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Open manifolds with nonnegative Ricci curvature and
large volume growth
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Abstract. In this paper, we study complete open n-dimensional Riemannian manifolds with
nonnegative Ricci curvature and large volume growth. We prove among other things that such
a manifold is diffeomorphic to a Euclidean n-space R™ if its sectional curvature is bounded from
below and the volume growth of geodesic balls around some point is not too far from that of the
balls in R™.

Mathematics Subject Classification (1991). (1985 Rewision): 53C20; Secondary 53C21,
53R70, 31C12.

Keywords. Open manifolds, nonnegative Ricci curvature, large volume growth.

1. Introduction

Let (M, g) be an n-dimensional complete Riemannian manifold with nonnegative
Ricci curvature. The relative volume comparison theorem [BC, GLP] says that
the function r — w is monotone decreasing, where B(p,r) denotes the
geodesic ball around p € M with radius r and w,, is the volume of the unit ball in

the Euclidean space R". Define as by

o i YUB.)]

r—o00 WpT"

It is easy to show that as is independent of p € M, hence it is a global geometric
invariant of M. We always have

apwnr” < vol[B(z,r)] <w,r™, VYr>0, VeeM. (1.1)

We say (M, g) has large volume growth if aps > 0. It should be noticed that, in
this case, 0 < aps < 1 and when ap; = 1, M is isometric to R™ by Bishop-Gromov
comparison theorem [BC, GLP)].

A manifold M is said to have finite topological type if there is a compact domain
Q whose boundary 9f2 is a topological manifold such that M \  is homeomorphic
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to 99 x [0,00). Abresch-Gromoll [AG] first obtain the finiteness of topological
type for complete n-manifolds (M, g) with Ricy; > 0 and small diameter growth
diam(p,r) = 0(%), provided that the sectional curvature K, > Ky > —oo.

Let (M, g) be an n-dimensional complete manifold with Ricys > 0 and aps > 0.
It has been proved by Li [L] that M has finite fundamental group. Anderson
[A] has showed that the order of the fundamental group of M is bounded from
above by %M Perelman [P] has proved that there is a small constant e(n) > 0
depending only on n such that if ap; > 1 — €(n), then M is contractible. It
has been shown by Shen [S2] that M has finite topological type, provided that
w = apy + o(r%l) and, either the conjugate radius conjpyr > ¢ > 0
or the sectional curvature Ky > Ko > —oo. Petersen [Pe] conjectured that if
an > % then M is diffeomorphic to R™. Recently, Cheeger and Colding [CC] gave
a partial answer to Petersen’s conjecture. In fact, they proved that there exists a
small constant §(n) > 0 such that if aps > 1—46(n), then M is diffeomorphic to R™.
Another result which supports stongly Petersen’s conjecture has been obtained by
do Carmo and the author recently in [CX].

In the present paper, we study complete manifolds with nonnegative Ricci
curvature and large volume growth. Let M be a complete manifold and p € M
be fixed; we say that K;nin > c if for any minimal geodesic v issuing from p all
sectional curvatures of the planes which are tangent to v are greater than or equal
to ¢. This notion was first introduced by Klingenberg [K].

Theorem 1.1. Let (M, g) be a complete Riemannian n-manifold with Ricci cur-
vature Ricyr > 0, aps > 0. Suppose that Kl’f”” > —C for some point p € M and
some positive constant C'. If for all r > 0, we have

vol[B(p, )]

1 9 n—1
—n
o {1+2 (Sﬁrlog (1+e—2‘/a>) }QM’ (12)
then M is diffeomorphic to R™.

The following result is a generalization of Shen’s theorem mentioned above.

Theorem 1.2. Let (M, g) be a complete Riemannian n-manifold with Ricci cur-
vature Ricyr > 0, anr > 0. Suppose that K" > —C' for some p € M and C > 0.

If )
. vol[B(p, )] 1 . (log 2\~
lims VOubp, )] n 9—n 1.
:«Iiligf { ( wpr™ am T < 8v/C M (13)

then M has finite topological type.

Let (M, g) be an n-dimensional complete noncompact Riemannian manifold.
Fix a point p € M. For any r > 0, let

ky(r):= inf K
p(7) D)
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where B(p,r) is the open geodesic ball around p with radius r, K denotes the
sectional curvature of M, and the infimum is taken over all the sections at all
points on M\B(p,r). It is easy to see that k,(r) < 0 and that k,(r) is a monotone
function of 7.

U. Abresch [A] proved that if fooo rky(r)dr > —oo, then M is of finite topological
type. Recently, Sha and Shen [SS] showed that a complete open Riemannian
manifold M has finite topological type if Ricy; > 0, apr > 0 and

C

ko(r) 2 =173 (1.4)
for some constant C > 0 and all r > 0.

