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1. Introduction

Let P be a polygon in the plane. A point moves along a billiard trajectory in P
if it moves with constant speed along a straight line in the interior of P and if
it reflects off edges so that the speed is unchanged and the angle of incidence is
equal to the angle of reflection. If a billiard trajectory hits a vertex then we do not
define the path further. We are interested in statistical properties of trajectories.
When are they periodic? If they are not periodic to what extent do they “fill up”
the polygon?

Billiard trajectories are projections of orbits of a flow on a four dimensional
phase space which we can think of as the tangent bundle of P . We can make
this flow continuous away from the corners by identifying the appropriate inward
and outward pointing vectors over the edges of P . We leave the flow undefined
over the vertices of P . The billiard flow can be thought of as a geodesic flow and
in particular as a Hamiltonian flow ( a general reference for Hamiltonian flows
is [Ad]). Hamiltonian flows can be quite simple or quite complex; a first step in
analyzing the complexity of such a flow is to look for “integrals of motion”. These
are functions on the phase space which are invariant under the flow. For billiard
flows the length of a tangent vector provides one such integral of motion. We have
a second integral of motion in the special case in which the polygon P is rational
i.e. each of its corner angles is a rational multiple of 2π. The existence of these
two integrals of motion mean that the billiard flow is effectively taking place on
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surfaces inside the phase space. Let Mθ be one of these surfaces.
In a Hamiltonian flow every integral of motion gives rise to a vector field. In

our case the two integrals of motion give rise to a pair of non-zero vector fields on
the surfaces Mθ away from the singular points. The two integrals of motion are in
involution, which means that the vector fields commute. In particular this means
that there is a canonical local coordinate system on Mθ with respect to which
the flow is linear (away from the singularities). If the billiard flow were a smooth
flow then the existence of two integrals of motion in involution would give us an
integrable flow. In this case we could assert that the invariant surfaces are tori
and that the flows on these tori are linear. However the presence of singularities
for the billiard flow gives rise to singularities of the surfaces Mθ, and in fact these
surfaces need not be tori–they can have any positive genus. Berry and Richens
[BR] use the suggestive term pseudo-integrable for the billiard flow on a rational
polygon. Even though the flows on these surfaces are locally linear the dynamics
can be quite complicated and hard to describe explicitly, unlike the case of the
torus. This suggests the idea that there is some class of rational billiard flows
like the integrable flows in the smooth case whose special properties make the
dynamics easy to describe. We review three such properties.

When Mθ is a torus with punctures then the flow is integrable in the strongest
sense. Rational polygons with this property are called simply integrable. The
integrable polygons are precisely the polygons which tile the plane by reflections.
The list of integrable polygons is short. It consists of exactly the set of rectangles
and three triangles: the equilateral triangle, the 30◦, 60◦, 90◦ triangle and the
45◦, 45◦, 90◦ triangle. In the integrable case the dynamics can be described with
great precision. The following dichotomy property holds: in any direction either
all bi-infinite orbits are closed or all bi-infinite orbits are uniformly distributed
in the appropriate invariant surface. One can describe precisely the directions in
which all orbits are closed and give the asymptotics of the counting function of
closed orbits of a given length.

Gutkin (see [G] and [GJ2]) introduced a condition less restrictive than integra-
bility which still allowed a precise description of the dynamics as in the integrable
case. A billiard table is almost integrable if the surface M can be realized as a
branched cover of the torus by an affine branching map so that the images of
the singular points have rational coordinates. The class of polygons with this
property can be described precisely. They are polygons which can be tiled by inte-
grable polygons. Though this class of polygons is much larger than the integrable
polygons it does not contain any “surprising” new examples. For a triangle, in
particular, the condition of almost integrability is equivalent to the condition of
classical integrability.

The situation changed with the paper by Veech [Ve1]. Veech made a twofold
contribution. He defined a class of rational polygons, the lattice polygons (see
definition in section 3), which contains the almost integrable polygons yet which
continue to admit an explicit description of the dynamics. Secondly, Veech con-
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structed a family of truly surprising examples which satisfy this lattice property:
the regular n-gon (for n ≥ 5) and many rational triangles. Unlike the case of
the integrable and the almost integrable polygons it seems to be quite a subtle
problem to determine when a given polygon satisfies the lattice condition. The
determination of which acute and right triangles possess the lattice property is the
subject of this paper.

The lattice polygons are those polygons for which the surface Mθ has a large
affine automorphism group (see section 3). In this paper we introduce techniques
to analyze affine automorphism groups and apply these techniques to the surfaces,
Mθ, associated to acute and right rational triangles. In particular we find all acute
lattice triangles whose angles are rational with denominator less than 10,000.

Theorem 1. Let T be an acute non-isosceles rational triangle with angles α, β
and γ which can be written as p1π/q, p2π/q and p3π/q with q ≤ 10, 000. Then T
is a lattice polygon if and only if (α, β, γ) is one of the following exceptional cases:
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The examples (a) and (b) are mentioned in [Vo2]. Veech mentions the example
(a) in [Ve1]. The remaining example (c) seems to be new. We discuss it in section
5.3.

For isosceles and right triangles we have the following result.

Theorem 2. An acute isosceles triangle is a lattice polygon if and only if the apex
angle is of the form π/n, n ≥ 3. A right triangle is a lattice polygon if and only if
the smallest angle is of the form π/n for n ≥ 4.

The hypothesis of Theorem 1, that q is less than or equal to 10,000, is satisfied
by approximately 100,000,000,000 triangles. We conjecture that this hypothesis
on q is unnecessary. That is to say we conjecture that the three triangles described
in Theorem 1 are the only acute non-isosceles lattice triangles (see section 5.1).

The sufficiency of the hypotheses of Theorem 2 is not a new result. The case
of right triangles is covered by Vorobets in [Vo2, sect. 4]. The isosceles case can
be reduced to the right triangle case by an unfolding construction. See [Vo2, sect.
5] or [GJ2]. All of these examples are closely related to Veech’s original example
[Ve1, Ve2, EG]. We will prove the necessity of the hypotheses of Theorem 2 in
section 6.

In addition to the work cited above we mention that Ward [W] and Vorobets
find lattice examples and non-examples among obtuse triangles for which two
angles have the form π/n.

In sections 2 and 3 we develop some well known background material in a man-
ner adapted to the cutting and pasting constructions which we will use later on.
Section 4 introduces a new scissors congruence invariant for surfaces with singular
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flat structures (and having trivial rotational holonomy), which links the invariants
of Sah-Arnoux-Fathi [Ax] and an invariant introduced by Kenyon [Ke]. In the
case that the surface has a decomposition into parallel annuli of commensurable
moduli (which, by a result of Veech, must be the case for lattice polygons), the
invariant takes a particularly simple form.

In Section 5.1 we compute this invariant for the surfaces associated to acute
rational triangles. Searching for those whose invariant has the desired form leads
to a number-theoretic test for triangles to have the lattice property. This number
theoretic test is easily implemented on a computer and it proves that all but 25
of the rational triangles with q ≤ 10000 do not have the lattice property. Using
standard techniques 22 of the 25 exceptional cases are shown not to have the lattice
property. Two of the remaining three were known to have the lattice property and
the third is shown to have the lattice property in section 5.3. Section 6 contains
the proof of Theorem 2.

The appendix provides some results of a more elementary nature which are
not required for the rest of the paper but nonetheless provide perspective on the
main result. This section has overlap with the earlier independent work of Gutkin
and Judge [GJ1] and [GJ2]. Our work and theirs have different, albeit related,
perspectives. For example, we study translation surfaces with non-elementary
automorphism groups while they investigate surfaces with lattice automorphism
groups.

Both authors would like to thank the Mathematical Sciences Research Institute
where this work was started. The second author would like to thank Roger Alperin
for helpful conversations. We also thank Hubert and Schmidt for pointing out an
error in an earlier version of Theorem 2.

2. Background

2.1.Construction of the unit tangent bundle and frame bundle of a poly-
gon

As explained in the introduction, the billiard flow takes place on the tangent bundle
to P and it leaves invariant a family of surfaces, Mθ. Following [ZK], [BR] and [G]
we will review the structure of the invariant surfaces in the tangent bundle T (P ).
As is noted in [ZK], for certain values of θ the invariant surface Mθ is a surface
with boundary. We will introduce a closely related object, the frame bundle F (P ),
which has certain technical advantages.

A polygon is a region in R2 with piecewise linear boundary and connected
interior. It need not be convex or even simply connected. Let P ⊂ R2 be a
polygon in the plane. Let e1, . . . , em denote the edges of P . Let ρi ∈ O(2) denote
the linear part of the reflection in the edge ei. When a billiard trajectory, moving
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in the direction v, hits an edge ei the outgoing trajectory has direction ρi(v). It
is also possible and sometimes convenient to define a billiard flow on the space of
frames. A frame is an orthonormal pair of vectors (v1, v2) based at a point p. A
frame is translated to the frame based at p+ tv1 for t sufficiently small. When a
trajectory hits an edge ei the frame (v1, v2) is replaced by the frame (ρiv1, ρiv2).
It is convenient to identify a frame (v1, v2) with the matrix α whose columns are
v1 and v2. Thus α ∈ O(2) is the linear map which takes (e1, e2) to (v1, v2). The
effect of a reflection in edge ei is to take a frame α to the frame ρiα.

We will construct the tangent bundle, T (P ), of P . Let S denote the unit circle.
We define an equivalence relation ∼ on P × S by setting (p, v) ∼ (p, ρi(v)) when
p ∈ ei. Let ≈ denote the transitive closure of ∼ (this only affects the pairs (p, v)
where p is a vertex of P and hence contained in two edges). Let T (P ) = P ×S/ ≈.
In a similar way we now define the frame bundle, F (P ), of P (as we will see,
there are certain technical advantages in considering the frame bundle instead of
the tangent bundle). We define an equivalence relation on P × O(2) by setting
(p, α) ∼ (p, ρiα) when p ∈ ei and letting ≈ be the transitive closure. We define
F (P ) as a the quotient P × O(2)/ ≈. Both T (P ) and F (P ) admit billiard flows
which are continuous away from the vertices. There is a semiconjugacy from the
flow on the frame bundle F (P ) to the flow on the tangent bundle T (P ) which
maps a frame (v1, v2) at a point p to the tangent vector v1 at p. This map is
generically two-to-one but it is one-to-one at vectors (p, v) where v is tangent to
the edge containing p.

The frame bundle has a natural foliation or decomposition into surfaces (which
we will denote by Mθ as in the case of the tangent bundle) arising from parallel
translation. Each leaf of this foliation is invariant under the billiard flow. We can
describe this foliation by describing the leaf topology on F (P ). The leaf topology
is a new topology on the set F (P ) for which the path components are leaves.
Let F (P )` denote the set F (P ) with this new topology which we now describe.
Let O(2)δ denote O(2) with the discrete topology. Then F (P )` will be the result
of taking the product topology on P × O(2)δ and then the quotient topology on
P ×O(2)δ/ ≈. In order to describe the path components of F (P )` it is convenient
to introduce the group Γ0 ⊂ O(2) which is the group generated by the reflections
ρ1, . . . , ρm. The polygon P is rational if Γ0 is finite. If the boundary of P is
connected this agrees with the previous definition. In this case Γ0 is a dihedral
group of order 2n for some n ≥ 2.

Two points (p, α) and (p, β) are on the same leaf if α = γ ◦ β for some γ ∈
Γ0. Thus the space of path components (leaves) can be identified with the space
of right Γ0 cosets in O(2). Let Γ+

0 be the subgroup of orientation preserving
elements of Γ0. This group is a rotation subgroup of order n. The space of right
cosets Γ0\O(2) is canonically identified with Γ+

0 \SO(2) which we can realize as
the interval 0 ≤ θ < 2π/n on the unit circle. Let us denote the corresponding leaf
by Mθ.

