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Abstract. Mutation of 3-manifolds (cutting and regluing along a genus 2 surface using a central
involution) is shown to preserve the instanton Floer homology of homology 3-spheres. A related
operation on 4-manifolds is shown to preserve the Donaldson polynomial invariant.
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Mutation is an operation on 3-manifolds containing an embedded surface Σ of
genus 2. It is defined using the unique involution, called τ , of Σ with the property
that Σ/τ ∼= S2. In brief, given a 3-manifold M containing Σ, its mutant M τ

is obtained by cutting M along Σ, and regluing using τ . This operation was
introduced in [40] as the analogue for closed manifolds of the mutation operation
on knots described by Conway [12]. It is not easy to distinguish a 3-manifold
from its mutant—there is a long list of invariants which they have in common:
their Gromov norm [40], Reidemeister torsion [37], Chern-Simons and η-invariants
[32, 31] (if M is hyperbolic), Casson’s invariant [28], and many of the ‘quantum’
invariants of 3-manifolds [23, 24, 30, 38, 39].

In this article, we will show that the instanton Floer homology [18] and Z-
graded instanton homology [17] of homology spheres are unchanged by mutation.

Theorem 1. Let M be an oriented homology 3-sphere, with (instanton) Floer
homology HF∗(M), which contains a genus-2 surface, and let M τ be the result of
mutation along Σ. Then HF∗(M) ∼= HF∗(Mτ ). Similarly, if HFµ denotes the
Z-graded instanton homology of Fintushel-Stern, then HFµ∗ (M) ∼= HFµ∗ (Mτ ).

In section 2 we will define two types of mutation operations on certain 4-
manifolds, and show that they preserve the Donaldson invariant. A companion
article (in preparation) will show that the 3-dimensional Seiberg-Witten analogue
of Casson’s invariant is unchanged by mutation.

Theorem 1 provides an alternate proof of P. Kirk’s result [28] on the Casson
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invariant. In his paper [25], A. Kawauchi constructs homology spheres with the
same Floer homology as their mutants, and remarks that the general case does
not seem to be known. On reviewing Kawauchi’s paper for Mathematical Reviews,
my interest in the problem was stimulated by this remark. The papers of Kirk
and Kawauchi are based on the connection between surgery and Casson’s invariant
(respectively Floer homology), whereas we will proceed directly from the definition
of Floer homology in terms of SU(2)-representations. The restriction to homology
spheres is largely for technical convenience; it is likely that the proof of theorem 1
would extend to Floer-type theories [5, 8] defined for more general 3-manifolds.

Notation. For the rest of the paper, M will denote a closed, oriented 3-manifold,
and Σ a genus-2 surface. For any space X , and Lie group G, the space of rep-
resentations of π1(X) into G will be denoted Rep(X,G). The equivalence classes
(under the relation of conjugacy by elements of G) will be denoted χ(X,G). If it
is obvious what group is being discussed, then the ‘G’ may be dropped.

1. Mutation and floer homology

The involution τ has several related properties which are responsible for the equal-
ity of the invariants cited above after mutation. The basic one is that any simple
closed curve γ on Σ is isotopic to one which is taken to itself by τ , perhaps with
a reversal of orientation. This implies that τ is in the center of the mapping
class group, but more importantly for our purposes, implies the following lemma,
well-known in certain circles.

Lemma 1.1. Let ϕ : π1(Σ)→ SU(2) be a representation. Then ϕ◦τ∗ is conjugate
to ϕ. The same is true for representations of π1(Σ) in SL2(R).

A similar lemma, concerning instead representations in SL2(C), may be found
in §2 of [40], and the proof there may be adapted, mutatis mutandis.

Remark. In the field of ‘quantum invariants’ of 3-manifolds, this lemma is seen
as a reflection of a self-duality of certain representations of SU(2). This duality
does not hold for larger rank unitary groups, so one expects that invariants based
on, say, SU(3) representations, would change under mutations. We will return to
this point in Section 2.

Using the standard correspondence between representations and flat connec-
tions, this lemma says that for any flat SU(2)-connection α on Σ, the pull-back
τ∗α is gauge equivalent to α. If α is reducible, then there is a choice of (con-
stant) gauge transformation g ∈ Stab(α)/Z2 with τ∗α = g∗α. Any such g defines
an automorphism τ̂ of the connection α on the trivial bundle, as the following
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composition:

Σ× SU(2)
g−1
−−−−→ Σ× SU(2) τ×id−−−−→ Σ× SU(2)y y y

Σ id−−−−→ Σ τ−−−−→ Σ

(1)

By definition, τ̂ covers τ , and induces an automorphism τ∗ of the su2-valued forms
Ω∗(Σ; adα), and the twisted cohomology groups H∗(Σ; adα).

Starting from Lemma 1.1, there is an obvious path to take in showing the
equality of HF∗ of mutant homology spheres. Let CF∗ denote the chain complex
which computes the instanton homology; in favorable circumstances this has a
basis indexed by the flat SU(2)-connections on M × SU(2), or equivalently by
χ(M,SU(2)). The Z/8Z-grading is given by spectral flow. For µ ∈ R such that
µ 6= CS(α) for any α ∈ χ(M), Fintushel and Stern [17] have defined Z-graded
chain groups CFµ∗ . These have the same basis as CF∗, but the grading is lifted
from Z/8Z to Z using the monotonicity properties of the Chern-Simons invariant.

Suppose that Σ ⊂M , separatingM into two components whose closures will be
denoted A and B. When M has a Riemannian metric, the metric will be assumed
to be a product in a neighborhood of Σ. Moreover, we will assume that τ is an
isometry of the restriction of the metric to Σ. In this notation, Mτ will be given
by A ∪τ B, and inherits a metric from M . Given a representation ϕ of π1(M) in
SU(2), let ϕΣ denote its restriction to π1(Σ), with ϕA (resp. ϕB) the restrictions
to π1(A) (resp. π1(B).) Choose an element g ∈ SU(2) with ϕΣ ◦ τ∗ = g−1ϕΣg,
and conjugate ϕB by g, to get a representation ϕτ of π1(Mτ ). Thus we get a sort
of correspondence between χ(M,SU(2)) and χ(M τ ,SU(2)), which should lead to
an isomorphism on instanton homology.

There are several issues with which one must deal:
(i) The character variety χ(M) may not consist of a finite number of smooth

points.
(ii) If ϕΣ is reducible, then there is a choice (parameterized by Stab(ϕΣ)/Z2)

of elements g conjugating ϕΣ to ϕΣ ◦ τ∗.
Even if these problems do not arise, so that we have a sensible map T∗ : CF∗(M)→
CF∗(Mτ ) (and T µ∗ in the Z-graded case) we would need to show:

(iii) The map T∗ preserves the Z/8Z grading in CF∗ and T µ∗ the Z grading in
CFµ∗ .

(iv) T∗ and T µ∗ are chain maps.
It turns out that T∗ is not a chain map, although T µ∗ is.

The first two issues will be handled using a perturbation, as the experts will
have surmised. The existence of a chain map related to T∗ is derived from a basic
geometric construction, which we present in the next section.
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1.1. The basic cobordism

The functoriality of HF∗ with respect to oriented cobordisms suggests a method
to show that the correspondence T∗ is a chain map. One would need (among other
things) a cobordism between M and M τ , over which a representation ϕ and its
cut-and-pasted cousin ϕτ would extend. We do not know how to construct such
a cobordism, but we can come very close. We use a variation of the idea in §2
of our earlier paper [31] to construct a cobordism having an additional boundary
component, which will be filled in as the boundary of a 4-dimensional orbifold.

