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c© 1999 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

Simple singularities and topology of symplectically filling
4-manifold

Hiroshi Ohta∗ and Kaoru Ono∗∗

Abstract. Topological restrictions of symplectically filling 4-manifolds of links around simple
singularities are studied by using the Seiberg-Witten monopole equations. In particular, the
intersection form of minimal symplectically filling 4-manifolds of the singularity of type E8 is de-
termined. Moreover, for the case of simply elliptic singularities, similar restrictions are obtained.
In the proof, a vanishing theorem of the Seiberg-Witten invariant is discussed.
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1. Introduction

Let Γ be a finite subgroup of SU(2). According to Klein’s classification theorem,
Γ is classified by the Dynkin diagrams of type An(n ≥ 1), Dn(n ≥ 4), E6, E7
and E8. The group Γ acts isometrically on C2 and the quotient space C2/Γ
has only an isolated singularity at the origin. This is called a simple singularity
or a rational double point. Let C̃2/Γ be the minimal resolution of C2/Γ. The
exceptional set is a union of rational curves with self intersection number −2.
The configuration of the rational curves is described by the corresponding Dynkin
diagram of Γ, in particular the intersection form can be represented by the negative
definite Cartan matrix corresponding to the Dynkin diagram. It is also one of
fundamental properties of simple singularities that the canonical bundle of the
minimal resolution C̃2/Γ is trivial. On the other hand, we have another description
of the quotient singularity by viewing it as an isolated hypersurface singularity.
The ring of Γ-invariant polynomials on C2 is isomorphic to C[x, y, z]/RΓ, where
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RΓ is an ideal generated by a single polynomial fΓ(x, y, z) given by the following
table. (See [B3] and [Sai2], for example).

Group Γ Polynomial fΓ(x, y, z)

An xn+1 + y2 + z2

Dn x2y + yn−1 + z2

E6 x4 + y3 + z2

E7 x3y + y3 + z2

E8 x5 + y3 + z2

Then the quotient singularity can be seen at the origin in the hypersurface
{(x, y, z) ∈ C3 | fΓ(x, y, z) = 0}. Deforming the equation, so the complex struc-
ture, we have a non singular Kähler surface which is called the Milnor fibre [Mi],
MΓ = {(x, y, z) ∈ C3 | fΓ(x, y, z) = ε}. Here ε is a nonzero number. The in-
tersection form of MΓ is given by the Milnor lattice which is isomorphic to the
corresponding negative definite Cartan matrix of Γ. Note that two non singular
Kähler surfaces C̃2/Γ and MΓ are not isomorphic as complex manifolds. But
an interesting theorem due to Brieskorn [B1][B2] shows that their underlying 4-
manifolds are diffeomorphic. This is a characteristic feature of simple singularities
which is deeply related to existence of a simultaneous resolution. The main pur-
pose of this paper is trying to understand this phenomena from the point of view
of contact and symplectic geometry.

Let us consider the compact portions of the minimal resolution C̃2/Γ and the
Milnor fibre MΓ. Namely we consider B̃4/Γ and MΓ ∩ B6 where B2n denotes
the closed unit disk around the origin in Cn. Of course, they have the same
diffeomorphism type and the boundary is a rational homology 3-sphere S3/Γ.
From the construction we have a specific contact structure ξ0 on S3/Γ. The contact
structure ξ0 is induced from a standard contact structure ξst on S3 which is defined
as follows. Viewing S3 as a unit sphere in C2, we define the 2-plane field ξst on
S3 by the intersection of TS3 and J(TS3). Here J denotes the complex structure
on C2. Then ξst is completely non integrable so defines a contact structure on
S3. The orientation on S3/Γ is induced from the complex structure J on C2.
Generally, for a contact structure ξ on a 3-manifold Y , if there exists a symplectic
4-manifold (X,ω) such that the boundary of X with symplectic orientation is Y
with the orientation coming from the contact structure and ω|ξ > 0, we call ξ a
weakly fillable contact structure and (X,ω) a weakly symplectically filling manifold
of (Y, ξ). Furthermore, if there exists a contact form θ for ξ such that the restriction
of ω to Y equals to dθ, we call ξ a strongly fillable contact structure and (X,ω)
a strongly symplectically filling manifold of (Y, ξ). If Y is a rational homology
sphere, these notions coincide and we simply call them fillable contact structure
and symplectically filling manifold respectively. Namely, we have
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Lemma 1.1. For a contact manifold (Y, ξ) with a rational homology sphere Y , it
is a strongly fillable structure if and only if it is a weakly filling structure.

Proof. It is obvious that a strong symplectically filling manifold is a weakly sym-
plectically filling manifold. We shall show the converse. Since Y is a rational
homology sphere, the restriction of ω to a collar neighborhood U ∼= Y × [0, 1] is
exact, i.e., ω|U = dη, where η is a 1-form on U .

