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Abstract. We consider the dynamics of vector fields on three-manifolds which are constrained
to lie within a plane field, such as occurs in nonholonomic dynamics. On compact manifolds,
such vector fields force dynamics beyond that of a gradient flow, except in cases where the
underlying manifold is topologically simple (i.e., a graph-manifold). Furthermore, there are
strong restrictions on the types of gradient flows realized within plane fields: such flows lie on
the boundary of the space of nonsingular Morse-Smale flows. This relationship translates to
knot-theoretic obstructions for the link of singularities in the flow. In the case of an integrable
plane field, the restrictions are even finer, forcing taut foliations on surface bundles. The situation
is completely different in the case of contact plane fields, however: it is easy to realize gradient
fields within overtwisted contact structures (the nonintegrable analogue of a foliation with Reeb
components).
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1. Introduction

Let M denote a compact oriented three-manifold. A plane field η on M is a
subbundle of the tangent bundle TM which associates smoothly to each point
p ∈ M a two-dimensional subspace η(p) ⊂ TpM . Unlike line fields, a plane field
cannot always be integrated to yield a two-dimensional foliation F . A plane field is
said to be integrable if it can be “patched together” to yield a foliation whose leaves
are tangent to the plane field at each point. Certainly, such plane fields have strong
topological and geometric properties. On the other hand, the case where the plane
field η is nowhere integrable can be equally important. A maximally nonintegrable
(in the sense of Frobenius — see §5) plane field on an odd-dimensional manifold
is a contact structure. Seen as an “anti-foliation”, contact structures are rich in
geometric and topological properties which of late have become quite important
in understanding the topology of three-manifolds and the symplectic geometry of
four-manifolds.

Let X be a vector field on M . The dynamics of X are often related to global
properties of M . If we further specify that X is tangent to a plane field η — that
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is, X(p) ∈ η(p) for all p ∈M — then we might expect stronger relationships. We
will consider the ways in which the topology and geometry of a plane field η are
coupled to the dynamics of vector fields contained in η. The general principal at
work here as elsewhere is that simple dynamics implicate simple topological objects
in dimension three. We will reassert this by examining the gradient flows within
plane fields.

The examination and classification of gradient flows has been ubiquitous in
the study of manifolds: e.g., the h-cobordism theorem and the resolution of the
high-dimensional Poincaré Conjecture. This paper will add to the typical scenario
the constraint of lying within a plane field. Atypical restrictions on the dynamics
and on the underlying manifold are born out of this.

We note that the problem of understanding gradient fields constrained to lie
within plane fields is by no means unnatural. The study of mechanical systems with
nonholonomic constraints is precisely the study of flows constrained to lie within a
nowhere integrable distribution (i.e., in odd dimensions, a contact structure). For
example, gradient flows for mechanical systems have been used successfully in the
control of robotic systems (see, e.g., [15]): to maneuver a robot from points A to B
through a physical space replete with obstacles, one establishes a gradient flow on
a suitable configuration space with B as a sink, with A in the basin of attraction
for B, and with infinite walls along the obstacles. In this paper, we show that the
nonholonomic version of this procedure possesses potentially difficult topological
obstructions.

The paper is organized as follows: the remainder of this section provides a
brief sketch of the requisite theory from the dynamical systems approach to flows.
In §2, we commence our investigation of plane field flows by examining local and
global properties of fixed points: fixed points will not be isolated, but must (on an
open dense subset of Cr vector fields tangent to η, r ≥ 1) rather appear in links,
or embedded closed curves. This culminates in a classification of gradient flows
on three-manifolds which can lie within a plane field in §3. The existence of such
flows is equivalent to the existence of a certain type of round handle decomposition
for the manifold (see Definition 3.2). Surprisingly, this same restriction appears
when considering energy surfaces for (Bott-) integrable Hamiltonian flows [3].

Theorem. Let M be a compact 3-manifold outfitted with a plane field η. If X
is a nondegenerate1 gradient field tangent to η, then X lies in the boundary of
the space of nonsingular Morse-Smale flows on M . Furthermore, the set of fixed
points for X forms the cores of an essential round handle decomposition for M .

This leads to the corollary (a stronger form of which is proved in §3):

Corollary. Non-gradient dynamics is a generic (residual) property in the class of

1 See Definition 2.9.
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Cr (r ≥ 4) vector fields tangent to a fixed Cr plane field on a closed hyperbolic
three-manifold.

In §4, we consider the manifestation of these restrictions on a knot-theoretic
level for the particular case of the 3-sphere.
Theorem. For X a nondegenerate gradient plane field flow on S3, each connected
component of the fixed point set of X is a knot whose knot type is among the class
generated from the unknot by the operations of iterated cabling and connected sum.

We proceed with remarks on two cases in which the plane field carries addi-
tional geometric structure: first, the case of an everywhere integrable plane field,
i.e., a foliation; and second, the case of a maximally nonintegrable plane field,
i.e., a contact structure. The property of carrying a gradient flow in a foliation
forces the foliation to be taut; hence, there are no (nondegenerate) gradient flows
within a foliation on S3. More generally, we have the following restrictions on the
underlying three-manifold:

Theorem. A closed orientable three-manifold containing a nondegenerate gradient
field within a Cr (r ≥ 2) codimension-one foliation must be a surface bundle over
S1 with periodic (or reducibly periodic) monodromy map.

The corresponding restrictions do not hold for the contact case. We demon-
strate that gradient fields can always reside within the analogue of a non-taut
foliation: an overtwisted contact structure. We close with two questions on the
higher dimensional versions of the results of this paper.

1.1. The dynamics of flows

Ostensibly, flows within a plane field would appear to be a relatively restricted class
of objects. However, the dynamics of such flows can exhibit behaviors which range
from strictly two-dimensional dynamics (as when the plane field yields a foliation
by compact leaves) to fully three-dimensional phenomena (e.g., an Anosov flow,
which is tangent to a pair of transverse integrable plane fields). In §2, we show
that near a fixed point of a plane field flow, the dynamics are locally “stacked”
planar dynamics. In contrast, it is a simple exercise in homotopy theory that
every nonsingular flow on S3 (or any integral homology 3-sphere) lies within a
plane field.