Start with a copy of Σ sitting inside M , so that M = A∪Σ B. The labeling of
the two components is arbitrary, but having chosen it we can make the following
convention: Σ is to be oriented as the boundary of A (and hence −Σ = ∂B.) The
mutated manifold Mτ is then formally a quotient space (A

∐
B)/ ∼, where ‘∼’

identifies x ∈ ∂B with τ(x) in ∂A. (Since τ is an involution, it doesn’t much
matter how we do this, but some care in making the identifications now will help
in the calculations later.) Fix a collar neighborhood I × Σ in M .

Consider the manifold W (= W (M,S1 × Σ) from [31]) constructed as follows:

W = M × [0, 1/4] ∪ (I × Σ)× [1/4, 3/4]∪M × [3/4, 1]

Cut and paste W along Σ × [0, 1], using the involution τ × idI , to obtain a new
manifold W τ .

From Figure 1, it is clear that the boundary of W τ consists of a copy of M , a
copy of Mτ , and a copy of the mapping torus S1 ×τ Σ. From the point of view of
index theory, S1 ×τ Σ will be seen to capture the difference between M and M τ .

Lemma 1.2. The mapping torus S1×τΣ is a Seifert fibered space S2(2, 2, 2, 2, 2, 2; e)
over S2, with 6 fibers of multiplicity 2 and Euler class δ − 3.

Proof. Let π : Σ → S2 be the branched double cover for which τ is the covering
transformation. There are 6 branch points, each of order 2. Because π◦τ = π, the
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projection extends to a map S1×τ Σ→ S2 which is a fibration away from the fixed
points. The inverse image of each fixed point is a circle, which is covered by nearby
circles with multiplicity 2. The Euler class calculation may be done directly, or
more easily by observing that the first homology group of S1×τ Σ is (Z/2Z)4⊕Z.
On the other hand, H1 of the Seifert fibered space S2(2, 2, 2, 2, 2, 2; e) is given by
(Z/2Z)4 ⊕ Z/(e+ 3)Z. �

Following the constructionTM of Fintushel and Stern [15], let V be the mapping
cylinder of the projection S1 ×τ Σ→ S2, and form an orbifold

Y τ = W τ ∪S1×τΣ V

By Lemma 1.2, there are 6 singular points in Y τ , each the cone on RP3. It is easily
checked that V has the homology of S2, and that the (rational) self-intersection
of the generator of H2(V ) is trivial. We will also use the notations V0 and Y τ0 for
the complement of an open neighborhood of the six singular points.

We will also need the homology and cohomology groups of W τ .

Lemma 1.3. The homology and cohomology groups of W τ are as follows:

H1 = H1 = Z, H2 = H2 = Z4, H3 = H3 = Z2.

A choice of basis for H1(Σ) gives a basis for H2(W τ ). With respect to a symplectic
basis consisting of elements from kerH1(Σ) → H1(A) or H1(B), the intersection
form is (

0 1
1 0

)
⊕
(

0 1
1 0

)
.

Proof. This all follows from the Mayer-Vietoris sequence, using the fact that
τ∗ = −1 onH1(Σ). The calculation of the intersection form follows [31, Proposition
2.1]. �

1.2. Extending representations

Until further notice, all representations will be in the Lie group G=SU(2) or SO(3),
so that, for example, χ(π1(M)) refers to the SU(2)-character variety of M . (Since
M is a homology sphere, the varieties of SU(2) and SO(3) representations are
the same.) In this section, we will show that every SU(2)-representation of π1(M)
extends to π1(W τ ) and then to an SO(3) representation of πorb1 (Y τ ). There always
at least two SU(2) extensions over π1(W τ ), but upon passage to SO(3) there is
only one, provided that the representation is irreducible when restricted to Σ. By
restricting to π1(Mτ ) we get the one-to-one correspondence between Rep(M) and
Rep(Mτ ) referred to above. It is not obvious (and we will not need to know) that
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Figure 2.

this is continuous; it is perhaps better to view the maps Rep(M)← Rep(W τ )→
Rep(Mτ ) as defining a correspondence in the sense of algebraic geometry.

There is a standard correspondence between SU(2) representations and flat
SU(2) connections, with conjugacy of representations going over to gauge equiva-
lence. We will use the two notions interchangeably, without varying the notation.
In this interpretation, the connection ατ is identical to α on A, but differs from α
on B by a constant gauge transformation.

Regard π1(M) as being presented as an amalgamation as follows:

π1(M) = 〈π1(A), π1(B)|ia(g) = ib(g)∀g ∈ π1(Σ)〉

Here ia, ib are the maps induced by the inclusions of Σ into the two sides. In this
notation, the fundamental group of W τ is easily calculated, using van Kampen’s
theorem.

π1(W τ ) = 〈π1(A), π1(B), z|z−1ia(g)z = ib(τ∗(g))∀g ∈ π1(Σ)〉 (2)

The fundamental group of M τ has a similar description.
We will need a more explicit calculation of the effect of τ∗ on π1(Σ). In figure 2

below, the generators of the fundamental group are a1, b1 as drawn in the top half
of the surface, and a2, b2 which are given by γα2γ̄ and γβ2γ̄ respectively. Here,
and in what follows, x̄ will be used as a synonym for x−1.
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Referring to Figure 2, and the curves as labeled therein, we have that

π1(Σ) = 〈a1, b1, a2, b2|a1b1ā1b̄1b2a2b̄2ā2 = 1〉

With respect to these generators, the action of τ is given by

τ∗(a1) = ā1

τ∗(b1) = a1b̄1ā1

τ∗(a2) = b̄1b2ā2b̄2b1

τ∗(b2) = b̄1b2a2b̄2ā2b̄2b1

For any SU(2)-representation ϕ, let Stab(ϕ) = Z2, S
1 or SU(2) be its stabilizer.

Lemma 1.1, together with the presentation (2) of π1(W τ ), have the following
consequence.

Theorem 1.4. Any SU(2) representation ϕ of π1(M) extends to a representation
of π1(W τ ). The set of extensions, up to conjugacy, is in one-to-one correspondence
with Stab(ϕΣ).

Corollary 1.5. If ϕ is an SO(3)-representation of π1(M) whose restriction to Σ
is irreducible, then it has a unique extension to π1(W τ ).

Proof. Since M is a homology sphere, ϕ has a unique lift to an SU(2) represen-
tation, which has two extensions to π1(W τ ) according to the theorem. But these
become the same when projected back to SO(3). �

When S1×τ Σ is filled in to make the orbifold Y τ , it is no longer the case that
flat connections extend, because of the possible holonomy around the S1 fiber.
However, they do extend as flat orbifold connections.

Theorem 1.6. Let ϕ be an SO(3)-representation of π1(M) whose restriction to
Σ is irreducible. Then it has a unique extension to

ϕY : πorb1 (Y τ ) = π1(Y τ0 )→ SO(3)

Furthermore, this representation is non-trivial at each singular point in the orb-
ifold, and has w2(ϕY ) characterized as follows: it is the unique class in H2(Y τ0 ; Z2)
with trivial restriction to S1 ×τ Σ and with non-trivial restriction to each RP3

component of ∂Y τ0 .

Proof. Because τ2 is the identity, the presentation (2) implies that under the
extension of ϕ to π1(W τ ), the element z goes to an element of order two in SO(3).
(The hypothesis on ϕΣ implies that z can’t go to the identity.) Assuming that
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the base point was chosen to be one of the fixed points of τ on Σ, the generator
of the local fundamental group near the corresponding singular point of Y τ is
z. Hence the representation is non-trivial at that point. The generators for the
local fundamental groups of the other singular points are all conjugate to z, so the
representation is non-trivial at each of these points. That this specifies w2(ϕY ),
as described in the statement of the theorem, may be proved by examining the
long exact sequence of the pair (V0, ∂V0). �

In section 1.4, we will compare the Floer-grading of perturbed flat connections
on M and Mτ , using the theory of [9, 10, 11]. For connections which are actually
flat, there is a more elementary approach, based on the work of Atiyah-Patodi-
Singer [2, 3] as applied to the operator linearizing the ASD Yang-Mills equations
on W τ . This approach requires some information about the SU(2) representations
of π1(S1 ×τ Σ), and their associated ρ and Chern-Simons invariants, which we
develop in the remainder of this section. This material may safely be skipped by
those readers who would prefer to pass directly to the proof of the main theorems
on mutation.

