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Abstract. This paper investigates the product structure in algebraic K-theory of rings. The
first objective is to understand the relationships between products and the kernel of the Hurewicz
homomorphism relating the algebraic K-theory of any ring to the integral homology of its linear
groups. The second part of the paper is devoted to the ring of integers Z. Using recent results of
V. Voevodsky we completely determine the products in K∗(Z) tensored with the ring of 2-adic
integers.
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0. Introduction

The purpose of this paper is to study the Loday’s product homomorphism

? : Ki(R)⊗Kk(Z) −→ Ki+k(R)

in the algebraic K-theory of any ring R with identity, for positive integers i and k
(see [21]). Our first goal is to exhibit very strong connections between the image of
that product and the kernel of the non-stable Hurewicz homomorphisms relating
the K-groups of R to the integral homology groups of its linear groups

hi : Ki(R) = πiBGL(R)+ −→ HiBGL(R)+ ∼= HiGL(R) for i ≥ 1 ,

respectively hi : Ki(R) → HiE(R) for i ≥ 2 and hi : Ki(R) −→ HiSt(R) for
i ≥ 3, where GL(R) is the infinite general linear group (considered as a discrete
group) overR, E(R) its subgroup generated by elementary matrices, and St(R) the
infinite Steinberg group over R. A universal approximation of the exponent of the
kernel and some information on the cokernel of these Hurewicz homomorphisms
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have been obtained in [3], [4] and Section 5 of [5]. Our argument is based on the
understanding, from various viewpoints, of the stable Hurewicz homomorphism
between the algebraic K-theory and the homology of the K-theory spectrum. We
establish in particular the following result (see Theorem 3.2):

For any ring R and any integer i ≥ 2, the image of ? : Ki(R) ⊗
K1(Z) → Ki+1(R) is contained in the kernel of the Hurewicz homo-
morphisms hi+1 : Ki+1(R) → Hi+1GL(R) and hi+1 : Ki+1(R) →
Hi+1E(R); the same holds for hi+1 : Ki+1(R)→ Hi+1St(R) if i ≥ 3.

In low dimensions, we actually prove exactness results for any ring R (see Theorems
4.1 and 4.3).

(a) There is an exact sequence

K4(R)
h4−→ H4E(R) −→ Γ(K2(R)) −→ K3(R)

h3−→ H3E(R) −→ 0 ,

where Γ(−) is the quadratic functor defined on abelian groups by
J.H.C. Whitehead in Section 5 of [37]; moreover, kerh3 is isomor-
phic to K2(R) ? K1(Z).

(b) There is an exact sequence

K5(R)
h5−→ H5St(R) −→ K3(R)⊗K1(Z) ?−→ K4(R)

h4−→ H4St(R) −→ 0

and the kernel of h5 fits into a short exact sequence

0 −→ K4(R) ? K1(Z) −→ kerh5 −→ Q −→ 0 ,

where Q is a quotient of the subgroup of elements of order 2 in the
group K3(R).

The second objective of the paper is to compute explicitely products in the
algebraic K-theory of the ring of integers Z. First of all, we determine in low
dimensions the products Ki(Z)?Kk(Z), the homology groups of SL(Z) and St(Z),
and the Hurewicz homomorphism (see Proposition 5.1). Secondly, we consider
maps

Ki(Z)⊗Kk(Z) ?−→ Ki+k(Z) −→ Ki+k(Z) ⊗ Z2̂

for all positive integers i and k, where the second arrow is the tensor product of
Ki+k(Z) with the inclusion of Z into the ring of 2-adic integers Z2̂. We call these
maps 2-adic products for K∗(Z) and continue to denote them by the symbol ?.
We deduce from a topological argument based on results by M. Bökstedt [12], V.
Voevodsky [33], J. Rognes and C. Weibel [35] and [28] the calculation of all such
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2-adic products (see Theorems 5.6, 5.7, Corollary 5.8 and Theorem 5.9):

The 2-adic product ? : Ki(Z) ⊗ Kk(Z) −→ Ki+k(Z) ⊗ Z2̂ is
trivial for all positive integers i and k, except if i ≡ k ≡ 1 mod 8
or i ≡ 1 mod 8 and k ≡ 2 mod 8 (or i ≡ 2 mod 8 and k ≡ 1 mod
8) where its image is cyclic of order 2.

We also mention in Proposition 5.11 an interesting relationship between prod-
ucts in algebraic K-theory and the kernel of the Dwyer-Friedlander map.

For any odd prime l and any integer n ≥ 2, the image of the
product map

? : K2n−1(Z) ⊗K2n−1(Z) −→ K4n−2(Z)

is contained in the kernel of the Dwyer-Friedlander map K4n−2(Z)→
K ét

4n−2(Z[1
l ]).

Observe that the 2-adic products in the K-theory of Z have a very small image.
On the other hand, we finally prove in Theorem 6.4 that the image of the product

? : K1(E)⊗K2n−1(E) −→ K2n(E)

is huge when E is a cyclotomic field and n and odd integer.
The paper is organized as follows. In Section 1, we give a new construction of

the Whitehead exact sequence for spectra. Section 2 presents another approach of
the study of the Hurewicz homomorphism for spectra using the so-called Postnikov
cofibrations. Section 3 is devoted to general results on the relations between
products in algebraic K-theory and the kernel of the stable and of the non-stable
Hurewicz homomorphism. Section 4 provides the above exact sequences involving
the K-groups and the homology groups of the linear groups in dimensions ≤ 5. In
Section 5, we calculate the 2-adic products in the algebraic K-theory of the ring of
integers Z. We finally discuss in Section 6 products in the K-theory of cyclotomic
fields.

Throughout the paper, all rings are supposed to have an identity. We consider
all ordinary homology groups with (trivial) coefficients in Z except if explicitly
mentioned. If G is an abelian group, Gl denotes the l-torsion subgroup of G (for a
prime l), K(G, s) the Eilenberg-MacLane space having all homotopy groups trivial
except for G in dimension s and H(G) the Eilenberg-MacLane spectrum having all
homotopy groups trivial except for G in dimension 0. If X is any CW-complex or
any CW-spectrum and i any integer, we write αi : X → X [i] for its i-th Postnikov
section (i.e., πkX [i] = 0 for k > i and (αi)∗ : πkX

∼=→ πkX [i] for k ≤ i) and
γi : X(i)→ X for the fiber of αi; in other words, X(i) is the i-connected cover of
X . For j ≥ i+1, X(i, j] denotes X(i)[j], whose homotopy groups are πkX(i, j] = 0
if k ≤ i or k > j and πkX(i, j] ∼= πkX if i+ 1 ≤ k ≤ j.
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Foundation, the Institut de mathématiques of the University of Lausanne and the
Max-Planck-Institut für Mathematik in Bonn for financial support and hospitality.

1. The Whitehead exact sequence for spectra

Let S be the sphere spectrum and S
α0−→ S[0] = H(Z) its 0-th Postnikov section.

By taking the smash product of any spectrum X with the cofibration S(0)
γ0−→

S
α0−→ S[0], where S(0) is 0-connected, one obtains the cofibration of spectra

X ∧ S(0)
id∧γ0−→ X ∧ S ' X id∧α0−→ X ∧H(Z) ,

whose homotopy exact sequence is the long Whitehead exact sequence

· · · −→ πi(X ∧ S(0))
χ̄i−→ πiX

h̄i−→ HiX
ν̄i−→ πi−1(X ∧ S(0)) −→ · · ·

of X ; here i is any integer, ν̄i is the connecting homomorphism, χ̄i is induced
by (id ∧ γ0) and h̄i by (id ∧ α0), i.e., h̄i is the stable Hurewicz homomorphism.
The groups πi(X ∧ S(0)) are usually denoted by Γi(X): that definition coincides
actually with the homotopy groups of the fiber of the Dold-Thom map (see [16])
and it was recently proved in [29] that they are isomorphic to the groups introduced
in the original paper [37] by J.H.C. Whitehead.

Now, let us assume that the spectrum X is (r− 1)-connected for some integer
r. The advantage of the above approach is that one can compute the groups Γi(X)
with the Atiyah-Hirzebruch spectral sequence for the S(0)-homology of X :

E2
s,t
∼= Hs(X ;πtS(0)) =⇒ Γs+t(X) .

