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Abstract. We prove the Lagrangian analogue of the symplectic camel theorem: there are com-
pact Lagrangian submanifolds of R2n that cannot be moved through a small hole by a global
Hamiltonian isotopy with compact support.
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1. Introduction

In [19], Claude Viterbo constructed a symplectic capacity cgf(V ) for V an open
set of R2n, and used it to prove several interesting results in symplectic geome-
try, including the following Symplectic Camel Theorem. Here the subscript “gf”
stands for “generating functions”, because this is the tool used to define cgf(V );
we summarize in Appendix A the definition and basic properties of this symplectic
capacity.

Let us recall what the Symplectic Camel Theorem states. We consider the
space Cn = R2n = Rn × Rn, endowed with the coordinates

z = x+ iy = (x, y) = (x1, . . . , xn, y1, . . . , yn)

with the standard symplectic form

Ω = ΩR2n = −dλR2n = dx ∧ dy =
n∑
j=1

dxj ∧ dyj

and with the Euclidean scalar product and norm

< z, z′ >= zz̄′ ‖z‖ =
√
< z, z >

Let us define R2n
+ = {z ∈ R2n; yn > 0} and R2n

− = {z ∈ R2n; yn < 0}, and, for
η > 0, the holed hyperplane Ση = {z ∈ R2n; yn = 0 and ‖z‖ ≥ η}.
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The Camel Theorem says that if n ≥ 2 and V is a (bounded) open set with
V ⊂ R2n

− and cgf(V ) > πη2, then it is impossible to find a Hamiltonian isotopy
(Φt)t∈[0,1] of R2n with compact support in R2n − Ση, such that Φ1(V ) ⊂ R2n

+ .

Remark 1.1. In [8], Y. Eliashberg and M. Gromov showed, using pseudo-holo-
morphic curves, that this is impossible if V is a Euclidean ball of radius r > η (see
also [11, 12]). As the gf-capacity of a ball of radius r is πr2, Viterbo’s theorem is
more general.

When trying to study the flux of Lagrangian isotopies, the Lagrangian Camel
problem comes as a natural question. Instead of looking at an open set V ⊂ R2n,
we consider a closed Lagrangian embedding j : L ↪→ R2n. We are primarily
interested in the quantity cgf(L, j) that we define now.

Definition 1.2. The gf-capacity cgf(L, j) of the embedding is the infimum of all
cgf(V ), V being any open neighborhood of j(L) in R2n.

Since j(L) has empty interior and does not even bound an open set, we could
expect its capacity to vanish. However, we will prove the following result, where
w(L, j) is defined as follows, following Viterbo.

A theorem of Weinstein [20] says that the embedding j can be extended to
a symplectic embedding J : U → R2n, where U is a neighborhood of L in T ∗L.
We will call (U, J) a Weinstein neighborhood of the embedding j. Let µ be a
closed 1-form on L, representing the Maslov class µ(j) of the embedding. Then
the (negative) µ-width of U is defined as ‖U‖µ = sup

{
s ≥ 0 ; −sµ(L) ⊂ U

}
. The

number ‖U‖µ depends of course on the representative µ chosen for the Maslov
class µ(j): the “smaller” the form µ, the greater the µ-width of U .

Definition 1.3. Let w(L, j) denote the supremum of all possible ‖U‖µ, where U
is a Weinstein neighborhood and µ represents the Maslov class of the embedding.

The basic result of this paper is the following.

Theorem 1.4. We suppose n ≥ 2.
1. If j : Tn ↪→ R2n is a Lagrangian embedding, then the gf-capacity of j(T n)

satisfies
cgf(T

n, j) ≥ 2w(Tn, j) > 0.

2. If j : L ↪→ R2n is a Lagrangian embedding and L admits a Riemannian metric
with strictly negative sectional curvature (for instance all non-orientable sur-
faces L with χ(L) strictly negative and divisible by 4: see [9] and also [2]),
then

cgf(L, j) ≥ (n− 1)w(L, j) > 0.
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More generally, if (L1, j1), . . . ,(Lm, jm) are m Lagrangian embeddings of this
type and (L, j) is the product embedding, then

cgf(L, j) ≥ (n−m)w(L, j) > 0.

Remark 1.5. In particular, if L = S(r1) × · · · × S(rn) is a split torus in Cn =
C× · · · × C, each S(rk) being a Euclidean circle of radius rk, then

cgf(L) = πmin(r2
1 , . . . , r

2
n).

Indeed, using polar coordinates in each factor C, it is easy to construct a Wein-
stein neighborhood whose width is precisely πr2 = πmin(r2

1, . . . , r
2
n). On the other

hand, the capacity of such a split torus is clearly less than that of the cylinder
B2(0, r)× R2n−2, which is again πr2.

Corollary 1.6. (Lagrangian Camel Theorem). Let j : L ↪→ R2n
− be one

of the above embeddings. Then for 0 < η < c(L, j) it is impossible to find a
Hamiltonian isotopy (Φt)t∈[0,1] of R2n with compact support in R2n − Ση, such
that Φ1

(
j(L)

)
⊂ R2n

+ .

Indeed, any isotopy moving j(L) into R2n
+ will also move a neighborhood of

j(L) from R2n
− into R2n

+ , which is impossible by the Symplectic Camel Theorem.

Remark 1.7. There are several results like Theorem 1.4 that are already proved,
see for instance Viterbo [18] and Polterovich [13]. The problem is that, to our
knowledge, there is no corresponding symplectic camel theorem that can be ap-
plied to the capacities they use. So the alternative was either to prove the corre-
sponding symplectic camel theorem, or to establish Theorem 1.4. Because of our
greater familiarity with generating functions, we chose the second option. Basi-
cally, we will follow the arguments developed in [17, 18] and adapt them to the
theory of generating functions, but the reader will notice some slight restrictions
in comparison to these references. The reason for this is that we could not use the
natural S1-invariance of the action functional: generating functions are a kind of
discretization of this functional, and it is still unclear whether one can recover this
natural action or not.

Let us now briefly explain the relation between the camel problem and the
mean property of the flux of Lagrangian isotopies.

Most generally, let (M,ω) be a symplectic manifold. Any symplectic isotopy
(φt)t∈[0,1] determines a closed 1-form α on M , whose cohomology class is the
flux of the isotopy, see [3] (the easiest way to define α is to say that its integral
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over a smooth loop in M is the symplectic area swept out by this loop under the
isotopy). This cohomology class [α] depends only on the homotopy class of the
isotopy (φt)t∈[0,1] with endpoints fixed. Two basic and very important properties
are: (i) an isotopy (φt)t∈[0,1] is Hamiltonian if and only if the flux of (φt)t∈[0,τ ]
vanishes for each τ ∈ [0, 1], and (ii) the flux of an isotopy vanishes if and only
if it is homotopic (with endpoints fixed) to a Hamiltonian isotopy (for this last
statement, we assume either that M is compact or that the isotopy is compactly
supported).