A few definitions are important for the dynamical systems theory used in this
paper. The most important aspect of a flow with respect to its geometry and
dynamics is the notion of hyperbolicity. Recall that an invariant set Λ ⊂ M of
a flow φt is hyperbolic if the tangent bundle TM |Λ has a continuous φt-invariant
splitting into Eφ ⊕ Es ⊕ Eu, where Eφ is tangent to the flow direction, and Dφt

uniformly contracts and expands along Es and Eu respectively: i.e.,
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‖Dφt(vs)‖ ≤ Ce−λt‖vs‖ for vs ∈ Es

‖Dφ−t(vu)‖ ≤ Ce−λt‖vu‖ for vu ∈ Eu
, t > 0, (1)

for some C ≥ 1 and λ > 0. A flow φt which is hyperbolic on all of M is called an
Anosov flow.

The existence of hyperbolic invariant sets greatly simplifies the analysis of the
dynamics. The principal tool available is the Stable Manifold Theorem [14], which
states that for a hyperbolic invariant set, the distributions Es and Eu are in fact
tangent to global stable and unstable manifolds: manifolds, all of whose points
have the same backwards and forwards (resp.) asymptotic behavior. See any of
the standard texts (e.g., [12]) for further information and examples.

2. Fixed points

In analyzing the dynamics and topology of a flow, one examines dynamical n-
skeleta of increasing dimension: first the fixed points, then periodic and connecting
orbits, lastly higher-dimensional invariant manifolds and attractors. This section
concerns the typical distribution of fixed points for plane field flows.

Lemma 2.1. Given η a Cr plane field on M3 and p ∈M there exists a neighbor-
hood U ∼= R3 of p along with local coordinates (x, y, z) on U such that η = ker(α),
where α is a one-form given by

α = dz + g(x, y, z)dy, (2)

for some function g which vanishes at the origin. The space Γr(η|U) of Cr sections
of η on U is isomorphic to Cr(R, Cr(R2,R2)), the space of Cr arcs of Cr planar
vector fields.

Proof. That α exists is easy to derive (and is stated in [7]): choose coordinates
(x, y, z) so that ∂/∂z is transverse to η on U . Then, after rescaling, η is the kernel
of dz + f(x, y, z)dx + g(x, y, z)dy. By a change of variables, one can eliminate f
and remove constant terms in g.

Parameterize U as {R2 × {z} : z ∈ R}. Given any 1-parameter family of
functions Fz : R2 → R2, there is a well-defined vector field on U given by

ẋ = f1(x, y, z)
ẏ = f2(x, y, z)
ż = −g(x, y, z)f2(x, y, z)

where Fz(x, y) = (f1(x, y, z), f2(x, y, z)) , (3)

which lies within η by Equation 2. Similarly, any vector field on U contained in
η induces a 1-parameter family of planar vector fields Fz : R2 → R2 by inverting
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the above procedure. Since ∂/∂z is always transverse to η, zeros of Fz correspond
precisely with zeros of the induced vector field in η. Note finally that the corre-
spondence is natural with respect to the Cr-topology (nearby families of planar
vector fields induce nearby plane field flows and vice versa). �

Proposition 2.2. Let η be a Cr (r ≥ 1) plane distribution on M a compact
3-manifold, and let Γ(η) denote the space of Cr sections of η. Then on an open
dense subset of Γ(η), the fixed point set is a smooth finite link of embedded circles.

Proof. From the Transversality Theorem (see [13, p. 74]) we know there is an
open dense subset of sections of η which are transverse to the zero section. The
proposition clearly follows. �

Corollary 2.3. Let X be any vector field on M3 contained in the distribution η.
Then any fixed point of X is nonhyperbolic.

Proof. Hyperbolic fixed points are isolated and persist in C1-neighborhoods of
vector fields; hence, they cannot be perturbed to yield circles of fixed points. �

To analyze the dynamics near a curve of singularities, we show that for all but
finitely many points, the dynamics are transversally hyperbolic; i.e., after ignoring
the nonhyperbolic direction along the curve, the flow is hyperbolic along the tan-
gent plane transverse to the curve. We then turn to classify the (codimension-1)
bifurcations in the transverse behavior along a curve of singularities.

Proposition 2.4. Let X ⊂ η be a Cr (r ≥ 2) section of a Cr plane field η. Then
on a residual set of such vector fields, Fix(X) is a link L which is transversally
hyperbolic with respect to all but finitely many p ∈ L.

Proof. By a standard argument (see [13, p. 74]) is suffices to show that there is an
open cover {Ui} of M for which there is a residual set of sections of η|Ui with the
desired property. Cover each p ∈ M by a chart as in Lemma 2.1. On each chart,
consider the map from R3 → R2 induced by a section of η. Extend this to a map
into the 1-jet space J1(R3,R2) to capture information about the linearization of
the flow. One may easily find a codimension three stratified subset S of J1(R3,R2)
on which a section will both vanish and be transversally nonhyperbolic. Thus by
the Jet Transversality Theorem for C2 maps we obtain a residual subset of sections
of η whose 1-jets transversally intersect S at isolated points (which clearly must
lie on L). �

Corollary 2.5. Under the hypotheses of Proposition 2.4, the singular link L is
transverse to η at all but a finite number of points.
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Proof. If the curve of singularities S is tangent to the plane field η at a point p,
then p is not transversally hyperbolic since the eigenvalue whose eigenvector points
in the direction transverse to η is zero (the vector field can have no component in
the direction transverse to η). �

It is now a simple matter to classify the points at which the vector field is not
transversally hyperbolic to the equilibria. Thanks to Lemma 2.1, this analysis
reduces simply to bifurcation theory of fixed points in planar vector fields. In
particular, there are precisely two ways in which a (generic) X ⊂ η can fail to be
transversally hyperbolic at a point.