Lemma 1.7. The space χ(S1 ×τ Σ) of SU(2) representations of π1(S1 ×τ Σ) is
connected.

In the proof we will consider elements of SU(2) as unit quaternions.

Proof. The standard presentation of π1(S1 ×τ Σ) as an HNN extension is

π1(S1 ×τ Σ) = 〈π1(Σ), z |z−1gz = τ∗(g)∀g ∈ π1(Σ)〉

Thus, a representation α of π1(S1 ×τ Σ) is determined by its restriction αΣ to
π1(Σ), and the choice of the element z conjugating αΣ to τ∗(αΣ). It is not hard
to show that z is determined up to multiplication by elements of the stabilizer of
αΣ.

The restriction map from α→ αΣ is then generically two-to-one, with connect-
ed fibers over the reducible connections on Σ. We will show that the two preimages
of an irreducible connection on Σ can be connected via a path in χ(S1×τ Σ). The
map to χ∗(Σ) is in fact a covering space, so the lemma will follow from the fact
that both χ∗(Σ) and the full SU(2)-representation variety χ(Σ) are connected. (In
fact, χ(Σ) is homeomorphic to CP3, and the reducibles are a singular quartic.)

It suffices to find a path connecting the two preimages (say α1, α
′
1) of a single

irreducible connection. The path will be made of 3 pieces: the first connecting α1
to a reducible connection α0, the second a path in the reducible stratum from α0
to α′0, and a third connecting α′0 to α′1.

Referring to the generators given in Figure 2, let the representation αr, r ∈



Vol. 74 (1999) Mutation and gauge theory I: Yang-Mills invariants 623

[0, 1] be given by

αr(a1) = exp(−πr
2
ı) αr(a2) = exp(−πr

2
ı)

αr(b1) =  αr(b2) = 

αr(t) = exp(
π(1− r)

2
)

The representation αr restricts to an irreducible representation on Σ, for 1 ≥
r > 0. Note that for these values of r, the other representation with the same
restriction to Σ differs only in having the opposite sign for αr(z). On the other
hand, α0 has α0(z) = ı = k, and is reducible on π1(Σ), with image lying in the
circle subgroup containing k. Consider the path α0,s, s ∈ [0, 1] of representations
with the same effect on π1(Σ), but with α0,s(z) = ı(sin(πs) + cos(πs)). Since
(sin(πs) + cosπs)) is in the centralizer of α0(π1(Σ)), this gives a path from α0 to
α′0, which is the same as α0 except that z is sent to −k. The path α′r, which is
the same as αr except for reversing the sign of αr(z), provides the third piece of
the path. �

It follows that the variety χ(S1 ×τ Σ) is has singularities sitting over the re-
ducibles in χ(Σ), but that the part sitting over the irreducible part of χ(Σ) is
smooth.

Because the Chern-Simons invariant doesn’t change on paths of flat connec-
tions, we immediately obtain:

Corollary 1.8. For any α ∈ χ(S1×τ Σ), the Chern-Simons invariant CS(α) = 0.

The ρ-invariant ρadαt is also constant along paths αt of flat connections lying
in a single stratum of χ, but in general it may jump as a path descends into a
lower stratum—cf. [14, 27]. The character variety of S1 ×τ Σ is not smooth, but
it turns out that the ρ-invariant doesn’t change.

Lemma 1.9. For any α ∈ χ(S1 ×τ Σ), the invariant ρadα(S1 ×τ Σ) = 0.

Proof. Because the ρ-invariant is locally constant on strata, it suffices to check
the vanishing for a single representation in each component of the three strata
of χ(S1 ×τ Σ). The technique is the same in each stratum, so we just check the
case when the restriction to S1 ×τ Σ is irreducible. Let α be a representation
sending a1 → ı, a2 → , and b1, b2 → 1. There are two choices (±k) for α(z); the
argument works with either one. Notice that αΣ extends over the obvious genus-
2 handlebody C with boundary Σ, so that α extends over the (4-dimensional)
mapping torus S1 ×τ C.

Essentially by definition [3]

ρadα(S1 ×τ Σ) = 3 sign(S1 ×τ C)− sign(S1 ×τ C; adα)
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Since τ∗ = −1 on H1(C), a simple Wang sequence shows that H2(S1 ×τ C) = 0,
so the first signature vanishes. To compute the second signature, we compare the
cohomology of S1 ×τ C with that of S1 ×τ Σ. Both of these are computed via
Wang sequences, summarized in the following diagram in which adα-coefficients
are understood.

0 −−−−−→ H1(S1 ×τ Σ) −−−−−→ H1(Σ)
τ∗−1−−−−−→ H1(Σ) −−−−−→ H2(S1 ×τ Σ) −−−−−→ 0x x x x

0 −−−−−→ H1(S1 ×τ C) −−−−−→ H1(C)
τ∗−1−−−−−→ H1(C) −−−−−→ H2(S1 ×τ C) −−−−−→ 0

Recalling that α is irreducible on Σ, we have that H2(Σ; adα) = H0(Σ; adα)
vanishes. Similarly, H2(C; adα) = H0(C; adα). One can compute that τ∗ is the
identity, using group cohomology. Alternatively, since H1(Σ; adα) is the tangent
space to χ(π1(Σ)), on which τ acts by the identity, τ∗ = id. A similar remark
applies to the action on H1(C; adα). Since C has the homotopy type of 1-complex,
0 = H2(C; adα) ∼= H1(C,Σ; adα), andH1(C; adα)→ H1(Σ; adα) is an injection.
A diagram chase shows that H2(S1 ×τ C; adα) injects into H2(S1 ×τ Σ; adα),
which implies that the second signature vanishes as well. �

The vanishing of CS(α) and ρadα could equally well have been obtained using
the Seifert-fibered structure of S1×τ Σ, as in [16]. Alternatively, the jumps in the
ρ-invariant could presumably be calculated using the techniques of [14, 27].

1.3. Perturbations

It is not necessarily the case that the flat connections on M form a smooth 0-
dimensional variety. If they don’t, then it is necessary to perturb the flatness
equations, in order to define the Floer homology groups. For the purposes of this
paper, it is desirable to make the perturbations in such a way that perturbed-flat
connections can be cut and pasted along Σ. Now a standard method (compare
[41, 18]) for perturbing the equation FA = 0 is to replace the right side by an
su2-valued 2-form supported in a neighborhood of a link L ⊂M . A suitable class
of 2-forms can be defined as follows: Choose first a link L in M , and for each
component Li a C2 function h̄i : [−2, 2]→ R. The whole collection determines a
function on the space of connections

h(A) =
∑
i

∫
D2

h̄i(tr holLi(x,A))η dx

where η is a bump function on the normal disk D2 and holLi(x,A) denotes the
holonomy around a curve in Li ×D2.
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Any such h, as a function on the space of connections, has a gradient ∇h(A),
which is naturally a 1-form on M , supported near L. The solutions to the equa-
tion FA = ∗∇h(A) are called h-flat connections, and it can be shown that for a
sufficiently complicated link L, a generic choice of h will result in a smooth moduli
space χh of h-flat connections. By construction, the h-flat connections are the
critical points of the function CSh = CS−h.