By Lemma 4.1 in [K-M2], we can choose a function f on [0, 1) such that ω̃ =
ω + d(fθ) is a symplectic form on X − ∂X , where f denotes the pull back of the
function f on [0, 1) by the projection U −∂X ∼= Y × [0, 1) to [0, 1) and θ a contact
form for ξ.

Instead of ω̃ above, we consider the following 2-form, ω = d(ρη) + d(fθ). Here
ρ is a function on [0, 1], which equals 1 on [0, s0] for some s0 ∈ (0, 1) and 0 near
s = 1, and considered as a function on U . Since the function f in [K-M2] is
monotone increasing and tends to +∞ as s tends to 1, we can find a decreasing
function ρ with 0 ≤ |ρ̇| << 1/ḟ . This implies that ω is non-degenerate and indeed
a symplectic form proportional to dθ on Y ×{t0} for t0 sufficiently close to 1. By
changing the coordinate t by s = f(t), the symplectic form ω is written as d(sθ),
which can be symplectically embedded into the symplectization of the contact
manifold Y . In particular, ((X − U) ∪ Y × [0, t0], ω) is a strong symplectic filling
of Y . �

Remark. The proof above implies that a symplectic form of a weakly sym-
plectically filling of (Y, ξ) can be modified to be a symplectic form of a strongly
symplectically filling of it. This argument was used in [E].

By definition, ξst is a fillable contact structure and ξ0 is a fillable contact
structure on S3/Γ as well. In this paper we call ξ0 the standard contact structure on
S3/Γ. Of course, as ε changes, the complex structure on the Milnor fibre MΓ∩B6

changes. But we have a smooth family of contact structures parametrized by ε on
the boundary MΓ ∩ S5. Gray’s theorem implies that these contact structures are
isotopic. The contact structure on the boundary MΓ ∩ S5 when ε = 0 is nothing
but the contact structure on the boundary of the minimal resolution B̃4/Γ. Hence
these contact structures are isotopic. We denoted the isotopic class by ξ0 for
simplicity. From this point of view, Brieskorn’s theorem implies that there are
two natural symplectically filling 4-manifolds B̃4/Γ and MΓ ∩ B6 for (S3/Γ, ξ0)
which are diffeomorphic but not isomorphic as complex manifolds. Speaking from
the point of symplectic geometry, their symplectic structures can be joined by a
smooth family of symplectic structures, using hyperKähler structure.

Now we can state our main theorems of this paper.

Theorem 1. Let Γ be a finite subgroup of SU(2) and (S3/Γ, ξ0) be a rational
homology 3-sphere with the standard contact structure. Then for any symplectically
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filling 4-manifold of (S3/Γ, ξ0), the intersection form is negative definite.

Remark. If we take an another isolated hypersurface singularity instead of sim-
ple singularities and fix a fillable contact structure on the boundary of the neigh-
borhood, we have symplectically filling 4-manifolds which have various types of
topologies. For example (see also the paragraph before Theorem 4), we pick
a polynomial f(x, y, z) = x2 + y3 + z7 and denote by R(2, 3, 7) the intersec-
tion with the minimal resolution of {(x, y, z) ∈ C3 | f(x, y, z) = 0} at the ori-
gin and B6. Let N(2, 3, 7) be a compact portion of the Milnor fibre defined
by {(x, y, z) ∈ C3 | f(x, y, z) = ε} ∩ B6. Then both R(2, 3, 7) and N(2, 3, 7)
are symplectically filling 4-manifolds of the Brieskorn integral homology 3-sphere
Σ(2, 3, 7) = {(x, y, z) ∈ C3 | f(x, y, z) = 0} ∩ S5 with a fixed contact structure.
Although R(2, 3, 7) is negative definite, the intersection from of N(2, 3, 7) is given

by E8 ⊕ 2
(

0 1
1 0

)
, which is indefinite.

When Γ is E8 type, the quotient space S3/Γ is the Poincaré integral homol-
ogy 3-sphere. In this case we can obtain more exact description on topology of
symplectically filling 4-manifold. We say a symplectic manifold X is minimal, if
X contains no symplectically embedded two spheres of self intersection −1.

Theorem 2. Let Γ be a finite subgroup of SU(2) of type E8 and (S3/Γ, ξ0) be the
Poincaré integral homology 3-sphere with the standard contact structure. Then for
any minimal symplectically filling 4-manifold of (S3/Γ, ξ0), we have the following.
(1). The canonical bundle is trivial.
(2). The intersection form is equivalent to the negative definite Cartan matrix of
type E8.

If we show (1), then the claim (2) follows as below. If the canonical bundle
is trivial, the 4-manifold has a spin structure. Then from Froyshov’s result [F]
we have an upper bound estimate of the second Betti number of the 4-manifold.
Moreover in the case S3/Γ is an integral homology 3-sphere, the intersection form
is unimodular. Therefore we can conclude the claim (2) in Theorem 2 by the
Hasse-Minkowski classification theorem on unimodular quadratic forms. As for
the other cases of Γ, we can also show the triviality of the canonical bundle of
symplectically filling 4-manifold. But the proof is different from that for the case
E8 given in this paper, which is somewhat ad-hoc. For the general cases, the
proof will be based on an extended version of Taubes’ theorem [T2][T3], which
says correspondence between J-holomorphic curves and monopole solutions on 4-
manifold with conical end. The details will be discussed in the forthcoming paper
[K-O-O].