Notice that E2
s,t = 0 if s ≤ r−1 or t ≤ 0. This implies in particular that Γi(X) = 0

for i ≤ r (Hurewicz theorem) and that (ρ1ρ2 · · · ρi−r)Γi(X) = 0 for i ≥ r + 1,
where ρk denotes the exponent of the homotopy group πkS for k ≥ 1 (see also [29]
for another proof and [5] for corresponding results for the generalized Hurewicz
homomorphisms). The first interesting Gamma group of an (r − 1)-connected
spectrum X is

Γr+1(X) ∼= E2
r,1
∼= πrX ⊗ π1S

(this was in fact established a long time ago by J.H.C. Whitehead, see for instance
Section 14 of [37]). Our first goal is to understand the homomorphism χ̄r+1 :
Γr+1(X) ∼= πrX ⊗ π1S → πr+1X . Let us start with the following general result
on the external product πiX ⊗πkS ∧−→ πi+k(X ∧S) ∼= πi+kX (see [32], p. 270 for
the definition of the external product).

Lemma 1.1. Let X be any spectrum, i and k two integers with k ≥ 1. Then the
image of the external product ∧ : πiX ⊗ πkS → πi+kX is contained in the kernel
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of the stable Hurewicz homomorphism h̄i+k : πi+kX → Hi+kX for all integers i
and all positive integers k.

Proof. The commutative diagram

πiX ⊗ πkS(0)
(id)∗⊗(γ0)∗
−−−−−−→

∼=
πiX ⊗ πkSy ∧ y ∧

Γi+k(X)
χ̄i+k
−−−−→ πi+kX

shows that the image of ∧ : πiX ⊗ πkS → πi+kX is contained in image χ̄i+k ∼=
ker h̄i+k. Another proof of this fact is given by Lemma 1 of [6].

In the case where X is (r−1)-connected and i = r, k = 1, we have the following
exactness result:

Proposition 1.2. For an (r−1)-connected spectrum X, the homomorphism χ̄r+1 :
Γr+1(X)→ πr+1X in the Whitehead exact sequence is exactly the external product
∧ : πrX ⊗ π1S → πr+1X.

Proof. Consider the commutative diagram

HrX ⊗H1S(0)
∧

−−−−→
∼=

Hr+1(X ∧ S(0))x ∼= x ∼=
πrX ⊗ π1S(0)

∧
−−−−→ πr+1(X ∧ S(0)) = Γr+1(X)

∼=
y (id)∗⊗(γ0)∗

y χ̄r+1

πrX ⊗ π1S
∧

−−−−→ πr+1(X ∧ S) ∼= πr+1X .

The top horizontal homomorphism is an isomorphism by Künneth formula and the
two top vertical arrows, which are Hurewicz homomorphisms, are isomorphisms
since X is (r − 1)-connected, S(0) is 0-connected and X ∧ S(0) is r-connected.
Consequently, the external product in the middle of the diagram is an isomorphism.
The homomorphism (id)∗ ⊗ (γ0)∗ is an isomorphism because (γ0)∗ : π1S(0)

∼=−→
π1S. Therefore, χ̄r+1 is exactly the external product πrX ⊗ π1S

∧−→ πr+1X .
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Corollary 1.3. For any (r − 1)-connected spectrum X, the following sequence is
exact:

· · · −→ Γr+2(X)
χ̄r+2−→ πr+2X

h̄r+2−→ Hr+2X
ν̄r+2−→

πrX ⊗ π1S
∧−→ πr+1X

h̄r+1−→ Hr+1X −→ 0 .

2. Postnikov cofibrations

The purpose of this section is to present another approach of the study of the
Hurewicz homomorphism. For an (r − 1)-connected spectrum X , consider for all
integers i ≥ r + 1 the cofibrations of spectra

ΣiH(πiX)
γi−1−→ X [i]

αi−1−→ X [i− 1] ,

where αi−1 is the (i−1)-st Postnikov section of X [i]: let us call them the Postnikov
cofibrations of X . The associated homology exact sequences are

· · · −→ Hi+1X [i]
(αi−1)∗−→ Hi+1X [i− 1] ∂̄→Hi(ΣiH(πiX))︸ ︷︷ ︸

∼=πiX

(γi−1)∗−→

HiX [i]︸ ︷︷ ︸
∼=HiX

(αi−1)∗−→ HiX [i− 1] −→ 0 ,

and it is easy to check that (γi−1)∗ is the stable Hurewicz homomorphism h̄i.
Thus, we obtain the following

Proposition 2.1. Let X be an (r−1)-connected spectrum and i an integer ≥ r+1.
There is an exact sequence

· · · −→ Hi+1X [i]
(αi−1)∗−→ Hi+1X [i−1] ∂̄−→ πiX

h̄i−→ HiX
(αi−1)∗−→ HiX [i−1] −→ 0 .

Now let us try to understand the homomorphism ∂̄ for the cases i = r+ 1 and
i = r + 2.

Proposition 2.2. (a) For any (r − 1)-connected spectrum X, there is an exact
sequence

0 −→ Hr+2X [r + 1]
ϕ̄−→ πrX ⊗ π1S

∂̄−→ πr+1X
h̄r+1−→ Hr+1X −→ 0 .
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(b) The homomorphism ∂̄ is again exactly the external product ∧ : πrX ⊗ π1S →
πr+1X.

Proof. Let us look at the Postnikov cofibration of X for i = r + 1,

Σr+1H(πr+1X)
γr−→ X [r + 1] αr−→ X [r] ' ΣrH(πrX) ,

and take its homology exact sequence

Hr+2(Σr+1H(πr+1X))︸ ︷︷ ︸
=0

−→ Hr+2X [r + 1]
ϕ̄−→ Hr+2(ΣrH(πrX)) ∂̄−→

πr+1X
h̄r+1−→ Hr+1X −→ Hr+1(ΣrH(πrX))︸ ︷︷ ︸

=0

,

where ϕ̄ is written for (αr)∗. Since ΣrH(πrX) is an Eilenberg-MacLane spectrum,
it is clear that

Hr+2(ΣrH(πrX)) ∼= Γr+1(ΣrH(πrX)) ∼= πrX ⊗ π1S ,

and we get assertion (a). Then, consider the map α0 : S → H(Z) and denote by
ζ the composition

(id ∧ α0) γr : Σr+1H(πr+1X) −→ X [r + 1] ' X [r + 1] ∧ S −→ X [r + 1] ∧H(Z) ,

and by F its fiber. By smashing with H(Z) the cofibration obtained by looping
the base spectrum of the cofibration Σr+1H(πr+1X)

γr−→ X [r+1] αr−→ ΣrH(πrX),
we get the commutative diagram

Σr−1H(πrX) ∧H(Z) −→ Σr+1H(πr+1X) ∧H(Z)
γr∧id
−−→ X [r + 1] ∧H(Z)x x id∧α0

x id

F −→ Σr+1H(πr+1X)
ζ
−→ X [r + 1] ∧H(Z)y y γr

y id

X [r + 1] ∧ S(0)
id∧γ0−−→ X [r + 1]

id∧α0−−→ X [r + 1] ∧H(Z)
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in which all rows are cofibrations. Then look at their homotopy exact sequences

Hr+2X[r + 1] −→

∼=Hr+2(ΣrH(πrX))︷ ︸︸ ︷
Hr+1(Σr−1H(πrX))

∂̄
−−→

∼=πr+1X︷ ︸︸ ︷
Hr+1(Σr+1H(πr+1X))

(γr∧id)∗
−−−−−→
=h̄r+1

∼=Hr+1X︷ ︸︸ ︷
Hr+1X[r + 1]x =

x Hurewicz

x ∼= x =

Hr+2X[r + 1] −→ πr+1F −−→ πr+1X
ζ∗
−−→ Hr+1X[r + 1]y =

y (γr)∗

y ∼= y =

Hr+2X[r + 1] −→ Γr+1(X[r + 1])︸ ︷︷ ︸
∼=Γr+1(X)

χ̄r+1
−−→ πr+1X[r + 1]︸ ︷︷ ︸

∼=πr+1X

h̄r+1
−−→ Hr+1X[r + 1]︸ ︷︷ ︸

∼=Hr+1X

.