Given any singular point p ∈ S, the transverse dynamics is characterized by
the pair of transverse eigenvalues for the linearized flow: λx and λy . Transverse
hyperbolicity fails if and only if one or both of these eigenvalues has zero real part.
Generically, this can occur in two distinct ways. First, λx and λy may be both real,
and one of them goes transversally through zero: this is a saddle-node bifurcation.
Second, λx and λy may be a complex conjugate pair of eigenvalues which together
pass through the imaginary axis transversally: this is a Hopf bifurcation. Again,
these names correspond with analogous bifurcations of fixed points in planar vector
fields.

Figure 1.
A saddle-node bifurcation of singularities in a plane field flow.

Proposition 2.6. In the unfolding of a Cr-generic (r ≥ 2) saddle node bifurcation
on a curve of fixed points in a plane field flow, there is a quadratic tangency between
the plane field and the fixed point curve, along with a one-parameter family of
heteroclinic connections between fixed points limiting onto the bifurcation point, as
in Figure 1.

Proof. As per Lemma 2.1, choose a coordinate system (x, y, z) on a neighborhood
of the bifurcation point p so that ∂/∂z is everywhere transverse to the plane field
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η. It is also clearly possible (via the Stable Manifold Theorem) to choose coordi-
nates so that the x-direction corresponds to the eigenvector for the transversally
hyperbolic eigenvalue λx.

By Lemma 2.1, the unfolding of this codimension-1 fixed point in a plane
field flow corresponds to the codimension-1 unfolding of a generic fixed point in a
planar vector field having one hyperbolic eigenvalue and one eigenvalue with zero
real part. The unfolding of the planar saddle-node is conjugate to the system [12]

Fz :
ẋ = λxx

ẏ = z − ay2, (4)

for some a 6= 0, which, under Equation 3, corresponds to the vector field within η

ẋ = λxx

ẏ = z − ay2

ż = −g(x, y, z)(z − ay2)

. (5)

The curve of fixed points is thus a parabola tangent to η at the bifurcation point.
To show the existence of a family of heteroclinic curves from one branch of

the parabola to the next, note that the planar vector fields Fz have precisely this
1-parameter family of orbits. Upon “suspending” to obtain a vector field within
η, the orbits remain, since the expression for ż = −g(x, y, z)(z − ay2) vanishes at
(0, 0, 0); hence, ż is bounded near zero in a neighborhood of the bifurcation value
and the integral curves within the invariant plane ẋ = 0 must connect. �

Figure 2.
A Hopf bifurcation of singularities in a plane field flow.

Proposition 2.7. In the unfolding of a Cr-generic (r ≥ 4) codimension-one Hopf
bifurcation on a curve of fixed points in a plane field flow, there is an invariant
attracting or repelling paraboloid which opens along the curve of fixed points as in
Figure 2.
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Proof. Since only the real portion of the transverse eigenvalues vanish, the curve
of fixed points is transverse to the plane field in a neighborhood of the bifurcation
point p. Hence, choose coordinates as per Lemma 2.1 such that the curve of fixed
points is the z-axis and the bifurcation point is at (0, 0, 0). Again, by Lemma 2.1,
this bifurcation in a plane field flow corresponds precisely to the codimension-one
Hopf bifurcation of planar vector fields, conjugate to the truncated normal form
[12]

Fz :
ṙ = zr + ar3

θ̇ = ω
, (6)

where we have transformed (x, y) to polar coordinates and the constant a is (in
the codimension-1 scenario) nonzero. Solving this equation for ṙ = 0 yields the
paraboloid r =

√
−z/a, which is either attracting or repelling, depending on the

sign of the coefficient a. By translating Lemma 2.1 into polar coordinates, it
follows that ż is of order r2, which is less than ṙ; hence, adding the dynamics in
the z-component affects neither the existence nor the attracting/repelling nature
of the invariant paraboloid; however, unlike the planar case, the paraboloid is
not necessarily fibered with closed curves. In general, orbits will spiral about the
paraboloid. �

Remark 2.8. We note that saddle-node or Hopf bifurcations must occur in pairs,
since the fixed point curves are circles and the index at a bifurcation changes.
However, in the case where there are no saddle-node or Hopf bifurcations along
the singular curve, the flow is everywhere transversally hyperbolic, and the index
of the fixed points (source, saddle, or sink) is constant along the curve.

We conclude with the definition of a nondegenerate vector field tangent to a
plane field, and prove that such vector fields are generic.

Definition 2.9. A nondegenerate section of a plane field η is a vector field X ⊂ η
whose fixed point set is a link having transversally hyperbolic dynamics at all but
a finite number of points, at which the degeneracies are codimension one.

Proposition 2.10. Nondegenerate fields are generic (residual in the Cr topology
r ≥ 4) within the space of sections to a Cr plane field η.

Proof. We simply repeat the argument in the proof of Proposition 2.4 using Propo-
sitions 2.6 and 2.7. �

3. Round handles and gradients

Let X be a nondegenerate vector field contained in the plane field η. The goal of
the remaining sections is to understand restrictions on the topology of 3-manifolds
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supporting plane field flows which are forced by prescribed dynamics. A well-
known example of this occurs in the case of Anosov flows: certain three-manifolds
are prohibited from carrying Anosov dynamics. In contrast, we examine obstruc-
tions associated to the simplest kinds of dynamics: gradient plane field flows. We
show that only certain topologically “simple” manifolds support such dynamics.
This will lead us to further knot-theoretic obstructions based on the singular links
in a plane field flow. An old theme is played out: when the dynamics of X are
simple, the links associated to it are simple.

Lemma 3.1. Let M denote an oriented Riemannian 3-manifold and X = −∇Ψ
a Cr (r ≥ 2) gradient vector field which lies within a Cr plane field η on M . Then
Ψ is constant on each connected component of Fix(X), the fixed point set of X.
Furthermore, if c is a regular value of Ψ, then Ψ−1(c) is a disjoint union of tori
transverse to both X and η.