Furthermore by the argument similar to Theorem 1, we can also show the
following.
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Theorem 3. Let (X,ω) be a symplectic 4-manifold with boundary. The boundary
is a union

⊔N
i=1 S

3/Γi. (Each Γi may be different.) We take the standard contact
structure on each boundary component S3/Γi. If (X,ω) is a symplectically filling of⊔N
i=1 S

3/Γi, then N must be equal to 1. Namely the boundary must be connected.

In [M1], D. McDuff proved Theorem 3 when each Γi is trivial. She also proved
the connectedness of boundary for the case of lens space, but we note that the
contact structure is different from ours. See the paragraph following Theorem 4
below.

Beyond the class of simple singularities, we next consider so called simply ellip-
tic singularities Ẽ6, Ẽ7 and Ẽ8 [Sai1]. These are hypersurface singularities defined
by polynomials fẼ6

= x3 + y3 + z3 + axyz, (a3 + 27 6= 0), fẼ7
= x4 + y4 + z2 +

axyz, (a4−64 6= 0) and fẼ8
= x6 +y3 +z2+axyz, (a6−432 6= 0) respectively. The

intersection form of the corresponding Milnor fibre is described by the extended
Dynkin diagram Ẽ6, Ẽ7 and Ẽ8 respectively. In particular, we have b+2 = 0 and
b02 = 2 in all cases, and b−2 = 6, 7, 8, according to the type of Ẽ6, Ẽ7, Ẽ8. Here
by b∗2 we denote the number of ∗-eigen values of the intersection matrix. On the
other hand, it is known that the minimal resolution can be identified with a total
space of complex line bundle over T 2 with the first Chern class being −3,−2 and
−1 respectively. Under this identification, the exceptional divisor is zero section
with self-intersection −3,−2 and −1. Thus, in the cases of simply elliptic singu-
larities, the Milnor fibre has different topology from the minimal resolution. But
the number of positive eigen values of the intersection form is zero in both cases.
(From the description of the minimal resolution, we have a specific strongly fillable
contact structure on the boundary defined by a connection 1-form. By the same
argument as simple singularity cases the contact structure is isotopic to one on
the boundary of the Milnor fibre.) In fact, we can show Theorem 4 as following.

Theorem 4. Let Σg be a closed Riemann surface of genus g and Y (n, g) →
Σg be an S1-bundle over Σg associated to a complex line bundle with the first
Chern class n < 0. We take a contact structure ξconn on Y (n, g) defined by a
connection 1-form. This defines a strongly fillable contact structure. Suppose n <
2− 2g. Then for any strongly symplectically filling 4-manifold of (Y (n, g), ξconn),
the intersection form has no positive eigen value.

Note that (Y (−1, 0), ξconn) is (S3, ξst) and (Y (−2, 0), ξconn) is (S3/Γ, ξ0) with
Γ = A1. But when n < −2, the contact structure ξconn on Y (n, 0) is different from
the standard contact structure ξ0 on S3/Γ of type A−n−1, In fact, we naturally
have a disk bundle D(n, 0) → S2 associated to the complex line bundle with
the first Chern class n, which is a strongly symplectically filling 4-manifold of
(Y (n, 0), ξconn), because n < 0. The first Chern class of the complex tangent
bundle of D(n, 0) is n+ 2. Then the Euler class of the 2-plane field ξconn is given
by (n + 2)(mod n) ∈ H2(Y (n, 0); Z) = Z/nZ. So this cohomology class is non-
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trivial when n 6= −2,−1. On the other hand, for the case of (S3/Γ, ξ0), the Euler
class of contact 2-plane field ξ0 is cohomologically trivial. Hence when n < −2, ξ0
and ξconn on Y (n, 0) are different.

This work was presented at Symplectic Topology Workshop held at Fields In-
stitute, Toronto, Workshop on Moment Maps and Quantization, and Workshop on
Symplectic Topology at the University of Warwick. We are grateful to organizers
of these conferences. In particular, during the Workshop on Symplectic Topology
at Warwick, we learnt that P. Lisca also obtained related results independently.

2. Proof of Theorem 1, 3 and 4

First of all, we shall prove Theorem 1. Let (XΓ, ω) be a symplectically filling
4-manifold of (S3/Γ, ξ0). First, by using a compactification of the Milnor fibre in
certain weighted projective space, we shall symplectically glue XΓ along (S3/Γ, ξ0)
to obtain a symplectic closed 4-manifold.