Let us now turn to the Lagrangian case. Similarly, let (jt)t∈[0,1] be a Lagrangian
isotopy of a closed manifold L into M , that is jt : L ↪→ M is a smooth family
of Lagrangian embeddings. We can define in the same way a closed 1-form on L,
whose cohomology class is (by definition) the flux of the isotopy. We ask whether
this flux has the following mean property, as in the case of symplectic isotopies:

Given a Lagrangian isotopy (jt)t∈[0,1] with vanishing flux, is it homotopic,
with endpoints fixed, to a Lagrangian isotopy (kt)t∈[0,1] such that the flux of each
(kt)t∈[0,τ ] vanishes for τ ∈ [0, 1]?

It is immediate to see that such an isotopy (kt)t∈[0,1] would in fact be induced by
a global Hamiltonian isotopy. We now show that our Lagrangian Camel Theorem
gives an example (in a non-compact symplectic manifold) where this property does
not hold.

Indeed, let M = R2n − Ση with the symplectic structure induced from that
of R2n, and j : L ↪→ R2n

− ⊂ M be as in Theorem 1.4. Using the presence (in
R2n) of a contracting Liouville vector field, we can isotop L to an arbitrarily small
Lagrangian L′ (but this cannot be done by a global Hamiltonian isotopy); then
we move L′ to L′′ ⊂ R2n

+ ⊂M through the hole of Ση (by a Hamiltonian isotopy),
we expand L′′ to L′′′ in such a way that L′′′ is just the translate (in R2n) of
L. It is easy to see that this Lagrangian isotopy from L to L′′′ has zero flux.
Now, if it were homotopic (with endpoints fixed) to a Lagrangian isotopy with
flux vanishing at every intermediate time, this last isotopy would be induced by a
global Hamiltonian isotopy of R2n − Ση that could be assumed to have compact
support (remember that L is compact), thus contradicting the Lagrangian Camel
theorem.

Remark 1.8. While working on this subject, we discovered that Y. Chekanov [5]
found a more surprising counterexample to the mean property for the flux of
Lagrangian isotopies: it happens in R2n that some Lagrangian submanifolds can
be connected by Lagrangian isotopies with zero flux, but not through Hamiltonian
isotopies.

This work was partly done during a post-doctoral year at the Université du
Québec à Montréal (Canada). It is a great pleasure for me to thank Fraņcois
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Lalonde for his hospitality and for many explanations on the flux homomorphism.
I am also very grateful to Claude Viterbo, who helped me understand his earlier
papers [17, 18].

2. A Hamiltonian system in T ∗L

Let j : L ↪→ R2n be a Lagrangian embedding, L being a closed n-manifold. Here
T ∗L is endowed with (local) cotangent coordinates (q, p) and with the symplectic
form ωL = dq ∧ dp. Let V = J(U): it is a bounded open set in R2n with finite
gf-capacity cgf(V ), see Appendix A. Here (V, J) is a Weinstein neighborhood of j.

We consider a fixed Riemannian metric on L. It induces a bundle isomorphism
TL ∼= T ∗L and a metric on the vector bundle T ∗L. If v ∈ TqL and p ∈ T ∗q L are
corresponding elements for that isomorphism, we write v = p[ and p = v]. In
particular, ‖v‖q = ‖v]‖q.

Let ρ > 0 be small enough so that Bρ =
{

(q, p) ∈ T ∗L; ‖p‖q ≤ ρ
}

is contained
in U . We consider a smooth function h : [0,+∞]→ R− such that:
1. h ≡ −a on [0, ε/2]
2. h is increasing, strictly convex on [ε/2, ε]
3. h′ ≡ c on [ε, ρ− ε]
4. h is increasing, strictly concave on [ρ− ε, ρ− ε/2]
5. h ≡ 0 on [ρ− ε/2,+∞]
where ε > 0 is very small with respect to ρ, c > 0 is not the length of a closed
geodesic of L, and a > cgf(V ). See Figure 1.

Then we define a compactly supported Hamiltonian function H : T ∗L→ R by

H(q, p) = h
(
‖p‖
)

(1)

Let φ = (φt)t∈[0,1] be the Hamiltonian isotopy of T ∗L it generates: it is obtained by
integrating the Hamiltonian vector fieldX associated toH, defined by iXωL = dH.

The isotopy φ is easily proved to be a reparametrization of the cogeodesic flow.
Indeed, let K : T ∗L→ R be the standard Hamiltonian

K(q, p) =
r2

2
=
‖p‖2

2
(2)

It generates the cogeodesic flow, denoted by (gt)t∈R: if z = (q, p) is a point in T ∗L
and v = p[ ∈ TqL, then there is on L a unique geodesic (qt)t∈R such that q0 = q
and q̇0 = v, and we have gt(z) =

(
qt, (q̇t)]

)
.

Since H(q, p) = h(‖p‖), we can write H(z) = a ◦K(z), with

a(s) = h
(√

2s
)

(3)

Hence XH(z) = c(z)XK(z), where

c(z) = a′ ◦K(z) =
h′(‖p‖)
‖p‖ (4)
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Figure 1.
Graph of h.

Consequently, since H and K are constant along both gt- and φt-orbits, we have

φt(z) = gc(z)t(z) (5)

ie. the isotopy φ is a reparametrization of the cogeodesic flow.
Let z = (q, p) ∈ Bρ be a fixed point of φ1. Then, according to (5), the projection

on L of its φ-orbit is a closed geodesic γ with length `(γ) = c(z)‖p‖ = h′(‖p‖).
Let us consider the symplectic vector bundle E = ∪t∈S1Et over S1 (seen as

[0, 1] with endpoints identified), where the fiber

Et = TzT ∗L× Tφt(z)T
∗L t ∈ [0, 1] (6)

is endowed with the symplectic form
(
−ωL(z)

)
⊕ ωL

(
φt(z)

)
. It has a canonical

Lagrangian subbundle V = ∪t∈S1Vt, namely

Vt = Vert(z)⊕Vert
(
φt(z)

)
(7)

where Vert(z) is the vertical subspace at z ∈ T ∗L of the bundle T ∗L → L. The
graphs of the differentials dφt(z) : TzT ∗L → Tφt(z)T

∗L define a continuous path
Γ : [0, 1] → Λ(E) of Lagrangian subspaces Γt ⊂ Et. We may therefore consider
the Maslov-Duistermaat index

indφ(z) := indV (Γ)
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as defined in Appendix B.2.
In this setting, J. J. Duistermaat [7] has proved the following result for convex

Hamiltonians:

Proposition 2.1. Let z = (q, p) ∈ T ∗L be a fixed point of φ1, and γ be the
underlying geodesic on L. Then, i(γ) denoting the Morse index of γ as a closed
geodesic, we have{

indφ(z) = i(γ) + n if h is strictly convex at ‖p‖
indφ(z) = i(γ) + n− 1 if h is strictly concave at ‖p‖

(8)

We will deduce the formula in the concave case from that in the convex case.
The idea is the following. We can express E as the sum E′⊕E′′ of two symplectic
subbundles, and we also have Lagrangian splittings V = V ′ ⊕ V ′′, Γ = Γ′ ⊕ Γ′′.
Thus indφ(z) = indV ′(Γ′) + indV ′′(Γ′′). We will see that indV ′′(Γ′′) does not
depend on the convexity/concavity of h, and for the other term indV ′(Γ′) we will
have explicit simple formulas enabling us to conclude. To do so, we will need a few
facts about the (co)geodesic flow (gt)t∈R, that we recall now (see [10] for details).

