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Abstract. S. P. Novikov developed an analog of the Morse theory for closed 1-forms. In this
paper we suggest an analog of the Lusternik - Schnirelman theory for closed 1-forms. For any
cohomology class ξ ∈ H1(M,R) we define an integer cl(ξ) (the cup-length associated with ξ); we
prove that any closed 1-form representing ξ has at least cl(ξ)−1 critical points. The number cl(ξ)
is defined using cup-products in cohomology of some flat line bundles, such that their monodromy
is described by complex numbers, which are not Dirichlet units.
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§1. The main result

1.1. Let M be a closed manifold and let ξ ∈ H1(M ; R) be a nonzero cohomology
class. The Novikov inequalities [N1], [N2], [N3] estimate the numbers of zeros
ci(ω) of different indices of any closed 1-form ω with Morse type singularities on
M lying in the class ξ.

Novikov type inequalities were constructed in [BF1] for closed 1-forms with
slightly more general singularities (non-degenerate in the sense of Bott [B]). In
[BF2] an equivariant generalization of the Novikov inequalities was found.

In this paper we will consider the problem of estimating the number of critical
points of closed 1-forms ω with no non-degeneracy assumption. We suggest here
a version of the Lusternik - Schnirelman theory for closed 1-forms.

An announcement [F1] describes some results of this paper.
My recent preprint [F2] suggests a different approach to the Lusternik - Schnirelman

theory of closed 1-forms; it uses untwisted cohomology and Massey products. Ex-
amples computed in [F2], show that the results of [F2] and of the present paper
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are independent.

1.2 Let ξ ∈ H1(M ; Z) be an integral cohomology class. We will define below a
nonnegative integer cl(ξ), which we will call the cup-length associated with ξ.

Recall, that a complex flat vector bundle E over M is determined by its mon-
odromy, a linear representation of the fundamental group π1(M,x0) in GLC(E0),
where E0 is the fiber over the base point x0 ∈ M ; this representation is given by
the parallel transport of vectors along loops. For example, a flat line bundle is
determined by a homomorphism H1(M ; Z) → C∗, where C∗ is considered as a
multiplicative abelian group.

Given class ξ as above and a nonzero complex number a ∈ C∗, we have the
complex flat line bundle over M with the following property: the monodromy
along any loop γ ∈ π1(M) is the multiplication by a〈ξ,γ〉. We will denote this
bundle by aξ. If a, b ∈ C∗, we have the canonical isomorphism of flat line bundles

aξ ⊗ bξ ' abξ.

A lattice L ⊂ V in a finite dimensional vector space V is a finitely generated
subgroup with rankL = dimC V . We will say that a complex flat bundle E →M
of rank m admits an integral lattice if its monodromy representation π1(M,x0)→
GLC(E0) is conjugate to a homomorphism π1(M,x0)→ GLZ(L0), where L0 ⊂ E0
is a lattice in the fiber. This condition is equivalent to the assumption that E is
obtained from a local system Ẽ of finitely generated free abelian groups over M
by tensoring on C.

1.3. Definition. The cup-length cl(ξ) is the largest integer k such that there exists
a nontrivial k-fold cup product

Hd1(M ;E1)⊗Hd2(M ;E2)⊗ · · · ⊗Hdk(M ;Ek)→ Hd(M ;E), (1-1)

where d = d1+· · ·+dk, E = E1⊗E2⊗· · ·⊗Ek, d1 > 0, ..., dk > 0, and the first two
flat bundles E1 and E2 have the following property: there exist nonzero complex
numbers a1, a2 ∈ C∗, and complex flat bundles F1 and F2 over M , admitting
integral lattices, so that

Ei ' aiξ ⊗ Fi, for i = 1, 2, (1-2)

and both numbers a1 and a2 are not Dirichlet units.

Recall that a Dirichlet unit is defined as a complex number b 6= 0 such that b
and its inverse b−1 are algebraic integers. In other words, Dirichlet units can be
characterized as roots of polynomial equations

bn + γ1b
n−1 + · · ·+ γn−1b+ γn = 0,
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where all γi are integers and γn = ±1.
Note that the cup-length cl(ξ), defined by 1.3, satisfies 0 ≤ cl(ξ) ≤ dimM. We

will see examples below showing that cl(ξ) = dimM is possible.
The definition of the cup-length cl(ξ) above is slightly different from the one

given in [F1]; following the present definition, we may have a larger cup-length
cl(ξ).

Theorem 1. Let ω be a closed 1-form on M lying in an integral cohomology class
ξ ∈ H1(M ; Z). Let S(ω) denote the set of zeros of ω, i.e. the set of points p ∈M
such that ωp = 0. Then the Lusternik - Schnirelman category of S(ω) satisfies

cat(S(ω)) ≥ cl(ξ)− 1. (1-3)

In particular, if the set of zeros S(ω) is finite, then for the total number |S(ω)| of
zeros

|S(ω)| ≥ cl(ξ)− 1. (1-4)

Here cat(S) denotes the Lusternik - Schnirelman category of S = S(ω), i.e. the
least number k, so that S can be covered by k closed subsets A1 ∪ · · · ∪ Ak such
that each inclusion Aj → S is null-homotopic.