Let MΓ be the Milnor fibre defined by {(x, y, z) ∈ C3 | fΓ(x, y, z) = ε}. Here
fΓ(x, y, z) is given by the table in the introduction. We regard fΓ(x, y, z) as
a weighted homogeneous polynomial. The weights and degree are given by the
following table according to the type of Γ.

Group Γ Weights (a, b, c) degree h

An (1, n+1
2 , n+1

2 ) n+ 1
Dn (n− 2, 2, n− 1) 2(n− 1)
E6 (3, 4, 6) 12
E7 (4, 6, 9) 18
E8 (6, 10, 15) 30

Consider a weighted projective space P(a, b, c, 1) = (C4 − 0)/ ∼, where
(x, y, z, w) ∼ (tax, tby, tcz, tw) for t ∈ C∗. By a map ι from C3 to P(a, b, c, 1)
defined by ι(x, y, z) = [x, y, z, 1], C3 can be embeded as an open dense subset so
that P(a, b, c, 1) = C3 ∪ P(a, b, c). Here P(a, b, c) = {[x, y, z, 0] ∈ P(a, b, c, 1)}.
We denote the closure of ι(MΓ) in P(a, b, c, 1) by MΓ. It can be identified with
a hypersurface fΓ(x, y, z) = wh in the weighted projective space P(a, b, c, 1). The
singular points on MΓ lie on the complementMΓ−ι(MΓ) = MΓ∩P(a, b, c). Taking
the minimal resolution M̃Γ → MΓ, we have a compact projective smooth surface
M̃Γ.(See [Sai2]). This contains the Milnor fibre MΓ as an open dense subset.

We put Mout
Γ = M̃Γ− ι(MΓ ∩B6). Since MΓ ∩B6 is negative definite and M̃Γ

has a Kähler form, we have b+2 (Mout
Γ ) ≥ 1. Moreover the boundary of Mout

Γ is
S3/Γ. We put

ZΓ = XΓ ∪S3/Γ M
out
Γ .

Then we can show
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Lemma 2.1. ZΓ is a closed symplectic 4-manifold.

Proof. Take the singular point p on MΓ ⊂ CPN and a small standard ball U
centered at p in CPN . We can modify the Fubini-Study form so that the re-
striction to U is the flat standard Kähler form on the ball in CN . Then it is
written as dλ with λ =

√
−1/2

∑
(zjdzj + zjdzj). It is also a contact form for

the contact structure given by maximally complex distribution on the boundary.
Moreover, the symplectic form dλ is isomorphic to the symplectic form on the
symplectization of the contact manifold ∂U . Restricting λ and dλ to ∂U ∩MΓ and
tubular neighborhood of ∂U ∩MΓ respectively, we get a symplectic embedding of
a tubular neighborhood of ∂U ∩MΓ into the symplectization of ∂U ∩MΓ, which
is contactmorphic to Y = S3/Γ.

On the other hand, Lemma 1.1 guarantees that the symplectic form of sym-
plectically filling manifold can be modified so that its restriction to the collar
neighborhood can be symplectically embedded into the symplectization of (Y, ξ).

We fix a coorientation of ξ and multiply −1 to the contact form if its coorien-
tations is opposite. The contact form θ in Lemma 1.1 and the contact form λ as
above give sections of

Symp(Y ) := {α ∈ T ∗Y |Ker α = ξ}.

After multiplying sufficiently large number to λ, we may assume that these two
sections do not intersect. We put V := {α ∈ Symp(Y )|θ ≤ α ≤ λ}, where θ < α
means α − θ gives the given coorientation of ξ. Then we glue XΓ, V and Mout

Γ
along boundaries, and get a smooth symplectic manifold ZΓ. �

Now suppose that b+2 (XΓ) ≥ 1. Then we have b+2 (ZΓ) ≥ 2. A theorem due
to Taubes [T1] implies that the Seiberg-Witten invariant for the canonical Spinc

structure of the symplectic 4-manifold ZΓ is non trivial. On the other hand, we
can show a vanishing theorem of Seiberg-Witten invariants as follows.

Proposition 2.2. Let X be a closed oriented connected smooth 4-manifold. Sup-
pose X has a decomposition X = X1 ∪Y X2 so that b+2 (Xi) ≥ 1, (i = 1, 2) and
Y is a closed oriented 3-manifold with a metric of positive scalar curvature. Then
all the Seiberg-Witten invariants of X vanish.

This might be a folk theorem which is well-known to specialists. In the section 4,
we shall prove it for convenience in the case Y is a rational homology 3-sphere.

Since S3/Γ admits a metric of positive scalar curvature, by using the vanishing
theorem, we have a contradiction if we suppose b+2 (XΓ) ≥ 1. Hence we have proved
Theorem 1. �

By the argument similar to the proof of Theorem 1, we can also prove Theorem
3.
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Proof of Theorem 3: Suppose N ≥ 2. Using the outer part Mout
Γi of the compacti-

fication of the Milnor fibre as in the proof of Theorem 1, we can construct a closed
symplectic 4-manifold ZΓ1,··· ,ΓN by

ZΓ1,··· ,ΓN = X ∪
N⊔
i=1

Mout
Γi .