Proof. Each component of Fix(X) is a compact connected set of critical points for
Ψ, whose image under Ψ is a compact connected subset of R having measure zero,
by the Morse-Sard Theorem. For c regular, Ψ−1(c) is a disjoint union of smooth
surfaces, and X is transverse to each component since X is a gradient field. Hence,
the plane field η is everywhere transverse to Ψ−1(c) and the resulting line field
given by the intersection of η and the tangent planes to Ψ−1(c) in TM |Ψ−1(c) is
nonsingular. Thus, the Euler characteristic of each component of Ψ−1(c) is zero.
The transverse vector field X gives an orientation to the surface, which excludes
from consideration the Klein bottle. �

Grayson and Pugh [11] give examples of C∞ functions on R3 whose critical
points consist of a smooth link, yet for which the level sets are usually not tori:
see Remark 4.5.

The above mentioned restrictions on gradient plane fields translate into very
precise conditions on the topology of the underlying three-manifold. The fact that
the manifold consists of a finite number of thick tori T 2 × [0, 1] glued together in
ways prescribed by Ψ implies that the manifold can be decomposed into solid tori
in a canonical fashion: this phenomenon was identified and analyzed by Asimov
and Morgan in the 1970’s [1, 18] in a completely different context.

Definition 3.2. A round handle (or RH) in dimension three is a solid torus
H = D2×S1 with a specified index and exit set E ⊂ T 2 = ∂(D2×S1) as follows:
index 0: E = ∅.
index 1: E is either (1) a pair of disjoint annuli on the boundary torus, each
of which wraps once longitudinally; or (2) a single annulus which wraps twice
longitudinally.
index 2: E = T 2.
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Definition 3.3. A round handle decomposition (or RHD) for a manifold M is a
finite sequence of submanifolds

∅ = M0 ⊂M1 ⊂ · · ·Mn = M, (7)

where Mi+1 is formed by adjoining a round handle to ∂Mi along the exit set Ei+1
of the round handle. The handles are added in order of increasing index.

Asimov and Morgan [1, 18] used round handles to classify nonsingular Morse-
Smale vector fields: that is, vector fields whose recurrent sets consist entirely of a
finite number of hyperbolic closed orbits with transversally intersecting invariant
manifolds.

Theorem 3.4. Let η denote a Cr (r ≥ 2) plane field on M3 (compact) with X ⊂ η
a Cr nondegenerate gradient vector field. Then the set of fixed points for X forms
the cores of a round handle decomposition for M . Furthermore, the indices of the
fixed points correspond to the indices of the round handles, and X is transverse to
∂Mi for all i.

Proof. Let L denote the set of fixed points for X = −∇Ψ: this is an embedded link.
We first show that every fixed point is transversally hyperbolic. From Remark 2.8,
the only non-transversally hyperbolic points must occur as Hopf bifurcations or
saddle-node bifurcations. Hopf bifurcations are associated to complex transverse
eigenvalues, which cannot exist in a gradient flow. Similarly, a saddle-node bifur-
cation introduces a one-parameter family of heteroclinic connections as in Figure 1.
This also cannot occur in a gradient flow, since by Lemma 3.1 we have the function
Ψ constant on the curve of fixed points. The orbits of the flow which necessarily
connect one side to the other cannot be obtained by flowing down a gradient.
Hence, each singular curve is transversally hyperbolic with constant index.

Choose N a small tubular neighborhood of L in M and let f denote a bump
function in N which evaluates to 1 on L and is zero outside of N . Orient the
link L and perturb X to the new vector field X + εf ∂

∂z , where ∂
∂z denotes the

unit tangent vector along L. This yields a nonsingular flow which has L as a set
of hyperbolic closed orbits and no other recurrence. After a slight perturbation
to remove any nontransverse intersections of stable and unstable manifolds to L,
this vector field is a nonsingular Morse-Smale field with periodic orbit link L.
The work of Morgan [18] then implies that L forms the cores of a round handle
decomposition for M , where the index of each handle corresponds to the transverse
index of the curve of fixed points (source, saddle, or sink). In [18] it is moreover
shown that the nonsingular Morse-Smale vector field is transverse to each ∂Mi;
since the neighborhood N is very small, this transversality remains in effect for
X . �

Corollary 3.5. Gradient flows on plane fields in three-manifolds lie on the bound-
ary of the space of nonsingular Morse-Smale fields.
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Proof. In the proof of Theorem 3.4, let ε→ 0. This gives a one-parameter family
of nonsingular Morse-Smale flows which converges to the gradient plane-field flow.
�

Corollary 3.6. Non-gradient dynamics is a generic condition in the space of
plane field flows on an irreducible non-graph three-manifold (e.g., a hyperbolic 3-
manifold).

Proof. By the work of Morgan [18], round handle decompositions of irreducible
three-manifolds exist only for the class of graph-manifolds. �

Recall that a graph manifold is a three-manifold given by gluing together
Seifert-fibered spaces along essential torus boundaries. Examples include S3, lens
spaces, and manifolds with many S2 × S1 connected summands. The property of
being composed of Seifert-fibered pieces (i.e., a graph manifold) is relatively rare
among three-manifolds, the “typical” irreducible three-manifold being composed
of hyperbolic pieces.

Remark 3.7. We may push Theorem 3.4 a bit further. Let φt be a plane field
flow whose chain-recurrent set consists entirely of transversally hyperbolic curves
of fixed points and a finite set of hyperbolic periodic orbits (note that hyperbolic
periodic orbits can easily live within plane fields, even within nowhere integrable
plane fields). This situation is, after the class of gradient flows, the next simplest
scenario dynamically. Then, by the same proof, the connected components of
the entire chain-recurrent set must form the cores of a round-handle decomposi-
tion. Hence, the additional dynamics forced upon plane field flows in a non-graph
manifold is something other than hyperbolic periodic orbits.

4. The link of singularities

We have shown that fixed points of plane field flows appear in links. The natural
question is which links can arise as the singular points, and what dependence
is there upon the dynamics of the plane field flow. For nondegenerate gradient
fields, it is an immediate corollary of Theorem 3.4 that the singular link is a
collection of fibers in the Seifert-fibered portions of a graph manifold. We can
be more specific, however, in the special case of S3. We recall two standard
operations for transforming simple knots into more complex knots: see Figure 3
for an illustration.