Observe that the three horizontal arrows on the left of the diagram are injective
and conclude by the five lemma that the two vertical arrows starting from πr+1F
are isomorphisms: assertion (b) can then be deduced from Proposition 1.2.

Remark 2.3. It follows from Corollary 1.3 and Proposition 2.2 that the cokernel
of h̄r+2 : πr+2X → Hr+2X is isomorphic to image ν̄r+2 = ker (∧ : πrX ⊗ π1S →
πr+1X) ∼= Hr+2X [r + 1] for any (r − 1)-connected spectrum X .

Similarly, we can investigate the stable Hurewicz homomorphism in dimension
r + 2. Consider the Postnikov cofibration of an (r− 1)-connected spectrum X for
i = r + 2 and its homology exact sequence

· · · −→ Hr+3X [r + 1]
ψ̄−→Hr+2(Σr+2H(πr+2X))︸ ︷︷ ︸

∼=πr+2X

h̄r+2−→

Hr+2X [r + 2]︸ ︷︷ ︸
∼=Hr+2X

−→ Hr+2X [r + 1] −→ 0 ,

where ψ̄ is written for ∂̄. The next two lemmas describe the group Hr+3X [r + 1]
and the homomorphism ψ̄.

Lemma 2.4. There is an exact sequence

· · · −→ πr+1X ⊗ π1S
θ̄−→ Hr+3X [r + 1]

η̄−→ 2(πrX) −→ 0 ,

where 2(πrX) denotes the subgroup of elements of order dividing 2 in the group
πrX.
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Proof. Let us look again at the cofibration

Σr+1H(πr+1X)
γr−→ X [r + 1] αr−→ ΣrH(πrX)

and at its homology exact sequence

· · · −→ Hr+3(Σr+1H(πr+1X)) θ̄−→ Hr+3X [r + 1]
η̄−→ Hr+3(ΣrH(πrX)) −→ 0 ,

where θ̄ and η̄ are the homomorphisms induced by γr and αr respectively. It turns
out that
Hr+3(Σr+1H(πr+1X)) ∼= Γr+2(Σr+1H(πr+1X)) ∼= πr+1X ⊗ π1S because of the
results of Section 1 and that
Hr+3(ΣrH(πrX)) ∼= 2(πrX), according to Théorème 2 of [14].

Lemma 2.5. The composition ψ̄ θ̄ : πr+1X ⊗ π1S → πr+2X is the external prod-
uct ∧.

Proof. The obvious map X(r)→ X provides the commutative diagram of cofibra-
tions

Σr+2H(πr+2X) −−−−→ X(r, r + 2] −−−−→ X(r, r + 1] ' Σr+1H(πr+1X)y id

y y γr

Σr+2H(πr+2X) −−−−→ X [r + 2] −−−−→ X [r + 1]

which induces the commutative square

Hr+3(Σr+1H(πr+1X))︸ ︷︷ ︸
∼=πr+1X⊗π1S

−−−−→ Hr+2(Σr+2H(πr+2X))︸ ︷︷ ︸
∼=πr+2Xy θ̄

y =

Hr+3X [r + 1]
ψ̄

−−−−→ Hr+2(Σr+2H(πr+2X))︸ ︷︷ ︸
∼=πr+2X

.

Then, the statement of Proposition 2.2 for the r-connected spectrum X(r) shows
that the top horizontal arrow is the external product.
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We may summarize our results on the stable Hurewicz homomorphism h̄r+2 as
follows.

Proposition 2.6. Let X be an (r − 1)-connected spectrum.
(a) There is an exact sequence

· · · −→ Hr+3X [r + 1]
ψ̄−→ πr+2X

h̄r+2−→ Hr+2X −→ Hr+2X [r + 1] −→ 0 .

(b) The kernel of h̄r+2 fits into the short exact sequence

0 −→ ∧(πr+1X ⊗ π1S) −→ ker h̄r+2 −→ Q −→ 0 ,

where Q is a quotient of 2(πrX).

Remark 2.7. Since πiX [r + 1] = 0 for i ≥ r + 2,

Hr+3X [r + 1] ∼= Γr+2(X [r + 1]).

The Postnikov section X → X [r + 1] induces a map f between the Atiyah-
Hirzebruch spectral sequences

Hs(X ;πtS(0)) =⇒ Γs+t(X) and Hs(X [r + 1];πtS(0)) =⇒ Γs+t(X [r + 1]) .

The lines s+ t = r + 2 in these spectral sequences give the following picture:

Hr+2(X; π1S)
d2

−−→ πrX ⊗ π2S −→ Γr+2(X) −→ Hr+1(X; π1S) −→ 0y f1 ∼=

y f2

y f3 ∼=

y f4

Hr+2(X[r + 1];π1S)
d2

−−→ πrX[r + 1]⊗ π2S −→ Γr+2(X[r + 1]) −→ Hr+1(X[r + 1];π1S) −→ 0 .

By the universal coefficient theorem, one has Hr+2(X ;π1S) ∼= (Hr+2X ⊗ π1S)⊕
Tor(Hr+1X,π1S) andHr+2(X [r+1];π1S) ∼= (Hr+2(X [r+1])⊗π1S)⊕Tor(Hr+1X,
π1S); thus, one can check that f1 is surjective because of Whitehead’s theorem
and deduce from the five lemma that

Γr+2(X) ∼= Γr+2(X [r + 1]) ∼= Hr+3X [r + 1] .

Moreover, one can show with the argument of the proof of Proposition 2.2 (b) that
the homomorphism ψ̄ of Proposition 2.6 (a) is actually χ̄r+2 : Γr+2(X)→ πr+2X
of Corollary 1.3. Consequently, the part

Hr+3X [r + 1]
ψ̄−→ πr+2X

h̄r+2−→ Hr+2X
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of the sequence given by Proposition 2.6 (a) is a piece of the Whitehead exact
sequence.

Remark 2.8. It follows from Lemma 2.4 and the previous remark that the group
Γr+2(X) is described by the exact sequence

· · · −→ πr+1X ⊗ π1S
θ̄−→ Γr+2(X)

η̄−→ 2(πrX) −→ 0 ,

and in particular that its exponent divides 4 (this was already known by [11],
Section 4).

Remark 2.9. All exact sequences introduced in Sections 1 and 2 are obviously
natural in X .

3. Products and Hurewicz homomorphisms in algebraic K-theory

If R is any ring, let us denote by XR the connective K-theory spectrum of R, i.e., a
(−1)-connected Ω-spectrum whose 0-th space is the infinite loop spaceBGL(R)+×
K0(R). We shall also consider the (r−1)-connected spectraXR(r−1) for r ≥ 0, i.e.,
the fiber of the Postnikov section XR → XR[r− 1], and call γr−1 the obvious map
XR(r − 1)→ XR. Observe that Ki(R) ∼= πiXR(r − 1) for i ≥ r. Remember that
the infinite loop spaces corresponding to XR(0), XR(1) and XR(2) are BGL(R)+,
BE(R)+ and BSt(R)+ respectively. If R and R′ are two rings, there is a pairing
µ : XR∧XR′ → XR⊗R′ and the product in algebraic K-theory is defined as follows

? : Ki(R)⊗Kk(R′) ∼= πiXR ⊗ πkXR′
∧−→ πi+k(XR ∧XR′)

µ∗−→ πi+kXR⊗R′ ∼= Ki+k(R ⊗R′)

for any two integers i ≥ 0 and k ≥ 0 (see for instance [21], Proposition 2.4.2). We
shall actually concentrate our attention to the special case where R′ is the ring of
integers Z: the goal of Sections 3 and 4 is to investigate the relationships between
the image of the product

? : Ki(R)⊗Kk(Z) −→ Ki+k(R ⊗ Z) ∼= Ki+k(R)

and the kernel of the stable and the non-stable Hurewicz homomorphism.