In this paper we then prove the

Theorem 1.3. Given C' > 0, and an integer n > 2, there is a positive constant
e = €(n, C) such that any complete Riemannian n-manifold M with Ricci curvature
Ricar >0, ay >0, ky(r) > _H-% and

vol[B(p, )]

<(1 1.
o < (14 o (15)

for some p € M and all v > 0 is diffeomorphic to R™.

Now we list the following Toponogov-type comparison theorem for complete
manifolds with K;,nin > ¢ obtained by Machigashira which will be used in this
paper. Let M2 (¢) be the complete simply connected surface of constant curvature
c. Throughout this paper, all geodesics are assumed to have unit speed.

Lemma 1.1 ([M1], [M2]) Let M be a complete Riemannian manifold and p be a
point of M with K;,mn > c.

(i) Let ~; : [0,1;] — M, i =0,1,2 be minimal geodesics with v1(0) = y2(l2) =
D, 70(0) = v1(l1) and ~vo(lo) = v2(0). Then, there exist minimal geodesics ; :
[0,1:] = M?(c), i =0,1,2 with 71(0) = T2(l2), 70(0) = 71(l1) and Yo(lo) = 72(0)
which are such that

L(v;) = L(¥;) fori=0,1, 2

and
(_’}71/(11)7’)70/(0))7
(70" (lo), 72'(0)).

(i1) Let v; : [0,1;] — M, i = 1,2 be two minimizing geodesics starting from
p. Let 5 : [0,1;] — M?(c) for i = 1,2 be minimizing geodesics starting from

same point such that Z(v}(0),~74(0)) = Z(71'(0),72'(0)). Then d(v1(l1),v2(l2)) <
de(71(11),72(12)), where d. denotes the distance function in M?(c).
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2. Proof of Theorem 1.1 and Theorem 1.2

Let M be an n-dimensional Riemannian manifold and 1 < k < n — 1. If for any
point € M and any (k+1)-mutually orthogonal unit tangent vectors e, e1, ..., e, €
T.M, we have Zle K(e Ae;) > 0, we say that the k-th Ricci curvature of M
is nonnegative and denote this fact by Ricg@) > 0. Here, K(e A e;) denote the
sectional curvature of the plane spanned by e and ¢;(1 < i < k). Notice that if
Ricg\];) > 0 then Ricy; > 0.

We shall prove the following more general theorem than Theorem 1.1.

Theorem 2.1. Let (M, g) be a complete Riemannian n-manifold with Ricg@) >

0, aps > 0. Suppose that Kg”” > —C for some C > 0 and p € M. If for all
r >0, we have

kn
vol[B(p, r)] a1 2 R
o <<14+2 8\/6r10g e a, (2.1)

then M is diffeomorphic to R™.

For a point p € M; we set d,(x) = d(p, z). Notice that the distance function
d, is not a smooth function (on the cut locus of p). Hence the critical points of d,
are not defined in a usual sense. The notion of critical points of d,, was introduced
by Grove-Shiohama [GS].

A point ¢(# p) € M is called a critical point of dj, if there is, for any non-zero
vector v € Ty M, a minimal geodesic v from ¢ to p making an angle Z(v,~/(0)) < %
with v. We simply say that ¢ is a critical point of p. It is now well-known that a
complete noncompact Riemannian n-manifold M is diffeomorphic to R™ if there
is a p € M such that p has no critical points other than p.

Let ¥ be a closed subset of the unit tangent sphere S, M at p € M. Let Bx:(p,r)
denote the set of points 2 € B(p, r) such that there is a minimizing geodesic v from
p to x with %(0) € X. For 0 < r < o0, let ¥,(r) denote the set of unit vectors
v € ¥ such that the geodesic v(t) = exp,(tv) is minimizing on [0, r). Notice that

Sp(ra) € Sp(r1), 0 <11 <712 Tp(00) =[] Sp(r). (2.2)
r>0

The following generalized Bishop-Gromov volume comparison theorem was ob-
served in [S2].