If the cotangent bundle is endowed with the Levi-Civita connection correspond-
ing to the metric, then we have a splitting

Tz(T ∗L) = Hor(z)⊕Vert(z) (z ∈ T ∗L) (9)

into horizontal and vertical subbundles. Given z = (q, p) ∈ T ∗L, both Hor(z) and
Vert(z) are canonically isomorphic to TqL, hence they carry a well-defined scalar
product. In that setting, the symplectic form ωL has the expression:

ωL(z)(δz, δz′) = < δhz, δvz
′ >q − < δhz

′, δvz >q (10)

where δh and δv denote the horizontal and vertical parts of a vector, identified
to their images in TqL. In particular, (9) is a Lagrangian splitting. We also note
that the Hamiltonian vector field associated with K(q, p) = 1/2 ‖p‖2 has the form
XK(q, p) = (p, 0).

Let γ = (γt)t∈[0,T ] be a geodesic on L, and z = γ0
] ∈ T ∗L. Then the Ja-

cobi vector fields (Yt)t∈[0,T ] along γ are in one-to-one correspondence with the
g-invariant vector fields (Zt)t∈[0,T ] along the orbit of z. This correspondence is
given by Yt 7→ Zt = (Yt,∇Yt), using the splitting (9).

Since Hor(z) and Vert(z) are isomorphic to TqL ∼= T ∗q L = (Rp) ⊕ p⊥, we
have associated splittings Hor(z) = Hor′(z) ⊕ Hor′′(z) and Vert(z) = Vert′(z) ⊕
Vert′′(z), and then TzT

∗L = T ′zT
∗L⊕ T ′′z T ∗L, where T ′zT

∗L = Hor′(z)⊕Vert′(z)
is 2-dimensional and T ′′z T

∗L = Hor′′(z) ⊕ Vert′′(z) is (2n− 2)-dimensional. Now
TT ∗L = T ′T ∗L⊕T ′′T ∗L is a splitting into symplectic orthogonal subbundles, and
the (co)geodesic flow preserves that decomposition.
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The subbundle T ′T ∗L is obviously trivial. Given z ∈ T ∗L and t ∈ R, dgt(z)
induces an isomorphism T ′zT

∗L→ T ′
gt(z)

T ∗L whose matrix in the obvious bases is(
1 t
0 1

)
. This comes from the fact that the Jacobi field (Yt)t∈[0,T ] along a geodesic

γ = (γt)t∈[0,T ] such that Y0 = αγ̇0 and ∇Y0 = βγ̇0 is given by Yt = (α+ βt)γ̇t.

Proof of Proposition 2.1. Differentiating (5), we obtain:

dφt(z).δz = dgc(z)t(z).δz + t
[
dc(z)δz

]
XK

(
φt(z)

)
(11)

It follows that the flow (φt)t∈R also preserves the decomposition TT ∗L = T ′T ∗L⊕
T ′′T ∗L. Indeed, if δz ∈ T ′′z T ∗L then dc(z)δz = 0, hence dφt(z)δz = dgtc(z)(z)δz—
in particular, dφt(z)δz does not depend on the concavity/convexity of h at ‖p‖.

Thus E = E′ ⊕ E′′ splits into two symplectic vector subbundles, and both
V = V ′ ⊕ V ′′ and Γ = Γ′ ⊕ Γ′′ split into Lagrangian subbundles of E′ and E′′

respectively. Hence indV (Γ) = indV ′(Γ′) + indV ′′(Γ′′) by additivity of the Maslov-
Duistermaat index under direct sums. We have just seen that indV ′′(Γ′′) does
not depend on the concavity/convexity of h at ‖p‖, so it only remains to see how
indV ′(Γ′) depends on it.

If δz = (δhz, δvz) = (α, β) ∈ T ′zT ∗L = Hor′(z)⊕Vert′(z) ∼= R2, then a straight-
forward computation shows that dφt(z)δz =

(
α + tβh′′(r), β

)
. We thus see that

the matrix of the induced isomorphism from T ′zT ∗L to T ′
φt(z)

T ∗L is(
1 t h′′(r)
0 1

)
(12)

We have E′ ∼= R2 × R2, V ′ ∼= (0 × R) × (0 × R) and Γt is the graph of the
linear symplectomorphism At of R2 whose matrix is (12). To compute indV ′(Γ′)
according to Appendix B, we choose the Lagrangian subspace α = (R × 0) ×
(0 × R) ⊂ R2 × R2: we have α ∩ Γt = 0 for all t ∈ [0, 1]. Hence the Maslov-
Duistermaat index of Γ is given by ind(Γ) = indQ(Γ1, α; Γ0). It is easy to see from
the definitions that the index of Q(Γ1, α; Γ0) is also the coindex of Q(Γ0, α; Γ1),
that we now evaluate.

Let us consider the linear map C : Γ0 → α such that u + Cu ∈ Γ1 for all
u ∈ Γ0 = ∆. We write

u = (u1, u2;u1, u2) ∈ ∆
Cu = (v1, 0; 0, v2) ∈ α (13)

u+ Cu = (w1, w2;w1 + h′′(r)w2, w2) ∈ Γ1

since dφ1(z)(w1, w2) = (w1 + h′′(r)w2, w2).
Then, by definition, see (28):

Q(Γ0,W0; Γ1)(u) =
(
−ΩR2n ⊕ ΩR2n

)
(Cu, u)

= −ΩR2n
(
(v1, 0), (u1, u2)

)
+ ΩR2n

(
(0, v2), (u1, u2)

)
= −v1u2 − v2u1 = h′′(r)(u2)2 (14)
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Since coindQ is the number of strictly positive eigenvalues of Q, we see that
indV ′(Γ′) = 1 if h′′(r) > 0, and indV ′(Γ′) = 0 if h′′(r) < 0. Consequently,

indconcav
φ (z) = indconvex

φ (z)− 1

which finishes the proof of Proposition 2.1.

3. The Hamiltonian system viewed from R2n

We define the compactly supported Hamiltonian H : R2n → R and its associated
Hamiltonian isotopy (Φt)t∈[0,1] in the obvious way:{

H = H ◦ J−1 on V

H = 0 on R2n − V
(15)

We will apply Viterbo’s theory of symplectic capacities, as summarized in Ap-
pendix A. According to Theorem A.4, we have c−(H) = 0 (since H ≤ 0) and
c+(H) > 0 (since Φ1 is not the identity map). Thus Φ1 has a fixed point z = z+
such that 0 < AH(z) = c+(H) ≤ cgf(V ). This implies z ∈ V , since AH = 0 outside
V . Similarly, AH = a on the set {H = −a}, which is ruled out by the hypothesis
a > cgf(V ). Consequently, we may define (q, p) = J−1(z): this is a fixed point of
φ1 satisfying ‖p‖ ∈]ε/2, ρ− ε/2[. But, as we have seen, h′(‖p‖) is now the length
of a closed geodesic on L, so by assumption we cannot have h′(‖p‖) = c. We have
thus proved the following result, that will allow us to apply Proposition 2.1.

