

Let p, q ∈M . The excess function epq(x) is defined by

epq(x) := d(p, x) + d(q, x)− d(p, q)

Lemma 2.5. ([AG, S1]) Let (M, g) be a complete n-manifold with Ric(k)
M ≥ 0 for

some 1 ≤ k ≤ n− 1. Let γ : [0, a]→M be a minimal geodesic from p to q. Then
for any x ∈M ,

epq(x) ≤ 8
(
sk+1

r

) 1
k

, (2.12)

where s = d(x, γ), r = min(d(p, x), d(q, x)).

Let γ : [0,∞) → M be a ray issuing from p and let x ∈ M . It is easy to see
that ep,γ(t)(x) = d(p, x) + d(γ(t), x) − t is decreasing in t and that ep,γ(t)(x) ≥ 0.
We define the excess function ep,γ associated to p and γ as

ep,γ(x) = lim
t→+∞

ep,γ(t)(x). (2.13)

Then
ep,γ(x) ≤ ep,γ(t)(x), ∀t > 0. (2.14)

Lemma 2.6. Let (M, g) be a complete open Riemannian manifold with Kmin
p ≥

−C for some C > 0 and p ∈M . Suppose that x 6= p is a critical point of p. Then
for any ray γ : [0,∞)→M issuing from p

ep,γ(x) ≥ 1√
C

log
(

2

1 + e−2
√
Cd(p,x)

)
. (2.15)
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Proof. For any t > 0, take a minimal geodesic σt : [0, d(x, γ(t))] → M from x to
γ(t). Since x is a critical point of p, there exists a minimal geodesic τ from x to p
such that σ′t(0) and τ ′(0) make an angle at most π

2 . Applying Lemma 1.1 to the
geodesic triangle (γ|[0,t], σt, τ), we obtain

cosh(
√
Ct) ≤ cosh

(√
Cd(x, γ(t))

)
cosh

(√
Cd(p, x)

)
. (2.16)

Multiplying the above inequality by 2 exp
(√

C(d(p, x)− t)
)

and letting t→ +∞,
we obtain

exp
(√

Cd(p, x)
)
≤ exp

(√
Cep,γ(x)

)
cosh

(√
Cd(p, x)

)
. (2.17)

Then Lemma 2.6 follows from (2.17).

Proof of Theorem 2.1. We shall prove that M contains no critical points of p(other
than p) and therefore it is diffeomorphic to Rn. To do this, take an arbitrary point
x(6= p) ∈M and set r = d(p, x). It follows from (2.1) and (2.9) that

d(x,Rp) <
(

1
8
√
C

log
(

2
1 + e−2

√
Cr

)) k
k+1

· r
1

k+1 .

Thus we can find a ray γ : [0,+∞)→M issuing from p and satisfying

s := d(x, γ) <
(

1
8
√
C

log
(

2
1 + e−2

√
Cr

)) k
k+1

· r
1

k+1 . (2.18)

Take q ∈ γ such that d(x, q) = d(x, γ). By (2.18), d(x, q) < r. Also one can easily
deduce from triangle inequality that

min (d(p, x), d(γ(t), x)) = r, ∀ t ≥ 2r.

Thus q ∈ γ((0, 2r)) and so
d(x, γ|[0,2r]) = s.

Using (2.12), (2.14) and (2.18), we obtain

ep,γ(x) ≤ ep,γ(2r)(x) (2.19)

≤ 8
(
sk+1

r

) 1
k

<
1√
C

log
(

2
1 + e−2

√
Cr

)
.
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By (2.15) and (2.19), x is not a critical point of p. Thus M is diffeomorphic to
Rn. This completes the proof of Theorem 2.1. �

Theorem 1.2 is a consequence of the following more general result.

Theorem 2.2. Let (M, g) be a complete Riemannian n-manifold with Ric(k)
M ≥

0, αM > 0. Suppose that Kmin
p ≥ −C for some p ∈M and C > 0. If

lim sup
r→+∞

{(
vol[B(p, r)]

ωnrn
− αM

)
r
kn
k+1

}
< 2−n

(
log 2
8
√
C

) kn
k+1

· αM , (2.20)

then M has finite topological type.