In order to cut/paste an h-flat connection along Σ, it is necessary that the
link L along which the perturbation is supported be disjoint from Σ. (In other
words, if L hits Σ, the h-flat connections on Σ don’t enjoy a symmetry property
analogous to 1.1.) Recall that M is divided into two pieces A and B. If L is
disjoint from Σ, then we can consider separately the h-flat connections on A and
B. Such connections can clearly be glued up exactly when they agree on Σ. In
other words, χh(M) is (essentially) the fiber product of

χh(A)×χ(Σ) χh(B)

(This description must be modified, in a standard way, when connections are
reducible along Σ.) In particular, the correspondence between flat connections on
M and Mτ continues to hold for h-flat connections which are flat along Σ.

Theorem 1.10. Let M be a homology sphere, and let Σ be an embedded genus-2
surface. Then there is a link L in the complement of Σ, and a perturbation of
the equation FA = 0 to an equation of the form FA = ∗∇h(A), where the 2-form
∗∇h(A) is supported near L, with the following properties: For any solution α
(i.e. h-flat connection), H∗(M ; adα) = 0, and the restriction of α to Σ is an
irreducible flat connection.

Here Hj(M ; adα) denotes the space of adα-valued harmonic j-forms on M .
We now turn to setting up the proof of Theorem 1.10. Let rA (resp. rB) denote

the restriction of connections from A (resp. B) to Σ. Finding a perturbation h
for which χh(M) is smooth breaks into two steps: smoothness for the two sides,
and transversality of the maps rA and rB. We will treat these issues using results
from the paper of C. Herald [22].

Following that paper, let M(X) denote the flat SU-connections on a manifold
X , and MZ2 (resp. MU(1),MSU(2)) denote the connections with stabilizer Z2
(resp. U(1), SU(2)). If X is a manifold with boundary, and G ⊂ H ⊂ SU(2), then
MG,H consists of connections with stabilizer (on X) equal to G and stabilizer of
the restriction to ∂X equal to H. For a generic perturbation h, Mh(X) will be a
stratified space, with strata indexed by the various possible pairs (G,H). In the
case when X = A or B, so that ∂X = Σ is a surface of genus 2, not all possible
combinations of (G,H) occur as strata of Mh(X), after the perturbation: Only
the (Z2,Z2), (Z2, U(1)), (U(1), U(1)), and (SU(2),SU(2)) strata will appear.

The paper of Herald gives some additional results pertaining to the restriction
map rA from the various strata MG,H

h (A) to MH
h (Σ). In rough terms, Herald’s
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paper shows that, for generic perturbations of the equations on A and B, the maps
rA and rB are transverse. Of course, since all the spaces involved are, at best,
stratified, the transversality must be taken in a suitable sense. Precise statements
are given in Lemma 33 and Proposition 34 of [22]. From these results, we will
prove:

Lemma 1.11. Suppose that M is a homology sphere. Then for a generic pertur-
bation h of the equations, the images of the restriction maps

MG,H
h (A) rA−−−−→ MH(Σ) rB←−−−− MG′,H

h (B)

are empty, except if (G,H) = (G′,H) = (Z2,Z2) or (SU(2),SU(2)). In the
(Z2,Z2) case, the maps will be transverse, while in the (SU(2),SU(2)) case the
intersection is isolated at the trivial connection.

Proof. According to [22, Theorem 15], generic perturbations of the equations
on A and B will eliminate all but the (Z2,Z2), (Z2,U(1)), (U(1),U(1)), and
(SU(2),SU(2)) strata. Evidently, connections with the same restriction to Σ must
have the same stabilizer on Σ, so there are a limited number of cases to examine.
Here is the full list of possibilities (modulo switching the letters A and B), together
with a description of what happens in each case:

1. rA(MSU(2),SU(2)
h (A)) ∩ rB(MSU(2),SU(2)

h (B)) = {Θ}: When h = 0, the only
points in the fiber product would be the flat connections with image of the
holonomy in Z2. But since M is a homology sphere, the only possibility is the
trivial connection, which is an isolated point in χ(M) (cf. [1]). This situation
is stable under small perturbations, so remains true for the perturbed moduli
space.

2. rA(MU(1),U(1)
h (A)) ∩ rB(MU(1),U(1)

h (B)) = ∅: This intersection is empty be-
fore the perturbation, since M is a homology sphere, and so remains empty if
h is sufficiently small.

3. rA(MZ2,U(1)
h (A))∩rB(MU(1),U(1)

h (B)) = ∅: The image ofMU(1),U(1)
h (B) is a

2-dimensional submanifold of the smooth, 4-dimensional manifold MU(1)(Σ).
Theorem 15 of Herald’s paper says that if h is generic, then MZ2,U(1)(A) is
0-dimensional, so its image under rA is a finite set of points in MU(1)(Σ).
Moreover, Lemma 33 of [22] says that the restriction map from an appropriate
subset of {connections} × {perturbations} to MU(1)(Σ) is a submersion. This
means that rA(MZ2,U(1)

h (A)) can be moved arbitrarily in MU(1)(Σ), and so

can be arranged to miss rB(MU(1),U(1)
h (B)).

4. rA(MZ2,U(1)(A)) ∩ rB(MZ2,U(1)(B)) = ∅: This is the same argument: the
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two finite sets of points can be made disjoint by a small perturbation.

5. rA(MZ2,Z2
h (A))∩| rB(MZ2,Z2

h (B)) = a finite set of points: As in the previous
two items; the transversality follows from [22, Lemma 33]. �

Proof of Theorem 1.10. Choose a perturbation h as described in Lemma 1.1.
Then Mh(M), being the fiber product of Mh(A) and Mh(B), will consist of
the (isolated) trivial connection, together with the fiber product of the (Z2,Z2)
strata. A final application of [22, Lemma 33] shows that the maps rA and rB
are generically immersions of smooth 3-manifolds into into MZ2(Σ), so the fiber
product is a finite set of points. The maps on harmonic forms induced by rA and
rB are just the differentials of those maps. So the fact that the cohomology at any
point in the fiber product is trivial is simply a restatement of the transversality
condition. �

As described in [7, §3.3], the perturbed equations on M extend to perturbed
anti-self-duality equations on Y τ . Here, the perturbation is supported on a neigh-
borhood of L × R ⊂ Y τ∞, and is hence a ‘time independent’ deformation of the
ASD equations, in the terminology of [7]. (The notation Y τ∞ indicates that half-
infinite tubes are added along the boundary components of Y τ .) In our situation,
the solutions will be flat on the complement of the neighborhood ν(L ×R), and
so we will continue to refer to them as h-flat connections.

Definition 1.12. The moduli space of h-ASD orbifold SO(3) connections on Y τ∞,
with exponential decay to h-flat connections α, β on M and M τ , respectively, will
be denoted by

Mh(Y τ ;α, β)

If, as in the corollary below, the Stiefel-Whitney class w or the charge c is specified
in advance, the notation will be expanded to Mw

h,c.

Corollary 1.13. Let M be a homology sphere containing a genus-2 surface Σ.
Let ∗∇h(A) be a 2-form supported along a link L in the complement of Σ, having
the properties described in Theorem 1.10. Then for any h-flat connection on M ,
there is a unique extension to an h-flat orbifold connection on Y τ . (The behavior
at the singular points, and w = w2 of the bundle are as specified in Theorem 1.6.)
Restricting to the boundary gives a one-to-one correspondence

Mh(M)↔Mw
h,0(Y τ )↔Mh(Mτ ).