There is a natural right action of O(2) on P×O(2) coming from the right action
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of O(2) on itself. This corresponds to rotating or reflecting a frame relative to the
coordinates determined by the frame. Since right multiplication commutes with
left multiplication, the right action on P ×O(2) preserves the equivalence relation
≈ and hence descends to an action of O(2) on F (P ). This right action takes leaves
of the foliation to leaves of the foliation and acts transitively on the space of leaves.
We conclude that any two leaves are isomorphic and that any leaf can be obtained
from any other simply by rotating or reflecting the parallel frame with which it
comes equipped. (The tangent bundle has an analogous foliation. The generic
leaf of the tangent bundle foliation is isomorphic to any leaf of the frame bundle
foliation, but the tangent bundle foliation also contains singular leaves.)

Since any leaf can be obtained from any other we focus on the leaf M0 which
consists of pairs (p, γ) for γ ∈ Γ0. The leaf M0 has a natural framed transla-
tion structure. To show the dependence of M0 on P we write it as P̃ . Thus
P̃ = P × Γ0/ ≈. The group Γ0 acts on P̃ by automorphisms which preserve the
decomposition of P̃ into polygons. The surface P̃ was originally described in [ZK]
and [BR].

In section 5 we will focus on the case of rational triangles. We will introduce
some notation here and describe the group Γ0. Let T be a rational triangle with
angles α, β and γ. We can write these angles as α = rπ/n, β = sπ/n and γ = tπ/n
where r, s and t are natural numbers and n = r + s+ t. We further assume that
the largest common divisor of r, s and t is 1. The triangle T is determined by the
triple (r, s, t) and we will sometimes use this triple to denote T . The group Γ0 is
generated by reflections in edges and the group Γ+

0 consists of words containing an
even number of reflections. In particular Γ+

0 is generated by pairs of reflections.
When two edges e and e′ meet at a vertex with angle θ the composition of the
reflection through e and the reflection through e′ is a rotation by 2θ. It follows
that Γ+

0 contains the rotations through angles 2α, 2β and 2γ. These rotations are
contained in the subgroup of rotations generated by 2π/n. The condition on the
greatest common divisor implies that Γ+

0 is equal to the group generated by 2π/n.
We conclude that Γ+

0 has order n and Γ0 has order 2n.

2.2. Local cone structures on surfaces

The surfaces P̃ are obtained by gluing together polygons. Surfaces (with or with-
out boundary) obtained this way are sometimes called “generalized polygons” or
surfaces with “cone structures” [G] [Th] [Bo] [Ve1]. Such a surface without a
boundary is sometimes called a flat surface with cone type singularities. We give
a description here of this class of surfaces that will be useful for our purposes,
focusing on their metric space properties. Our main interest is a subclass of these
surfaces, the surfaces with translation structures which we define subsequently.

A geodesic in a metric space is a path ρ : I → X so that d(ρ(x), ρ(y)) = |x−y|.
A metric space is a geodesic space if any two points can be connected by a geodesic.
A general reference for metric spaces is [BH].
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Let X be a metric space with metric d′. Following [ABN] we define the cone
CX on X to be the quotient space CX = X ×R+/ ∼ where (x, 0) ∼ (y, 0) for all
x, y ∈ X . We define a metric on CX as follows: If s > 0 and t > 0 then

d((x, s), (y, t)) =
{ √

s2 + t2 − 2st cos(d′(x, y)), if d′(x, y) ≤ π;
s+ t, if d′(x, y) > π.

If s or t is equal to zero (say for example that t = 0) we set

d((x, s), (y, 0)) = s.

The cone point in CX is the point corresponding to (x, 0). The cone on a geodesic
space is again a geodesic space.

Let S` be the circle of circumference ` with its natural length metric. Then
CS` is homeomorphic to R2. When ` = 2π then CS` is isometric to R2. Let I`
be the interval of length `. The metric space CI` is homeomorphic to the upper
half plane. It is isometric to the upper half plane when ` = π. Let M be a
geodesic space homeomorphic to a surface with boundary. We say that M has a
local cone structure if every point p in M has a neighborhood which is isometric
to a neighborhood of the cone point in CI` or CS`. We define the cone angle at
p to be `. We say that p ∈ intM is a regular point if the cone angle is 2π. If p is
a boundary point of P we say that p is a regular boundary point if the cone angle
at p is π. The singular points are the points which are not regular. Let Σ denote
the set of singular points. The set of singular points is discrete so that when M
is compact Σ is finite. The set M − {∂M ∪ Σ} is a smooth manifold. We can
choose an atlas of charts for M − {∂M ∪ Σ} each of which is an isometry to an
open subset of R2.

Let γ : I → M be a geodesic in M . If γ(t0) is a non-singular point then γ
is locally a straight line. We define a segment or saddle connection in M to be a
geodesic connecting singularities which is non-singular in its interior.

One example of a surface (with boundary) with a natural cone structure is a
polygon. The polygon P ⊂ R2 has a natural metric which gives it a local cone
structure. This metric agrees with the metric inherited from R2 when P is convex
but will otherwise not be the same. The geodesics in this metric are piecewise
linear paths.

A second example is provided by the surfaces P̃ when P is a rational polygon.
The appropriate metric on these surfaces will be described in the next section.
The singularities of P̃ arise from vertices of P . It need not be the case that every
vertex in P gives rise to a singularity in P̃ . If P has a vertex with angle π/n for
some n ≥ 2 then the corresponding points in P̃ will have cone angle 2π and hence
be non-singular. If all angles of a polygon have the form π/n then the polygon is
integrable (see the introduction). The case of triangles with two angles of the form
π/n has been studied by Veech, Ward and Vorobets. Our example (c) of Theorem
1 seems to be the first lattice example with only one angle of the form π/n.
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If M has a local cone structure and Σ is the set of singular points of M then at
each point of M −Σ we have a coordinate chart with values in R2 which is a local
isometry. These charts can be used to define a natural notion of parallel translation
along a path in P − Σ. Given a path γ, from p to q, the parallel transport is a
linear isometry from Tp, the tangent space at p, to Tq, the tangent space at q. Fix
a non-singular interior point p in M and identify Tp with R2. A loop γ in P − Σ
based at p determines an element of SO(2,R). This element depends only on the
homotopy class of γ and defines a homomorphism from π1(M − Σ) → SO(2,R)
which we will refer to as the rotational holonomy.

We say M has a translation structure if the image of the rotational holonomy
homomorphism of M is trivial. In this case there is a well defined notion of parallel
translation of vectors which is independent of the path. Local cone structures
on surfaces without boundary for which the image of the rotational holonomy
is contained in group {Id,−Id} arise in the study of quadratic differentials and
pseudo-Anosov homeomorphisms (see [EG]). In [KMS] they are referred to as flat
structures on surfaces. Veech refers to them as F-structures.

The result of parallel translation around loop centered at an interior singular
point with cone angle α is a rotation by α. Thus when M has a translation
structure all cone angles are multiples of 2π. The converse implication is not true
however (see [Tr]). Thus the class of flat surfaces whose cone angles are multiples
of 2π is strictly larger than the class of translation surfaces.

A framed translation structure on M is a translation structure with a choice of
frame at some base point on the surface. Thus we have a natural notion of local
x− and y− coordinates at every nonsingular point of M .

2.3. Gluing polygons and decomposing surfaces

We will give a formal description of the method of constructing surfaces with
local cone structures by gluing together polygons. The construction of the surface
P̃ from copies of P in section 2.1 provides an example but we will have other
situations in which it is useful to build surfaces by gluing. In particular the precise
definition of which gluings are allowed plays an important role in the construction
of our geometric invariant in section 4.

Let P1, . . . , Pn be polygons in R2. Let I1, . . . , Im be line segments in R2. Let
φi :

∐
Ij →

∐
Pk for i = 1, 2 be maps which are isometries on each component.

Assume that the image φi(Ij) is contained in the boundary of Pk. Since φi is an
isometry when restricted to Ij it follows that φi(Ij) is contained in an edge of Pk.
We do not require that φi(Ij) be equal to the entire edge. We assume that interiors
of segments are mapped disjointly, that is to say that if φi(intIj) ∩ φi′(intIj′) 6= ∅
then i = i′ and j = j′. Say that p ∼ q if φ1(x) = p and φ2(x) = q for some x. Let
≈ be the equivalence relation generated by ∼. Define P to be the quotient space∐
Pk/ ≈.
We will next describe a metric on this quotient and mention some of its basic
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properties. A metric spaceX with metric d is a length space if the distance between
any pair of points is the infimum of lengths of paths between them. Whenever
length spaces are glued together via isometries there is a natural metric on the
resulting space which makes it a length space (see [BH]). In our case this metric
is simple to describe. We have a notion of a piecewise linear curve in P . A curve
ρ : I → P is piecewise linear if it is the concatenation of curves each of which is
the image of a linear segment in a single polygon Pj . We have a metric on P so
that the distance between points is the infimum of the lengths of piecewise linear
paths between them.

Proposition 3. Any compact surface with local cone structure can be obtained
by gluing together polygons and any surface constructed by gluing finitely many
polygons has a local cone structure.

Proof. The fact that a surface with a local cone structure can be obtained by
gluing together triangles is proved in [Bo]. The fact that gluing polygons yields
a space with local cone structure is straightforward. The metric on this space is
described above and makes it a length space. The fact that it is a geodesic space
follows from the Hopf-Rinow theorem [BH] which proves that any compact length
space is a geodesic space.

If the surface M has a translation structure then we can be more precise about
the gluing functions.

Proposition 4. If the maps φ1◦φ−1
2 in the above gluing definition are restrictions

of translations of R2 then M admits a translation structure. Conversely if M
admits a translation structure we can construct M from polygons in R2 so that
the φi are translations.

When the surface is defined as in this proposition then there is a natural framing
of the translation structure, arising from the standard frame in R2.

The surfaces P̃ have translation structures. Indeed we can view these surfaces
as the smallest “covers” of P which have translation structures.

A decomposition of a surface into polygons is an isometry from M to
∐
Pk/ ≈

for some collection of polygons and maps. We say that the decomposition is cellular
if the identifications φj map intervals onto entire edges. Cellular decompositions
are also called “edge to edge” decompositions. A cellular decomposition of a
surface M gives M a CW-structure with polygonal cells. The singularities of the
translation structure of M will be vertices of this CW-structure but there may be
other vertices of the decomposition which are not singularities of the translation
structure. Any surface with a local cone structure has a cellular decomposition. If
the surface has a translation structure then we can find a cellular decomposition
as in Proposition 4.
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2.4. Parallel forms and vector fields

Let us now assume that we are dealing with a compact surfaceM with a translation
structure but without a boundary. We do not require thatM = P̃ for some polygon
P though that is our primary example.

Let p0 be a point in M −Σ which will serve as a base point. Let T0 denote the
tangent space at p0. Let T denote the space of parallel vector fields on M − Σ.
Let τ∗ : T0 → T denote the map that assigns to a vector based at p0 the parallel
vector field on M − Σ obtained by parallel translation. The spaces T0 and T are
canonically identified by τ . When M arises from a polygon P the parallel vector
fields generate the “billiard flows” in different directions.

Let T ∗0 denote the dual space to T0. For each cotangent vector in T ∗0 we can
use parallel translation to extend it to a one-form in M − Σ. Let T ∗ denote the
space of parallel one forms and let τ∗ : T ∗0 → T ∗ denote the canonical map. A
nonzero two-form on T0 gives rise to a parallel volume form which gives a smooth
measure λ on M . We will scale this two form so that the total λ-measure of M is
one. Every parallel flow on M is defined λ-almost everywhere and every such flow
is measure preserving.