Lemma 2.1. ([S2]) Let (M,g) be a complete n-manifold with Ricpr > 0. Let

X C SpM be a closed subset. Then the function r — % s monotone
decreasing.
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Lemma 2.2. ([S2]) Let (M,g) be a complete n-manifold with Ricpy > 0. The
function
VOl[BEp(T) (p,7)]

WpT"

T —
18 monotone decreasing. If in addtion that M has large volume growth, then

vol[By, ()(p,7)]

> apy, Vr>0. (2.3)
Wy ™

Lemma 2.3. Let (M,g) be a complete n-manifold with Ricps > 0 and ap > 0.
Then
VOI[BEP(OO) (p,7)]

wpr™

>an, Vr>0. (2.4)
Proof. Observe that

vol[Bs, () (P, )] _ vOlBs, (o0) ()] + VOUBs, (1)\53, (o) (P, )]

2.
Wpr'™ Wwpr™ (25)
By the standard argument, we have
Tn
Vol[Bs, (153, (o0) (P, 7)] < — - vOl(Ep(r) \ Bp(00)) (2.6)
It follows from (2.2) that
lim vol(3,(r) \ ¥p(c0)) = 0. (2.7)

T—00

Substituting (2.6) into (2.5) and letting » — oo, one obtains by virtue of (2.7) and
(2.3)

vol|B: ,T Vol| By, (y(p,7
i [Bs:, (00) (P:7)] > lim [Bs, () (:7)]
r—00 Wpt™ r—00 Wpt™

2 apng.
Using Lemma 2.1, one obtains (2.4). O
Lemma 2.4. Let (M,g) be a complete n-manifold with Ricps > 0 and apr > 0.

Let R, denote the(point set) union of rays issuing from p. Then for any r > 0
and any x € 0B(p,r),

d(z,Ry) < 204;4% {M — aM}: 7. (2.9)

WpT"
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Proof. Let s = d(z, Rp); then s <r and
B(z,s) U By, ()(p,2r) C B(p, 2r). (2.10)
The left hand side of (2.10) is a disjoint union. By (1.1), we have
vol(B(z, s)) > anwns”.
From Lemma 2.1 and Lemma (2.3), one obtains

2"vol[B(p,r)] > vol[B(p, 2r)] (2.11)
> vol[B(z, s)] + vol[By (o) (P, 21)]

> apywns” + apwn(2r)".

s" < 2"7‘”0[1\_/11 {VOl[B(p,’I‘)] _ aM} )

wpr™

thus

This proves (2.9). O
Let p,q € M. The excess function eyq(x) is defined by
epq(2) = d(p, ) + d(q,z) — d(p, q)

Lemma 2.5. ([AG, S1]) Let (M, g) be a complete n-manifold with Ricg\lj) >0 for
somel <k<mn-—1. Lety:[0,a] = M be a minimal geodesic from p to q. Then

for any x € M,
GhHLN
epq(z) <8 ( " ) ; (2.12)

where s = d(z,~y), r = min(d(p, ), d(g, x)).

Let v : [0,00) — M be a ray issuing from p and let x € M. It is easy to see
that e, .y (x) = d(p,x) + .d(’y(t),x) —t 15 decreasing in ¢ and that e, ) (z) > 0.
We define the excess function e, , associated to p and y as

epy(T) = t_l)ifloo €py(t) (). (2.13)
Then
epy(2) S €y p(@), VE>0. (2.14)

Lemma 2.6. Let (M,g) be a complete open Riemannian manifold with K;m" >
—C for some C >0 and p € M. Suppose that x # p is a critical point of p. Then
for any ray v : [0,00) — M issuing from p

1 2
epﬁ(x) Z ﬁlog (m) . (215)
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Proof. For any t > 0, take a minimal geodesic o : [0,d(z,v(¢))] — M from z to
~(t). Since z is a critical point of p, there exists a minimal geodesic 7 from z to p

such that o;(0) and 7/(0) make an angle at most 5. Applying Lemma 1.1 to the
geodesic triangle (v[[g . 0+, 7), we obtain

cosh(v/Ct) < cosh (\/ad(x,'y(t))) cosh (\/ad(p, x)) . (2.16)

Multiplying the above inequality by 2 exp (\/a(d(p, x) — t)) and letting t — +o0,
we obtain

exp (\/ad(p, x)) <exp (\/Eepﬁ(x)> cosh (\/Ed(p, x)) . (2.17)
Then Lemma 2.6 follows from (2.17).