Lemma 3.1. If a is strictly greater than cgf(V ) and c is distinct from the length
of any closed geodesic on L, then φ1 has a fixed point z = (q, p) such that h is
strictly convex or strictly concave at ‖p‖.

In the setting of Appendix A, let S1 : R2n × Rk → R be a generating function
for Φ1 such that S1(w, ξ) = Q∞(ξ) outside a compact set of R2n ×Rk, where Q∞
is a non-degenerate quadratic form on Rk.

Definition 3.2. Let z ∈ R2n be a fixed point of Φ1, and (z, ξ) be the correspond-
ing critical point of S1. From Viterbo’s uniqueness theorem [19, 15], it follows that
the integer ind d2S1(z, ξ) − indQ∞ does not depend on S1, but only on Φ1. We
call it the gf-index of z, denoted by indgf(z). The nullity of z, denoted by ν(z),
will be the dimension of Ker

(
dΦ1(z)− Id

) ∼= Ker
(
dφ1(z)− Id

)
Note that if z is as in Lemma 3.1 and γ is the corresponding closed geodesic

on L, then the (equivariany) nullity of γ is ν(γ) = ν(z)− 1.

Proposition 3.3. The fixed point z of Lemma 3.1 can be chosen so that

2n− ν(z) ≤ indgf(z) ≤ 2n
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Proof. We know from Appendix A that c = c+(H) = S1(z, ξ) is a critical value
of S1 obtained by minimax, so that H2n+indQ∞(Sc+η1 , Sc−η1 ) 6= 0 for η > 0 small
enough. But the set of critical points of S1 at the level c is a non-degenerate
critical manifold, so that, by standard Morse theory, there must be on the level
c a critical point (z, ξ) such that ind d2S1(z, ξ) ≤ 2n+ indQ∞ ≤ ind d2S1(z, ξ) +
dim Ker d2S1(z, ξ)]. It follows from the very definition of generating functions that
Ker d2S1(z, ξ) is isomorphic to Ker

(
dΦ1(z)− Id

)
, so that its dimension is ν(z).�

Next, we relate the Maslov class µ(j) of the embedding j with the two indices
defined above.

Proposition 3.4. Let z be a fixed point of φ1 as in Lemma 3.1, and γ be the
corresponding closed geodesic on L. Then

indgf(z) = indφ(z) +
(
µ(j), γ

)
Proof. To relate the Maslov-Duistermaat index and the gf-index, we define still
another Lagrangian subbundle C = ∪t∈S1Ct of the symplectic vector bundle E –
see (6) – this time connected to the embedding J : we consider a fixed Lagrangian
subspace in R2n, say Rn × 0, and then define

Ct = dJ(z)−1(Rn × 0)× dJ
(
φt(z)

)−1(Rn × 0)

Recall that Γt ⊂ Et is the graph of dφt(z); now, if Γ′t is the graph of dΦt(z) in
R2n×R2n, then it follows from the definition of the Maslov-Duistermaat index that
indC(Γ) = ind(Γ′). Since dΦ0(z) = Id, it follows from Propositions B.7 and B.8
that ind(Γ′) = indgf(z). Then, according to (32), we have indgf(z) = indC(Γ) =
indV (Γ) + indC(V ). But it is clear that indC(V ) =

(
µ(j), γ

)
. �

Corollary 3.5. To the Hamiltonian H of (1) there corresponds a real number
c(H) ∈ ]0, cgf(V )]. A fixed point z = (q, p) of the associated Hamiltonian isotopy
can be chosen so that, γ denoting the projected closed geodesic on L,

c(H) = ‖p‖h′(‖p‖)− h(‖p‖) +
∮
γ

j∗λR2n (16)

and{ (
µ(j), γ

)
∈ [n− i(γ)− ν(z), n− i(γ)] in the convex case(

µ(j), γ
)
∈ [n− i(γ)− ν(z) + 1, n− i(γ) + 1] in the concave case

(17)

Proof. Formula (16) is just a reformulation of the relation c(H) = c(H) = AH(z) =∮
t7→Φt(z),t∈[0,1] λR2n −Hdt Along the Φ-orbit of z, the Hamiltonian H is constant:

H
(
Φt(z)

)
= h(‖p‖). And

∮
t7→Φt(z),t∈[0,1] λR2n −

∮
γ j
∗λR2n =

∮
t7→φt(z),t∈[0,1] λL =

‖p‖h′(‖p‖). Finally, (17) follows from Propositions 2.1, 3.3 and 3.4. �
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4. A limit process

The functions h and H that we considered so far depend on ρ, c and ε. Now we
fix the numbers ρ and c, and we consider ε as a parameter converging to 0. Hence
we have a family of functions hε and Hamiltonians Hε.

The limit of c(Hε) as ε→ 0 does exist: this is because ε ≤ ε′ implies Hε ≤ Hε′

by construction, and then c(Hε′) ≤ c(Hε) by Theorem A.4; as c(H) is bounded
from above by cgf(V ), we conclude. Let us write

K(ρ, c) = lim
ε→0

c(Hε)

Now let εm be a real sequence converging to 0. For each m, we find a closed
geodesic γm, a real number rm ∈ ]εm/2, εm[ ∪ ]ρ− εm, ρ− εm/2[ such that

c(Hεm) = rmh
′(rm)− h(rm) +

∫
γm

j∗λR2n

We may suppose that we are in one of two cases: rm ∈ ]εm/2, εm[ for all m (convex
case), or rm ∈ ]ρ− εm, ρ− εm/2[ for all m (concave case).

In both cases, we have `(γm) = h′(rm) ≤ c. Due to the compactness of the set
of closed geodesics of length bounded by c, we may suppose that γm converges to
a closed geodesic γ.

Corollary 4.1. The number K(ρ, c) ∈ ]0, cgf(V )] satisfies

K(ρ, c) =

{
ρc+

∮
γ
j∗λR2n in the convex case

ρ`(γ) +
∮
γ
j∗λR2n in the concave case

(18)

for a closed geodesic γ on L satisfying (17).

5. Proof of Theorem 1.4

Let J : U ↪→ R2n be a Weinstein neighborhood of the embedding j, and µ be a
closed 1-form on L, representing the Maslov class µ(j) ∈ H1(L;R). We will also
denote by σ the Liouville class of the embedding: σ(γ) =

∮
γ j
∗λR2n .

Following [18], we define a continuous family of Lagrangian embeddings. Let
ρ > 0 be small enough so that Bρ ⊂ U , and define

‖U‖µ,ρ = sup
{
s ≥ 0 ; −sµ(L) +Bρ ⊂ U

}
For s ∈ [0, ‖U‖µ,ρ], we consider the symplectic transformation

Ts : T ∗L → T ∗L
(q, p) 7→

(
q, p− sµ(q)

)
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and then the Lagrangian embedding

js = J ◦ (Ts)|L : L ↪→ R2n (19)

that can be extended to Js : Bρ ↪→ R2n.
Applying Corollary 4.1 for each parameter s, we obtain a map s ∈ [0, ‖U‖µ,ρ] 7→

Ks(ρ, c) ∈ ]0, cgf(V )]. Because of property 6 in Theorem A.4, it is continuous.
Furthermore, for each such s, there exists on L a closed geodesic γs with length

`(γs) ≤ c, such that

Ks(ρ, c) =
{
ρ`(γs) + σ(γs)− sµ(γs) in the concave case
ρc+ σ(γs)− sµ(γs) in the convex case

(20)

(this is because
∫
γs
j∗sλR2n −

∮
γs
j∗λR2n = −s(µ(j), γs)).