Since b+2 (Mout
Γi ) ≥ 1, we find that all Seiberg-Witten invariants of ZΓ1,··· ,ΓN vanish

form Proposition 2.2, provided N ≥ 2. This contradicts to Taubes’ theorem [T1]
that the Seiberg-Witten invariant for the canonical Spinc structure of a symplectic
4-manifold with b+2 ≥ 2 is non-zero. Thus N must be equal to 1. �

Finally, before ending this section, we prove Theorem 4.

Proof of Theorem 4: Since n < 0, we have a natural strongly filling symplectic
manifold (D(n, g), ω) of (Y (n, g), ξconn), which is a disk bundle over Σg associated
to the complex line bundle L(n.g) → Σg with the first Chern class n. We define
a CP1-bundle P (n, g) → Σg to be the projectivization of L(n, g) by P (n, g) =
P(L(n, g)⊕C), where C is a trivial complex line bundle over Σg. In stead of the
compactification of the Milnor fibre, we use P (n, g)→ Σg which can be considered
as a compactification of the minimal resolution. We denote by Σ∞g the section at
infinity of P (n, g). Note that the self-intersection number of Σ∞g is equal to−n > 0.
Naturally D(n, g) is in P (n, g). We put P (n, g)out = P (n, g)−D(n, g). Now let
X be any strongly symplectically filling 4-manifold of (Y (n, g), ξconn). Then in
a way similar to the proof of Theorem 1, we can construct a closed symplectic
4-manifold Z(n, g) by

Z(n, g) = X ∪Y (n,g) P (n, g)out.

Now suppose that b+2 (X) ≥ 1. Then b+2 (Z(n, g)) ≥ 2. Taubes’ theorem [T3] shows
the Poincaré dual of c1(KZ) can be represented by a pseudo-holomorphic curve C.
Since two distinct pseudo-holomorphic curves in a 4-manifold have non-negative
intersection number [M2] and the self-intersection number of Σ∞g is positive, we
have C · Σ∞g ≥ 0. On the other hand, the adjunction formula for the pseudo-
holomorphic curve Σ∞g reads

2g − 2 = [Σ∞g ]2 + c1(KZ)[Σ∞g ] = −n+ [C] · [Σ∞g ].

If n < 2 − 2g, then we have [C] · [Σ∞g ] < 0, which is contradiction. Hence we
have proved Theorem 4. �
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3. Proof of Theorem 2

Let (X,ω) be a minimal symplectically filling 4-manifold of (S3/Γ, ξ0) with Γ =
E8. As we mentioned in the introduction, it is enough to prove that the canonical
bundle of (X,ω) is trivial. If we can show it, then by Froyshov’s result [F] we have
b2(X) ≤ 8. Here the right hand side is the rank of the Cartan matrix of type E8.
Then since the isomorphic class of negative definite unimodular quadratic forms
over Z of even type with rank ≤ 8 is only E8, we obtain the conclusion of (2).

In the theory of K3 surfaces, it is known that there is a K3 surface S such that
its algebraic (Picard) lattice contains E8. (See for example [B-P-V].) (Note that
the intersection form of K3 surfaces is the direct sum of three copies of hyperbolic
lattices and two copies of E8 lattices.) It implies that this K3 surface S contains
8 (−2)-rational curves whose dual graph is the Dynkin diagram of type E8. After
contracting these (−2)-rational curves, we get an E8-singularity. By the property
of Du Val singularities, this contracted space W0 is a projective variety. (See, for
example, Theorem 2.3 in [Art]).

In a similar way as in the proof of Lemma 2.1, we can make a closed 4-manifold
Z by gluing X and W = W0 − U , where U is a small open neighborhood of the
E8-singularity.

Since the intersection form QZ of Z is given by a direct sum QX⊕3
(

0 1
1 0

)
⊕

E8 and QX is negative definite from Theorem 1, we have b+2 (Z) = 3. We can show
in a way similar to Lemma 2.1 that

Lemma 3.1. Z has a symplectic structure ωZ.

Proof. Note that W0 is projective. The proof goes in a similar way as in the proof
of Lemma 2.1. �

Then it is enough to prove the canonical bundle KZ of Z is trivial. We suppose
that KZ is non trivial. Since b+2 (Z) > 1, Taubes’ theorem [T1] shows the Seiberg-
Witten invariant for the Spinc structure with the characteristic line bundle KZ is
non zero. Moreover thanks to Taubes’s theorem [T2] [T3], the Poincaré dual of
c1(KZ) is represented by the fundamental class of an embedded symplectic curve
C.

First we consider the case C ∩W = φ. Namely the curve C is contained in
the interior of X . Since X is negative definite, the self-intersection number of C is
negative. By dimension formula, the curve obtained by Taubes’ theorem satisfies
either that the curve is (−1)-curve or that the curve has non-negative intersection
number. Hence the only possibility is a symplectic sphere with self-intersection
−1 along which X can be blown down. But we assumed X is minimal. Hence this
is a contradiction.