Proof of Theorem 2.2. By the Isotopy Lemma [C, G, GS], it suffices to show that
for any x ∈ M , if d(p, x) is large enough then x is not a critical point of p. Our
assumption (2.20) enables us to find a small number ε > 0 and a sufficiently large
r1 such that

(
vol[B(p, r)]

ωnrn
− αM

)
r
kn
k+1 < 2−n

(
log 2
8
√
C
− ε
) kn
k+1

αM , ∀r ≥ r1. (2.21)

Since

lim
r→+∞

log
(

2
1 + e−2

√
Cr

)
= log 2,

there is a sufficiently large r2 such that

log
(

2
1+e−2

√
Cr

)
8
√
C

>
log 2
8
√
C
− ε, ∀r ≥ r2. (2.22)

Let r0 = max(r1, r2); then for any r ≥ r0 we have from (2.21) and (2.22) that

vol[B(p, r)]
ωnrn

<

1 + 2−n

 log2
8
√
C
− ε
r

 kn
k+1
 · αM (2.23)

<

{
1 + 2−n

(
1

8
√
Cr

log
(

2
1 + e−2

√
Cr

)) kn
k+1
}
· αM

Now one can repeat the arguments as in the proof of Theorem 2.1 to prove that
M \ B(p, r0) contains no critical points of p. Therefore M has finite topological
type. This completes the proof of Theorem 2.2. �
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Proof of Theorem 1.3. Let δ = δ(C) < 1
20 be a solution of the following inequality

cosh2(4
√
Cδ)− cosh

(
6
√
Cδ
)
< 0. (2.24)

We take our ε = ε(n,C) in Theorem 1.3 to be

ε =
(
δ

8

)n
(2.25)

Take an arbityary point x(6= p) ∈ M and let r = d(p, x). It suffices to prove
that x is not a critical point of p. Let γ : [0, 2r] → M be a minimizing geodesic
from p to q = γ(2r) such that s := d(x, γ) = d(x,BΣp(∞)(p, 2r)). Using the same
arguments as in the proof of (2.9), we obtain

d(x,BΣp(∞)(p, 2r)) ≤ 2α−
1
n

M

{
vol[B(p, r)]

ωnrn
− αM

} 1
n

· r. (2.26)

Take a minimizing geodesic σ from x to q. For any minimal geodesic σ1 from x to
p, let p̃ = σ1(δr) and q̃ = σ(δr). Applying the Toponogov comparison theorem to
the hinge (σ|[0,δr], σ1|[0,δr]) in M −B r

4
(p), we have

cosh

(
4
√
C

r(x)
d(p̃, q̃)

)
≤ cosh2(4

√
Cδ)− sinh2(4

√
Cδ) cos θ (2.27)

where θ = ∠(σ′(0), σ′1(0)) be the angle of σ and σ1 at x and we have used the fact
that the sectional curvature of M satisfies KM ≥ −42C

r2
on M −B r

4
(p). Let m ∈ γ

such that d(x,m) = d(x, γ); it then follows from the triangle inequality that

d(p̃, q̃) ≥ d(p, q)− d(p, p̃)− d(q, q̃) (2.28)
= d(p,m) + d(q,m)− [d(p, x)− d(p̃, x)]

− [d(x, q) − d(x, q̃)]
= 2δr + [d(p,m)− d(p, x)] + [d(q,m)− d(q, x)]
≥ 2δr − 2d(x,m).

From (2.25), (2.26) and our assumption (1.5), we have

d(x,m) = d(x,BΣp(∞)(p, 2r)) (2.29)

≤ 2ε
1
n r

≤ δr

4
.
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Thus we have
d(p̃, q̃) ≥ 3

2
δr. (2.30)

Substituting (2.30) into (2.27) and using (2.24), we find that

sinh2(4
√
Cδ)cosθ ≤ cosh2(4

√
Cδ)− cosh

(
4
√
C

r(x)
d(p̃, q̃)

)
(2.31)

≤ cosh2(4
√
Cδ)− cosh

(
6
√
Cδ)

)
< 0,

or
θ >

π

2
. (2.32)

Hence x is not a critical point of p. Thus M is diffoemorphic to Rn. The theorem
follows.
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