Let γ : [a, b] → M be a continuous curve of finite length and assume that
γ((a, b)) ⊂ M − Σ and γ|(a, b) is smooth. The translational holonomy of γ is the
vector h(γ) ∈ T0 defined by

h(γ) =
∫ b

a

dγ

dt
dt

where we use the parallel translation to view dγ
dt as an element of Tp. If there is

no danger of confusing the translational holonomy with the rotational holonomy
we will drop the word “translational”.

Define a smooth chain c to be a formal sum of curves c = γ1 + . . .+ γn where
the γj are curves as described above. We define the holonomy of a chain c to be
h(c) =

∑
h(γi).

For any w ∈ T ∗0 the holonomy of c satisfies:

〈h(c), w〉 = 〈c, τ∗(w)〉.

where the bracket on the left denotes the pairing of vectors and covectors and
the bracket on the right denotes the evaluation of a chain on a one-form. If c is a
smooth cycle contained in M−Σ which is homologous to zero in M−Σ then, since
parallel forms are closed, it follows that 〈c, τ∗(w)〉 = 0 for any w. This implies
that h(c) = 0. In fact the same conclusion holds more generally.

Lemma 5. If c is a smooth cycle in M which is homologous to zero in M then
h(c) = 0.

Proof. Let p be an interior singular point with cone angle α. For ε sufficiently
small the set of points at distance ε from p is a closed curve γp,ε of length αε. The
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homology class represented by γp,ε in M −Σ is independent of ε and we denote it
by [γp].

It is clear that
||h(γ)|| ≤ length(γ)

so
||h(γp,ε)|| ≤ length(γp,ε) = αε.

Since h(γp,ε) depends only on the homology class of γp,ε for ε > 0 it is independent
of ε. We conclude that h(γp,ε) = 0.

For any cycle c in M there is a homologous cycle cε which is contained in
M − Σ and agrees with c outside of a set of length less than ε. It follows that
||h(cε)− h(c)|| ≤ ε. Now if c is homologous to zero in M then cε is homologous to
a sum of classes [γpj ] so

h(c) = lim
ε→0

h(cε) = lim
ε→0

∑
h([γpj ]) = 0

If c is a cycle let [c] denote its cohomology class in H1(M,Σ; Z). It fol-
lows from the previous lemma that the holonomy defines a homomorphism h :
H1(M,Σ; Z)→ R2 as well as h : H1(M ; Z)→ R2. It also follows from the lemma
that the parallel one forms, which a priori represent elements of H1(M −Σ; R) in
fact represent elements of H1(M ; R). Let A∗ ⊂ H1(M ; R) denote the subspace
of classes represented by parallel one forms.

Just as parallel one-forms define cohomology classes, parallel vector fields define
homology classes. Parallel vector fields give rise to certain asymptotic homology
classes (cf [Sc]) as we now explain. Let v ∈ T be a parallel vector field. Let ft
be the (partially defined) flow generated by v. Let p be a point so that the flow
through p is defined for all time (λ-almost every point has this property). Given
R > 0 the curve t 7→ ft(p) for t ∈ [0, R] can be closed up by adding a segment of
bounded length. Let [v, p,R] denote the homology class represented by this closed
curve. Define

[v, p] = lim
R→∞

1
R

[v, p,R].

The limit exists almost everywhere and is independent of the choices made. Define

[v] =
∫

[v, p]dλ(p).

If the flow ft is ergodic then the class [v, p] is the same for λ-almost every p. In this
case [v] is equal to this common value. Let τ∗ : T → H1(M,Σ; R) denote the map
that assigns a vector v to its asymptotic homology class [v]. Let A∗ ⊂ H1(M,Σ; R)
or A∗ ⊂ H1(M ; R) (as the case may be) denote the image of τ∗. We will call A∗
the space of parallel homology classes.
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Though the definition of parallel homology class is rather involved, the pairing
between parallel homology classes and one forms has a simple expression. If θ is
a 1-form defined on M − Σ with bounded coefficient functions then

〈[τ∗(v)], [θ]〉 =
∫
θp(v)dλ(p).

Here θp(v) denotes the value of the form θ evaluated on the vector v based at the
point p. The brackets on the left denote the Kronecker pairing of homology and
cohomology. The formula is proved by interchanging the order of taking limits
and integrating. The formula gives two corollaries. We see that the value of the
right hand side of the equation depends only on the cohomology class of θ. We
also see that the value of the left hand side of the equation is linear in v.

When we specialize the previous formula to the case where θ is a parallel one-
form we get:

〈τ∗(v), τ∗(w)〉 = 〈v, w〉.

Lemma 6. The map τ∗ ◦h is a projection from H1(M,Σ; R) to itself. The kernel
is the space of cycles with trivial holonomy and the image is A∗, the space of
asymptotic cycles.

Proof. Let c be a cycle. To show that τ∗ ◦ h is a projection we need to show that
τ∗ ◦ h ◦ τ∗ ◦ h(c) = τ∗ ◦ h(c). Let v = h(c). It suffices to show that h ◦ τ∗(v) = v.
This will follow if we can show that

〈h ◦ τ∗(v), w〉 = 〈v, w〉

for any w ∈ T ∗. But

〈h ◦ τ∗(v), w〉 = 〈τ∗(v), τ∗(w)〉 = 〈v, w〉.

We conclude that the kernel of the holonomy is a complementary subspace to
the space of asymptotic homology classes.

3. Affine automorphism groups

Now let M be a surface without boundary with a translation structure. An affine
homeomorphism f : M →M ′ is a homeomorphism which takes singularities of M
to singularities of M ′ and is locally affine in the nonsingular part of M . Affine
homeomorphisms take geodesics to geodesics but need not preserve length.

The image of a parallel vector field under an affine homeomorphism is again a
parallel vector field. Thus an affine automorphism f gives rise to a linear trans-
formation from T to itself which we denote by Df .
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An affine homeomorphism from a surface to itself is called an affine automor-
phism. Fix a surface M with a framed translation structure and let Γ denote the
group of affine automorphisms. The function which takes an affine automorphism
f to its derivative Df gives a homomorphism from Γ into GL(2,R). Since the area
of M is preserved Df has determinant ±1. Let SL±(2,R) denote the subgroup
of GL(2,R) for which the determinant is ±1. The image D(Γ) ⊂ SL±(2,R) of
Γ is a discrete subgroup and the kernel of the homomorphism is finite. These
affine automorphism groups arise in different contexts. They occur as automor-
phism groups of Teichmüller disks [EG]. The question of what groups can occur
as automorphism groups of translation structures was raised by Thurston in [Kr].
Theorem 28 and Corollary 29 give conditions which these groups must satisfy.

Example. If the surface P̃ arises from the Zemlyakov-Katok construction applied
to a polygon P then the dihedral group Γ0 of section 2.1 acts as a group of affine
automorphisms. Let ι : Γ0 → Γ denote this homomorphism. Then ι is injective
and D(ι(γ)) = γ where we view Γ0 as a subgroup of O(2).

A polygon P has the lattice property ([Ve1]) if D(Γ) is a lattice in SL±(2,R),
that is, the quotient SL±(2,R)/D(Γ) has finite volume with respect to Haar mea-
sure. (This property is called the Veech property in [GJ1].) Equivalently, the image
of Γ is a lattice in PGL(2,R).

There is a standard classification of an element of SL±(2,R) into three types:
elliptic, parabolic and hyperbolic. There is a corresponding classification of an
affine automorphism f into three types based on the type of Df .

We will recall the geometric description of the corresponding affine automor-
phisms. An automorphism is elliptic exactly when it has finite order.

A non-trivial affine automorphism f of M is said to be parabolic if the linear
map Df is parabolic. This is equivalent to saying that Df has a unique invariant
direction. A cylinder in M is a subset isometric to the metric product S1 × I.
We call the length of the I interval the height, width or length of the cylinder
depending on the situation. We call the length of the S1 factor the circumference
of the cylinder. We assume that our cylinders are maximal meaning they are
not contained in larger cylinders in M . This is equivalent to assuming that each
boundary contains a singularity. The modulus of a cylinder is the ratio of its length
to its circumference. Veech ([Ve1] see also [Vo2]) proves the following two results.

Proposition 7. If a surface M has a parabolic affine automorphism f , then
there is a decomposition of M into cylinders parallel to the fixed direction of Df .
Furthermore the moduli of the cylinders are commensurable (have rational ratios).

Proposition 8. If M has a decomposition into vertical cylinders with commen-
surable moduli m1, . . . ,mk then D(Γ) contains(

1 0
α 1

)
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where α is the least common multiple of the moduli.

See Figure 7 for an example of a decomposition of a surface into commensurable
cylinders.

Hyperbolic automorphisms are examples of pseudo-Anosov diffeomorphisms.
These play a central role in the topological classification of surface homeomor-
phisms. In the hyperbolic case Df has two real eigenvalues λ+ and λ− with
|λ+| > 1 > |λ−|. Let v+ and v− be eigenvectors of Df corresponding λ+ and λ−
and let v+ and v− be dual basis vectors. Then the parallel forms τ(v+) and τ(v−)
are taken to multiples of themselves. It follows that λ+ and λ− are eigenvectors
of the induced automorphism of H1(M ; R). In particular they are eigenvalues of
a monic integral polynomial [Fa] or [Fri].

We recall here some elementary facts about discrete subgroups of SL±(2,R)
(see [Fo]). There are three mutually exclusive possibilities:

(1) They can be finite. In this case they contain only elliptic elements. Con-
versely any discrete group which contains only elliptic elements is finite.

(2) They can contain a subgroup of finite index consisting of parabolic elements.
In this case the index of the subgroup is at most two and the subgroup of parabolic
elements is cyclic.

(3) They can contain a hyperbolic element.
Lattice subgroups are in the third category. They are cocompact if and only if

they do not contain parabolic elements. The groups D(Γ) are never cocompact:

Proposition 9. [Ve1] If M satisfies the lattice property then for any saddle con-
nection γ with holonomy v there is a parabolic affine automorphism for which the
derivative fixes v.

If M = P̃ arises from a polygon P by the Zemlyakov-Katok construction then
the affine automorphism group of M contains the dihedral group Γ0. Such a
dihedral subgroup cannot be a subgroup of a group of type 2 above. In particular in
this case if D(Γ) contains a parabolic element then D(Γ) also contains a hyperbolic
element.

4. A scissors congruence invariant

We say generalized polygons P and P ′ are scissors congruent if we can write P as a
union of polygons P1∪. . .∪Pn (as described in §2.3) and we can write P ′ as a union
of polygons P ′1 ∪ . . .∪P ′n, such that for each j, Pj is congruent to P ′j . An additive
scissors congruence invariant is a homomorphism φ from the group of formal Z-
linear combinations of polygons to an abelian group, which has the property that if
P is scissors congruent to P ′ then φ(P ) = φ(P ′). An additive scissors congruence
invariant gives us an invariant for surfaces with framed translation structures by
the following procedure: we decompose the surface a union of planar polygons and
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sum the invariants of the polygons.
Unfortunately there is essentially only one scissors congruence invariant for

polygons and that is area: P is scissors congruent to P ′ if and only if area(P ) =
area(P ′). We get a finer notion of scissors congruence if we consider generalized
polygons with translation structures P and P ′ so that P ′j be a translate of Pj for
each j. There is an additional invariant for this finer notion, the Hadwiger invariant
[Sa1]. Unfortunately this does not yield an interesting invariant for closed surfaces
with translation structures because if a closed surface can be written asP1∪. . .∪Pn
then the sum of the Hadwiger invariants is zero.