Next, we consider the case C ∩W 6= φ. Since C is a symplectic curve, we have
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∫
C∩W

ωZ > 0.

On the other hand, we can prove the following lemma which leads a contradiction.
Thus we can prove KZ is trivial and so finish the proof of Theorem 2.

Lemma 3.2. Suppose (X,ω) is a strongly symplectically filling 4-manifold of
(S3/E8, ξ0), that is, there is a 1-form λ on S3/E8 such that kerλ = ξ0 and
ω|S3/E8

= dλ. Then under the situation above we have∫
C∩W

ωZ < 0.

Proof. Since KZ |W = KS|W is trivial, C ∩W is homologous to zero in W relative
to ∂W . Thus the C ∩W is homologous to a 2-relative cycle D, contained in ∂W ,
with boundary ∂(C ∩W ). So by Stokes’ theorem we have∫

C∩W
ωZ =

∫
D

dλ =
∫
∂(C∩W )

λ.

We shall show the last quantity is negative.
Since X is a strongly symplectic filling manifold, we have a Liouville vector

field ν near ∂W , i.e., Lνω = ω and ν is transversal to ∂W . (ν is pointing interior
of W .) Then we have λ = i(ν)ω. We may assume the intersection ∂(C ∩W ) is
a union of embedded circles by perturbing the boundary ∂W . The orientation of
C as a holomorphic curve induces an orientation on ∂(C ∩W ). We denote by v
the vector field along ∂(C ∩W ), which is positive with respect to the boundary
orientation. In particular, Jv is pointing interior of W . Then λ(v) = i(ν)ω(v) =
ω(ν, v) = gJ(ν,−Jv), which is negative. �

4. Vanishing Theorem

In this section we shall prove Proposition 2.2 for the case Y is a rational homology
3-sphere with a metric of positive scalar curvature. The assumption that Y is
a rational homology 3-sphere is not necessary. But we assume it, because the
vanishing theorem is known as a folklore and we like to avoid here the longer proof
for the general case. This section is written in somewhat expository manner.
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4.1. Monopole equations on 3-manifold

Let Y be a closed oriented connected 3-manifold with a Riemannian metric. Pick
a Spinc structure t on Y and a real valued closed 2-form µ on Y . Let W be the
Hermitian C2-bundle on Y associated to the Spinc(3) bundle corresponding to
the Spinc structure t. We denote by A(t) the L2

1-completion of the set of spin
connections on Y . Following [K-M2], we define the µ-perturbed Chern-Simons-
Dirac functional CSDµ on A(t) × Γ(W ) by

CSDµ(B,Ψ) = −1
2

∫
Y

(B −B0) ∧ (FB̂ + FB̂0
+ 2iµ)−

∫
Y

< Ψ, DBΨ > .

Here B0 is a base point connection in A(t), FB̂ is the curvature form of the
connection B̂ on the determinant line bundle of W induced by B and the Levi-
Civita connection and DB is the Dirac operator on Y . We denote by GY the
L2

2-completion of the gauge group Map(Y,U(1)). For u ∈ GY we have

CSDµ(B − u−1du, uΨ) = CSDµ(B,Ψ) + (−4π2c1(W ) + 2π[µ]) ∪ [u], (1)

where [u] is regarded as an element of H1(Y,Z) = [Y,U(1)] defined by the homo-
topy class of u. In temporal gauge, the (perturbed) monopole equations for the
pull back Spinc structure on R × Y with the product metric can be interpreted
as the gradient flow equations for the functional CSDµ. The set of critical points
of CSDµ are solutions to the equations

ρ(FB̂ + iµ)− 1
2
{Ψ⊗Ψ∗} = 0

DBΨ = 0.

As for notations used here, we refer to [K-M2]. We denote by Nµ(Y, t) the set of
gauge equivalence classes of solutions to these equations. We say a solution (B,Ψ)
is reducible if Ψ ≡ 0 and irreducible if not.

Now we assume Y is a rational homology 3-sphere. In this case CSDµ is
invariant under GY by (1) and there is a unique reducible solution (θ, 0) for any
Spinc structure. Then Froyshov’s result [F] shows

Fact A. Assume that Y is a rational homology 3-sphere. Then there is a Baire
set of exact Cr 2-forms µ for which all points, including reducible solutions, in
Nµ(Y, s) are non-degenerate.