Definition 4.1. Let K be a knot in S3. Then the knot K ′ is said to be a (p, q)-
cable of K if K ′ lives on the boundary of a tubular neighborhood of K, wrapping
about the longitude (along K) p-times and about the meridian (around K) q-
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times. Let K and J be a pair of knots in S3. Then the connected sum, denoted
K#J , is defined to be the knot obtained by removing from each a small arc and
identifying the endpoints along a band as in Figure 3.

Figure 3.
Operations to generate zero-entropy knots: (left) cabling; (right) connected sum.

Definition 4.2. The zero-entropy knots are the collection of knots generated from
the unknot by the operations of cabling and connected sum; i.e., it is the minimal
class of knots closed under these operations and containing the unknot.

Zero-entropy knots are relatively rare among all knots: e.g., none of the hy-
perbolic knots (such as the figure-eight knot, whose complement has a hyperbolic
structure) are zero-entropy. The title stems from the often-discovered fact (see
[8] for history) that such knots are associated to three-dimensional flows with
topological entropy zero.

Corollary 4.3. Given a nondegenerate gradient plane field flow on S3, every
component of the fixed point link is a zero-entropy knot.

Proof. Wada [22] classifies the knot types for cores of all round handle decompo-
sitions on S3. Each component is a zero-entropy knot. �

Remark 4.4. Much more can be said: Wada in fact classifies all possible links
which arise as round handle cores on all graph manifolds. This class of zero-
entropy links is an extremely restricted class, which lends credence to the motto
that simple dynamics implicate simple links in dimension three. We note this same
class of links appears independently in the study of nonsingular Morse-Smale flows,
suspensions of zero-entropy disc maps, and in Bott-integrable Hamiltonian flows
with two degrees of freedom.

Remark 4.5. It is possible to construct gradient flows on S3 (for example) in
which the fixed point set is an embedded link which is not a zero-entropy link. Let
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L1 and L2 denote any pair of links in S3 which each have at least three components.
Grayson and Pugh [11] prove the existence of C∞ functions Ψ1,Ψ2 : R3 → R which
have L1 and L2 as the (respective) sets of critical points. Moreover, these functions
are proper and, for large enough c ∈ R, the inverse image of c is a smooth 2-sphere
near infinity. Hence, we may consider the balls Bi bounded by Ψ−1

i (c) and glue
them together along the boundaries, obtaining S3. The resulting function Ψ given
by Ψ1 on B1 and −Ψ2 + 2c on B2 has as its gradient flow the split (unlinked) sum
of L1 and L2 as its fixed points. Thus, this flow cannot live within a plane field.

It is not ostensibly clear that every zero-entropy link in S3 is realized as the
zero set of a gradient flow within a plane field. We close this section with a
realization theorem for such flows which shows that, in fact, a particular subclass
of round-handle decompositions (and, hence, zero-entropy links) is realized.

Lemma 4.6. If X is a nondegenerate gradient field on M contained in the plane
field η, then each index-1 round-handle H in the decomposition must be attached
to ∂Mi along annuli which are essential (homotopically nontrivial) in ∂Mi.

Proof. Assume that Mi is the ith stage in a round handle decomposition, and that
H is an index-1 round handle with an exit annulus E which is essential in ∂H by
definition. By Theorem 3.4, the intersection of η with ∂Mi is always transverse.
Thus, if H is attached to Mi along an annulus A ⊂ ∂Mi, then the foliations given
by the intersections of η with the tangent planes to A and E respectively must
match under the attachment. We claim this is impossible when A is homotopically
trivial in ∂Mi.

Define the index of a smooth (oriented) curve γ in an orientable surface with
a (nonsingular, oriented) foliation F to be the degree of the map which associates
to each point p ∈ γ the angle between the tangent vectors to γ and F at p. This
index is independent of the metric chosen and also invariant under homotopy of γ
or of F ; hence, we can speak of the index of an annulus in a surface with foliation.

When A is homotopically trivial, the index must be equal to ±1, since a foliation
is locally a product. However, the index of the exit annulus E ⊂ ∂H must be zero
as follows. Under the gradient field X , the core of the 1-handle is a curve κ of
fixed points with transverse index 1 whose unstable manifold Wu(κ) intersects
∂H transversally along the core of the exit set E. Deformation retract E to a
small neighborhood of Wu(κ) ∩ ∂H — here, the intersections with η are always
transverse. Next, homotope the annulus to a neighborhood of κ by integrating
the gradient field X backwards in time. This has the effect of taking the annulus
transverse to Wu(κ) and sliding along Wu(κ) back to κ. Since X points outwards
along Wu(κ), the image of the annulus E under the homotopy is always transverse
to X , and hence to η. The fact that η t κ then implies that the foliation on
E induced by η must be homotopic through nonsingular foliations to a product
foliation by intervals on the annulus, which implies that the longitudinal annulus
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E has index zero. Note that this works for exit sets E which wrap any number of
times about the longitude of H (to cover both types of index-1 round handles). �

Hence, any round-handle decomposition which is realizable as a gradient plane
field flow must have all 1-handles attached along essential annuli. We call such a
round-handle decomposition essential.

Theorem 4.7. Let M be a compact 3-manifold with L an indexed link. Then L
is realized as the indexed set of zeros for some nondegenerate gradient plane field
flow on M if and only if L is the indexed set of cores for an essential RHD on M .