We get a still finer equivalence relation if we only permit cellular decompositions
(as defined in section 2.3). We say two polygons P and P ′ are equidecomposable if
P and P ′ have cellular decompositions P = P1 ∪ · · · ∪ Pk and P ′ = P ′1 ∪ · · · ∪ P ′k,
where for each i, P ′i is a translate of Pi.

In this section we produce an additive invariant for the relation of equidecom-
posability and show that it gives a non-trivial invariant for framed translation
structures on surfaces.

The boundary of a polygon P ⊂ R2 comes equipped with a natural geometric
decomposition into edges and vertices where the vertices are the corners. This
natural decomposition gives a natural a CW-structure on P where the vertices are
0-cells, the edges are 1-cells and P itself is a 2-cell. It will be useful to discuss
CW-structures on polygons other than the natural geometric one. In particular
the invariant that we will define depends on the choice of a CW structure on the
boundary of P . In particular we will permit the addition of vertices or 0-cells for
the CW structure which lie in the interior of edges and hence are not geometric
vertices.

To be precise let us define the notion of a polygon with cellular structure to be
a polygon, P , in the plane together with a specified set of points v1, . . . , vn on ∂P
which includes the set of vertices of P . If the danger of confusion is small we will
call a polygon with cellular structure simply a polygon. We say that a polygon P
with vertices v1, . . . , vn is a translation of P ′ with vertices v′1, . . . , v

′
n if there is a

translation which takes P to P ′ and takes the vertices of P to the vertices of P ′.
We now define an equidecomposability invariant for polygons taking values in

the rational vector space R2 ∧Q R2. Let P be a polygon with vertices v1, . . . , vn
in counterclockwise order around the boundary of P . Define J(P ) to be

J(P ) = v1 ∧ v2 + v2 ∧ v3 + . . .+ vn ∧ v1.

Lemma 10. J is invariant under translations.

Proof. Assume that P ′ = P + v and v′j = vj + v. Then

J(P ′) = (
n−1∑
j=1

v′j ∧ v′j+1) + v′n ∧ v′1
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=
(n−1∑
j=1

(vj + v) ∧ (vj+1 + v)
)

+ (vn + v) ∧ (v1 + v)

=
(n−1∑
j=1

vj ∧ vj+1 + v ∧ vj+1 + vj ∧ v
)

+ vn ∧ v1 + v ∧ v1 + vn ∧ v

= J(P ) +
n−1∑
j=1

vj ∧ v +
n−1∑
j=1

v ∧ vj

= J(P ).

It is useful to compare R2 ∧Q R2 to R2 ∧R R2. Note that if v is a non-zero
vector in R2 and λ is an irrational real number then v ∧Q λv is not zero. As we
will see adding an extraneous vertex to P changes the invariant by terms of this
form.

Let π denote the natural map from R2 ∧Q R2 to R which takes v ∧ w to
det(v, w). This map factors through R2 ∧R R2. Note that π(J(P )) = 2 · area(P ),
which shows that we can recover the scissors congruence invariant from J .

For j = 2, . . . , n let ej be the vector ej = vj − vj−1. Let e1 = v1 − vn. We
have the following expression for J(P ) in terms of these edge coordinates.

Lemma 11. J(P ) =
∑

1≤k<j≤n−2 ek ∧ ej.

Proof. Since J(P ) is invariant under translation we may translate P so that vn = 0.
We get v1 = e1, v2 = e1 + e2 and in general vj = e1 + . . .+ ej. Now

J(P ) =
n−2∑
j=1

vj ∧ vj+1

=
n−2∑
j=1

( j∑
k=1

ek
)
∧
(j+1∑
k=1

ek
)

=
n−2∑
j=1

( j∑
k=1

ek
)
∧ ej+1

=
∑

1≤k≤j≤n−2

ek ∧ ej .

Example. If T is a triangle with edge vectors e1, e2 and e3 then

J(T ) = e1 ∧ e2. (1)
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Example. If R is a rectangle with edge vectors e1, . . . , e4 with e3 = −e1 and
e4 = −e2 then

J(R) = e1 ∧ e2 + e1 ∧ e3 + e2 ∧ e3

= e1 ∧ e2 + e1 ∧ (−e1) + e2 ∧ (−e1)
= 2e1 ∧ e2.

Lemma 12. If a planar polygon P has a cellular decomposition P = P1 ∪ · · ·∪Pn
then J(P ) =

∑
j J(Pj).

Proof. By definition J(Pj) is a sum over oriented edges ejk of terms v1 ∧ v2 where
v1 and v2 are the endpoints of ejk. Now

∑
j J(Pj) is again a sum over edges. Each

internal edge occurs twice in this sum, once with each orientation. Thus these
terms cancel. We are left with the boundary edges. Each of these occurs once and
the orientation inherited from Pj is the same as the orientation inherited from P .

This proof does not imply that J = 0 for any surface without boundary: such
a surface has a nontrivial translational holonomy, so one cannot assign unambigu-
ously a coordinate vj to each vertex in the subdivision.

Lemma 13. Let P and Q be disjoint polygons in R2 that share an edge e. Let v
be a point on e. Let P ′ and Q′ be the result of adding v as a vertex to P and Q
respectively. Then J(P ) + J(Q) = J(P ′) + J(Q′).

Proof. Let v1 and v2 be the endpoints of e with the order inherited from P . Adding
the vertex v changes J(P ) by v1 ∧ v+ v ∧ v2− v1 ∧ v2. As an edge of Q, e inherits
the opposite orientation so J(Q) changes by v2 ∧ v + v ∧ v1 + v1 ∧ v2. Thus the
change in J(P ) and the change in J(Q) cancel.

Theorem 14. Let M be a surface with framed translation structure. Say that we
have two cellular decompositions of M into planar polygons, M = P1 ∪ . . . ∪ Pn
and M = Q1 ∪ . . . ∪Qm. Then

∑n
j=1 J(Pj) =

∑m
j=1 J(Qj).

Proof. Let Rij denote the non-empty intersections Pi∩Qj ∈M . If Rij has an edge
in common with the boundary of M then we count any vertex on this edge coming
from M as a vertex of Rij . Otherwise the vertices of Rij are just the boundary
singularities (its corners). Even though each Pi is a union of polygons

⋃
j Rij , the

Rij do not constitute a cellular decomposition because the union of polygons Rij
may have additional vertices. We can remedy this by adding vertices to Pi. Let
P ′i denote Pi where we have added the vertices (of all the Rij) that lie on the
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boundary of Pi. None of the added vertices lie on the boundary of M . Similarly
define Q′j. The union of polygons Rij that lie in Pi gives a cellular decomposition
of P ′i . By Lemma 12 we have J(P ′i ) =

∑
j J(Rij). On the other hand Lemma 13

gives
∑
i J(Pi) =

∑
i J(P ′i ) and

∑
j J(Qj) =

∑
J(Q′j). So∑

i

J(Pi) =
∑
i

J(P ′i ) =
∑
ij

J(Rij) =
∑
j

J(Q′j) =
∑
j

J(Qj).

Definition. Let M be a surface with framed translation structure with a cellular
decomposition into planar polygons P1∪ . . .∪Pn. We define J(M) to be

∑
j J(Pj).

The previous theorem shows that J(M) does not depend on the decomposition
of M into polygons. It does however depend on the choice of frame v in the
translation structure on M . For example if we identify R2 with C in the usual
way then, if v′ = eiθv is another frame, then J(Mv) = (eiθ ∧ eiθ)J(Mv′). Note in
particular that a rotation by an angle of π leaves the invariant unchanged. More
generally, we have the following.

Proposition 15. Let f : M → M ′ be an affine diffeomorphism with differential
Df : R2 → R2 then J(M ′) = ε · (Df ∧ Df)J(M), where ε = ±1 according to
whether or not f preserves orientation.

Corollary 16. If f is an affine automorphism of M then J(M) = ε · (Df ∧
Df)J(M).

4.1. Cohomological interpretation of J

In this section will give two cohomological interpretations of the invariant J(M)
under the assumption that M has no boundary. We note here that one of the
properties of J that makes it useful for computation is that it is defined and
additive for translation surfaces with and without boundary.

Let ER2 denote the simplicial complex whose n-simplices correspond to finite
(n+ 1)-tuples of elements of R2, so that the inclusion of simplices corresponds to
inclusion of sets. We denote such an n-simplex in ER2 by (v0, . . . , vn).

The space ER2 is contractible and there is a natural simplicial action of R2

given by
v(v0, . . . , vn) = (v + v0, . . . , v + vn).

Let BR2 denote the quotient space of ER2 by the action of R2 . The n-
simplices of BR2 are often written with the following bar notation:

[e1|e2| . . . |en],
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which represents the equivalence class of the simplex with vertices

0, e1, e1 + e2, . . . , e1 + · · ·+ en.

The spaceBR2 is a classifying space for the additive group R2 with the discrete
topology, that is to say that homotopy classes of maps from X to BR2 are in one-
to-one correspondence with homomorphisms from π1(X) → R2. The simplicial
cochains on BR2 correspond to cochains in the standard resolution of R2 so there
is a canonical identification of the space (co-)homology of BR2 with the group
(co-)homology of R2.

Let M be a surface with a framed translation structure. We assume for the
rest of this section that M has no boundary. A polygonal decomposition of M
into triangles induces a map c : M → BR2 as follows. Let τ1, . . . , τn denote the
triangles in the triangulation. The framed translation structure on M gives each
triangle τj the structure of a triangle in R2 (well defined up to translation). Thus
this triangle corresponds to a simplex in BR2 and we define c on τj to be the affine
map from τj to the corresponding simplex. The induced map c∗ : π1(M) → R2

is just the holonomy homomorphism. In particular the homotopy class of c is
independent of the particular triangulation chosen.

The elements of the group H1(M ; R2) correspond to homomorphisms from
π1(M) → R2. Let θ be the element corresponding to the holonomy homomor-
phism. We can define a cup product map from H1(M ; R2) ⊗ H1(M ; R2) →
H2(M ; R2∧Q R2) corresponding to the coefficient pairing R2×R2 → R2∧Q R2.
Let θ ∪ θ denote the corresponding element of H2(M,R2 ∧Q R2).

Proposition 17. We have J(M) = 〈θ ∪ θ, [M ]〉.

Proof. The cohomology group H1(R2; R2) is isomorphic to the group of group
homomorphisms from R2 to itself. Such a homomorphism is automatically Q
linear but need not be R linear. Let ι be the element of group cohomology corre-
sponding to the identity map from R2 to itself. The map c induces a map c∗ from
H1(R2; R2) to H1(M ; R2), and c∗(ι) = θ. We have

〈θ ∪ θ, [M ]〉 = 〈c∗(ι) ∪ c∗(ι), [M ]〉
= 〈c∗(ι ∪ ι), [M ]〉
= 〈ι ∪ ι, c∗[M ]〉,

where c∗:H2(M ; Z)→ H2(R2,Z). We can describe the cup product in the coho-
mology of R2 on the cochain level using the Alexander-Whitney diagonal approx-
imation [p. 110, Br]. Let τ = (v0, v1, v2) represent the class of a simplex in BR2.
Then

(ι ∪ ι)(τ) = (ι ∪ ι)(v0, v1, v2)
= ι(v0, v1) ∧ ι(v1, v2)
= (v1 − v0) ∧ (v2 − v1)
= J(τ).
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Recall that τ1, . . . , τm is a triangulation of M . Now

〈ι ∪ ι, c∗[M ]〉 = 〈ι ∪ ι,
∑
j

τj〉

=
∑
j

J(τj) (2)

= J(M).

The Pontryagin product [Br] gives a map from H1(R2; Z) ∧ H1(R2; Z) 7→
H2(R2; Z). This map is an isomorphism. If we identify H1(R2; Z) with R2 then
we can think of the domain as R2 ∧Q R2.