Remember that XZ is a ring spectrum and let us call j : S → XZ its identity.
Notice that j corresponds to the map BΣ+

∞ → BGL(Z)+ given by the inclusion of
the infinite symmetric group Σ∞ into GL(Z). This map j induces an isomorphism
j∗ : π1S

∼=−→ π1XZ ∼= K1(Z) and the image of j∗ : πkS → Kk(Z) for k ≥ 2 is
described in [22] and [26]. For any ring R, the above pairing µ provides then XR
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with an XZ-module structure. Let us first translate the results of Sections 1 and
2 in terms of algebraic K-theory.

Proposition 3.1. Let R be a ring, i and k two integers with i ≥ 0, k ≥ 1, and
consider an element x ∈ Ki(R) and an element y ∈ Kk(Z) belonging to the image
of j∗ : πkS → Kk(Z).
(a) For all r ≤ i, x ? y is an element of the kernel of the stable Hurewicz homo-

morphism h̄i+k : Ki+k(R)→ Hi+kXR(r − 1).
(b) If k ≤ i− 1, then x ? y is an element of the kernel of the non-stable Hurewicz

homomorphisms hi+k : Ki+k(R) → Hi+kE(R) and hi+k : Ki+k(R) → Hi+k
GL(R).

(c) If i ≥ 3 and k ≤ i − 1, then x ? y is an element of the kernel of hi+k :
Ki+k(R)→ Hi+kSt(R).

Proof. The first assertion is a consequence of Lemma 1.1 and of the commutativity
of the diagram

πiXR(r − 1)⊗ πkS
∧

−−−−→ πi+kXR(r − 1)
h̄i+k
−−−−→ Hi+kXR(r − 1)

∼=
y (γr−1)∗⊗id ∼=

y (γr−1)∗

πiXR ⊗ πkS
∧

−−−−→ πi+kXRy ∼=⊗j∗ y ∼=
Ki(R)⊗Kk(Z)

?
−−−−→ Ki+k(R) ,

where the bottom square commutes because XR is an XZ-module. In order to
prove the last two assertions, consider the (i− 1)-connected cover BGL(R)+(i−
1) of the CW-complex BGL(R)+, for i ≥ k + 1 ≥ 2. The iterated homology
suspension σ : Hi+kBGL(R)+(i− 1)→ Hi+kXR(i− 1), which is an isomorphism
since k ≤ i− 1, and the commutative diagram

Ki+k(R)
hi+k
−−−−→ Hi+kBGL(R)+(i− 1)y = σ

y ∼=
Ki+k(R)

h̄i+k
−−−−→ Hi+kXR(i− 1)

show that hi+k : Ki+k(R)→ Hi+kBGL(R)+(i−1) fulfills hi+k(x?y) = 0 according
to (a) for r = i. Since i ≥ 2, assertion (b) then follows from the composition with
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the obvious homomorphism

Hi+kBGL(R)+(i− 1) −→ Hi+kBE(R)+ −→ Hi+kBGL(R)+ .

If i ≥ 3, this homomorphism factors even through Hi+kBSt(R)+ and we get (c).

Now, let us consider the case k = 1 and i = r: the fact that j∗ : π1S → K1(Z)
is an isomorphism implies the following result, where XR(i−1, i+ 1] is written for
XR(i− 1)[i+ 1].

Theorem 3.2. Let R be any ring.
(a) For any integer i ≥ 0, there is a natural exact sequence

Ki+2(R)
h̄i+2−→ Hi+2XR(i− 1)

ν̄i+2−→ Ki(R)⊗K1(Z) ?−→

Ki+1(R)
h̄i+1−→ Hi+1XR(i− 1) −→ 0 .

Moreover, ker(?) = image ν̄i+2 ∼= Hi+2XR(i− 1, i+ 1].
(b) For any integer i ≥ 2, the image of ? : Ki(R)⊗K1(Z)→ Ki+1(R) is contained

in the kernel of the non-stable Hurewicz homomorphisms hi+1 : Ki+1(R) →
Hi+1E(R) and hi+1 : Ki+1(R)→ Hi+1GL(R).

(c) For any integer i ≥ 3, the image of ? : Ki(R)⊗K1(Z)→ Ki+1(R) is contained
in the kernel of hi+1 : Ki+1(R)→ Hi+1St(R).

Proof. Assertion (a) follows from Corollary 1.3 and Remark 2.3 for the spectrum
XR(i− 1) since the diagram

Ki(R)⊗ π1S
∧

−−−−→ πi+1XR

∼=
y id⊗j∗

y ∼=
Ki(R)⊗K1(Z)

?
−−−−→ Ki+1(R)

commutes again because of the XZ-module structure of XR. Assertions (b) and
(c) are direct consequences of Proposition 3.1. (b) and (c).

It is possible to obtain a similar information on the stable and the non-stable
Hurewicz homomorphism in any dimension i ≥ r+1. Proposition 2.1 provides the
exact sequence

· · · −→ Hi+1XR(r − 1, i]
(αi−1)∗−→ Hi+1XR(r − 1, i− 1] ∂̄−→

Ki(R) h̄i−→ HiXR(r − 1)
(αi−1)∗−→ HiXR(r − 1, i− 1] −→ 0 .
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Proposition 3.3. Let R be any ring, i and r positive integers such that r ≤ i ≤
2r − 1, then the kernel of the non-stable Hurewicz homomorphism

hi : Ki(R)→ HiBGL(R)+(r − 1)

is exactly the image of ∂̄.

Proof. Let us consider the homology exact sequence of the Postnikov cofibration

Σi(H(Ki(R))
γi−1−→ XR(r − 1, i]

αi−1−→ XR(r − 1, i− 1] ,

and the corresponding homology exact sequence obtained from the Serre spectral
sequence of the fibration of CW-complexes

K(Ki(R), i) −→ BGL(R)+(r − 1, i] −→ BGL(R)+(r − 1, i− 1] .

We obtain the commutative diagram

Hi+1XR(r − 1, i− 1]
∂̄
−→ Ki(R)

h̄i−→ HiXR(r − 1)x σ

x =
x

Hi+1BGL(R)+(r − 1, i− 1]
∂
−→ Ki(R)

hi−→ HiBGL(R)+(r − 1) ,

where the horizontal sequences are exact and the three vertical arrows are iterated
suspensions. The left iterated homology suspension σ is surjective if i + 1 ≤ 2r
and even an isomorphism if i+ 1 ≤ 2r− 1 (see [36], p. 382); consequently we may
conclude that image∂ = image ∂̄.

4. Products and the non-stable Hurewicz homomorphism in low
dimensions

The purpose of this section is to study the relationships between the algebraic K-
theory of a ring R and the integral homology of its linear groups in low dimensions.
In dimension 2, the following isomorphisms are known (see [4]):

K2(R) ∼= H2E(R) and H2GL(R) ∼= K2(R)⊕ Λ2(K1(R)) .

Let us start by looking at dimensions 3 and 4. Let Γ(−) be the quadratic
functor defined on abelian groups by J.H.C. Whitehead in Section 5 of [37]: if Y
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is a simply connected CW-complex, then the group Γ3(Y ) in the Whitehead exact
sequence of the space Y turns out to be isomorphic to Γ(π2Y ).

Theorem 4.1. For any ring R, there is a natural exact sequence

K4(R)
h4−→ H4E(R)

ν4−→ Γ(K2(R))
χ3−→ K3(R)

h3−→ H3E(R) −→ 0

and kerh3 is isomorphic to the image of the product homomorphism ? : K2(R)⊗
K1(Z)→ K3(R). In particular, H3E(R) ∼= K3(R)/(K2(R) ? K1(Z)).

Proof. The exact sequence is just the Whitehead exact sequence (see [37]) of the
space BE(R)+ since Γ3(BE(R)+) = Γ(K2(R)). In order to determine the image
of χ3, consider the exact sequence given by Proposition 2.2 for X = XR(1) and
r = 2, and also the corresponding exact sequence obtained from the Serre spectral
sequence of the fibration of CW-complexes

K(K3(R), 3) −→ BE(R)+[3] −→ K(K2(R), 2) .