Proof of corollary. Apply the constructions of section 1.2 to the 3-manifold N
obtained by removing a tubular neighborhood of L from M . (Note that the argu-
ments in section 1.2 did not assume that M was closed, and hence apply without
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change to N .) The result is a cobordism from N to Nτ , obtained by removing a
tubular neighborhood of L ×R from Y τ . By Theorem 1.6, there are one-to-one
correspondences between χ(N), the flat orbifold connections on Y τ − ν(L ×R),
and χ(Nτ ). The argument that a flat connection on M − ν(L) extends uniquely
to an h-flat connection on M applies in the 4-dimensional situation, and shows
that a flat connection on Y τ − ν(L×R) extends uniquely to an h-flat connection
on Y τ . �

The h-flat extension defines the unique element of Mw
h,0(Y τ ;α, ατ ). We will

show later that the formal dimension of this moduli space is 0; we need to know
that the one point in the moduli space is a smooth point. The usual deformation
theory says that this will follow from the following lemma.

Lemma 1.14. Let A be the unique element of Mw
h,0(Y τ ;α, ατ ). Then the space

of harmonic forms H1(Y τ ; adA) vanishes.

Proof. In the unperturbed situation (i.e. if α were a smooth isolated flat con-
nection), this could be readily proved by interpreting H1(Y τ∞; adA) as a twist-
ed cohomology group, and then computing topologically, using the isomorphisms
H1(M ; adα) i∗← H1(Y τ ; adA) i∗→ H1(Mτ ; adατ ) = 0. Equivalently, one could
interpret the cohomology group in terms of group cohomology, and use the pre-
sentation (2) of π1(W τ ) to obtain the same isomorphism. Note that either of these
arguments would apply to Y τ − ν(L×R). The proof of the lemma would thus be
completed if there were an appropriate Mayer-Vietoris principle for ad(A)-valued
harmonic forms on manifolds such as Y τ∞. Here it would have to be applied to the
decomposition of Y τ into Y τ−ν(L×R)∪ν(L×R). While such an argument would
undoubtedly succeed, we know of no convenient reference, and proceed somewhat
differently.

It is explained carefully in Appendix A of [10] that the (exponentially decaying)
harmonic forms on Y τ∞ can be identified with harmonic forms on Y τ (regarded as
having a long, but finite, collar on its boundary.) Double Y τ along its boundary, to
obtain an orbifold Z, which contains a copy of ν(L×S1). By a Mayer-Vietoris argu-
ment, found in [10, Appendix B], the harmonic formsH1(Y τ ; adA) ∼= H1(Z; adA),
so it suffices to show the latter. But now we can use the Mayer-Vietoris principle
for

Z = (Z − ν(L× S1)) ∪ ν(L× S1)

As remarked above, the restrictionH1(Z−ν(L×S1); adA)→H1(M−ν(L); adA)
is an isomorphism, as is the restriction H1(ν(L×S1); adA)→H1(ν(L); adA). By
a diagram chase, the vanishing of the harmonic forms for Z follows from the same
on M , plus the Mayer-Vietoris principle for forms on M = (M − ν(L)) ∪ ν(L). �
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1.4. Spectral flow

In this section we show that corresponding h-flat connections in χh(M) and
χh(Mτ ) have the same grading in Floer homology. As remarked at the end of
section 1.2, for connections which are actually flat, this can be proved using the
Atiyah-Patodi-Singer index theorem. (One would need, in addition to the ρ and
CS invariants computed there, a calculation of the twisted signature of W τ .) This
approach is not workable for the h-flat connections because it would involve a di-
rect calculation of the index of a Dirac-type operator, whose kernel and cokernel
are not topological invariants. An alternative technique, which we adopt, is to
use the definition of the grading in terms of spectral flow of paths of differential
operators. Given the splitting of M along Σ into pieces A and B, work of Cappell,
Lee, and Miller [9, 10, 11] (and others [13, 36]) calculates the spectral flow on M
in terms of spectral flows of operators on A and B, and an ‘interaction term’ called
the Maslov index. We will show that the these terms do not change in passing
from α to ατ .

Suppose that M has a Riemannian metric, which for future reference will be
chosen to be a product Σ × [−r, r] near Σ. Here r is chosen sufficiently large, so
that Theorem C of [11] applies to all paths of connections under consideration.
Let α be a connection on M and choose a path αt of connections from the trivial
connection ΘM to α. For each αt there is defined a first-order elliptic operator

Dαt =
(

0 d∗αt
dαt − ∗ dαt

)
:

Ω0(M ; adαt)
⊕

Ω1(M ; adαt)
→

Ω0(M ; adαt)
⊕

Ω1(M ; adαt)
(3)

The Floer grading of α is then given by the spectral flow of the path of operators
{Dαt |t ∈ [0, 1]}. To be more precise, it is the (−ε, ε)–spectral flow in the terminol-
ogy of [11], i.e. the intersection number of the graph of the eigenvalues of Dαt in
[0, 1]×R with the line from (0,−ε) to (1, ε). The work of Cappell–Lee–Miller ac-
tually computes the (ε, ε)–spectral flow, which we will denote by SFε. Fortunately,
it is not hard to account for the difference between the two spectral flows.

Lemma 1.15. Let ε > 0, and suppose that Dt be a path of self-adjoint operators,
such that any nonzero eigenvalue λ of D0 or D1 satisfies λ > ε. Then the (−ε, ε)
spectral flow SF(Dt) and the (ε, ε) spectral flow SFε(Dt) are related by

SF(Dt) =
ε

SF(Dt) + dim(ker(D0))

Remark 1.15. As in [11], the hypothesis of the lemma will hold if ε is chosen to
be 1/r2 for a sufficiently large value of r.

Proof. The hypothesis implies that a 0-eigenvalue of D0 either flows to a positive
eigenvalue > ε of D1, to a 0-eigenvalue, or to a negative eigenvalue < −ε. In
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the first case, it contributes +1 to SFε and 0 to SF. In the latter two cases, it
contributes −1 to SF, and 0 to SFε, and the result follows since all other paths of
eigenvalues contribute the same to both counts of spectral flow. Another way to
phrase the argument is that any path must have 0 intersection number of with the
(oriented) triangle in the (t, λ)-plane with vertices (0,−ε), (0, ε), and (1, ε). From
this point of view, the lemma states the obvious fact that the intersection with
the piece along the λ-axis is given by dim(ker(D0)). �

The spectral flow SFM(DΘ, Dα) being independent of the choice of path means
that we can choose a path of connections which is well-suited to cutting and
pasting.

Construction 1.16. Recall from Theorem 1.10 that the h-flat connection α is
flat and irreducible on Σ. Since χ(Σ) is connected, there is a smooth path αΣ,t of
flat connections on Σ, with αΣ,0 the trivial connection. It is convenient to choose
the path so that αΣ,t is irreducible for 0 < t ≤ 1. This may be done since the
space of irreducible flat connections on Σ is connected. One consequence of this
choice is that the kernel of the ‘tangential’ operator D̂αt , given by H0(Σ, adαt)⊕
H0(Σ, adαt) ⊕ H1(Σ, adαt), is constant for t > 0. Using a partition of unity,
extend {αΣ,t} to a path of connections on M with α0 the trivial connection. The
connections may be assumed to be flat, and pulled back from Σ, on the tube
[−r, r]× Σ.

By Lemma 1.1, there is an element gt ∈ SU(2) conjugating αΣ,t ◦ τ∗ to αΣ,t.
Since αΣ,t is irreducible, gt is determined up to sign, and so the induced path in
SO(3) is smooth. By path-lifting for the double covering SU(2)→ SO(3), the path
gt may thus be assumed to be smooth. By choosing the path to agree with some
previously specified model path near t = 0, we can arrange that the path has a
smooth extension to t = 0.