5.1. The negative curvature case

If L admits a metric with strictly negative sectional curvature, then i(γ) = 0 and
ν(γ) = 0 for any closed geodesic. Hence ν(z) = 1 for our fixed point, and{

µ(γ) ∈ [n− 1, n] in the convex case
µ(γ) ∈ [n, n+ 1] in the concave case

Since n ≥ 2, we obtain µ(γ) ≥ n− 1 > 0 in any case. Again, the set of closed
geodesics of length bounded by c being compact, the quantities `(γs) and σ(γs)
that appear in (20) can take only a finite number of values. This implies that,
when s grows from 0 to ‖U‖µ,ρ, the point

(
s,Ks(ρ, c)

)
moves on a finite set of

straight lines of R2, with slopes ≤ −(n− 1). Accordingly, we must have

0 < Ks(ρ, c) ≤ K0(ρ, c)− (n− 1)s ∀ s ∈ [0, ‖U‖µ,ρ[

In particular,
K(ρ, c) = K0(ρ, c) ≥ (n− 1)‖U‖µ,ρ

and then, since ‖U‖µ,ρ → ‖U‖µ as ρ→ 0,

K(j) := lim
ρ→0

lim
c→∞

K(ρ, c) ≥ (n− 1)‖U‖µ (21)

We are now ready to finish the proof of Theorem 1.4 in this case. We may
obviously assume that V = J(U), where U and J are as before. Now (21) shows
that, for any δ > 0 arbitrarily small, we can find ρ > 0 and c > 0 such that
J(Bρ) ⊂ V and K(ρ, c) ≥ (n−1)‖U‖µ− δ. This means that, for all δ > 0, there is
a Hamiltonian H with compact support in V , such that c(H) ≥ (n− 1)‖U‖µ− 2δ.
Hence

cgf(V ) ≥ (n− 1)‖U‖µ
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by the very definition of cgf(V ).
If L = L1 × · · · × Lm is the product of m manifolds, each having a metric

with strictly negative curvature, then i(γ) = 0 and ν(γ) = m − 1 for any closed
geodesic. Hence{

µ(γ) ∈ [n−m,n] in the convex case
µ(γ) ∈ [n−m+ 1, n+ 1] in the concave case

Since m < n and n ≥ 4, we may proceed as above, whence

cgf(V ) ≥ (n−m)‖U‖µ.

5.2. The torus case

The torus case is handled with in the same spirit, with some slight complications.
With the flat (product) metric, the closed geodesics of T n satisfy i(γ) = 0 and
ν(γ) = n− 1, hence ν(z) = n for our fixed points. We thus get the estimates{

µ(γ) ∈ [0, n] in the convex case
µ(γ) ∈ [1, n+ 1] in the concave case

and the arguments used for the negative curvature case fail because µ(γ) = 0 is
now possible.

Remark 5.1. Since the torus is orientable, the Maslov index of any loop will be
even. Hence µ(γ) ≥ 2 in the concave case.

First, we will study how K(ρ, c) grows with c, ρ being fixed throughout the
entire discussion.

Let C′ be the set of those c > 0 such that K(ρ, c) can only be realized as
K(ρ, c) = ρc+σ(γ), with µ(γ) ≥ 0. It is an open set (its complement is easily seen
to be closed). Similarly, the set C′′ of those c > 0 such that K(ρ, c) can only be
realized as K(ρ, c) = ρ`(γ) + σ(γ), with µ(γ) ≥ 2 (remember that µ(γ) is even)is
open.

The complement C′′′ of C′ ∪ C′′ consists of isolated points: this is because for
such a c > 0, K(ρ, c) can be expressed in both ways:

K(ρ, c) = ρc+ σ(γ1) = ρ`(γ2) + σ(γ2)

where `(γ1) and `(γ2) are bounded by c, and there is only a finite number of such
possibilities.

On each connected component of C′, we have K(ρ, c) = ρc+ constant. On each
connected component of C′′, we have K(ρ, c) = constant. Thus, the total measure
of C′ is not greater than cgf(V )/ρ.
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K

c

c c c0
1 2 3

Figure 2.
Graph of c 7→ K(ρ, c)

Hence the graph of c 7→ K(ρ, c) looks like Figure 2.
Next, we study the dependence of c 7→ Ks(ρ, c) with respect to the parameter

s, with obvious notations.
Note that when we move s, we change the “breakpoints” where c 7→ Ks(ρ, c)

might have a discontinuous derivative. However, they can be followed continuously:
a point cs ∈ C′′′s can be written as c0 + s

(
µ(γ1)− µ(γ2)

)
for some c0 ∈ C′′′0 and γ1,

γ2 closed geodesics of length ≤ c.
For the same reason as before, if c ∈ C′s0 , then c ∈ C′s for s close enough to s0,

and similarly for C′′.
If ]c1, c2[ is a component of C′′s0 , then for s close enough to s0 we have continuous

functions c1(s) and c2(s) such that c1(s0) = c1, c2(s0) = c2, and ]c1(s), c2(s)[ is a
component of C′′s . A similar statement holds for the components of C′s. Thus, we
can follow their components, although “flat” ones may disappear as in Figure 3.

It follows easily that on any component of C′s∪C′′s , the numbers Ks(ρ, c) can be
realized by geodesics of the same Maslov index (see equation (20)). In particular,
a “flat” component, as long as it does not disappear, goes down with s at a speed
greater or equal to 2.

We do not conclude that there exists some c > 0 such that Ks(ρ, c) ≤ K0(ρ, c)−
2s as in the negative curvature case, since whole components of C′s might be realized
by geodesics of zero index and components of C′′s may disappear. However, it
is easy to see that there exists a continuous s 7→ c(s) such that Ks

(
ρ, c(s)

)
≤
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Figure 3.
Cancellation of flat component (0 ≤ s < s < s′ < s′′)

K0
(
ρ, c(0)

)
− 2s, and we conclude as before:

cgf(V ) ≥ 2‖U‖µ.

Remark 5.2. The referee has suggested the following construction for such a
continuous s 7→ c(s) as above. Let us consider the function k(s, c) := Ks(ρ, c),
defined on [0, ‖U‖µ,ρ]×]ρ−1cgf(V ),+∞[. Let C′s := ∪s{s} × C′s and C′′s := ∪s{s} ×
C′′s : they are disjoint subsets of [0, ‖U‖µ,ρ]×]ρ−1cgf(V )[, whose complement is a
discrete union of segments. We have{ ∂k

∂s ≤ 0, ∂k
∂c = ρ on C′′

∂k
∂s ≤ −2, ∂k

∂c = 0 on C′′

Then we set c(s) = ρ−1cgf(V ) + α
ρ

(
‖U‖µ,ρ − s

)
, where α ≥ 2 is not the slope of

any of the segments in the complement of C′ ∪ C′′. We see that the continuous
function s 7→ k

(
s, c(s)

)
always has a right derivative, which is less than or equal

to −2.
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Appendix A. Gf-capacity

We recall some basic facts from Viterbo’s theory of capacities on the symplectic
vector space (R2n,Ω). The reader is referred to [19] for proofs (and more results).