We get the commutative diagram

0 −→ H4XR(1, 3]
ϕ̄
−→

∼=K2(R)⊗K1(Z)︷ ︸︸ ︷
H4(Σ2H(K2(R)))

?
−→ K3(R)

h̄3−→ H3XR(1) −→ 0x x σ

x =
x

0 −→ H4BE(R)+[3]
ϕ
−→ H4(K(K2(R), 2))

∂
−→ K3(R)

h3−→ H3BE(R)+ −→ 0 ,

where the vertical arrows are iterated suspensions. It turns out that

H4(K(K2(R), 2)) ∼= Γ3(K(K2(R), 2)) ∼= Γ(K2(R))

and the argument of the proof of Proposition 2.2 shows again that the homomor-
phism χ3 in the Whitehed exact sequence is exactly ∂. According to the proof
of Proposition 3.3, the iterated homology suspension σ is surjective and one gets
imageχ3 = image∂ = K2(R) ? K1(Z). Notice that this computation of the image
of χ3 can also be deduced from Section 2.2.6 of [21].

Remark 4.2. This extends the result for fields given in [31], Corollary 5.2, to the
case of any ring R.

In order to understand the 4-dimensional and 5-dimensional Hurewicz homo-
morphisms, let us use exactly the same idea (but now for r = 3) for the 2-connected
CW-complex BSt(R)+, respectively the 2-connected K-theory spectrum XR(2).

Theorem 4.3. Let R be any ring.
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(a) There is a natural exact sequence

H6XR(2, 4]
ψ̄−→ K5(R)

h5−→ H5St(R)
ν5−→ K3(R)⊗K1(Z) ?−→

K4(R)
h4−→ H4St(R) −→ 0 .

In particular, H4St(R) ∼= K4(R)/(K3(R) ? K1(Z)).
(b) There is a natural exact sequence

K4(R)⊗K1(Z) θ̄−→ H6XR(2, 4]
η̄−→ 2(K3(R)) −→ 0 .

(c) The composition ψ̄ θ̄ is the product map ? : K4(R) ⊗K1(Z) → K5(R). Con-
sequently, there is a natural short exact sequence

0 −→ K4(R) ? K1(Z) −→ kerh5 −→ Q −→ 0 ,

where Q is a quotient of 2(K3(R)).

Proof. As in the previous proof, we use Proposition 2.2, but consider in this case
the following commutative diagram:

0 −→ H5XR(2, 4]
ϕ̄
−→

∼=K3(R)⊗K1(Z)︷ ︸︸ ︷
H5(Σ3H(K3(R)))

?
−→ K4(R)

h̄4−→ H4XR(2) −→ 0x x σ

x =
x

0 −→ H5BSt(R)+[4]
ϕ
−→ H5(K(K3(R), 3))

∂
−→ K4(R)

h4−→ H4BSt(R)+ −→ 0 .

However, this time, σ is even an isomorphism. Observe that H5BSt(R)+[4] is
isomorphic to the kernel of ? : K3(R) ⊗K1(Z) → K4(R). The Whitehead exact
sequence of BSt(R)+ is

· · · −→ Γ5(BSt(R)+)
χ5−→ K5(R)

h5−→ H5St(R)
ν5−→ Γ4(BSt(R)+)

χ4−→ K4(R)
h4−→ H4St(R) −→ 0

and it is easy to check that Γ4(BSt(R)+) ∼= K3(R)⊗K1(Z) ∼= H5(K(K3(R), 3)).
In order to understand the kernel of h5, let us use the exact sequence given by
Proposition 2.6 for r = 3, i = 5, and the exact sequence coming from the homology
Serre spectral sequence of the fibration of CW-complexes

K(K5(R), 5) −→ BSt(R)+[5] −→ BSt(R)+[4] .
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We obtain the commutative diagram

H6XR(2, 4]
ψ̄
−→ K5(R)

h̄5−→ H5XR(2) −→ H5XR(2, 4] −→ 0x σ

x =
x x

H6BSt(R)+[4]
ψ
−→ K5(R)

h5−→ H5BSt(R)+ −→ H5BSt(R)+[4] −→ 0 ,

where the vertical arrows are iterated suspensions. According to the proof of
Proposition 3.3, the iterated homology suspension σ is surjective and therefore
imageψ = image ψ̄. On the other hand, the group H6XR(2, 4] and the image of ψ̄
may be described by Proposition 2.6 and Lemmas 2.4 and 2.5.

The following corollary follows from the five lemma and the argument of the
proofs of Theorems 4.1 and 4.3.

Corollary 4.4. For any ring R, the iterated homology suspensions H3E(R) ∼=
H3BE(R)+ → H3XR(1) and H4St(R) ∼= H4BSt(R)+ → H4XR(2) are isomor-
phisms.

Remark 4.5. Observe that h4 : K4(R) → H4St(R) is an isomorphism up to
2-torsion. This produces the following consequence of Proposition 9 of [9]. Let l
be an odd prime, ξl a primitive l-root of unity of order l. Let R = Z[ξl + ξ−1

l ] be
the ring of integers of the maximal real subfield of the cyclotomic field Q(ξl). The
vanishing of the group H4St(R) in this case would imply the Kummer-Vandiver
conjecture for the prime l.

5. Products in the algebraic K-theory of the ring of integers Z

This section is devoted to the study of products in the algebraic K-theory of the
ring of integers Z:

? : Ki(Z) ⊗Kk(Z) −→ Ki+k(Z) .

Let us start by describing the results on low-dimensional products given by Section
4 in the case where R = Z.

Proposition 5.1.
(a) The product homomorphism ? : Ki(Z)⊗K1(Z)→ Ki+1(Z) is an isomorphism

if i = 1, injective if i = 2, and trivial if i 6≡ 1 or 2 mod 8.
(b) The product homomorphism ? : Ki(Z) ⊗K2(Z) → Ki+2(Z) is trivial if i 6≡ 1

mod 8.
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(c) H4SL(Z) ∼= Z/2 and H4St(Z) = 0.
(d) There is a short exact sequence

0 −→ K5(Z)
h5−→ H5St(Z)

ν5−→ Z/2 −→ 0 .

Proof. The assertion (a) is well known for i = 1. Theorem 4.1 produces the exact
sequence

K4(Z)
h4−→ H4SL(Z)

ν4−→ Γ(Z/2)︸ ︷︷ ︸
Z/4

χ3−→ K3(Z)︸ ︷︷ ︸
Z/48

h3−→ H3SL(Z)︸ ︷︷ ︸
Z/24

−→ 0

(see [2], [19] and [37], Sections 5 and 13) and asserts that the product ? : K2(Z)⊗
K1(Z)→ K3(Z) is injective. Recently, J. Rognes and C. Weibel deduced from the
work of V. Voevodsky [33] the complete calculation of the 2-torsion of the algebraic
K-theory of Z (see Table 1 of [35] and Theorem 0.6 of [28]). This, together with
another argument of J. Rognes, shows that K4(Z) = 0 and implies that H4SL(Z)
is cyclic of order 2. Moreover, Ki(Z) is a finite odd torsion group if i is a positive
integer ≡ 0, 4, or 6 mod 8. Therefore, Ki(Z) ? K1(Z) = 0 if i ≡ 0, 4, or 6
mod 8 or if i + 1 ≡ 0, 4, or 6 mod 8. This gives (a), and (b) follows from (a)
since K2(Z) = K1(Z) ? K1(Z). Note that the first author proved the triviality
of ? : K3(Z) ⊗ K1(Z) → K4(Z) in [6] before Rognes and Weibel’s proof of the
vanishing of K4(Z). The calculation of Ki(Z) ?K1(Z) when i ≡ 1 or 2 mod 8 and
of Ki(Z) ?K2(Z) when i ≡ 1 mod 8 will be given by Theorems 5.7 and 5.9 below.

Now, let us apply Theorem 4.3. The map ψ̄ is actually the connecting homo-
morphism of the homology exact sequence of the cofibration

Σ5H(K5(Z)) −→ XZ(2, 5] −→ XZ(2, 4] .

It is of course possible to consider the analogous cofibration for the sphere spectrum
S

Σ5H(π5S) −→ S(2, 5] −→ S(2, 4] .