Proposition 18. With the previous identification of H2(R2; Z) with R2 ∧Q R2

we have J(M) = 2c∗([M ]).

Proof. Let p : H1(R2) ∧ H1(R2) → H2(R2) = R2 ∧R2 denote the Pontryagin
product. The proposition asserts that p(J(M)) = 2c∗(M). It is useful to introduce
a second method of identifying H2(R; Z) with R2 ∧Q R2. Let q : H2(R2,R2)→
R2 ∧R2 denote the map q(α) = 〈ι ∪ ι, α〉. According to the previous proposition
q(c∗([M ])) = J(M). We have an explicit formula for the Pontryagin product in
terms of the bar notation [Br] which allows us to compare these two identifications
by computing the composition q ◦ p:

q ◦ p(α ∧ β) = 〈ι ∪ ι, [α] · [β]〉
= 〈ι ∪ ι, [α|β]− [β|α]〉
= 〈ι ∪ ι, [α|β]〉 − 〈ι ∪ ι, [β|α]〉
= 〈ι ∪ ι, (0, α, α+ β)〉 − 〈ι ∪ ι, (0, β, β + α)〉
= ι(0, α) ∧ ι(α, α + β)− ι(0, β) ∧ ι(β, β + α)
= α ∧ β − β ∧ α
= 2α ∧ β.

Since the composition q ◦ p is an isomorphism it follows that both p and q
are isomorphisms. We want to show that p(J(M)) = 2c∗(M) or equivalently
that qp(J(M)) = 2q(c∗(M)). Since qp(J(M)) = 2J(M) we need to show that
q(c∗[M ]) = J(M). But this is proved in formula (2) above.
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4.2. Projections, the Sah-Arnoux-Fathi invariant and the Kenyon in-
variant

We define two linear projections from R2 ∧R2 to R∧R. On basis elements they
are defined by

πxx
([a
b

]
∧
[ c
d

])
= a ∧ c

πyy
([a
b

]
∧
[ c
d

])
= b ∧ d

We also define a linear projection from R2 ∧R2 to R⊗R. On basis elements
it is defined by

πxy
([a
b

]
∧
[ c
d

])
= a⊗ d− c⊗ b.

Let us denote πxx(J), πxy(J) and πyy(J) by Jxx, Jxy and Jyy. These “projec-
tions” determine J and we will give a geometric interpretation of each of them.

A rectilinear subdivision of M is a decomposition of M into rectangles whose
sides are either horizontal or vertical. We do not require that the edges of the
rectangles meet each other in complete edges. Kenyon [Ke] has defined a rectilinear
subdivision invariant K(M) of M as follows. If M is decomposed into rectangles
R1, . . . , Rn where the height of Rj is hj and the width is wj then

K(M) =
n∑
j=1

hj ⊗ wj

Proposition 19. We have 2K(M) = Jxy(M).

Proof. A rectilinear subdivision of M into rectangles R1, . . . , Rn can be converted
into a cellular decomposition by adding vertices to the edges. Let R′1, . . . , R

′
n

denote the results of adding vertices to the boundaries of R1, . . . , Rn. Adding
vertices to horizontal or vertical edges changes J by terms in the kernel of πxy.
Thus

πxy(J(M)) =
n∑
j=1

πxyJ(R′j) =
n∑
j=1

πxyJ(Rj) = 2
n∑
j=1

hj ⊗ wj

An interval exchange transformation is a map f from an interval to itself which
is a piecewise isometry: let I and I ′ be two copies of the interval [a, b]. Let
a = v0 < v1 < . . . < vn = b be a partition of I and let a = w0 < . . . < wn = b
be a partition of I ′. Let Ij = [vj−1, vj ] for j = 1, . . . , n and let I ′j = [wj−1, wj ]
for j = 1, . . . , n. Let σ : {1 . . . n} → {1 . . . n} be a permutation, and assume that
the length `j of Ij is equal to the length of I ′

σ(j). We define f : [a, b] → [a, b]
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(outside of the set {v0, v1, . . . , vn}) by setting f(x) = x+ τj for x ∈ intIj , where
τj = wσ(j) − vj . Then f is an interval exchange. The Sah-Arnoux-Fathi, (SAF),
invariant of an interval exchange is developed in [Ax]. The SAF invariant of f in
R ∧Q R is defined to be

SAF (f) =
n∑
j=1

`j ∧ τj .

Given a surface with a transversally oriented measured foliation and an interval
I transverse to the foliation, one can define a first return map fI : I → I. This map
is an interval exchange. If I meets every leaf (and we will assume for simplicity
that this is the case), the invariant SAF (fI) is independent of the transversal
chosen. (See [Ax] for a proof.)

Proposition 20. Jxx is the SAF invariant of the vertical foliation of M . Similarly
Jyy is the SAF invariant for the horizontal foliation of M .

Proof. The interval I gives us a decomposition of M into rectangles R1, . . . , Rn,
where the bottom edge of Rj is attached to I at the interval Ij and the top edge
of Rj is attached to I at the interval I ′

σ(j). These rectangles are maximal in the
sense that each has a singularity or an endpoint of I on each vertical boundary.
To make this a cellular decomposition, we must add vertices to each Rj along its
vertical edges (at singularities of M and endpoints of I), as well as along I, to
make the two decompositions of I compatible. The only contribution to Jxx comes
from adding vertices along I.

To compute this contribution, think of I as a single segment, to which we
have added vertices for the endpoints of Ij coming from rectangles “above” I and
vertices from endpoints of the I ′j coming from rectangles “below” I.

The contribution of the endpoints of the Ij is

v0 ∧ v1 + v1 ∧ v2 + . . .+ vn−1 ∧ vn + vn ∧ v0,

where v0 is the left endpoint of I, Ij = [vj−1, vj ] and vn is the right endpoint of
I. Similarly the contribution for the endpoints of the I ′j is

−w0 ∧w1 − w1 ∧ w2 − . . .− wn−1 ∧ wn − wn ∧ w0

where w0 = v0, wn = vn and I ′j = [wj−1, wj ]. The sum of these contributions
gives Jxx: using the notation preceding the theorem, we have

Jxx = v0 ∧ v1 + v1 ∧ v2 + . . .+ vn−1 ∧ vn + vn ∧ v0

− w0 ∧ w1 − w1 ∧ w2 − . . .− wn−1 ∧ wn − wn ∧ w0

= v0 ∧ (v1 − v0) + v1 ∧ (v2 − v1) + . . .+ vn−1 ∧ (vn − vn−1) + vn ∧ v0

− w0 ∧ (w1 − w0)− . . .− wn−1 ∧ (wn − wn−1)− wn ∧ w0
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= v0 ∧ `1 + v1 ∧ `2 + . . .+ vn−1 ∧ `n
− w0 ∧ `σ−1(1) − w1 ∧ `σ−1(2) − . . .− wn−1 ∧ `σ−1(n)

= v0 ∧ `1 + v1 ∧ `2 + . . .+ vn−1 ∧ `n
− wσ(0) ∧ `1 − wσ(1) ∧ `2 − . . .+ wσ(n−1) ∧ `n

= (v0 − wσ(0)) ∧ `1 + (v1 − wσ(1)) ∧ `2 + . . .+ (vn−1 − wσ(n−1)) ∧ `n
= −τ1 ∧ `1 − τ2 ∧ `2 − . . .− τn ∧ `n
= SAF (f).

In the next section we will use the invariant J to detect parabolic elements in
the affine automorphism group. Recall from Proposition 9 that the existence of a
parabolic automorphism gives a particular decomposition of M into cylinders.

Now from Propositions 20 and 19 we have:

Theorem 21. If M has a decomposition into parallel cylinders in the direction
y then Jxx = 0. If in addition the cylinders all have moduli λ then Jxy can be
written Jxy =

∑
j rj ⊗ λrj

Note that Jxy ∈ R ⊗ R, and so can be considered as a bilinear form on
Hom(R,Q). If the λ in the above theorem were rational, then we could write
Jxy = λ

∑
j rj⊗rj . Since λ > 0 this would mean that Jxy, considered as a bilinear

form on Hom(R,Q), would be symmetric and positive semidefinite.
If λ is not rational, then if we change the translation structure by dividing the

y-coordinate by λ, then the new invariant would be J ′xy =
∑
j rj ⊗ rj and would

hence be symmetric and positive semidefinite.

5. Triangular tables

In this section we explicitly compute the J-invariant for the surface T̃ where T
is a rational triangle. In case T is acute, we find a closed billiard trajectory
and compute the modulus of the maximal cylinder containing it. We then use
J to determine when the surface can be decomposed into cylinders of moduli
commensurable to this one.

Let T be a triangular billiard table in the plane with angles α, β, and γ. As
in section 2.1 we write α = rπ/n, β = sπ/n and γ = tπ/n where r, s and t are
natural numbers with greatest common divisor one and n = r + s+ t.

For the sake of our calculations it is convenient to identify R2 with C and to
identify the rotation group with {|z| = 1}. Let us take the vertices of T to be 0,
1 and v where Im(v) > 0 and T has angle α at 0, angle β at 1, and angle γ at
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v. Let a = e2αi, b = e2βi, and c = e2γi. Let w = e2πi/n. We observe that a, b
and c are powers of w and that abc = 1. The group Γ0 is generated by w and
complex conjugation z 7→ z̄. Let K denote the cyclotomic field generated by w,
and k = Q[cos 2π

n ] be its maximal real subfield. As we will show below in formulas
(4) and (3), the holonomy of segments takes values in K ⊂ C. If n ≡ 0 mod 4, the
x- and y-coordinates of elements in K are in the real subfield k. If n 6≡ 0 mod 4,
the x-coordinates are in k and, after scaling by 1/ sin(2π/n), the y-coordinates are
also in k. Therefore, after this change of coordinates, the holonomy takes values
in k2; in particular k is the holonomy field defined in section 7.

Let T̃ be the surface with framed translation structure associated to T . We
wish to calculate J(T̃ ). The surface T̃ comes equipped with a decomposition into
triangles each of which has a canonical representation as a triangle in R2 (up to
translation). These triangles have the form γT for γ ∈ Γ. We use this to calculate
J :

J(T̃ ) =
∑
γ∈Γ

J(γT ) =
n−1∑
k=0

J(wkT ) +
n−1∑
k=0

J(wkT ) =
n−1∑
k=0

J(wkT ) +
n−1∑
k=0

J(wkT ).

The triangle wkT has vertices 0, wk and wkv listed in counterclockwise order.
The triangle wkT has vertices 0, wk v̄ and wk listed in counterclockwise order.
Using formula (1) we have

J(wkT ) = wk ∧ (wkv − wk) = wk ∧ wkv
J(wkT ) = wk v̄ ∧ (wk − wkv̄) = wk v̄ ∧wk = −wk ∧ wkv̄.

Thus

J(T̃ ) =
n−1∑
k=0

wk ∧ wk(v − v̄).

Lemma 22. If λ is in the cyclotomic field K then

n−1∑
k=0

wk ⊗ λwk =
n−1∑
k=0

wkλ̄⊗ wk.

Similarly
∑n−1
k=0 w

k ⊗λw−k =
∑n−1
k=0 w

kλ⊗w−k. The same holds when the tensor
product is replaced with the wedge product.

Proof. If we take λ = w` and use the fact that wn = 1 then

n−1∑
k=0

wk ⊗ λwk =
n−1∑
k=0

wk ⊗ wk+`
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=
n−1∑
k=0

wk−` ⊗ wk =
n−1∑
k=0

wkw−` ⊗ wk =
n−1∑
k=0

wkλ̄⊗ wk.

The first formula now follows for any rational linear combination of powers of w.
The other cases are similar.

0 1

v

v

h

h cot βh cot α

Figure 1.