The result of this construction is that each element in the path αt can be cut
and pasted to give a smooth path of connections ατt on Mτ , giving rise to paths
of operators Dαt and Dατt

on M and Mτ . The splitting technique for computing
the spectral flow of Dαt and Dατt

involves the restriction of su2-valued forms (and
operators on these spaces) on M to those on A and B and subsequently to Σ. We
make the following convention:

Convention 1.17. Forms on A, B and Σ, all viewed as submanifolds of M τ , are
identified with the same forms when A, B and Σ are viewed as submanifolds of
M .

The difference between gluing A to B via τ and via the identity is encoded in
the restriction maps from forms on A or B to those on Σ. By construction, A as
a submanifold of Mτ is identified with A as a submanifold of M , and under this
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identification, ατA is identified with αA. In this way, the restriction map

Ω∗(A; adατt )→ Ω∗(Σ; adατt )

is the same as the restriction map

Ω∗(A; adαt)→ Ω∗(Σ; adαt).

In contrast, the restriction map from forms on B (viewed as a subset of M τ ) to
forms on Σ is given by the composition

Ω∗(B; adαt)
r∗B→ Ω∗(Σ; adαt)

τ∗→ Ω∗(Σ; adαt) (4)

where r∗B is the restriction map from forms on B ⊂ M to forms on Σ and τ̂∗ is
induced by τ as described in equation (1) at the beginning of section 1. (Note that
τ̂∗ actually depends on t, but this dependence will be suppressed in the notation.)

The operators Dαt(A) and Dατt
(A), obtained by restricting from M and M τ to

A are identical, as are the the restrictions Dαt(B) and Dατt
(B). It is important to

remark, however, that because of the action of τ̂∗ on Ω∗(Σ; adα), the boundary-
value problems on B associated to the two operators are not a priori the same.

We now summarize the splitting results from [10, 11] which will be used to
compare the spectral flow of the path αt with that of its mutated cousin. As
described in the paragraphs before Theorem C in [11], divide the interval [0, 1]
into sub-intervals 0 = a0 < a1 . . . an = 1 with the property that for t ∈ [ai, ai+1]
there are no eigenvalues of D̂αt in the intervals (Ki,Ki + δ) and (−Ki − δ,−Ki),
for some positive Ki and δ. The spectral flow SFε is then the sum of the spectral
flows on the subintervals, so it suffices to compare on the intervals [ai, ai+1].

For t in such an interval, there are smoothly varying Atiyah-Patodi-Singer
type boundary conditions for the Dαt(A) and Dαt(B) (i.e. the restriction of Dαt

to A (resp. B)), described as follows. The finite dimensional space H(t,Ki) ⊂
Ω0(Σ; adαt) ⊕ Ω1(Σ; adαt) is defined to be the span of the eigenfunctions of
D̂αt with eigenvalue less than Ki in absolute value. Note that the images of
ker(Dαt(A)) (resp. ker(Dαt(B))) under restriction to Σ give Lagrangian subspaces
Lt(A) (resp. Lt(B)) in ker(D̂αt). These are extended to Lagrangian subspaces of
H(t,Ki) by defining

Lt(A) = Lt(A)⊕ [P+(t) ∩H(t,Ki)]
Lt(B) = Lt(B)⊕ [P−(t) ∩H(t,Ki)]

where P±(t) are the sums of the positive/negative eigenspaces of D̂t. The resulting
path (for t ∈ [ai, ai+1]) of pairs of Lagrangian subspaces defines (cf. [9]) a Maslov
index

Mas(Lt(A),Lt(B)) ∈ Z.
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The operator Dαt(A) (for t ∈ [ai, ai+1]) is Fredholm on the domain consisting
of forms in L2

1(Ω0(A; adαt)⊕ Ω1(A; adαt)) whose restriction to Σ lie in

Lt(A)⊕ P+(t,Ki).

Here P+(t,Ki) denotes the span of the eigenfunctions of D̂αt with eigenvalue
greater than Ki. Similarly, Dαt(B) is Fredholm, where now its domain is specified
by the requirement that the forms, upon restriction to Σ, lie in Lt(B)⊕P−(t,Ki).
It follows that the spectral flows SFε(Dαt(A)) and SFε(Dαt(B)) are defined for
t ∈ [ai, ai+1].

Theorem 1.18. For any irreducible h-flat connection α, SFM (DΘ, Dα) =
SFMτ (DΘ, Dατ ). Equivalently, the Floer grading of ατ is equal to the Floer grading
of α.

Proof. Because M and Mτ are both homology spheres, and α0 and ατ0 are trivial
connections, Lemma 1.15 implies that it suffices to show that SFεM (DΘ, Dα) =
SFεMτ (DΘ, Dατ ). Moreover, the discussion in the preceding paragraphs implies
that it suffices to prove this equality when t ranges over the interval [ai, ai+1].

Theorem C of [11] states that for sufficiently small ε,

SFεM (Dαt) = SFε(Dαt(A)) + SFε(Dαt(B))

+ Mas(Lt(A),Lt(B)) +
1
2

[dim ker D̂(ai+1)− dim ker D̂(ai)] (*)

where all of the terms are calculated on the interval [ai, ai+1]. Hence it suffices
to show that the terms on the right hand side in the analogous formula (∗τ ) for
SFεMτ (Dατt

) are the same as those above.
Using the convention 1.17, the operator D̂ατ , when Σ is viewed as a submanifold

of Mτ is identified with D̂α (for Σ viewed as a submanifold of M). Hence the
kernel of D̂α is unchanged when α is replaced by ατ , so the last terms in equations
(*) and (∗τ ) are the same. Similarly, the Lagrangian subspace Lt(A) does not
change, whether A is viewed as a submanifold of M or of M τ . It follows that
SFε(Dαt(A)) = SFε(Dατt

(A)), because the two refer to spectral flow of operators
which are viewed as identical.

To show that SFε(Dαt(B)) and the Maslov index term do not change under
the mutation, it suffices to show that τ̂∗ takes Lt(B) to itself. Now τ̂∗, being an
automorphism of αt, commutes with D̂αt , and hence preserves the eigenspaces of
that operator. In particular, the summand [P−(t) ∩H(t,Ki)] of Lt(B) is preserved
by τ̂∗, so we need to know the effect of τ̂∗ on the Lagrangian subspace Lt(B) ⊂
ker(D̂αt).

Claim. Let α be a flat connection on Σ. If α is irreducible, so that ker(D̂α) ∼=
H1(Σ; adα), then τ∗ acts as the identity on ker(D̂α). If α is SU(2)-reducible, then

ker(D̂α) ∼= (H0(Σ)⊗ su2)⊕ (H0(Σ)⊗ su2)⊕ (H1(Σ)⊗ su2)
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and τ∗ is the identity on the first two summands and −1 on the third.

Proof of Claim. In the case that αΣ is irreducible, one can show that that τ̂∗ is the
identity, using group cohomology. Alternatively, since H1(Σ; adα) is the tangent
space to the (irreducible part of) χ(π1(Σ)), on which τ̂ acts by the identity, τ̂∗ = id.
When αΣ is SU(2)-reducible, then the cohomology groups are just the ordinary
de Rham cohomology groups, tensored with su2, and the result is trivial. �

So in the case that αΣ is irreducible, the invariance of Lt(B) under τ̂∗ follows
directly from the claim. In the case that αΣ is SU(2)-reducible, i.e. when t = 0,
the Lagrangian subspace L0(B) splits as the sum of r∗B(H1(B; adα)) and the anti-
diagonal in H0(Σ; adα)⊕H0(Σ; adα). According to the claim, it is again the case
that τ̂∗(L0(B)) = L0(B), and the theorem follows. �

The preceding argument contains most of the ingredients for comparing the
Z-grading, as defined in [17], for the groups HFµ(M) and HFµ(Mτ ). The spectral
flow defined above is defined for paths of actual connections, rather than gauge-
equivalence classes of connections. An fundamental observation is that it descends
to a function on A/G0, where G0 is the degree-0 gauge group. Likewise, the
(perturbed) Chern-Simons function on connections descends to a function C̃Sh :
A/G0 → R. (Given a choice of trivial connection ΘM , a lifting α̃ ∈ A/G0 of an
h-flat connection, and a path of connections from ΘM to α̃, the usual Chern-Weil
integral over M × I defines C̃Sh(α̃).) Both SF and C̃Sh depend on this choice of
trivial connection.