Proof. The necessity is the content of Lemma 4.6. Given any essential RHD,
we construct a corresponding plane field gradient flow. One may begin with the
fact proved by Fomenko that any essential round-handle decomposition can be
generated by a vector field X integrable via a Bott-Morse function Ψ : M → R
with all critical sets being circles (see [3] for a detailed exposition). After choosing
a metric on M we claim that −∇Ψ lives within the plane field η orthogonal to X .
Indeed, away from L the plane field η will be spanned by ∇Ψ and ∇Ψ×X since
these are linear independent vectors orthogonal to X (recall X is tangent to the
level sets of Ψ). Thus −∇Ψ clearly lies in η on the complement of L. Along L the
gradient −∇Ψ lies in η since it is zero. �

5. Flows on foliations and contact structures

5.1. Foliations

In the case where our given plane field has some geometrical property, we may
further restrict the types of round-handle decompositions which may contain a
gradient flow. For example, if the plane field η is integrable, it determines a
foliation on the manifold. In this subsection, we note that, in this case, S3 cannot
support such a gradient flow. This result, which is an obvious corollary of Novikov’s
Theorem on foliations, generalizes to other three-manifolds.

Recall from the theory of foliations on three-manifolds (see, e.g., [9]) that a Reeb
component is a foliation of the solid torus D2 × S1 that consists of the boundary
T 2 leaf along with a one-parameter family of leaves, each homeomorphic to R2

and limiting onto the boundary with nontrivial holonomy, as in Figure 4. A
codimension-one foliation of a three-manifold is taut if there do not exist Reeb
components or “generalized” Reeb components (see, e.g., [7] for definitions). An
equivalent definition of taut is that given any leaf L there exists a closed curve
through L transverse to the foliation.

It is straightforward to show that gradient fields must lie within taut foliations:
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Figure 4.
A Reeb component in a foliation on a 3-manifold (left) can be perturbed into an overtwisted
contact structure (right).

Theorem 5.1. Let F denote a codimension-1 foliation on a compact three-
manifold M which contains a nondegenerate gradient vector field X. Then F
is taut.

Proof. Assume that X = −∇Ψ is a nondegenerate gradient field on a foliation F .
For L a leaf of F , the restriction of X to L must also be a gradient flow. In the case
where L is compact, there must be a nondegenerate fixed point of X on L which
lies on a circle of fixed points transverse to F (note that in the case of a boundary
torus in a Reeb component, this is an immediate contradiction). In the case where
L is not a compact leaf, choose some nontrivial path γ ⊂ L whose endpoints are
directly above one another in a local product chart. Then, by perturbing γ to be
transverse to F , we may close it up to a transverse loop through L. �

This result can be greatly improved by considering the holonomy of the fo-
liation. Recall that the holonomy of any closed curve γ : S1 → L in a leaf L
of a codimension-one foliation F is the germ of the Poincaré map associated to
the characteristic foliation on an annulus transverse to L along γ. The holonomy
of a curve is an invariant of its homotopy class within the leaf. A foliation has
vanishing holonomy if the holonomy of every curve γ is trivial (the identity).

Theorem 5.2. Any closed orientable three-manifold M containing a nondegen-
erate gradient field within a (Cr for r ≥ 2) codimension-one foliation is a surface
bundle over S1.

Proof. Suppose that M admits a foliation F which supports a nondegenerate
gradient field. Then, by Theorem 3.4, M has a round handle decomposition where
all the regular tori are transverse to the foliation. The foliation on each round
handle is equivalent to the product foliation by discs on D2 × S1, since these
solid tori are filled with leaves transverse to the boundary each having a gradient
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flow with a single fixed point. We show in subsequent steps that the foliation
F may be modified within the round handle structure so that the new foliation
F ′ has no holonomy. Once we show this, the celebrated theorem of Sacksteder
implies that this foliation must be topologically conjugate to the kernel of a closed
nondegenerate 1-form on M [20]. The existence of this 1-form implies, via the
theorem of Tischler [21], that M must be a surface bundle over S1. We illustrate
in Figure 5 below that it is possible to have gradient fields within a foliation having
holonomy, so it is truly necessary to develop the following modification procedure,
which makes use of “shearing” the foliation along 1-handles (cf. [4]).

Figure 5.
A foliated RHD on T 2×S1 with holonomy along each 1-handle: the 2-handle has been removed
and the S1-factor cut open, revealing a pair of 1-handles attached to a 0-handle with inverse
attaching maps.

Denote by M0 the (disjoint) union of all the 0-handles and by Mi (1 ≤ i ≤ N)
the subsequent stages in the decomposition:

Mi = (Mi−1 tHi)/φi,

where Hi is the ith 1-handle and φi : Ei ↪→ ∂Mi−1 is the attaching map on the
exit set Ei ⊂ Hi. Recall that each exit set Ei is either one or two annuli and that
the boundary of each Mi, ∂Mi, is the disjoint union of a collection of tori.

For each 1-handle Hi, let Wu
i denote the (2-dimensional) unstable manifold to

the core of Hi. Modify the round handle structure so that each Hi is very “thin”
– that is, each Hi is restricted to a small neighborhood of Wu

i , appending the



Vol. 74 (1999) Gradient flows within plane fields 523

“leftover” portion to the neighboring 2-handles. Denote by

Bdi = ∂M0

i⋃
j=1

Wu
j ,

the 2-complex given by the union of all the 0-handle boundaries and unstable
manifolds of the 1-handles in Mi.

Claim 1. F has vanishing holonomy if the restriction of F to BdN has vanishing
holonomy.

Proof 1. Let γ denote a loop within a leaf L of F . Then the restriction of L to
each k-handle is a collection of disjoint discs whose boundaries lie in the union of
0- and 1-handles. Push γ to these boundaries and, since ∂Hi is very close to Wu

i ,
perturb γ to lie within Wu

i for each Hi it intersects. Since BdN is transverse to
F , we may choose the transverse annulus A containing γ to lie within this set. �1

In what follows, we consider holonomy on the 2-complex BdN , keeping in mind
that the 1-handles are actually thin neighborhoods of the 2-cells Wu

i . The holon-
omy on each component of ∂Mi is equivalent to that on the corresponding piece
of BdN since each Hi has a product foliation.

Claim 2. The maps {φi}N1 may be isotoped so that the induced foliation F ′ on
BdN is without holonomy.