Remark A.1. A general warning must be made about sign conventions, which
are not always the same from one paper to the other.

Let V be a bounded open set in R2n. A (time-dependent) Hamiltonian function
H = Ht(z) : [0, 1]×R2n → R is V -admissible if there is a compact set C of such that
supp(Ht) ⊂ C for each t ∈ [0, 1]. The set of smooth V -admissible Hamiltonians
will be denoted by HV .

To each H ∈ HV there corresponds a complete Hamiltonian vector field X =
(Xt)t∈[0,1] defined by the relation

iXtΩ = dHt ∀ t ∈ [0, 1] (22)

This vector field generates a Hamiltonian isotopy Φ = (Φt)t∈[0,1] of R2n. If z ∈ R2n

is a fixed point of Φ1, then its action AH(z) is the real number

AH(z) =
∫
t7→Φt(z),t∈[0,1]

λR2n −Hdt =
∫ 1

0

[
yt ẋt −Ht(xt, yt)

]
dt (23)

where (xt, yt) = Φt(z) for t ∈ [0, 1].
To introduce generating functions, we will use the symplectic isomorphism

I : R2n × R2n → T ∗R2n ∼= R2n × R2n

(z, z′) 7→ (w,w′) =
(z + z′

2
, i(z − z′)

) (24)

where R2n×R2n denotes the vector space R2n×R2n endowed with the symplectic
form (−ΩR2n) ⊕ ΩR2n . For t ∈ [0, 1], let Γt ⊂ R2n × R2n be the graph of Φt, and
Γ̃t ⊂ T ∗R2n be its image under I.

Definition A.2. (see [14]). Let k be an arbitrary integer. A smooth function
S = S(w, ξ) : R2n × Rk → R is a generating function if 0 ∈ (Rk)∗ is a regular
value of ∂ξS = ∂S/∂ξ. In that case, ∂ξS−1(0) is a smooth 2n-manifold, and
we have a smooth Lagrangian immersion iS : ∂ξS−1(0) → T ∗R2n defined by
iS(w, ξ) =

(
w, ∂wS(w, ξ)

)
. If iS is an embedding, we say that S generates the

embedded Lagrangian submanifold L ⊂ T ∗R2n.
Notice that the critical points of S correspond to the intersection points of L

with the zero section of T ∗R2n.

Now the Γ̃t’s are Lagrangian submanifolds of T ∗R2n, Γ̃0 is the zero section and
obviously there is a compactly supported Hamiltonian isotopy (Ψt)t∈[0,1] of T ∗R2n

such that Γ̃t = Ψt(Γ̃0).
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The next existence result was proved by Marc Chaperon [4], although not in
this formulation, which comes from Jean-Claude Sikorav [14].

Theorem A.3. ([4]) There exists a (a priori non-unique) smooth family of gen-
erating functions St : R2n × Rk → R, t ∈ [0, 1] such that
(i) St generates Γ̃t for each t ∈ [0, 1]
(ii) the whole family is quadratic at infinity: we have St(w, ξ) = Q∞(ξ) outside a

compact subset of [0, 1] × R2n × Rk, where Q∞ : Rk → R is a non-degenerate
quadratic form .

Because of the choice of the identification (24), this implies that the fixed points
of Φ1 are in 1-1 correspondence with the critical points of S1. Furthermore, if z is
a fixed point of Φ1, then the corresponding critical point is of the form (z, ξ), and
an easy computation shows that

AH(z) = S1(z, ξ) (25)

By a so-called minimax method using the behaviour at infinity, it is possible
to select two critical values of S1. First, remark that we can extend the St’s to
S2n × Rk, where S2n ∼= R2n ∪ {∞} is the one-point compactification of R2n, by
St(∞, ξ) = Q∞(ξ). Then, for α ∈ R, let Sα1 = {S1 ≤ α}. For α > 0 large
enough, the homotopy type of the pair (Sα1 , S

−α
1 ) is constant, and we denote it

by (S+∞
1 , S−∞1 ). If i denotes the index of the quadratic form Q∞, then it follows

from the Künneth isomorphism that

H∗(S+∞
1 , S−∞1 ) ∼= H∗(S2n)⊗H∗(Di, Si−1) ∼= H∗−i(S2n)

where Di (resp. Si−1) is the unit disk (resp. the unit sphere) in Ri. Hence

Hk(S+∞
1 , S−∞1 ) = 0 if k 6= i, i+ 2n

Hi(S+∞
1 , S−∞1 ) ∼= H2n+i(S+∞

1 , S−∞1 ) ∼= R

Let u− (resp. u+) be a generator of Hi(S+∞
1 , S−∞1 ) (resp. of H2n+i(S+∞

1 , S−∞1 )).
Then define

c± = inf
{
α ∈ R ; u± does not vanish in H∗(Sα1 , S

−∞
1 )

}
It is easy to show that Hi(Sc−+η

1 , S
c−−η
1 ) 6= 0 and H2n+i(Sc++η

1 , S
c+−η
1 ) 6= 0 if

η > 0 is small enough. This implies that c± are critical values of S1. Furthermore,
it can be proved that they do not depend on the particular family (St)t∈[0,1]
chosen but only on the Hamiltonian H, so we may call them c±(H). We list some
of their properties in the next statement (some inequalities differ from those of
[19], because some sign conventions differ).

Theorem A.4. ([19]). To any H ∈ HV generating the isotopy (Φt)t∈[0,1], we can
associate two real numbers c±(H) with the following properties.



608 D. Théret CMH

1. c−(H) ≤ 0 ≤ c+(H).
2. c−(H) = c+(H) if and only if Φ1 = IdR2n .
3. There are points z± ∈ R2n such that Φ1(z±) = z± and AH(z±) = c±(H).
4. If H ≤ 0 then c−(H) = 0.
5. If H ≤ K then c±(H) ≥ c±(K).
6. The maps H 7→ c±(H) are continuous for the C0-topology on HV . More pre-

cisely, if H, K are in HV and satisfy ‖H−K‖C0 ≤ ε, then |c±(H)−c±(K)| ≤ ε

Definition A.5. ([19]). The gf-capacity cgf(V ) of the open set V ⊂ R2n is now
defined as

cgf(V ) = sup{c+(H) ; H ∈ HV } (26)

Theorem A.6. ([19]). The map V 7→ cgf(V ) satisfies the following properties.
1. If V1 ⊂ V2 then cgf(V1) ≤ cgf(V2)
2. If (Φt)t∈[0,1] is a compactly supported Hamiltonian isotopy of R2n, then cgf

(
Φt(V )

)
is constant.

3. cgf
(
B2n(0, r)

)
= cgf

(
B2(0, r)× R2n−2) = πr2.

4. The Symplectic Camel Theorem stated at the beginning of this paper.

Appendix B. The Maslov-Duistermaat index

In this appendix, we recall Duistermaat’s generalisation of the Maslov index [7],
and relate it to another index obtained with quadratic generating forms.