Let h be the height of the triangle T as in Figure 1. It follows from Figure 1
that v − v = 2ih and h cotα+ h cotβ = 1. Thus

v − v =
2i

cotα+ cotβ
.

Now

cotα = i
(eαi + e−αi

eαi − e−αi
)

= i
(e2αi + 1
e2αi − 1

)
= i
(a+ 1
a− 1

)
and similarly

cotβ = i
(b+ 1
b− 1

)
.

This gives

v − v =
(a− 1)(b− 1)

ab− 1
. (3)

Note also that the x-coordinate of v is

h cotα =
cotα

cotα+ cotβ
=

a+1
a−1

a+1
a−1 + b+1

b−1
. (4)
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In particular v = h cotα+ ih = h cotα+ (v− v)/2 is in the field K. Therefore the
holonomy image of all segments of T̃ is in K.

Now assume the triangle T is acute. Let α denote the largest angle. The first
step is to find a cylinder in T̃ explicitly. According to Proposition 7 if T is a lattice
polygon then T̃ will decompose into a union of cylinders of moduli commensurable
to this one. We use the invariant J and Theorem 21 (and the comments after that
theorem) to test for this possibility.

In order to begin we need an explicitly given cylinder. A cylinder in T̃ cor-
responds to a closed billiard trajectory in T . Since T is acute we have a natural
candidate, the Fagnano trajectory. This trajectory is the inscribed triangle whose
vertices are the feet of the altitudes of T , see [Ta] and Figure 2. There is a fam-
ily of parallel trajectories of twice the length of this triangular trajectory; these
trajectories fill out a cylinder in T̃ . The boundary of this cylinder is a trajectory
which hits the vertex with largest angle. (See Figure 3.)

0 1

v

0 1

v

Figure 2.
The Fagnano trajectory and a nearby parallel trajectory.

In that figure the point z2 has coordinate 1−b−1 and the point z1 has coordinate

1− b−1 + a−1b−1 − a−1 = (1− b−1)(1− a−1).

With respect to the above coordinates for T , the cylinder containing this path lies
parallel to the direction z1 and the modulus of the cylinder is

m =
height

circumference
= Im

(−z2
z1

)
= −Im

( 1
1− a−1

)
= − 1

2i

(a+ 1
a− 1

)
.

Let L denote the linear transformation L(z) = z/z1. Let T̃ ′ be L(T̃ ), that is,
T̃ ′ is the result of (rescaling and) rotating T̃ so that the cylinder is vertical (the
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βα

γ

z1

z2

β

γ
α

0 1

z1+1

b

a

-1

-1

a b
-1 -1

Figure 3.
Cylinder containing the Fagnano trajectory.

circumference is horizontal). We have

J(T̃ ′) =
n−1∑
k=0

L(wk) ∧ L(wk(v − v̄))

=
n−1∑
k=0

wkz−1
1 ∧ wk(v − v̄)z−1

1

=
n−1∑
k=0

wk ∧ wkλ

where λ = v−v̄
z1z̄1

is pure imaginary.
Now

Jxy(T̃ ′) =
n−1∑
k=0

Re(wk)⊗ Im(wkλ) −
n−1∑
k=0

Re(wkλ) ⊗ Im(wk)

=
n−1∑
k=0

1
2

(wk + w−k)⊗ 1
2i

(λwk − λ̄w−k)

−
n−1∑
k=0

1
2

(λwk + λ̄w−k)⊗ 1
2i

(wk − w−k)

=
1
4

(n−1∑
k=0

wk ⊗ wkλ

i
+ wk ⊗ w−kλ

i
+ w−k ⊗ wkλ

i
+ w−k ⊗ w−kλ

i
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− λwk ⊗ wk

i
+ λwk ⊗ w−k

i
+ λw−k ⊗ wk

i
− λw−k ⊗ w−k

i

)
=
n−1∑
k=0

wk ⊗ wkλ

i
+ wk ⊗ w−kλ

i
.

If we change the framed translation structure by dividing the y-coordinate by
m we create a cylinder with modulus 1. Let T̃ ′′ denote the resulting surface. We
can obtain Jxy(T̃ ′′) from Jxy(T̃ ′) by dividing the second coordinate by m:

Jxy(T̃ ′′) =
n−1∑
k=0

wk ⊗ wkλ

mi
+ wk ⊗ w−kλ

mi
.

By the comments after Theorem 21, we need to determine when Jxy(T̃ ′′) is
symmetric and positive semidefinite. In fact, it is already symmetric, as the reader
may show.

To test for positive semidefiniteness, note first that Jxy(T̃ ′′) ∈ K ⊗K (in fact,
despite appearances, Jxy(T̃ ′′) ∈ k ⊗ k). If σ, σ′ are embeddings of K into C then
the map fσ,σ′ :K ⊗K → C given by

fσ,σ′
(∑

uj ⊗ vj
)

=
∑

σ(uj)σ′(vj)

is well-defined. If σ′ = σ̄ then fσ,σ̄ applied to a non-zero symmetric, positive
semidefinite form is positive:

fσ,σ̄

(∑
uj ⊗ uj

)
=
∑

σ(uj)σ(uj) > 0.

In particular to test Jxy(T̃ ′′) for positive definiteness, we can check that
fσ,σ̄Jxy(T̃ ′′) > 0 for every embedding σ of K.

An embedding of K is determined by the image of w, which must be a Galois
conjugate of w, i.e. of the form wr for some r relatively prime to n.

Proposition 23. Let σ(wk) = w`k and let σ′(wk) = w`
′k. Then

fσ,σ′(Jxy(T̃ ′′)) =
{
nσ′( λ

mi), if ` = `′ or ` = −`′;
0, otherwise.

Proof.

fσ,σ′(Jxy(T̃ ′′)) =
n−1∑
k=0

σ(wk)σ′(wk
λ

mi
) + σ(wk)σ′(w−k

λ

mi
)

=
n−1∑
k=0

σ′(
λ

mi
)wk(`+`′) + σ′(

λ

mi
)wk(`−`′).

Now if X =
∑n−1
k=0 w

pk then changing the order of summation gives X = wpX .
Thus

∑n−1
k=0 w

pk = 0 unless p ≡ 0 mod n in which case
∑n−1
k=0 w

pk = n.
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Note that σ(wk) = wk` and σ′(wk) = w−k` correspond to the same embeddings
of k into R.

We calculate

λ

mi
=

v − v̄
miz1z̄1

=
(a− 1)(b− 1)

ab− 1

 1
−(a+1)
2(a−1)

 1
(1− b−1)(1 − a−1)(1− b)(1 − a)

=
2

(a+ 1)(1− b)(1− c)

where we used abc = 1.
This gives the following theorem.

Theorem 24. Let T be an acute rational triangle with angles α ≥ β ≥ γ. Let
n be the least common denominator of the rational numbers α

π ,
β
π ,

γ
π . Then T has

the lattice property only if for all k prime to n we have

cos(kβ + kγ) sin(kβ)sin(kγ) < 0. (5)

One can show, although we will not use this fact, that this condition is sufficient
for the form Jxy(T̃ ′′) to be positive semidefinite.

Proof. Recall that abc = 1. We have

(1 + a)(1− b)(1− c) = (1 + e2αi)(1 − e2βi)(1− e2γi)

= e(α+β+γ)i(e−αi + eαi)(e−βi − eβi)(e−γi − eγi)
= (−1)(e−αi + eαi)(eβi − e−βi)(eγi − e−γi)
= 8 cos(α) sin(β) sin(γ)
= −8 cos(β + γ) sin(β) sin(γ)

Therefore σ( λ
mi ) > 0 if and only if σ(cos(β + γ) sin(β) sin(γ)) < 0.

The group of Galois automorphisms of Q[w] is the group Un of integers modulo
n relatively prime to n, under multiplication: the automorphism corresponding to
k ∈ Un sends sin(β) to sin(kβ), sin(γ) to sin(kγ) and cos(β + γ) to cos(kβ + kγ).
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(0,0) (1/2,0)

(1,1)

(0,1/2)

(1/3,1/3)

(1,1/2)

(1/2,1)

Figure 4.
The lightly shaded region is the set of pairs corresponding to acute triangles. The darkly shaded
region is the set where cos(β + γ) sin(β) sin(γ)) > 0.

5.1. Verifying the condition of Theorem 24

The set of pairs 1
2π (2β, 2γ) for which cos(β+γ) sin(β) sin(γ) < 0 is the complement

of the darkly shaded region in Figure 4: choosing 2β, 2γ ∈ [0, 2π) we must have
π < 2β + 2γ < 3π.

Now n is the least common denominator of the two rational numbers β/π, γ/π,
so (2β, 2γ) = (2πs

n , 2πt
n ) for positive integers s, t.

In other words the positivity condition of Theorem 24 is equivalent to: for all
p ∈ Un, (psn ,

pt
n ) mod 1 is in the unshaded region in Figure 4.

Figure 5 shows the set of pairs (psn ,
pt
n ) as p runs over Un, first in the case

s = 23, t = 17, n = 78 (example 25 in the table below) and secondly in the case
s = 23, t = 17, n = 78. The lighter shaded triangle in that figure consists of pairs
(s, t) for which the triangle (πn−s−tn , πsn ,

πt
n ) is acute.

The condition of Theorem 24 can easily be checked on a computer. For de-
nominators n running from 1 to 10000 we found exactly 25 non-isosceles acute
triangles which satisfied the condition of Theorem 24. They are listed in the table
below.

Based on this computer evidence we make the following conjecture.

Conjecture. Only 25 non-isosceles acute triangles satisfy the condition of Theo-
rem 24.

Because of the results of the following subsection this conjecture implies that only
the 3 non-isosceles acute triangles listed in Theorem 1 have the lattice property.

We restate this conjecture in strictly number theoretic terms taking into ac-
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(23,17,38)/78 (25,17,36)/78

Figure 5.
Two examples.

count the results of our Theorem 1.

Restatement. For all n ≥ 10000, and for all s 6= t ∈ Un for which s + t 6= 0,
s + 2t 6= 0 and 2s + t 6= 0 there exists p ∈ Un such that either (ps mod n) +
(pt mod n) < n/2 or (ps mod n) + (pt mod n) > 3n/2. That is, for some p ∈ Un
the pair (psn ,

pt
n ) mod 1 is in the darker shaded region of Figure 4.

Note that the case s+ t = n occurs only if β + γ = π, an impossibility. The cases
2s + t = n and s + 2t = n occur only when 2β + γ = π or β + 2γ = π, that is,
when the triangle is isosceles.

5.2. 25 special cases

In the previous table the triangles in cases 1, 2 and 4 do have the lattice property.
These correspond to the three cases mentioned in Theorem 1. Cases 1 and 2 have
been considered in [Vo2]. We will consider case 4 in section 5.2. In this section we
deal with the 22 remaining cases.

In these 22 cases, we construct directly two non-commensurable maximal cylin-
ders in a singular direction (perpendicular to an edge). In the table, the column
“side” gives the left and right angles of the side perpendicular to the cylinders
we found; the entries ‘x1’ and ‘x2’ give the center x-coordinate of the cylinders,
assuming the left endpoint of the edge “side” is at the origin and its right endpoint
is at 2 sin θ, where θ is the opposite angle (note that this is a different convention
for the side length than used previously). Thus these examples do not have the
Veech property. The data for the ratio of the cylinders is in the table below.