Proof 2. It suffices to show that the foliation restricted to each ∂Mi is without
holonomy (a product foliation): we proceed by induction on i. On the boundary
of M0 the foliation F restricts to a product foliation by circles. Assume as an
induction hypothesis a lack of holonomy on ∂Mi−1. There are three cases to con-
sider: (1) Hi is an orientable handle with attaching circles in the same component
of ∂Mi−1; (2) Hi is orientable with attaching circles in two distinct components
of ∂Mi−1; and (3) Hi is nonorientable.

Case (1): Let C± denote the circles in the selected component T of ∂Mi−1 along
which Wu

i is attached. Note C± divides T into two annuli A0 and A1. After fixing a
diffeomorphism from C+ to C− there is a “handle holonomy map” fH : C+ → C−
which is the diffeomorphism given by sliding along leaves on φi(Hi). There are
corresponding “boundary holonomy maps” fj : C+ → C− given by sliding along
leaves on Aj . Isotope φi on C+ so that fH equals f0 up to a rigid rotation (which
is necessary in order to add subsequent handles along curves transverse to F —
see Claim 3). The holonomy on the two new components of ∂Mi is determined by
taking the transverse curve C+ (actually one must take a parallel copy of C+ that
sits in ∂Mi) as a section. These holonomy maps factor as f−1

1 ◦ fH and f−1
H ◦ f0;

however, the holonomy along C+ within ∂Mi−1 is a map of the form f−1
1 ◦ f0,
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which, by induction, is a rigid rotation. Hence, up to rotations, f0 = f1. Since we
chose fH = f0 up to rotations the holonomy on ∂Mi vanishes.

Case (2): If Hi connects two disconnected boundary components of Mi−1,
then the holonomy along Hi will always cancel with itself as follows. Denote by
fH : C+ → C− the handle holonomy maps as before. Then the global holonomy
map along ∂Mi is of the form g+ ◦ fH ◦ g− ◦ f−1

H , where g+ : C+ → C+ and
g− : C− → C− are holonomy self-maps along loops in the two components of
∂Mi−1, and hence by induction, identity maps.

Case (3): If Hi has connected exit set, the proof follows as in Case (1), since
the handle must connect a single component of ∂Mi−1 to itself: isotope φi so that
the handle holonomy map equals the holonomy map along the boundary up to a
rigid rotation. �2

Claim 3. This “linearization” of F does not affect the topology of M .

Proof 3. Throughout the addition of the 1-handles, nothing about the topology
of M has changed, since the handle structure is identical — we modify only the
foliation. However, after attaching the last 1-handle, the characteristic foliation
on the boundary tori must be linear and rational, in order to glue in the 2-handles
respecting the product foliation on their boundaries. The slopes of F restricted to
∂MN completely determine the topology of M after adding the 2-handles (these
are Dehn filling coefficients).

Hence, we must be able to linearize all of the attaching maps for the 1-handles
without changing the boundary slopes at the end of the sequence. To do so,
we preserve at every stage the rotation number of the holonomy maps hi which
slide the attaching curves of Hi along ∂Mi. Recall that to every diffeomorphism
f : S1 → S1 is associated a rotation number ρf ∈ R/Z which measures the
average displacement of orbits of f (see, e.g., [12]). When modifying φi to φ̃i
in the above procedure, we may compose φ̃i with a rigid rotation by the angle
necessary to preserve the rotation number of the holonomy map hi acting on the
attaching curves in ∂Mi−1 (without adding further Dehn twists). This shearing
maintains the average slope of the boundary foliation at each stage without adding
holonomy. Hence, at the end of the 1-handle additions, when the original foliation
had all boundary components with linear foliations of a particular fixed slope,
the modified foliation also has linear boundary foliations with the same slope.
Thus, adding the 2-handles is done using the same surgery coefficients, yielding
the original manifold M with a foliation having trivial holonomy. �3

Claims 1-3 complete the proof of Theorem 5.2. �

Remark 5.3. Of course, not every surface bundle over S1 may support a gradient
field within a foliation: there is still the restriction that M be a graph-manifold.
This translates precisely into a condition on the monodromy map of the fibration —
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the monodromy must be of periodic (or reducibly periodic) type with respect to the
Nielsen-Thurston classification of surface homeomorphisms. Any pseudo-Anosov
piece in the monodromy forces hyperbolicity, contradicting the graph condition. It
is not hard to see that any such bundle can be given a gradient field lying within
each fiber F of the bundle by choosing a Morse function φ : F → R which is
equivariant with respect to the monodromy map.

Remark 5.4. All of the results of this section apply not only to gradient flows,
but also to gradient-like flows, or flows for which there exists a function which
decreases strictly along non-constant flowlines. The reason why nondegenerate
gradient-like flows in foliations determine round-handle decompositions whereas
for general plane fields they do not lies in the fact that the Hopf bifurcation of
Proposition 2.7 cannot take place among gradient-like flows in the integrable case,
while it can in the nonintegrable.

5.2. Contact structures

In contrast to the case of an integrable plane field, one may consider the class of
contact structures, which has attracted interest in the fields of symplectic geometry
and topology, knot theory, mechanics, and hydrodynamics.

Definition 5.5. A contact form on a three-manifold M is a one-form α ∈ Ω1(M)
such that the Frobenius integrability condition fails everywhere: that is,

α ∧ dα 6= 0. (8)

A contact structure on M is a plane field ξ which is the kernel of a locally defined
contact form: that is,

ξp = {v ∈ Tp : α(v) = 0}, (9)

for each p ∈M .

Contact structures are thus maximally nonintegrable: the plane field is local-
ly twisted everywhere. One may think of a contact structure as being an anti-
foliation, which leads one to suspect that the topology of the manifold may be
connected to the geometry of the structure, as is often the case with foliations.
Indeed, the contrast between foliations with Reeb components and those with-
out Reeb components is reflected in the tight / overtwisted dichotomy in contact
geometry (due primarily to Eliashberg [6] and Bennequin [2]).