The identity j : S → XZ of the ring spectrumXZ induces the commutative diagram

H6S(2, 4] −−−−→ π5S = 0y j∗

y
H6XZ(2, 4]

ψ̄
−−−−→ K5(Z)
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which shows that ψ̄ j∗ = 0. Now, look at the following commutative diagram
where the bottom homomorphism is given by the second assertion of Theorem
4.3:

H6S(2, 4]
∼=

−−−−→ H6(Σ3H(π3S)) ∼= 2(π3S)y j∗

y ∼=
H6XZ(2, 4]

η̄
−−−−→ H6(Σ3H(K3(Z))) ∼= 2(K3(Z)) .

The top horizontal arrow is an isomorphism because the vanishing of π4S ex-
hibits an equivalence S(2, 4] ' Σ3H(π3S). The right vertical arrow is an isomor-
phism since the homomorphism π3S → K3(Z), induced by j, is injective (remem-
ber that π3S ∼= Z/24 and K3(Z) ∼= Z/48). Therefore, there exists a splitting
τ : 2(K3(Z))→ H6XZ(2, 4] of η̄ such that τ is the composition of an isomorphism

2(K3(Z))
∼=−→ H6S(2, 4] with j∗. It then follows from the vanishing of the compo-

sition ψ̄ j∗ that ψ̄ τ = 0. Consequently, the group Q of Theorem 4.3 (c) is trivial if
R = Z since Q = image (η̄ τ), and kerh5 ∼= image (ψ̄ θ̄) is the image of the product
map ? : K4(Z) ⊗K1(Z)→ K5(Z). Consequently, there is an exact sequence

0 −→ K4(Z) ? K1(Z)
ψ̄ θ̄−→ K5(Z)

h5−→ H5St(Z)
ν5−→ K3(Z)⊗K1(Z) ?−→

K4(Z)
h4−→∼= H4St(Z) −→ 0 .

The fact that K4(Z) = 0 provides the vanishing of H4St(Z) and the short exact
sequence (d) (which was already given in Section 6 of [7])

0 −→ K5(Z)
h5−→ H5St(Z)

ν5−→ Z/2 −→ 0 .

According to Theorem 1 of [20], Theorem 1 of [30], Table 1 of [35] and Theorem 0.6
of [28], K5(Z) ∼= Z⊕T , where T is a finite abelian 3-group: thus, H5St(Z) ∼= Z⊕T
and h5 is multiplication by 2 on the infinite cyclic factor of K5(Z).

Corollary 5.2. Let R be a ring such that the homomorphism `∗ : K3(Z)→ K3(R)
(induced by the obvious map ` : Z→ R) induces an isomorphism `∗⊗ id : K3(Z)⊗
Z/2

∼=−→ K3(R)⊗ Z/2 (for instance, if R = Q or any localization of Z). Then the
non-stable Hurewicz homomorphism h4 : K4(R)→ H4St(R) is an isomorphism.
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Proof. This follows from the commutativity of the diagram

K3(Z)⊗K1(Z)
?
−→ K4(Z) = 0

∼=
y `∗⊗id

y `∗

K3(R)⊗K1(Z)
?
−→ K4(R)

h4−→ H4St(R) −→ 0 ,

where the rows are the exact sequences given by Theorem 4.3 (a).

The argument of the proof of Proposition 5.1 (d) produces also the next two
corollaries

Corollary 5.3. Let R be a ring such that the composition of j : S → XZ with
the obvious map XZ → XR induces an isomorphism 2(π3S)

∼=−→ 2(K3(R)). Then
K4(R) ? K1(Z) ∼= ker (h5 : K5(R)→ H5St(R)).

Corollary 5.4. If R is a ring as in Corollary 5.3 (for instance, if R = Z or any lo-
calization of Z), then the iterated homology suspension H5St(R) ∼= H5BSt(R)+ →
H5XR(2) is an isomorphism.

Proof. By hypothesis, one has actually the exact sequences

H6(Σ4H(K4(R)))
ψ̄ θ̄
−→ K5(R)

h̄5−→ H5XR(2) −→ H5XR(2, 4] −→ 0x σ

x =
x x σ′

H6K(K4(R), 4)
ψθ
−→ K5(R)

h5−→ H5BSt(R)+ −→ H5BSt(R)+[4] −→ 0 ,

and the iterated homology suspension σ is clearly an isomorphism; the same is
true for σ′ because of the commutativity of

H5XR(2, 4]
∼=

−−−−→ H5(Σ3H(K3(R))x σ′
x ∼=

H5BSt(R)+[4]
∼=

−−−−→ H5K(K3(R), 3) .
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The assertion then follows from the five lemma.

Let us now consider maps

Ki(Z)⊗Kk(Z) ?−→ Ki+k(Z) −→ Ki+k(Z) ⊗ Z2̂

for all positive integers i and k, where the second arrow is the tensor product
of Ki+k(Z) with the inclusion of Z into the ring of 2-adic integers Z2̂. We call
these maps 2-adic products for K∗(Z) and continue to denote them by the symbol
?. Again because of Table 1 of [35] (see also Theorem 0.6 of [28]), Ki(Z) is
a finite odd torsion group if i is a positive integer ≡ 0, 4, or 6 mod 8 and
∼= Z ⊕ (finite odd torsion group) if i ≡ 5 mod 8; thus, the only 2-adic products
which can be non trivial are the following:

K8s+1(Z)⊗K8t+1(Z) ?−→ K8(s+t)+2(Z) ⊗ Z2̂

K8s+1(Z)⊗K8t+2(Z) ?−→ K8(s+t)+3(Z) ⊗ Z2̂

K8s+2(Z)⊗K8t+5(Z) ?−→ K8(s+t)+7(Z) ⊗ Z2̂

K8s+2(Z)⊗K8t+7(Z) ?−→ K8(s+t+1)+1(Z)⊗ Z2̂

K8s+3(Z)⊗K8t+7(Z) ?−→ K8(s+t+1)+2(Z)⊗ Z2̂

K8s+5(Z)⊗K8t+5(Z) ?−→ K8(s+t+1)+2(Z)⊗ Z2̂

for s and t ≥ 0. We now want to determine these products.

The inclusion Z ↪→ R induces a map λ : BGL(Z)+ → BO and the induced
homomorphism

λ∗ : K∗(Z) −→ π∗BO

is a ring homomorphism since it can be written as the composition λ∗ : K∗(Z)→
K∗(R)→ π∗BO, where both arrows are ring homomorphisms (see [13], p. 50 and
Section 3). One can understand the kernel of λ∗ at the prime 2 by the following
argument. If p is a prime ≡ 3 or 5 mod 8, M. Bökstedt introduced in [12] (see also
[23] and Section 4 of [18]) a space J(p) which is defined by the pull-back diagram

J(p)
λ′

−−−−→ BOy fp

y c

FΨp
b

−−−−→ BU ,
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where FΨp is the fiber of (Ψp− 1) : BU → BU (recall that FΨp ' BGL(Fp)+ by
Theorem 7 of [24]), b the Brauer lifting and c the complexification. The fibers of
the horizontal maps are homotopy equivalent to the unitary group U ' SU × S1.
More precisely, Bökstedt was interested in the covering space JK(Z, p) of J(p)
corresponding to the cyclic subgroup of order 2 of π1J(p) ∼= Z ⊕ Z/2. After
completion at the prime 2, he constructed a map

ϕ̃ : (BGL(Z)+ )̂2 −→ JK(Z, p)̂2

which induces a split surjection on all homotopy groups. Let us write λ̂ and λ̂′

for the 2-completion of the maps λ and λ′ respectively: it turns out that the
composition

(BGL(Z)+ )̂2
ϕ̃−→ JK(Z, p)̂2 −→ J(p)̂2

λ̂′−→ BO2̂

is exactly λ̂. Recall that the localization exact sequence in K-theory implies that

(BGL(Z[1
2 ])+)̂2 ' (BGL(Z)+ )̂2 × (S1)̂2 .