B.1. On a symplectic vector space

Let (F, σ) be a symplectic vector space of dimension 2m, and Λ(F ) = Λ(F, σ) be
the set of its Lagrangian subspaces. If α ∈ Λ(F ) and k = 0, . . . ,m, we consider

Λk(α) = {β ∈ Λ(F ); dim(α ∩ β) = k}

and then Σ(α) = Λ(F )−Λ0(α), which is an algebraic hypersurface of Λ(F ) whose
principal part is Λ1(α).

Generically, a smooth loop L : S1 → Λ(F ) intersects Σ(α) in Λ1(α) only;
Λ1(α) being coorientable, the algebraic intersection number of L with Σ(α) can
be defined; and because Λ(F ) is connected, this number does not depend on the
choice of α ∈ Λ(F ). It is the Maslov index of the loop L, denoted by ind(L), see
[1]. A loop is contractible if and only if its Maslov index vanishes.

The sign convention we use (following Duistermaat) is that, in R2 with the
standard structure for instance, the loop L = (Lt)t∈[0,1] defined by L0 = R × 0
and Lt = eiπt(L0) has index −1 (ie. turning positively with respect to the natural
orientation gives negative Maslov index).
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In [7] (see also [6]), Duistermaat generalizes this index to non-closed curves of
Lagrangian subspaces, as follows. Let L : [0, 1] → Λ(F ) be such a (continuous)
path. We choose α ∈ Λ(F ) transversal to L0 and L1. As Λ0(α) is simply-connected
(it has the structure of an affine space), there is a path L′ in Λ0(α) joining L1 to
L0, and all such paths are homotopic. The intersection index of L with α, denoted
by [L : α], will be the Maslov index of the loop L̃ = L ∗ L′:

[L : α] = ind(L̃) (27)

Duistermaat then adds a boundary term to obtain an integer independent of α.
Because of the transversality assumption, there is a linear map C : L1 → α such
that L0 is the graph of C, ie. L0 = {u + Cu;u ∈ L1}. Then a quadratic form
denoted by Q

(
L1, α;L0

)
can be defined on L1:

Q
(
L1, α;L0

)
: L1 → R
u 7→ σ(Cu, u)

(28)

The Maslov-Duistermaat index ind(L) of the path L is now

ind(L) = [L : α] + indQ
(
L1, α;L0

)
(29)

As notation suggests, it does not depend on the choice of α ∈ Λ0(L0) ∩ Λ0(L1),
and it obviously gives the same index as before when L is a loop.

Proposition B.1. Let L : [0, 1]→ Λ(F ) be a path.
1. The integer ind(L) depends only on the homotopy class (with endpoints fixed)

of L.
2. If A ∈ Sp(F, σ) and AL denotes the path (AL)t := A(Lt) in Λ(F ), then

ind(AL) = ind(L)
3. If L′ is a loop in Λ(F ) based at L1, then ind(L ∗ L′) = ind(L) + ind(L′) (note

that the Maslov-Duistermaat index is not additive for the concatenation of all
paths).

Proof. These properties come directly from the definition and from the analogous
(standard) properties of the ordinary Maslov index for loops. �

To extend the Maslov-Duistermaat index to a symplectic vector bundle over
the circle, we will need the following result.

Corollary B.2. Let L, L′ be two paths in Λ(F ), and A = (At)t∈[0,1] be a loop in
Sp(F ). Let AL denote the path in Λ(F ) defined by (AL)t := At(Lt), and similarly
for AL′. Then we have

ind(AL)− ind(AL′) = ind(L)− ind(L′)
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Proof. The path AL is homotopic (with endpoints fixed) to the path A0L followed
by the loop AL1, hence ind(AL) = ind(L) + ind(AL1) by Proposition B.1. Simi-
larly, ind(AL′) = ind(L′) + ind(AL′1). But, since Λ(F ) is connected, the two loops
AL1 and AL′1 are homotopic, hence they have the same ordinary Maslov index.�

B.2. On a symplectic vector bundle over the circle

Consider next a symplectic vector bundle E → S1 with fiber (F, σ). We see S1 as
the interval [0, 1] with endpoints identified, and denote by t its generic point; the
fiber of E over t will be called Et.

We consider V = ∪t∈S1Vt a Lagrangian subbundle of E, and R : [0, 1]→ Λ(E)
a path of Lagrangian subspaces Rt ⊂ Et (without imposing R0 = R1) .

Because Sp(F ) is connected, the symplectic bundle E is trivial, ie. there is a
symplectic isomorphism τ : E ∼= S1 × (F, σ). Then τ(V ) can be identified to a
loop in Λ(F ), and τ(R) to a path. According to Corollary B.2 the difference

indV (R) := ind
(
τ(R)

)
− ind

(
τ(V )

)
(30)

does not depend on the trivialization τ chosen. It is called the Maslov index of R
with respect to V .

Remark B.3. Suppose that Rt and Vt are transverse for all t ∈ [0, 1]. Then

indV (R) = indQ(R1, V0;R0) (31)

where the definition of Q(R1, V0;R0) is a straightforward generalization of (28).
Indeed, by the very definition of indV (R), we may suppose that V (resp. R) is
a loop (resp. a path) in Λ(F ). Since V0 = V1 is transverse to R0 and R1 by
assumption, we may take α = V0 to compute ind(R). Let R′ be a path in Λ0(V0),
joining R1 to R0. Then ind(R) = ind(R′ · R) + indQ(R1, V0;R0) by definition,
and we just need to prove that ind(R′ · R) = ind(V ). But it is clear that R′ · R
is homotopic to a loop S in Λ(F ) such that St ∩ Vt = 0 for all t, and this implies
that S and V have the same (ordinary) Maslov index.

If Γ1 and Γ2 be two Lagrangian subbundles of E, then the Maslov class
µ(Γ1,Γ2) of the pair (Γ1,Γ2) is defined as µ(Γ1,Γ2) = indΓ2(Γ1). It vanishes
if and only Γ1 and Γ2 are homotopic through Lagrangian subbundles of E. In
that case, we have indΓ1(R) = indΓ2(R); more generally, the following relation
holds:

indΓ1(R)− indΓ2(R) = µ(Γ2,Γ1) = −µ(Γ1,Γ2) (32)
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B.3. Using generating functions

We consider the space R2m endowed with the symplectic form ΩR2m .
Let k be an arbitrary integer, and Q = Q(w, ξ) : Rm ×Rk → R be a quadratic

form. Using matrix representation with respect to the canonical bases of Rm and

Rk, we write Q(X) = 1
2
tXBX , with X =

(
w
ξ

)
and B =

(
a b
tb c

)
a symmetric

(n+ k)-matrix.
We say that Q is a generating form if it is a generating function in the sense

of Definition A.2, ie. if the k × (n+ k)-matrix (tb, c) is of maximal rank k. Then
ΣQ =

{
(w, ξ); tbw + cξ = 0

}
is a m-dimensional vector subspace of Rm × Rk,

and the map iQ : ΣQ → R2m ∼= T ∗Rm defined by iQ(w, ξ) = (w, aw + bξ) is a
Lagrangian linear embedding. The Lagrangian subspace L = Im(iQ) is said to be
generated by Q. The spaces KerQ and (Rm × 0) ∩ L are obviously isomorphic.