Moreover suppose Y admits a metric of positive scalar curvature. Then taking
µ as in Fact A with the C0 norm being sufficiently small, there is no irreducible
solution. This follows from the usual boundedness argument of the C0 norm of a
solution Ψ above from the norm of µ and the minus scalar curvature. (See [K-M1],
[F]). Therefore if we choose µ as above, the set Nµ(Y, t) consists of a single point
(θ, 0), which is reducible and non-degenerate.
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4.2. 4-manifold with a cylindrical end

From now on, we assume Y is a rational homology 3-sphere and admits a metric
of positive scalar curvature. Let X̂ be an oriented Riemanian 4-manifold with
a cylindrical end [−1,∞) × Y . Fix a Spinc structure s on X̂ which induces a
Spinc structure t on Y . We choose and fix an exact 2-form µ on Y such that the
unique solution (θ, 0) in Nµ(Y, t) is non-degenerate as in 4.1. Let (Aθ,Φ0) be a
spin connection and a spinor on X̂ such that they are gauge equivalent to the pull
back of (θ, 0) on the end of X . Since (θ, 0) is non-degenerate, the eigenvales of the
Hessian of CSDµ at (θ, 0) do not cluster at 0. Thus we denote by ε0 > 0 the least
positive eigenvalue of the Hessian. Take any positive number ε with ε < ε0. Let
π : [−1,∞)× Y → Y be the projection. We put

CX̂ = {(A,Φ) | (A−Aθ) ∈ e−ετL2
1, and (Φ− Φ0) ∈ e−ετL2

1,A0
}

GX̂ = {g ∈Map(X̂, U(1)) | g − π∗g0 ∈ e−ετL2
2

on the end for some g0 ∈ I(θ,0)}.

Here τ is a real valued function on X̂ which agrees the coordinate in the direction
[−1,∞) on the cylinder [−1,∞)×Y and I(θ,0) is a stabilizer of (θ, 0) in GY which is
isomorphic to U(1). Let β : X̂ → R be a non-negative cutoff function supported
in the cylinder [−1,∞) × Y and equal to 1 on [0,∞) × Y . We choose a real
valued self-dual 2-form η on X̂ whose support is contained in a compact subset of
X̂ − [−1,∞)× Y . Under the preparation above, we defineMη,µ(X̂, s) by the set
of GX̂ -equivalence classes of solutions (A,Φ) ∈ CX̂ to the equations

ρ(F+
A + i(η + (βπ∗µ)+))− {Φ⊗ Φ∗} = 0

D+
AΦ = 0.

Here (βπ∗µ)+ is the self-dual part of βπ∗µ Note thatMη,µ(X̂, s) does not depend
on the choice of (Aθ,Φ0) because H1(Y,Z) = 0. (See [K-M2] 5.(iii)). We call a
solution (A,Φ) irreducible if Φ 6= 0. If b+2 (X̂) ≥ 1, we can show by the standard
argument the following.

Fact B. There is a Baire set of compact supported Cr self-dual 2-forms η with the
following significance.
(1). All the solutions to these equations are irreducible andMη,µ(X̂, s) is a smooth
manifold of dimension given by the index of the linearization of these equations
under the gauge fixing condition on the function spaces.
(2). If the dimension of Mη,µ(X̂, s) is negative, then it is empty.
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4.3. Proof of Proposition 2.2

Let X = X1 ∪Y X2 be as in Proposition 2.2. We fix an orientation on X and take
the orientation on Y induced so that the orientation on Y preceded by the unit
normal vector to Y pointing into X2 coincides with that on X . We take a collar
neighborhood N of Y which is diffeomorphic to [−1, 1] × Y . We take a family
of metrics {gR} with R ≥ 1 on X , such that they are the same on X − N and
gR|N = λR(t)dt2 + g+. Here dt2 is the usual flat metric on [−1, 1], λR(t) is a
positive smooth function on [−1, 1] which satisfies

λR(t) = 1 on [−1,−1/2]∪ [1/2, 1]∫ 1/2

−1/2
λR(t)dt = R,

and g+ is a metric of positive scalar curvature on Y . We denote the Riemanian
manifold (X, gR) by XR and [−1/2, 1/2]× Y ⊂ N in XR with the induced metric
by LR. We put X̂1,R = X1∪[−1, 0]×Y and X̂2,R = [0, 1]×Y ∪X2 with the metrics
induced by gR. We take a positive smooth function βR on XR whose support is
contained in N , and which is equal to 1 on LR and does not depend on R over
XR − LR.

Pick a Spinc structure s on X and we denote the Spinc structure restricted on
Y by t. We choose and fix a small exact 2-form µ on Y for which the unique solution
(θ, 0) on Y is non-degenerate like as in 4.1. Furthermore we choose self-dual 2-
forms η1 and η2 on XR whose supports are contained in XR−(LR∪X2) and XR−
(LR ∪X1) respectively, and for which the moduli spacesMη1,µ(X̂1,R, s|X̂1,R) and
Mη2,µ(X̂2,R, s|X̂2,R) consist of irreducible solutions and become smooth manifolds
as in 4.2. Here we used the assumptions b+2 (Xi) ≥ 1 (i = 1, 2). Note that η1 and η2
are independent of R. Consider the perturbed monopole equations for the Spinc

structure s on XR,

ρ(F+
A + i(η1 + η2 + (βRπ∗µ)+))− {Φ⊗ Φ∗} = 0

D+
AΦ = 0.