Therefore, ϕ̃ provides a map

ϕ : (BGL(Z[1
2 ])+)̂2 −→ J(p)̂2

which also induces a split surjection on all homotopy groups. Since the 2-torsion
of K∗(Z) is known by Table 1 of [35] and Theorem 0.6 of [28], it is easy to check
that ϕ̃ and ϕ are actually homotopy equivalences. Consequently, we obtain (see
also Corollary 8 of [35]):

Proposition 5.5. For all primes p ≡ 3 or 5 mod 8, there is a pull-back diagram

(BGL(Z)+ )̂2 × (S1)̂2
λ̂′

−−−−→ BO2̂y f̂p

y ĉ

(FΨp)̂2
b̂

−−−−→ BU 2̂ .

Consequently, there is a fibration

SU 2̂
η−→ (BGL(Z)+ )̂2

λ̂−→ BO2̂ .
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This fibration induces the long exact sequence

· · · −→ πiSU ⊗ Z2̂
η∗−→ Ki(Z)⊗ Z2̂

λ̂∗−→ πiBO ⊗ Z2̂ −→ πi−1SU ⊗ Z2̂ −→ · · · .

Remember that πiSU = 0 if i is even and πiSU ∼= Z if i is odd ≥ 3.

Theorem 5.6. The 2-adic products

K8s+3(Z)⊗K8t+7(Z) ?−→ K8(s+t+1)+2(Z)⊗ Z2̂

K8s+5(Z)⊗K8t+5(Z) ?−→ K8(s+t+1)+2(Z)⊗ Z2̂

are trivial for all integers s and t ≥ 0.

Proof. For any product mentioned in the statement of the theorem, let us consider
the commutative diagram

Ki(Z)⊗Kk(Z)
?

−−−−→ Ki+k(Z) −−−−→ Ki+k(Z)⊗ Z2̂y λ∗⊗λ∗
y λ∗

y λ̂∗

πiBO ⊗ πkBO −−−−→ πi+kBO −−−−→ πi+kBO ⊗ Z2̂ ,

where the bottom left horizontal arrow is the product map in π∗BO and where
the right horizontal arrows denote the tensor product with Z2̂. Let x ∈ Ki(Z)
and y ∈ Kk(Z). One has clearly λ∗(y) = 0 since πkBO = 0 for k = 8t + 5 or
k = 8t+ 7. Thus, λ∗(x ? y) = λ∗(x)λ∗(y) = 0. This shows that the 2-adic product
x ? y ∈ Ki+k(Z) ⊗ Z2̂ belongs to the kernel of λ̂∗, and consequently to the image
of η∗ : πi+kSU ⊗ Z2̂ → Ki+k(Z) ⊗ Z2̂. Since i + k is even, the group πi+kSU is
trivial and x ? y vanishes.

In the next theorem, we look at the groups K8s+1(Z) for s ≥ 0. Remember that
K1(Z) ∼= Z/2 and that K8s+1(Z) ∼= Z⊕Z/2⊕ (finite odd torsion group) for s ≥ 1
by Table 1 of [35] and Theorem 0.6 of [28]. The fibration given by Proposition 5.5
provides the exact sequence

0 −→ π8s+1SU ⊗ Z2̂ ∼= Z2̂
η∗−→ K8s+1(Z)⊗ Z2̂

λ̂∗−→ π8s+1BO ⊗ Z2̂ ∼= Z/2 −→ 0

if s ≥ 1 (if s = 0, π1SU = 0). Let us write xs for the element of order 2 in
K8s+1(Z). We denote by ys, for s ≥ 1, the generator of the infinite cyclic summand
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of K8s+1(Z) whose image under the 2-adic completion K8s+1(Z)→ K8s+1(Z)⊗Z2̂
is exactly the image of a generator of π8s+1SU ⊗ Z2̂ under the homomorphism
η∗ : π8s+1SU ⊗ Z2̂ ∼= Z2̂ → K8s+1(Z)⊗ Z2̂.

Theorem 5.7. Consider the 2-adic product

K8s+1(Z)⊗K8t+1(Z) ?−→ K8(s+t)+2(Z)⊗ Z2̂

for any integers s, t ≥ 0.
(a) For all s and t ≥ 1, ys ? yt = 0.
(b) For all s ≥ 0 and all t ≥ 1, xs ? yt = 0.
(c) For all s and t ≥ 0, xs ? xt is the generator of K8(s+t)+2(Z) ⊗ Z2̂ ∼= Z/2.

Proof. The commutativity of the square

K8s+1(Z) −−−−→ K8s+1(Z)⊗ Z2̂y λ∗

y λ̂∗

π8s+1BO
∼=−−−−→ π8s+1BO ⊗ Z2̂ ,

where the horizontal arrows denote the tensor product with Z2̂, and the definition
of ys show that λ∗(ys) = 0. We deduce similarily that λ∗(yt) = 0. This implies the
vanishing of λ̂∗(ys?yt) and λ̂∗(xs?yt). The fact that π8(s+t)+2SU = 0 then enables

us to deduce the triviality of the products ys ?yt and xs ?yt in K8(s+t)+2(Z)⊗Z2̂.
The image of xs under λ∗ is the generator cs of π8s+1BO ∼= Z/2 and it is known
that csct is non trivial in π8(s+t)+2BO (see [32], p. 304). Therefore, it follows from
the equality λ∗(xs ? xt) = csct that the product xs ? xt does not vanish.

Corollary 5.8. The 2-adic products

K8s+2(Z)⊗K8t+5(Z) ?−→ K8(s+t)+7(Z)⊗ Z2̂

K8s+2(Z)⊗K8t+7(Z) ?−→ K8(s+t+1)+1(Z)⊗ Z2̂

are trivial for all s and t ≥ 0.

Proof. According to Theorem 5.7 (c),

K8s+2(Z) ⊗ Z2̂ ∼= (K1(Z) ? K8s+1(Z)) ⊗ Z2̂ .
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This implies the assertion because the products

K8s+1(Z)⊗K8t+5(Z) ?→ K8(s+t)+6(Z)⊗ Z2̂ = 0

and
K8s+1(Z)⊗K8t+7(Z) ?→ K8(s+t+1)(Z)⊗ Z2̂ = 0

are obviously trivial (see Table 1 of [35] and Theorem 0.6 of [28]).

For the next result, let us call zt the element of order 2 in K8t+2(Z) ∼= Z/2⊕
(finite odd torsion group).

Theorem 5.9. Consider the 2-adic product

K8s+1(Z)⊗K8t+2(Z) ?−→ K8(s+t)+3(Z)⊗ Z2̂

for any integers s, t ≥ 0.
(a) For all s ≥ 1 and all t ≥ 0, ys ? zt = 0.
(b) For all s and t ≥ 0, xs ? zt is an element of order 2 in K8(s+t)+3(Z)⊗ Z2̂

Proof. Because of Theorem 5.7 (c),

(K8s+1(Z) ? K8t+2(Z))⊗ Z2̂ ∼= (K1(Z) ? K8s+1(Z) ? K8t+1(Z)) ⊗ Z2̂

and assertion (a) follows from ys ? zt = x0 ? ys ? xt = 0 by Theorem 5.7 (b).
Similarly, xs ? zt = x0 ? xs ? xt is non trivial according to Proposition 12.17 of [1]
and Corollary 4.6 of [13].

We may summarize our results on the 2-adic products in the K-theory of Z as
follows.

Corollary 5.10. The 2-adic product

? : Ki(Z)⊗Kk(Z) −→ Ki+k(Z)⊗ Z2̂

is trivial for all positive integers i and k, except if i ≡ k ≡ 1 mod 8 or i ≡ 1 mod
8 and k ≡ 2 mod 8 (or i ≡ 2 mod 8 and k ≡ 1 mod 8) where its image is cyclic of
order 2.

Let us conclude this section by the following observation about the relationships
between products in algebraic K-theory of the ring of integers Z and the Dwyer-
Friedlander map relating the algebraic K-theory of Z to its étale K-theory (see
Section 4 of [17]).

Proposition 5.11. For any odd prime l and any integer n ≥ 2, the image of the
product map

? : K2n−1(Z) ⊗K2n−1(Z) −→ K4n−2(Z)
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is contained in the kernel of the Dwyer-Friedlander map K4n−2(Z)→ K ét
4n−2(Z[1

l ]).