Definition 5.6. Given a contact structure ξ on M and an embedded surface
F ⊂ M , then the characteristic foliation Fξ is the (singular) foliation induced by
the (singular) line field {TpF ∩ ξp : p ∈ F}. A contact structure ξ is overtwisted
if there exists an embedded disc D ∈ M such that Dξ has a limit cycle, as in
Figure 4 (right). A contact structure is tight if it is not overtwisted.
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The classification of contact structures follows along lines similar to that of
codimension one foliations with or without Reeb components. An infinite num-
ber of homotopically distinct overtwisted contact structures exist on every closed
orientable three-manifold [17, 16] and are algebraically classified up to homotopy
[5]. Tight structures, on the other hand, are quite mysterious: e.g., it is unknown
whether they exist on all three-manifolds.

Several examples of the similarity between tight contact structures and Reebless
foliations are provided by the recent work of Eliashberg and Thurston [7]. For
example, Reebless foliations can be perturbed into tight contact structures and
foliations with Reeb components can be perturbed into overtwisted structures (cf.
Figure 4). Also, both Reebless foliations and tight structures satisfy a strong
inequality restricting Euler classes. Tight structures are somewhat more general
than Reebless foliations since the former can exist on S3 [2] while the latter cannot
[19]. Likewise, overtwisted structures are slightly more general than their foliation
counterparts via the following observation, to be contrasted with Theorem 5.1:

Proposition 5.7. Any nondegenerate gradient field X which lies within a tight
contact structure ξ on M3 also lies within an overtwisted contact structure ξ′ on
M3.

Proof. The canonical way to turn a tight structure into an overtwisted structure
is by performing a Lutz twist [16, 17] on a simple closed curve γ transverse to ξ.
We execute a version of this twisting which respects a gradient field.

Given a gradient field X ⊂ ξ, choose a curve γ of fixed points of index zero
(sinks). Translate the function Ψ whose gradient defines X so that Ψ|γ ≡ 0. Since
γ is an index zero curve, Ψ increases as one moves radially away from γ.

Let N denote a tubular neighborhood of γ whose boundary is a connected
component of Ψ−1(ε) for some ε > 0. Place upon N the natural cylindrical
coordinates (Ψ, θ, z). In analogy with Lemma 2.1, we may choose θ and z so that
ξ|N is the kernel of the locally defined 1-form

α = g(Ψ, θ, z)dθ + dz, (10)

for some function g with g(0, θ, z) = 0. The contact condition implies that

∂g

∂Ψ
> 0. (11)

Replacing this structure locally with the kernel of the form

α′ = sin
(
π

4
+

2πg
g(ε, θ, z)

)
g dθ + cos

(
π

4
+

2πg
g(ε, θ, z)

)
dz, (12)

yields a contact structure since

α′∧dα′ =
[
cos
(
π

4
+

2πg
g(ε, θ, z)

)
sin
(
π

4
+

2πg
g(ε, θ, z)

)
+

2πg
g(ε, θ, z)

]
∂g

∂Ψ
dΨ∧dθ∧dz,

(13)



Vol. 74 (1999) Gradient flows within plane fields 527

and this coefficient is positive by Equation 11. This contact structure agrees with
that defined by α along the torus Ψ = ε since

α′|Ψ=ε = sin
(

9π
4

)
g(ε, θ, z)dθ + cos

(
9π
4

)
dz =

√
2

2
α|Ψ=ε , (14)

and these have the same kernel. Furthermore, this modified structure contains the
vector field X = ∇Ψ, since X points in the −d/dΨ direction. Finally, one can
easily show that a perturbation of a constant-z disc has a limit cycle in the charac-
teristic foliation near c = ε/2 (cf. [2]); hence, this defines an overtwisted structure
containing X . This construction can obviously be done in the C∞ category using
bump functions. �

Example 5.8. Consider the flow on S3 (considered as the unit sphere in R4 with
the induced metric) given by the gradient of the function

Ψ =
1
2

(x2
1 + x2

2)− 1
2

(x2
3 + x2

4), (15)

the gradient being taken in S3. One can check that the fixed point set consists of
a pair of unknots linked once in a Hopf link, as in Figure 6. The standard tight
contact form on S3 is

α =
1
2

(x1dx2 − x2dx1 + x3dx4 − x4dx3) . (16)

A simple calculation shows that α is a contact form on S3 with ∇Ψ ⊂ kerα.
However, we may Lutz twist this structure in a neighborhood of the fixed point
links: a family of such overtwisted forms (n ∈ Z+) is given by [10]

αn = cos
(π

4
+ nπ(x2

3 + x2
4)
)

(x1dx2 − x2dx1)

+ sin
(π

4
+ nπ(x2

3 + x2
4)
)

(x3dx4 − x4dx3), (17)

from which it can be shown that ∇Ψ ⊂ kerαn. Here, the integer n denotes the
number of twists that the plane field undergoes as an orbit travels from source to
sink in Figure 6.

6. Two questions

This work has focused on the case of gradient flows in plane fields in dimension
three, as the round-handle theory is most interesting here. However, there are
natural questions about gradient flows in arbitrary distributions for manifolds of
dimension greater than three. We do not present any results in this area, but
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Figure 6.
The gradient field on S3 having a Hopf link of fixed points exists within both tight and overtwisted
contact structures.

rather note that many of the tools remain valid: fixed point sets of a vector
field constrained to a codimension-k distribution consists of a finite collection of
embedded k-dimensional submanifolds.

Two problems emerge. In the case of a codimension-one distribution, non-
degenerate gradient fields induce round-handle decompositions. However, every
manifold of dimension greater than three whose Euler characteristic is zero pos-
sesses an RHD. Are there any such manifolds of dimension greater than three
which do not possess a nondegenerate gradient field tangent to a codimension-one
distribution? Secondly, in the case of higher codimension distributions, what re-
strictions exist on the topology of the fixed point sets? The case of a plane field
on a four-manifold is particularly interesting with respect to the genera of the
(two-dimensional) fixed point sets.
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[9] C. Godbillon, Feuilletages: Études géométriques. Number 98 in Progress in Mathematics.
Birkhäuser, 1991.
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