Proof of Theorem 2.1. We shall prove that M contains no critical points of p(other
than p) and therefore it is diffeomorphic to R™. To do this, take an arbitrary point
x(# p) € M and set r = d(p, z). It follows from (2.1) and (2.9) that

2 T
d(z,Rp) < (8\/_10g (1—1—@—2\@7“)) AT

Thus we can find a ray v : [0, +00) — M issuing from p and satisfying

d( )<< L, ( 2 ))ﬁ Gas (2.18)
s :=d(x, o} SR .
7 8VC 8 1+ e2VCr

Take ¢q € 7 such that d(z, q) = d(z,v). By (2.18), d(x,q) < r. Also one can easily
deduce from triangle inequality that

min (d(p,z),d(y(t),x)) =7, Vt>2r

Thus ¢ € v((0,2r)) and so
d(%ﬂ[om]) =S8

Using (2.12), (2.14) and (2.18), we obtain

epn(T) <€y, (QT)(JJ) (2.19)
+1
(5 )

<—1o
JC g(1+e m)




Vol. 74 (1999) Open manifolds with nonnegative Ricci curvature 463

By (2.15) and (2.19), z is not a critical point of p. Thus M is diffeomorphic to
R™. This completes the proof of Theorem 2.1. O

Theorem 1.2 is a consequence of the following more general result.

Theorem 2.2. Let (M, g) be a complete Riemannian n-manifold with Ricg\];) >

0, apr > 0. Suppose that K;,”m > —C for some pe M and C > 0. If

kn

) vol[B(p, )] ) k_} _ (log 2) R+1
lim su — " rEFL 5 < 277 -~ 2.20
oo {( W™ M 8V C M (2.20)

then M has finite topological type.

Proof of Theorem 2.2. By the Isotopy Lemma [C, G, GS], it suffices to show that
for any = € M, if d(p,x) is large enough then z is not a critical point of p. Our
assumption (2.20) enables us to find a small number € > 0 and a sufficiently large
r1 such that

kn

vol[B(p, r)] en_ _n (log 2 Rt1
_— - T <277 — Vr > ry. 2.21
( o ap | rE < " Wre € Qg r>nr ( )

Since

2
li 1 —— ) =1log 2
7"—}2100 8 (1 + e—2\/67"> 08 2

there is a sufficiently large 79 such that

log (72 )
Tfe—2ver log 2
> —€, Vr>ro. 2.22

8v/C NG ? (2.22)

Let rg = max(ry,r2); then for any r > rg we have from (2.21) and (2.22) that

kn

log2 R
1B —e
vollB(p. 1)) (]f; W PP v o (2.23)
wWnpT T

1 2 ==
<1427 lo -
(8@7« g<1+e2m)) M

Now one can repeat the arguments as in the proof of Theorem 2.1 to prove that
M \ B(p,rg) contains no critical points of p. Therefore M has finite topological
type. This completes the proof of Theorem 2.2. |
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Proof of Theorem 1.8. Let 6 = §(C) < 2—10 be a solution of the following inequality
cosh?(4v/C§) — cosh (6\/55) <0. (2.24)

We take our € = €(n, C) in Theorem 1.3 to be

€= (g)n (2.25)

Take an arbityary point z(# p) € M and let r = d(p, x). It suffices to prove
that x is not a critical point of p. Let 7 : [0,2r] — M be a minimizing geodesic
from p to ¢ = v(2r) such that s := d(z,v) = d(z, By (o) (p, 2r)). Using the same
arguments as in the proof of (2.9), we obtain

d(z, By (o0) (P, 21)) < 2aX471L {w — on} Con (2.26)

Wpr™

Take a minimizing geodesic o from z to q. For any minimal geodesic o1 from x to
p, let p = 01(0r) and § = o(dr). Applying the Toponogov comparison theorem to
the hinge (oljo.6,], o1l[0,57)) iIn M — Bz (p), we have

cosh (%d(ﬁ,d)) < cosh?(4V/C6) — sinh?(4v/C$) cos 0 (2.27)

where § = Z(07(0),07(0)) be the angle of o and o1 at # and we have used the fact

that the sectional curvature of M satisfies K > —4j—gc on M — Bz (p). Let m ey
such that d(x,m) = d(x,~); it then follows from the triangle inequality that

(p,q) — d(p,p) — d(q,q) (2.28)
(p,m) +d(g,m) — [d(p, ) — d(p, x)]
— [d(z,q) — d(, )]
= 20r + [d(p, m) — d(p, )] + [d(g, m) — d(q, z)]
> 20r — 2d(x, m).

d(p,q) =

From (2.25), (2.26) and our assumption (1.5), we have

d(z,m) = d(z, B, (o) (p,27)) (2:29)

1
< 2enr
or
< —.

— 4
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Thus we have 5
d(p,q) > 567". (2.30)

Substituting (2.30) into (2.27) and using (2.24), we find that

sinh?(4v/Cé)cosf < cosh?(4v/C5) — cosh d(p,q) (2.31)

()
< cosh?(4v/C5) — cosh (6\/55))
<0,

or
™

0> 3. (2.32)

Hence z is not a critical point of p. Thus M is diffoemorphic to R™. The theorem
follows.
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