Proof. The products in algebraic K-theory and étale K-theory commute with the
Dwyer-Friedlander map. Observe that

K ét
2n−1(Z[1

l ]) =

{
Ẑl if n is odd,

Z/|wn(Q)|−1
l if n is even.

Hence K ét
2n−1(Z[1

l ])
∼= H1

ét(Z[1
l ];Zl(n)) is cyclic. But the product in étaleK-theory

is just the cup product in étale cohomology. This shows that the product

K ét
2n−1(Z[1

l ])⊗K
ét
2n−1(Z[1

l ]) −→ K ét
4n−2(Z[1

l ])

is zero because the cup product H1
ét ⊗H1

ét → H2
ét is anticommutative.

6. Products in the algebraic K-theory of cyclotomic fields

The results of Section 5 indicate that the 2-adic products in K∗(Z) are trivial or
have a very small image. In this section, we show that in the case of products in
the K-theory of number fields, the image of product maps can be quite big. In the
proof, we use the methods of [9] and [10]. Let us consider an odd prime number
l, a positive integer m, and the cyclotomic field E = Q(ξlm) obtained from Q by
adding a primitive root of unity ξlm of order lm. Our goal is to show that for n
odd, the product homomorphism

? : K1(E)⊗K2n−1(E)l −→ K2n(E)l

has a big image.

IfR is a commutative ring, XR is a ring spectrum with respect to µ : XR∧XR →
XR⊗R → XR, where the first map is the pairing which was also called µ at the
beginning of Section 3 (see [21], Proposition 2.4.2) and the second is induced by
the multiplication R⊗R→ R. The product structure of K∗(R), also denoted by
?, is given by the composition

? : Ki(R)⊗Kk(R) ∼= πiXR⊗πkXR
∧−→ πi+k(XR ∧XR)

µ∗−→ πi+kXR
∼= Ki+k(R) .

Recall that the K-theory with Z/lm-coefficients (for a prime l and a positive integer
m, with m ≥ 2 if l = 2) may be defined by Kk(R;Z/lm) = πk(M ∧XR), where
M is the mod lm Moore spectrum (i.e., such that H0M ∼= Z/lm, HkM = 0 for
k 6= 0). Notice that M is a ring spectrum with identity iM and product µM (see
[27], p. 22). We also consider the following products (see also [13]):

? : Ki(R)⊗Kk(R;Z/lm) ∼= πiXR ⊗ πk(M ∧XR) ∧−→ πi+k(M ∧XR ∧XR)
µ∗−→
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πi+k(M ∧XR) ∼= Ki+k(R;Z/lm)

and

? : Ki(R;Z/lm)⊗Kk(R;Z/lm) ∼= πi(M ∧XR)⊗ πk(M ∧XR) ∧−→

πi+k(M ∧M ∧XR ∧XR)
(µM∧µ)∗−→ πi+k(M ∧XR) ∼= Ki+k(R;Z/lm) .

Remark 6.1. Since M is a ring spectrum, the diagram

S ∧ S
id∧iM−−−−→ S ∧M

iM∧id
−−−−→ M ∧My ' y ' y µM

S
iM−−−−→ M

id
−−−−→ M

commutes and implies the compatibility of the three products, i.e., the commuta-
tivity of the diagram

Ki(R)⊗Kk(R)
id⊗red
−−−−→ Ki(R)⊗Kk(R;Z/lm)

red⊗id
−−−−→ Ki(R;Z/lm)⊗Kk(R;Z/lm)y ?

y ?

y ?

Ki+k(R)
red
−−−−→ Ki+k(R;Z/lm)

id
−−−−→ Ki+k(R;Z/lm) ,

where red is the map which is induced on K-theory by the reduction of coefficients
mod lm.

For any ring R, there is the following Bockstein long exact sequence

· · · −→ Kk(R) lm−→ Kk(R) −→ Kk(R;Z/lm) b−→ Kk−1(R) −→ · · · ,

where b is the Bockstein homomorphism.

Lemma 6.2. For any x ∈ Ki(R) and any y ∈ Kk(R;Z/lm), one has b(x ? y) =
x ? b(y) ∈ Ki+k−1(R).
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Proof. The Bockstein homomorphism b is induced by the obvious map ε : M →
Σ−1S which fits into the commutative diagram

S ∧M
'

−−−−→ My id∧ε
y ε

S ∧Σ−1S
'

−−−−→ Σ−1S

and provides the commutativity of

Ki(R)⊗Kk(R;Z/lm)
?

−−−−→ Ki+k(R;Z/lm)y id⊗b

y b

Ki(R)⊗Kk−1(R)
?

−−−−→ Ki+k−1(R)

and the statement of the lemma.

This lemma implies the formula

b(TrE/Q(u ? β?nm )) = TrE/Q(u ? b(β?nm )) ,

where u is any element ∈ K1(E) = E×, βm = β(ξlm) ∈ K2(E;Z/lm) is the Bott
element (see Definition 2.7.2 of [34]) and TrE/Q is the transfer map (see [25],
Section 4). Using this equality, we can rewrite the definition of the Stickelberger
pseudosplitting homomorphism Λ from [8], Section IV.1, or [10], Definition 3.2, as
follows.

Definition 6.3. There is a homomorphism

Λ :
⊕
p

K2n−1(Fp)l −→ K2n(Q)l ,

where Λ =
∏
p Λp and Λp : K2n−1(Fp)l → K2n(Q)l is given by the formula

Λp(κp) =

{
TrE/Q(λb(p) ? b(βk?n)b

nγl) if l does not divide n,

T rE/Q(λb(p) ? b(βk?n)nb
nγl) if l divides n,



504 D. Arlettaz, G. Banaszak and W. Gajda CMH

where b is a natural number such that (b, wn+1(Q)) = 1 and κp is a generator of
the group K2n−1(Fp)l. In addition, λb(p) ∈ E× are the twisted Gauss sums (see
[9], Definition 3) and γl = 1 + ln + l2n + l3n · · · = 1

1−ln ∈ Ẑl.

Theorem 6.4. Let I be the image of the map

K1(E)⊗K2n−1(E)l
?−→ K2n(E)l

TrE/Q−→ K2n(Q)l ,

where n is an odd integer. Then the exponent of the group K2n(Q)l/I divides the
number (#K2n(Z)l)2.

Proof. Consider the localization sequence

0 −→ K2n(Z)l −→ K2n(Q)l
∂−→
⊕
p

K2n−1(Fp)l −→ 0 .

By Definition 6.3, we see that image Λ ⊆ I. On the other hand, by Proposition
2 of [9], the composition ∂ Λ acts by raising into the power with exponent an
integer |(bn+1− 1)ζQ(−n)|−1

l (recall that the Gauss sums used in the construction
of Λ depend on b), where ζQ(s) is the Riemann zeta function. Consider now
x ∈ K2n(Q)l and z = ∂(x) ∈

⊕
pK2n−1(Fp)l. The computations above show that

for every b,
Λ(z)

x|(b
n+1−1)ζQ(−n)|−1

l

∈ K2n(Z)l .

The greatest common divisor of all |(bn+1 − 1)|−1
l over the integers b which are

relatively prime to wn+1(Q) equals the number |wn+1(Q)|−1
l , by Lemma 2.3 of

[15]. Since the integer |wn+1(Q)ζQ(−n)|−1
l divides the number t of elements in

the group K2n(Z)l, it follows that xt
2 ∈ image Λ ⊆ I.

Remark 6.5. Observe that in an abelian group the product of a torsion element
and a nontorsion element is again nontorsion. Hence, every torsion element in
K2n−1(E) can be written as a quotient of two nontorsion elements. Consequently,
the subgroup of K1(E)?K2n−1(E) generated by the subset {x?y | x ∈ K1(E) , y ∈
K2n−1(E) , y nontorsion } contains the subgroup K1(E) ? K2n−1(E)l of K2n(E).

Remark 6.6. It follows from Theorem 6.4 and Theorem 3.4 of [10] that the image
of K1(E) ?K2n−1(E)l under the transfer TrE/Q : K2n(E)→ K2n(Q) contains the
group of divisible elements D(n)l ∼= K ét

2n(Z[1
l ]) from Section 5.2 of [9] (see also [8],

Section IV.3).
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