By way of example, in example number 13 with angles (14, 11, 5) π30 we found
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case n r s t side x1 x2

1 9 4 3 2
2 12 5 4 3
3 14 6 5 3 6,5 .20 .82
4 15 7 5 3
5 18 7 6 5 7,6 .296 1.149
6 20 9 8 3 9,8 .148 .603
7 20 9 7 4 7,4 .267 .591
8 21 10 6 5 10,6 .291 1.302
9 21 10 9 2 10,9 .073 .585
10 24 11 8 5 11,5 .288 .642
11 24 11 7 6 11,6 .092 625
12 30 14 13 3 14,3 .187 1.267
13 30 14 11 5 14,5 .180 .585
14 30 14 9 7 14,9 .085 1.004
15 30 12 11 7 12,11 .282 .665
16 30 13 9 8 13,9 .168 .665
17 42 17 13 12 17,13 .0096 .0812
18 42 19 12 11 19,12 .117 1.046
19 42 19 17 6 19,6 .360 .655
20 42 20 13 9 20,13 .160 .263
21 42 20 17 5 20,5 .316 .088
22 60 23 20 17 23,20 .110 .214
23 60 29 19 12 29,12 .494 .101
24 60 29 20 11 29,20 .045 .793
25 78 38 23 17 38,23 .032 .505

the cylinders of Figure 6 perpendicular to the edge whose angles are 14, 5. The
first cylinder is centered at x = .180 and the second at x2 = .585, where the
x coordinate runs from 0 to 2 sin 11π/30 = 1.827. To compute their moduli,
assume rather that the length of the shortest edge of the triangle is 1; then the
circumference of the first cylinder is (letting w = eπi/30)

2Im(w14 + w6 + w8 + w16 + w18 + w26 + w28 + w20 + w18 + w10 + w8)

and its height (the width in the figure) is

Re(w6 + w8 + w16 + w18 + w26).

Similarly the modulus of the second cylinder is computed to be

−2Im(w14 + w6 + w8 + w16 + w18 + w26 + w24 + w16)
Re(w8 + w16 + w18 + w26)

.
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Figure 6.
Two cylinders in the 5, 11, 14-example.

To show that these cylinders are non-commensurable, we computed the ratio of
the moduli (in reduced form in Q[w]) to be

ratio = 1− w2 − w4 + w8 + w10 − w14.

Since w has algebraic degree φ(60) = 16, this ratio is irrational (if the ratio were
rational, w would satisfy a rational polynomial of degree 14). In fact the algebraic
degree over Q of the ratio can be shown to be 4.

The table below lists the degree of w, gives the ratio as an element of Q[w],
and gives the degree of the ratio. In each case the ratio is a polynomial in w of
degree less than the degree of w, so the ratio is irrational.

5.3. The 2,3,4-example

In this subsection we consider the triangle which is example (c) of Theorem 1.

Theorem 25. The triangle with angles 2π/9, π/3 and 4π/9 has the lattice prop-
erty.

Proof. Let T denote the triangle and let T̃ denote the corresponding surface. Let
Γ denote the affine automorphism group of T̃ . To prove the lattice property it
suffices to show that the image of the group D(Γ) in PGL(2,R) contains a lattice.
We use the action of PGL(2,R) on the upper half-plane. We will show that the
image of Γ contains the group generated by reflections in the sides of the hyperbolic
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# deg ratio=r deg
[w] [r]

3 12 1
7 (6 + 3w4 − w6 + w8 − 3w10) 3

5 12 1
3 (w2 + w4 − 2w8 + w10) 3

6 16 7− 6w2 + w6 + 4w8 − 3w10 − 4w12 + 5w14 4
7 16 5 + 3w8 − 3w12 2
8 12 9 + 2w − 4w3 − 2w4 + 4w5 + 4w6 − 2w7 − 6w8 − 2w9 + 6w11 6
9 12 7 + 11w + 12w2 + 7w3 + 2w4 + 2w5 + 6w6 + 5w7 − w8 − 7w9 6

−8w10 − 4w11

10 16 1
3 (−6 + 2w2 + 8w4 + 2w6 − 7w10 − 4w12 + 5w14) 4

11 16 1
5 (3− w2 + 2w4 − w6 − w12 + w14) 4

12 16 w2 + w4 +w6 +w8 − w12 −w14 4
13 16 1−w2 −w4 + w8 + w10 − w14 4
14 16 2 +w2 −w6 − w8 − w10 + 2w14 4
15 16 18 + 6w2 − 7w6 − 8w8 − 7w10 +w12 + 14w14 4
16 16 3 + 3w4 + 3w6 − 3w14 2
17 24 1

211 (−98 + 84w2 − 339w4 − 710w6 + 485w8 + 2051w10 + 1279w12 − 1195w14 6
−2474w16 − 856w18 + 1050w20 + 855w22)

18 24 −2− 3w2 + 2w4 + 3w6 + 2w8 − 4w12 +w14 + 5w16 − w18 + 2w20 − 6w22 6
19 24 2 +w2 +w4 − w6 − w8 +w10 + w12 − w16 −w18 +w22 6
20 24 44 + 130w2 + 30w4 − 178w6 − 140w8 + 106w10 + 168w12 − 38w14 6

−206w16 − 68w18 + 123w20 + 93w22

21 24 5 + 4w2 + 4w4 +w6 + 2w10 + 3w12 + w14 − 2w16 − 3w18 − 2w20 6
22 32 1

552626999 (−492890382 + 390818622w2 + 816824625w4 + 760386855w6+ 8
930005115w8 + 830687855w10 + 573428027w12 + 577841758w14+
103670449w16 + 208273525w18 − 356577088w20 − 390818622w22−
460247537w24 − 577841758w26 − 216850939w28 − 324071379w30)

23 32 15 + 8w2 + 16w4 + 11w6 + 15w8 + 17w10 + 7w12 + 6w14 + 3w18 − 8w20 8
−8w22 − 8w24 − 6w26 + w28 − 6w30

24 32 1
59 (32 − 47w2 − 31w4 − 29w6 − 17w8 + 9w10 + 6w12 + 48w14 + 15w16 8

+30w18 + 23w20 + 47w22 + 8w24 − 48w26 − 29w28 − 43w30)
25 48 1

311 (266 − 37w2 − 246w4 + 24w6 + 96w8 − 111w10 + 159w12 + 69w14 12
−291w16 + 6w18 + 114w20 − 66w22 + 53w24 − 90w26 − 143w28 + 156w30

+146w32 + 18w34 + 67w36 − 153w38 − 96w40 + 134w42 + 66w44 − 80w46)

triangle with a vertex at i and ideal vertices at ∞ and tan(4π/9). This triangle
has angles 0, 0 and π/9 and the group generated by reflections in its edges is a
lattice (see Figure 8).

The group Γ contains the dihedral group Γ0 and the image of this group is
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generated by

z 7→
cos π9 z − sin π

9
sin π

9 z + cos π9

(rotation by 2π/9), and
z 7→ −z,

(reflection in the horizontal direction). This subgroup contains the reflections in
two edges of the triangle (see Figure 8).

The group D(Γ) also contains a parabolic element corresponding to a decom-
position into cylinders. A decomposition of the surface of the (2, 3, 4)-triangle is
shown in Figure 7. In that figure, parallel sides (which are labeled with their cor-
responding angle with respect to the horizontal, in multiples of π/9) are identified
by translation.

1
2

3

4

5

62

3

8 1

68

4

5

Figure 7.
Decomposition of the 2, 3, 4-example surface into 4 commensurable cylinders (4 shades of gray).

The widths of the cylinders in the decomposition, from lightest to darkest, are

cos
3π
9
,− cos

3π
9
− cos

8π
9
, cos

2π
9

+ cos
3π
9

+ cos
8π
9
, cos

4π
9
,
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and their heights are respectively

2 sin
3π
9

+ 4 sin
4π
9
, 2 sin

6π
9

+ 2 sin
π

9
+ 4 sin

2π
9
, 2 sin

3π
9

+ 2 sin
4π
9
, 2 sin

4π
9
.

One may easily verify that each of the cylinders has modulus

M = 2 cot4π/9 = 2 tanπ/18.

As a consequence the group D(Γ) contains the parabolic map

z 7→ z + 2 tan
4π
9

fixing the vertical direction (see Proposition 8). The composition of the inverse of
this parabolic element with the map z 7→ −z̄ gives the reflection in the third side
of the triangle.

0

2tan(4π/9)

π/9

Figure 8.
Fundamental domain (shaded), in the upper-half plane, of the Veech group of the (2, 3, 4)-
example. The center point is located at i. The points shown on the axis are tan(kπ/18) where
the integer k ranges from −8 to 8.

6. Right-angled and isosceles triangles

In this section we will prove the necessity of the hypotheses of Theorem 2. The
sufficiency of the hypotheses has already been discussed following the statement
of the Theorem. Theorem 2 deals with right and isosceles triangles. We begin
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with the case of right triangles. Specifically we will show that a rational right
triangle for which the smallest angle is not of the form π/n does not have the
lattice property.

Proof of Theorem 2, right-triangle case. Let T be a rational right triangle. We will
find a pair of maximal cylinders in the surface T̃ with incommensurable moduli.
The fact that the automorphism group of T̃ is not a lattice will then follow from
Propositions 7 and 9.

Let α, β be the two acute angles, with α ≥ β. There is a maximal cylinder
perpendicular to the hypotenuse of the triangle as shown in Figure 9. Assuming
the shorter leg has length 1/2, the circumference of this cylinder is 2 sin(α), and
the height is cos(α). This cylinder therefore has modulus

M =
1
2

cot(α) =
1
2

tan(β).

β

cosαα

α2sin

v

Figure 9.
Cylinder perpendicular to the hypotenuse.

If β is not of the form π/n, then the surface has a singularity at the point v
of Figure 9. Let k′ be the integer for which k′β ≤ π/2 ≤ (k′ + 1)β. If k′ is odd,
say k′ = 2k − 1, then there is a maximal cylinder which passes just below this
singularity (see Figure 11): its circumference is 4A sin((2k− 1)β) and its height is
2A cos((2k − 1)β) (where A is the length of the longer leg of the triangle), and so
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the modulus is

M ′ =
2A cos((2k − 1)β)
4A sin((2k − 1)β)

= 2 cot((2k − 1)β).

v

4Asin(2k-1)

(2k-1) β

β

β2Acos(2k-1)

Figure 10.
The cylinder below the singularity.

If k′ is even, say k′ = 2k, then there is a cylinder of circumference 4A sin((2k+
1)β) and height −2A cos((2k+1)β) which passes just above the singularity (Figure
11). The modulus of this cylinder is

M ′ = −2A cos((2k + 1)β)
4A sin((2k + 1)β)

= −2 cot((2k + 1)β).

In the first case (2k − 1)β ∈ (0, π/2), and in the second (2k + 1)β ∈ (π/2, π).

β
v

β2k

2Acos(2k+1)

4Asin(2k+1)β

Figure 11.
The cylinder above the singularity.

In order for the cylinders of Figure 9 and (the appropriate one of) Figures 10
or 11 to be commensurable, we must have

M/M ′ = ± tan((2k ± 1)β) tan(β) ∈ Q.
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We claim that this is only possible if M/M ′ = ±1. For, if α ∈ Q is such that

tan(β) = α cot((2k ± 1)β) = α tan(π/2− (2k ± 1)β),

then (letting ‖ · ‖ denote the algebraic norm, i.e. the product of the Galois conju-
gates)

‖ tan(β)‖ = αd‖ tan(π/2− (2k ± 1)β)‖,
where d is the algebraic degree of tan(π/2− (2k ± 1)β) (and hence the algebraic
degree of tan(β)). By Lemma 26 below, ‖ tan(β)‖ and ‖ tan(π/2− (2k± 1)β)‖ are
each (up to sign) either 1, prime or the reciprocal of a prime. Thus if α 6= ±1 then
d = 1 or d = 2.