Example B.4. Let W be a Lagrangian submanifold of R2m admitting a gen-
erating function S : Rm × Rk → R. If (w,w′) is a point on W and (w, ξ) is
the corresponding element of ΣS , then d2S(w, ξ) is a generating form for the La-
grangian subspace T(w,w′)W ∈ Λ(R2m).

As in the non-linear case of Section A, there are existence and uniqueness results
for forms generating a continuous path of Lagrangian subspaces. The proofs are
much simpler, however, in the linear case: see [16].

Theorem B.5. and Definition). Let L : [0, 1]→ Λ(R2m) be a path of Lagrangian
subspaces. Then there is a path (Qt)t∈[0,1] of generating forms, such that Qt
generates Lt for all t ∈ [0, 1]. Furthermore, if (Qt)t∈[0,1] is any such path, then
the integer indQ1−indQ0 depends only on L = (Lt)t∈[0,1]. It is called the gf-index
of L, denoted by indgf(L). If L is a loop, then indgf(L) coincides with the standard
Maslov index of L.

Now, if Sp(R2n) is the manifold of linear symplectomorphisms of (R2n,ΩR2n)
and A : [0, 1] → Sp(R2n) is a continuous path, we use the identification (24) to
define a path L in Λ(R2m,ΩR2m), with 2m = n: for t ∈ [0, 1], the graph of At is a
Lagrangian subspace of R2n × R2n, and we set Lt = I(graphAt).

Definition B.6. The gf-index of the path A is indgf(A) := indgf(L).

Proposition B.7. Let Φ = (Φt)t∈[0,1] be a Hamiltonian isotopy of R2n with com-
pact support, and (St)t∈[0,1] be a family of generating functions as in Theorem A.3.
Let z ∈ R2n be a fixed point of Φ1 and (z, ξ) be the corresponding critical point of
S1. If A denotes the path of symplectomorphisms At = dΦt(z) ∈ Sp(R2n), then
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indgf(A) = ind d2S1(z, ξ)− indQ∞

Proof. We follow the notations of Appendix A. In particular, (Ψt)t∈[0,1] is the
Hamiltonian isotopy of T ∗R2n given by Ψt = I ◦ (id×Φt) ◦ I−1. There is a
continuous path (wt, ξt) ∈ R2n ×Rk ending at (z, ξ), such that (wt, ξt) ∈ ΣSt and
iSt(wt, ξt) = Ψt(z, 0) for all t. Then Qt = d2St(wt, ξt) is a quadratic generating
form of TΨt(0,z)Γ̃t, and that vector subspace is precisely Lt. Hence indgf(A) =
indgf

(
I(graphA)

)
= indQ1 − indQ0 by definition.

Since S0 generates the zero section and S0 = Q∞ outside a compact set, it is
easy to see that ind d2S0(w0, ξ0) = indQ∞ (consider a path γt on ΣS0 , joining
(w0, ξ0) to a point at infinity; it is immediate that Ker d2S0(γt) has constant
dimension, so the index of d2S0(γt) is also constant).

Hence indgf(A) = ind d2S1(z, ξ)− indQ∞ as claimed. �

On the other hand, the path (graphAt)t∈[0,1] also has a well-defined Maslov-
Duistermaat index, from Appendix B. We show that the two indices are equal if
the path starts at the identity map.

Proposition B.8. Let A = (At)t∈[0,1] be a path in Sp(R2n). If A0 = Id, then

indgf(A) = ind(graphA)

Proof. Let us begin with a simple but important remark: to prove that ind and
indgf coincide for all paths joining two fixed Lagrangians L0 and L1, it is enough
to show that they coincide for one of them. This follows easily from the additive
property of infgf under concatenation of paths, from the weaker corresponding
statement for the Maslov-Duistermaat index (see Proposition B.1), and the fact
that the indices do coincide on loops of Lagrangian subspaces.

Since
(i) A1 gives a decomposition R2n = F ′ ⊕ F ′′ as the direct sum of symplectic

A1-invariant subspaces such that the restriction of A1 to F ′ does not have
the eigenvalue −1, and the restriction of A1 to F ′′ has only the eigenvalue
−1,

(ii) the symplectic group of a symplectic vector space is always connected,
(iii) the indices are additive with respect to symplectic direct sums,

we may suppose that A1 does not have the eigenvalue −1 or that it has only this
eigenvalue.
1. Let us first assume that −1 is not an eigenvalue of A1. Then, in view of (24),

the hypotheses mean that L0 = R2n × 0 and that L1 is transversal to 0×R2n.
Consequently, we may take α = 0× R2n in (27)–(28)–(29).

First, let L′ be path in Λ0(α), joining L1 to L0. Then [L : α] = ind(L ∗ L′)



Vol. 74 (1999) A Lagrangian camel 613

by definition, see (27). But ind and indgf coincide on loops of Lagrangian
subspaces, so [L : α] = indgf(L ∗ L′). Since indgf is additive (this is obvious),
we have

[L : α] = indgf(L) + indgf(L
′)

Now L′ is a path of Lagrangian subspaces that never meets the vertical
0 × R2n. This implies that the L′t’s are graphs of (symmetric) linear maps
`′t : R2n → R2n. Then Q′t(w) := 1

2 < `′tw,w > defines a quadratic form
generating L′t, for t ∈ [0, 1]. Since L′1 = L0 = R2n × 0, we have `′1 = 0, hence
Q′1 = 0. Therefore,

indgf(L
′) = indQ′1 − indQ′0 = − indQ′0

Finally, we relate Q′0 and Q(L1, α;L0). Consider the linear map C : L1 → α
such that u+Cu ∈ L0 = R2n× 0 for all u ∈ L1. Since L1 = L′0 is the graph of
`′0, we write u = (w, `′0w) = (w, 0) + (0, `′0w) ∈ (R2n × 0) ⊕ (0 × R2n). Hence
Cu = (0,−`′0w), and then

Q(L1, α;L0)(u) = Ω(Cu, u) = Ω(0,−`′0w;w, `′0w) = < `′0w,w > = 2Q′0(w)

This proves in particular that

indQ′0 = indQ(L1, α;L0)

whence

ind(L) = [L : α] + indQ(L1, α;L0)
= indgf(L) + indgf(L

′) + indQ(L1, α;L0)
= indgf(L)− indQ′0 + indQ′0
= indgf(L)

2. Let us now assume that −1 is the only eigenvalue of A1. We choose α to be

I
(
graph(B)

)
, where B =

(
0 I
−I 0

)
. Then α is transversal to L0 and L1, and

furthermore it is possible to join L1 to − Id through symplectomorphisms that
have only −1 as eigenvalue. It is then easy to see that both indices do not
change if we compose our path (At) with this path from L1 to − Id. Hence
we may assume that A1 = − Id. But then we only need to check equality of
the indices to one given path from Id to − Id, and again we may assume that
R2n = R2 and At is rotation of angle 2πt. A direct application of the definitions
shows that in this case both indices are equal to 0. �
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