Fix any choice ΘM , which will be used to pick out connections on all the other
manifolds involved in the argument; for starters the trivial connection on Σ will
simply be the restriction of ΘM . Recall construction 1.16 from the discussion
leading up to the proof of Theorem 1.18, in which we chose a specific path of
connections αt on M , which were flat and irreducible on Σ, with endpoint the
trivial connection ΘM . Simultaneously, we chose a path of gauge transformations
gt on Σ with g∗t (αt) = τ∗(αt). We make the convention in the subsequent discus-
sion that any path of connections on M with endpoint ΘM should agree with this
fixed model path near its endpoint. Note that g0 will not be the identity gauge
transformation, because gt is of order 4 for t > 0.

Choose a real number µ which is not in the discrete set {C̃Sh(α)| α ∈ χh(M)},
and for each h-flat connection α ∈ χh(M), pick a representative α̃ of its G0 orbit
with C̃Sh(α̃) ∈ (µ, µ+1). The connections α̃ form the basis of CFµ∗ , and the grading
is defined in terms of spectral flow, where one uses the same trivial connection,
and path, as were used to define the Chern-Simons invariant. (We remind the
reader that the spectral flow SF(Dα, Dβ) changes by 8 deg(g) when one replaces α
by g∗(α). Hence, if we consider specific G0-representatives, the grading is actually
Z-valued, and not just Z/8-valued.)
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Theorem 1.19. For any h-flat connection α, the Z-grading of ατ is equal to the
Z-grading of α. Specifically, this means:
1. The h-flat connection ατ constructed by cutting and pasting satisfies C̃Sh(α) =

C̃Sh(ατ ).
2. If µ 6∈ {C̃Sh(α)| α ∈ χh(M)}, then µ 6∈ {C̃Sh(β)| β ∈ χh(Mτ )}.
3. SFM(DΘ, Dα) = SFMτ (DΘ, Dατ )

Proof. Choose a path αt of connections on M from ΘM to α, agreeing with the one
from construction 1.16 near t = 0. As was remarked earlier, the whole path can be
extended to a path of connections At on the basic cobordism W τ . The restriction
of At to the boundary component M τ starts at a trivial connection ΘMτ and ends
at ατ . Because αΣ,t is flat, the restriction (say, αS,t of At to the other boundary
component S1 ×τ Σ is flat. However, αS,0 is not the trivial connection, because
the holonomy around z is non-trivial.

In a standard way, the family of connectionsAt fits together to give a connection
on the 5-manifold W τ × I; denote the restriction of this connection to S1×τ Σ× I
by AS . Applying Stokes’ theorem to the perturbed Chern-Weil integrand

1
8π2 Tr((FA + x) ∧ (FA + x))

gives

C̃SM (α)− C̃SMτ (ατ ) =
1

8π2

∫
S1×τΣ×I

Tr(FAS ∧ FAS )

+
1

8π2

∫
Wτ

Tr((FA1 + x) ∧ (FA1 + x)) − 1
8π2

∫
Wτ

Tr((FA0 + x) ∧ (FA0 + x))

Because each connection αS,t is flat, the first integral on the right side of this
equation vanishes. Similarly, since A0 and A1 are h-flat connections, the other two
integrals vanish, and the first item is proved. The second one follows immediately,
and the third one is the content of Theorem 1.18. �

1.5. Invariance of HF∗ under mutation

We can now state and prove a more precise version of Theorem 1.

Theorem 1.20. Let M be an oriented homology 3-sphere, with (instanton) Floer
homology HF∗(M), which contains a genus-2 surface, and let M τ be the result of
mutation along Σ. Let Y τ be the orbifold constructed in section 1.2. Then

Y τ∗ : HFi(M)
∼=→ HFi(Mτ )

Similarly, if µ is a real number which is not the Chern-Simons invariant of any
flat connection on M , then Y τ∗ induces an isomorphism on the Z-graded instanton
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homology of Fintushel-Stern:

Y τ∗ : HFµ∗ (M)
∼=→ HFµ∗ (Mτ ).

Proof. Choose a perturbation, as in Theorem 1.10, so that the h-flat connections
on M and Mτ are all isolated smooth points. This perturbation extends to a
‘time-independent’ perturbation of the ASD equations on Y τ , and so induces a
map on the Z-graded theory as well as the usual Floer theory. Choose a metric
on Y τ which is generic, so that all moduli spaces on Y τ are smooth of the correct
dimension. Let α and β be h-flat connections onM and Mτ , respectively. As usual
in Floer theory, the map induced by Y τ is given on the chain level by a matrix,
whose (α, β) entry counts (with signs) the number of points in the 0-dimensional
moduli space

Mw
h (Y τ ;α, β)

Since Y τ is an orbifold, one needs to check that Y τ∗ , as defined this way, is in fact
a chain map.

As usual in Floer theory, this amounts to a constraint on the possible non-
compactness of 1-dimensional moduli spacesMw

h (Y τ ;α, β). One needs to see that
there cannot be a 1-dimensional moduli space bubbling off at the singular points
of the orbifold. Because w2 is preserved in Uhlenbeck limits, the background
connection in such a circumstance would necessarily have non-trivial holonomy at
each cone point. But (cf. [4, 19, 20]) the minimum dimension for a moduli space
of ASD connections on Σ(RP3) is 2. From the description of the cohomology of
W τ in Lemma 1.3, the rational cohomology of Y τ is readily obtained. Regarding
Y τ as a rational homology manifold, we have

b+2 (Y τ ) = 2, χ(Y τ ) = 4, and σ(Y τ ) = 0

Since b+2 (Y τ ) > 1, reducibles may be avoided, and so Y τ∗ yields a well-defined
chain map. It remains to compute the degree of Y τ∗ , and to show that it induces
an isomorphism on HF∗ and HFµ∗ .

The degree is computed (compare [15]) by the formula:

deg(Y τ∗ ) = 3(b1(Y τ )− b+2 (Y τ )) +
∑

cone points

(dσ + dχ)

where the dσ and dχ in the last sum refer to the signature and Euler characteristic
defects associated to each cone point. Since the holonomy of the bundle is non-
trivial at each cone point, dχ = 1 and dσ = 0. From the cohomology calculations,
it follows that deg(Y τ∗ ) = 0.

The h-flat connections yield bases for the Floer chains on M and M τ , and
Y τ∗ is described as a matrix with respect to those bases. We will show that Y τ∗ ,
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as a map on CF∗, is represented by an upper triangular matrix, with ±1 along
the diagonal. (The signs are presumably all 1’s, but we have not checked them.)
As explained in [17] (with an obvious adaptation to the orbifold setting), the Z-
grading induces an increasing filtration on CF∗, and the chain map Y τ∗ respects
the filtration; in matrix terms this means that Y τ∗ is upper triangular. Moreover,
the proof of this statement (in Theorem 5.2 of [17]) shows that if α ∈ χh(M) and
β ∈ χh(Mτ ) have the same grading, then any A in a 0-dimensional moduli space
Mw

h (Y τ ) must in fact be h-flat. (A similar argument, in terms of an ordering on
the h-flat connections, is presented in [7, §3.1].) In particular, the (α, ατ ) entry is
the number of h-flat extensions of α over Y τ , which is one. Lemma 1.14 says that
this one point in Mw

h (Y τ ;α, ατ ) is a smooth point, so it counts for ±1. Thus Y τ∗ ,
which is a chain map, is an isomorphism, and therefore induces an isomorphism
on HFµ∗ and HF∗. �

2. Mutation of 4-manifolds

The fact that the involution τ is in the center of the mapping class group of the
genus-2 surface leads to two types of cutting/pasting operations along certain 3-
manifolds embedded in a 4-dimensional manifoldX . Under the hypothesis that the
character varieties of the 3-manifold in question is smooth, we will show that the
operation preserves the SU(2)-Donaldson invariant of X . Both constructions have
the additional feature that it appears that gauge-theoretic invariants associated
to SU(3)-bundles should change. There is no known construction at this time for
invariants associated to higher-rank bundles, unfortunately.