Since

i tan(pπ/q) =
e2πip/q − 1
e2πip/q + 1

, (6)

we have Q[i, tan(p/πq)] = Q[i, e2πip/q]. So tan(pπq ) has degree 1 only when e2πip/q ∈
Q[i], that is, only when q = 2 or q = 4. Similarly, tan(pπq ) has degree 2 only when
e2πip/q is in a quadratic extension of Q[i]. The degree of the cyclotomic extension
of order q is φ(q) where φ is the Euler φ-function. The only values of q for which
φ(q) = 2 or φ(q) = 4 are q = 3, 6, 8, 12. However since β = pπ

q < π/4 and is not of
the form π/n none of these exceptions occur.

So we conclude from Lemma 26 that tan(β) = tan(π2 − (2k − 1)β) if k′ is
odd and tan(β) = − cot((2k + 1)β) if k′ is even. The first possibility implies
β = π

2 − (2k− 1)β and so β = π
4k , which is not allowed. For the second possibility

we must have tan(π2 − β) = − tan((2k + 1)β) = tan(π − (2k + 1)β), or β = π
4k

again. Again this is not allowed.
In conclusion, the cylinders are never commensurable. So these triangles do

not have the lattice property.

If β has the form π/n then the cylinders constructed here are not maximal.
Nevertheless if we assume that β = π/n with n odd then it is easy to check that
the previous argument for the incommensurability of the moduli still applies. We
will use this fact below.

Lemma 26. If m and n are relatively prime, then

‖ tan(mπ/n)‖ =


±p if n = p` and p is an odd prime
±1/p if n = 2p` and p is an odd prime
±1 otherwise.

Proof. The norm of an element is the constant term of its minimal polynomial
(times (−1)degree). The minimal polynomial of e2πim/n is Φn(z), the n-th cyclo-
tomic polynomial. The minimal polynomial for e2πim/n±1 is Φn(z∓1). According
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to (6) we have ‖ tan(pπ/q)‖ = Φs(1)/Φs(−1). If n = p` for some prime p, then

Φn(z) =
zp
` − 1

zp`−1 − 1
= 1 + zp

`−1
+ z2p`−1

+ . . .+ z(p−1)p`−1

and so Φn(1) = p and Φn(−1) = 1, unless p = 2, in which case Φn(1) = 2 =
Φn(−1).

We have
∏
d|n,d 6=1 Φd(z) = 1 + z + . . .+ zn−1, and so

∏
d|n, d 6=1

Φd(1) = n.

If n = 2α13α2 · · · pαkk is the prime factorization of n then dividing out by terms
corresponding to the the prime power factors 21, 22, . . . , 2α1 , 31, . . . , 3α2 , . . . , pαkk
leaves 1 on the right hand side. So each of the remaining factors d must satisfy
Φd(1) = ±1. A similar argument for Φd(−1) using

∏
d|n,d>2 Φd(z) = 1+z2 + . . .+

zn−2 when n is even yields the result.

Proof of Theorem 2, isoceles case. Let T ′ be an isosceles triangle with apex angle θ
where θ is a rational multiple of π which is not of the form π/n. Let T be the right
triangle obtained by folding T ′ in half. Thus the apex angle of T is β = θ/2. Let
T̃ ′ and T̃ be the surfaces associated with T ′ and T . There is a natural projection
from T ′ to T .

Case 1. Assume that θ does not have the form 2π/n with n odd. In this case
β does not have the form π/n. The annuli in T shown in figure 9 and figures 10
or 11 (as the case may be) are maximal and incommensurable in T̃ . They lift to
maximal and incommensurable annuli in T̃ ′.

Case 2. Assume that θ = 2π/n with n odd. In this case T̃ ′ is a branched double
cover of T̃ branched at the points in T̃ corresponding to the apex angle of T (one
of these points is marked v in figures 10 and 11). These points are non-singular
points of T̃ . In this case the annuli in figures 10 and 11 are not maximal in T̃
(because v is not a singular point in T̃ ) but their lifts are maximal in T̃ ′ (because v
does correspond to a singular point in T̃ ′). The incommensurability of the moduli
of the cylinder from figure 9 and the cylinder from figure 10 or 11 follows from the
comment before Lemma 26.

7. Appendix: Consequences of having a non-elementary auto-
morphism group

The criteria developed in section 5 (to show that polygons do not have the lattice
property) are rather subtle. The results of this section were motivated by the
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desire to find elementary criteria which could be used to show that a particular
polygon did not give rise to a surface with the lattice property. In fact the crite-
ria that we develop here test for the weaker property of having an automorphism
group of ‘type 3’ as in section 3. On the other hand we will see that the transla-
tion surfaces for all rational triangles satisfy the hypotheses in the criteria of this
appendix so that these criteria are not useful in distinguishing differences in the
affine automorphisms groups of rational triangles. In particular the main results
of this paper in section 5 do not depend on the results of this appendix.

The existence of an affine pseudo-Anosov automorphism of a translation struc-
ture or, what is the same, a hyperbolic element of D(Γ) has consequences for the
algebraic structure of the holonomy image. We describe these consequences in this
appendix. We begin with an algebraic Lemma.

A polynomial P (X) of even degree 2g is said to be reciprocal if P (X) =
X2gP (1/X). This implies that each root λ occurs with the same multiplicity
as λ−1.

Lemma 27. If λ is the root of a reciprocal polynomial P (X) ∈ Z[X ] of degree 2g
then λ+ λ−1 is the root of an integer polynomial of degree at most g.

Proof. By induction on g we will prove P (X)X−g = r(X + 1/X) for some integer
polynomial r. This is clearly true if g = 1, for then P (X)X−1 = aX + b+ a/X =
a(X + 1/X) + b. For g ≥ 1, the terms of degree g and −g in P (X)X−g have
equal coefficients a1; thus P (X)X−g − a1(X + 1/X)g is either zero or of the form
Q(X)X−g

′
for some reciprocal integer polynomial Q of even degree 2g′ < 2g.

Let Λ = h(H1(M,Z)), that is, Λ is the subgroup of R2 generated by the integer
holonomy. Then Λ is a free Z-module; let rk(Λ) denote its rank.

Let e1, e2 ∈ Λ be non-parallel vectors in R2. Define k to be the smallest subfield
of R such that every element of Λ can be written ae1 + be2, with a, b ∈ k. In other
words, k is the smallest field such that Λ⊗k k ∼= k2. We call k the holonomy field.

For a different approach to these notions see [GJ2]. Chris Judge communicated
to us that he and Gutkin have independently obtained the Corollary 29 and the
first part of Theorem 28 below.

Theorem 28. If the affine automorphism group of M contains an orientation-
preserving pseudo-Anosov element f with largest eigenvalue λ then k = Q[λ+λ−1]
and [k : Q] = 1

2rk(Λ).

In particular since the holonomy field depends only on the translation structure
we see that for every orientation-preserving affine pseudo-Anosov automorphism
of M , the field Q[λ + λ−1] is the same. In case f reverses orientation then k =
Q[λ − λ−1] but the rest of the statement is the same. The proof in this case is
similar and left to the reader.
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Proof. Let k′ = Q[λ + λ−1]. We first show that k′ ⊂ k. Since Df ∈ SL(2,R)
and Df maps Λ⊗k k ∼= k2 to itself, after choosing a basis in Λ, the map Df is in
SL(2, k). But trace (Df) = λ+λ−1. As a consequence λ+λ−1 ∈ k and so k′ ⊂ k.

To show that k ⊂ k′ we will show that Λ is contained in a 2-dimensional
k′-vector subspace of R2. Let f∗ denote the action of f on H1(M,k′). The
characteristic polynomial of f∗ factors over k′ as

P (X) = (X2 − (λ+ λ−1)X + 1)Q(X),

where λ and λ−1 are not roots ofQ(X) (Fried [Fri] shows that λ and λ−1 occur with
multiplicity 1). Furthermore f∗ preserves Ker(h). By the primary decomposition
theorem, H1(M,k′) splits into invariant factors W ′⊕V , where W ′ is the k′-linear
subspace on which f∗ has eigenvalues λ, λ−1. But from Lemma 6 we have another
decomposition H1(M ; k′) = W ⊕ W⊥, where W⊥ = Ker(h) ∩ H1(M ; k′) and
W = A∗ ∩H1(M ; k′). Now we must have W ′ = W since this is the only subspace
on which f∗ has eigenvalues λ±1. Since Ker(h) is f∗-invariant, we must have
W⊥ = V as well.

The primary decomposition theorem implies that the projection map (along V )
from H1(M,k′) to W ′ = W is k′-linear. Therefore Λ, the image of the projection
of H1(M,Z) ⊂ H1(M,k′) is contained in the 2-dimensional k′-vector space W .
We conclude that k ⊂ k′.

Now write P (X) = (X2 − (λ + λ−1)X + 1)Q′(X)R(X) where R(X) is the
largest rational factor. The rational subspace WR corresponding to R(X) is in the
kernel of h and so rkΛ = 2 + degQ′. Now (X2 − (λ + λ−1)X + 1)Q′(X) is either
the minimal polynomial for λ or the product of the minimal polynomials for λ and
λ−1, in case they are not algebraic conjugates. By Lemma 27 the algebraic degree
of λ+ λ−1 is equal to 1

2(2 + degQ′) = 1
2rkΛ.

Corollary 29. If the affine automorphism group of M contains a pseudo-Anosov
element then the group D(Γ) contains a subgroup of finite index which is contained
in SL(2,O) where O is the ring of integers in k.

Proof. Both O2 = O × O and Λ are lattices in k2 of maximal rank. Thus their
intersection is a lattice of finite index n in Λ. There are finitely many subgroups
of index n in Λ and D(Γ) permutes them. Thus there is a subgroup D(Γ′) of
finite index that fixes O2 ∩ Λ. Now O2 ∩ Λ is a subgroup of O2 of finite index m
and there is a finite set of lattices that contain O2 ∩ Λ as a subgroup of index m.
So passing to a further finite index subgroup D(Γ′′) we may assume that O2 is
stabilized. But the stabilizer of O2 is just SL(2,O).

Recall that a segment is a curve connecting singularities of M . Let Λ0 be the
subgroup of R2 generated by the holonomy images of segments, that is, Λ0 is the
image of H1(M,Σ; Z) under the holonomy mapping. (Recall that Λ is the image
of H1(M,Z) under holonomy.)
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Theorem 30. If the affine automorphism group of M contains a pseudo-Anosov
element then Λ has finite index in Λ0.

Proof. It suffices to show that H1(M,Q) and H1(M,Σ; Q) have the same image
under holonomy.

Let f be an affine pseudo-Anosov automorphism and let λ±1 be the eigenvalues
of Df . The map f induces automorphisms of each of the following modules:

H1(M ; Q) ι−→ H1(M,Σ; Q) ∂−→ H0(Σ; Q)yh
R2

Because the top row is exact, the eigenvalues of f acting onH1(M,Σ,Q) are the
union of the eigenvalues of f acting on H1(M,Q) and the eigenvalues of f acting
on H0(Σ,Q). Since Σ is a finite set, f is a permutation matrix on H0(Σ,Q), and so
the eigenvalues on this space are roots of unity. As a consequence the eigenvalues
λ, λ−1 occur with multiplicity exactly 1 on H1(M,Σ; Q).

As in the proof of Theorem 28, x ∈ H1(M,Σ; Q) is in Ker(h) if and only if x is
in an f -invariant Q-subspace such that the eigenvalues of f on that subspace do
not contain λ.

Theorems 28 and 30 are related to a result of Franks and Rykken ([FR]): if λ is
quadratic, then (M,f) is a branched cover of an Anosov mapping of a torus. For
then λ + λ−1 ∈ Z and so Λ = Z2 after change of coordinates (and homothety).
In particular this implies that M is almost integrable. Compare this result with
Theorem 4 in [GJ1] and Theorem 5.4 in [GJ2].
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