We writeMη1,η2,µ(XR, s) for the set of gauge equivalence classes of the solutions to
these equations. We can choose η1, η2 for which the moduli spaceMη1,η2,µ(XR, s)
consists of irreducible solutions and is a smooth manifold.

Now suppose that for all sufficiently large R, there is an irreducible solution
(AR,ΦR) in Mη1,η2,µ(XR, s). Then there exists a solution (A(t),Φ(t)) of the
equations on R× Y which is translation invariant in a temporal gauge.([K-M1]).
Here R × Y can be regarded as LR with R → ∞. This solution satisfies the
downward gradient flow equations for the functional CSDµ. On the other hand, we
have chosen µ for which the critical point set consists of the non-degenerate single
point (θ, 0). By the standard argument, the uniform bound on CSDµ [K-M1] and
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the non-degeneracy of the critical point show that there exist limits of (A(t),Φ(t))
as t→ ±∞, to which (A(t),Φ(t)) converge with an exponential decay, for taking
some gauge transformations. The limits lim

t→−∞
(A(t),Φ(t)) and lim

t→∞
(A(t),Φ(t))

are both (θ, 0). Hence this implies that we have elements ofMη1,µ(X̂1, s|X̂1
) and

Mη2,µ(X̂2, s|X̂2
), where X̂1 = X1 ∪ [−1,∞) × Y and X̂2 = (−∞, 1] × Y ∪ X2

which can be identified with X̂1,R and X̂2,R respectively as R → ∞ by certain
isometries. Under the identification, we write for s|X̂i the Spinc structures on X̂i

induced by s|X̂i,R (i = 1, 2).
On the other hand, the excision property of the indices of the linearization of

the equations gives a formula among dimensions

dimMη1,µ(X̂1, s|X̂1
) + dimMη2,µ(X̂2, s|X̂2

) + 1 = dimMη1,η2,µ(X, s).

Here 1 in the left hand side can be interpreted as the dimension of the stabilizer
of (θ, 0).

Now first, we consider the case dimMη1,η2,µ(X, s) = 0. The dimension formula
tells that one of Mη1,µ(X̂1, s|X̂1

) and Mη2,µ(X̂2, s|X̂2
) has negative dimension.

But from our choice of η1 and η2 in Fact B, it implies one of them is empty. This
is a contradiction. Hence we have proved the Seiberg-Witten invariant of X must
vanish whenever the moduli space is zero dimensional.

For the case dimMη1,η2,µ(X, s) > 0, we can put dimMη1,η2,µ(X, s) = 2d
for some positive integer d, because the Seiberg-Witten invariant vanishes if the
dimension is odd. We shall use the cut-down argument. (See [F],[Sal]). By the di-
mension formula, we have either dimMη1,µ(X̂1, s|X̂1

) < 2d orMη2,µ(X̂2, s|X̂2
) <

2d. Without loss of generality, we may assume dimMη1,µ(X̂1, s|X̂1
) < 2d. We

take a point p ∈ X and a small ball Bp around p. Since the Seiberg-Witten invari-
ant is independent of position of the point (any two points in X are homologically
equivalent), it is enough to consider the case p ∈ Bp ⊂ X1. Let B∗p be the set of
gauge equivalence classes of pairs (A,Φ) of spin connections and non-zero spinors
over Bp for the Spinc structure s. Corresponding to the base point fibration, we
have the universal complex line bundle L over B∗p. We can define restriction maps

rX :Mη1,η2,µ(XR, s)→ B∗p
rX̂1

:Mη1,µ(X̂1, s|X̂1
)→ B∗p,

because an irreducible solution to the Dirac equation can not vanish on an open
set. Then after preparing suitable function space for B∗p, we can show, by the
usual transversality argument, that there exists a section σ of the d-fold direct
sum L⊕d on B∗p such that restriction maps rX and rX1 are transverse to σ−1(0).
We denote by V ⊂ B∗p the zero set of σ. The transversality, in particular, implies
if the dimension of Mη1,µ(X̂1, s|X̂1

) ∩ r−1
X̂1

(V ) is negative, then it is empty. Now
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by definition, the Seiberg-Witten invariant of X for the Spinc structure s is the
number of points of zero dimensional set Mη1,η2,µ(XR, s) ∩ r−1

X (V ) counted with
sign. We suppose that for all sufficiently large R the setMη1,η2,µ(XR, s)∩r−1

X (V )
is nonempty, then the same argument as before shows Mη1,µ(X̂1, s|X̂1

) ∩ r−1
X̂1

(V )
is also nonempty. But the dimension is given by

dimMη1,µ(X̂1, s|X̂1
)− 2d < 2d− 2d = 0.

This is a contradiction. Hence these moduli spaces are empty. Therefore all the
Seiberg-Witten invariants of X must vanish.

Remark. For the case Y = S3/Γ, we can also prove the vanishing theorem
by extending the proof for the case S3, (see [Sal], where he uses the removable
singularities theorem for the proof), to an equivariant version.
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