2.1. Mutation along 3-manifolds of Heegaard genus-2

The following simple lemma is well-known: see [29] and the discussion of problem
3.15 in [26].

Lemma 2.1. Let M3 be a closed 3-manifold which admits a Heegaard splitting of
genus 2. Then there is an involution T : M →M which preserves the handlebodies
and restricts to τ on the Heegaard surface Σ.

The statement of the lemma contains the proof-since τ commutes with the
attaching map, its extension over the genus-2 handlebodies fits together to define
an involution on M .

Definition 2.2. Suppose thatX is a 4-manifold, containing a genus-two 3-manifold
M . Then Xτ , the mutation of X along M is defined to be the result of cutting
and pasting X along M , using the involution T described in the previous lemma.

The free group on two letters has the same symmetry property (Lemma 1.1)
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with regard to SU(2) (or SO(3)) representations as does the fundamental group of
a genus-2 surface. This may be proven by computing characters, as in [40], or by
the following direct argument. Write A ∈ SU(2) as exp(a), for a ∈ su2. Now any
element c ∈ a⊥ ⊂ su2 of length 1/π will have the property that

exp(c)−1A exp(c) = A−1 = T∗(A).

If B is another element of SU(2), written as exp(b), then there is at least one
element c in a⊥ ∩ b⊥ of length 1/π. Conjugating by exp(c) will take A → T∗(A)
and B → T∗(B). The same proof works for SO(3) representations.

Theorem 2.3. Suppose that M is a genus-2 homology sphere, for which the SU(2)
character variety χ(M) is smooth. Then for any Donaldson invariant DX which
is defined on X, we have

DX = DXτ

Remark. As usual in gauge theory, the hypothesis of smoothness means that
χ(M) is a smooth manifold, whose tangent space at α is given by H1(M ; adα).

Proof. Under the smoothness hypothesis, it is known (compare [21, 33]) that
one can express the Donaldson invariant in terms of ASD connections on the
components of X −M , exponentially decaying to flat connections on M . But the
symmetry property described above shows that T∗ acts trivially on the character
variety χ(M), and hence does not change the gluing picture, so the Donaldson
invariant does not change. �

It seems reasonable that the theorem should continue to hold in the general
case, when χ(M) is not discrete. One would need to first find a T -equivariant
perturbation h of the Chern-Simons invariant, and then to show that the induced
action of T on the h-flat connections is the identity. It is not hard to find an equiv-
ariant perturbation, by arranging that the link L along which the perturbation is
supported to be T -invariant. Unfortunately, we have been unable to prove that
this means that the action of T ∗ on χh(M) is the identity.

If there were a Donaldson-type theory for the group SU(3), then mutant 4-
manifolds would not likely have the same invariants. Here is an example, based
on calculations of Hans Boden, which is waiting for an appropriate theory.

Example. Suppose that M = Σ(a1, a2, a3) is a Seifert-fibered space with 3 ex-
ceptional fibers. Then M has a genus-2 Heegaard splitting. View M as S1 ×
(S2 − 3 intD2) ∪3 S

1 × D2, where the gluing maps give rise to the multiplicity
of the fibers. One of the genus-2 handlebodies is given by the union of two of
the S1 ×D2, together with a thickened arc joining them. (That the complement
is also a handlebody is left to the reader to verify!). In [6, §5.1], Boden shows
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that for Σ(2, 3, 7) there are 4 irreducible SU(3) representations, two of which are
the complexification of an SO(3) representation, and which are therefore invari-
ant under T∗. The other two, denoted ρ3 and ρ4, are interchanged by T∗. One
would expect that T∗ would thus act non-trivially on an SU(3) Floer-type theory.
A similar phenomenon occurs for Σ(2, 3, 6k ± 1) and presumably most Brieskorn
spheres.

Remark. If the Brieskorn sphere Σ is viewed as the link of a surface singularity
(defined over the reals), then T may be identified with the involution coming from
complex conjugation. In particular, T extends over such 4-manifolds as the Milnor
fiber and canonical resolution of the singularity. So, for example, mutation of a
K3 surface along Σ(2, 3, 7) does not produce any new 4-manifolds. As pointed out
by Tom Mrowka, T∗ does not act trivially on the Floer-theory associated to the
Seiberg-Witten equations. For it may be seen from the description of T as complex
conjugation and the computations in [34] that T∗ in fact acts as the well-known
involution in the Seiberg-Witten theory.

2.2. Mutation along genus-2 mapping tori

Suppose that ϕ is a diffeomorphism of Σ, and form the mapping torus S1×ϕΣ. The
fact that τ is in the center of the genus-2 mapping class group implies that there is
an involution T : S1 ×ϕ Σ→ S1 ×ϕ Σ whose restriction to a fiber is τ . If S1 ×ϕ Σ
is embedded in a 4-manifold X , then as above, we define the mutation of X along
S1×ϕΣ by cutting and pasting via T . In order to carry out the argument described
above, it is important to avoid the reducible flat connections on S1×ϕΣ. One way
to do this is to assume that the Donaldson invariant being computed is associated
to an SO(3) bundle with 〈w2,Σ〉 6= 0. We need the analogue of Lemma 1.1:

Lemma 2.4. Let T be the involution on S1 ×ϕ Σ induced by τ , and let ρ be an
SO(3) representation of π1(S1 ×ϕ Σ) such that 〈w2(ρ),Σ〉 6= 0. Then ρ ◦ T∗ is
conjugate to ρ.

Proof. The fundamental group of S1 ×ϕ Σ has a standard presentation as

〈t, π1(Σ)|t−1gt = ϕ∗(g) ∀g ∈ π1(Σ)〉
The main point to notice is that if ρ is any representation (SU(2) or SO(3)), then
ρ(t) is determined by ρΣ, up to elements in the centralizer of ρ(π1(Σ)). Let γ be
any element with γ−1ρΣγ = ρΣ. Then it is easy to check that γ−1ρ(t)γ = hρ(t)
for some h in the centralizer of ρ(π1(Σ)). In order to prove the lemma we must
show that in fact h is trivial. Under the hypothesis on w2, there are only two
possibilities: either the centralizer is trivial (in which case the lemma follows
directly), or ρ(π1(Σ)) is a Z2 ⊕ Z2 subgroup, which is its own centralizer. But
since every element of Z2 ⊕ Z2 has order 2, one can take γ to be trivial, in which
case it certainly conjugates ρ(t) to itself. �
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With this lemma in hand, the proof of Theorem 2.3 yields an analogous theorem
about mutation along mapping tori.

Theorem 2.5. Suppose the mapping torus S1 ×ϕ Σ is embedded in X, and that
Dw is a Donaldson invariant associated to a bundle with 〈w2,Σ〉 6= 0. Then
Dw(X) = Dw(XT ).

This result could apparently be deduced using techniques of V. Muñoz [35].
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