Proof of Theorem 1 is given in §2.

1.4. Corollary ([F1]). Suppose that there exist complex numbers a1, a2, . . . , am ∈
C∗, not all Dirichlet units, such that a cup product

Hd1(M ; a1
ξ)⊗Hd2(M ; a2

ξ)⊗ · · · ⊗Hdk(M ; akξ)→ Hd(M ; aξ),

with dj > 0, j = 1, 2, . . . k, is nontrivial. Then for any closed 1-form ω on manifold
M , lying in class ξ ∈ H1(M ; Z), holds cat(S(ω)) ≥ k − 1.

Proof. We may assume that ξ 6= 0; otherwise the statement follows from the
Lusternik - Schnirelman theory for functions.

Corollary 1.4 directly follows from Theorem 1, if there are at least two non
Dirichlet units among a1, a2, . . . , ak. Suppose that there is precisely one non
Dirichlet unit. Denote a = a1a2 · · ·ak. Then a is not a Dirichlet unit, and, in
particular, a 6= 1. Hence Hn(M ; aξ) = 0. Therefore, the dimension of the nontriv-
ial cup-product above d = d1 + d2 + · · ·+ dk < n = dimM is less than n. By the
Poincaré duality, the cup-product pairing

Hd(M ; aξ)⊗Hn−d(M ; a−ξ ⊗LM )→ Hn(M ;LM)

is non-degenerate. Here LM denotes the orientation flat line bundle of M . The
monodromy of LM along any loop γ equals ±1 depending on whether the orienta-
tion of M is preserved or reversed by γ. Note that LM admits an integral lattice.
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Hence, we may find a nontrivial cup-product of length k + 1 with an extra factor
in Hn−d(M ; a−ξ ⊗LM ). Now, Theorem 1 applies and gives cat(S(ω)) ≥ k. �

1.5. It is clear that Corollary 1.4 becomes false if we remove the requirement that
one of the numbers ai are not Dirichlet units. The simplest example is provided by
the torus Tn; any cohomology class ξ ∈ H1(Tn; R) of the torus M = Tn contains
a closed 1-form without zeros, but the cup-length of T n is n.

1.6. Remark. A crude estimate for the cup-length cl(ξ) can be obtained by taking
the maximal length of a non-trivial product (1-1) with Ej = aξj and aj ∈ C∗ being
transcendental, j = 1, 2, . . . , k. We will give an example (cf. 1.10, example 3)
showing that this estimate can be really worse than the one provided by Theorem
1.

1.7. Remark. In the longest nontrivial product (1-1) the number d must be equal
the dimension of the manifold n = dimM . Indeed, any nontrivial cup-product
(1-1) with d < n can be made longer by using the Poincaré duality.

1.8. Forms with non-integral periods. In general, the cohomology class
determined by a closed 1-form ω belongs to H1(M,R), i.e. it has real coefficients.
It is clear that multiplying ω by a non-zero constant λ 6= 0 does not change the set
of critical points S(ω) and multiplies the cohomology class by λ. Hence Theorem 1
also gives estimates in the case of cohomology classes ξ ∈ H1(M,R) of rank 1 (i.e.
for classes, which are real multiples of integral classes) if we define the associated
cup-length cl(ξ) as follows

cl(λξ) = cl(ξ), λ ∈ R, λ 6= 0, ξ ∈ H1(M,Z).

Recall, that given a cohomology class ξ ∈ H1(M,R), its rank is defined as the
rank of the abelian group, which is the image of the homomorphism H1(M,Z)→
R, determined by ξ. Note that the cohomology classes of rank 1 are dense in
H1(M,R). Therefore the following definition makes sense.

Definition. Given a class ξ ∈ H1(M,R) of rank > 1, we define cl(ξ) as the largest
number k, such that there exists a sequence of rank 1 classes ξm ∈ H1(M,R) with

cl(ξm) ≥ k, lim
m→∞

ξm = ξ, (1-5)

and each ξm, considered as a homomorphism H1(M ; Z) → R, vanishes on the
kernel of the homomorphism ξ : H1(M ; Z)→ R.

Theorem 2. Let ω be a closed 1-form on M lying in a cohomology class ξ ∈
H1(M ; R). Let S(ω) denote the set of zeros of ω. Then the Lusternik - Schnirelman
category of S(ω) satisfies

cat(S(ω)) ≥ cl(ξ)− 1. (1-6)
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In particular, if the set of critical points S(ω) is finite then for the total number
|S(ω)| of the critical points,

|S(ω)| ≥ cl(ξ)− 1. (1-7)

For the proof see §3.

1.9. Connected sums. Let M1 and M2 be two closed n-dimensional manifolds.
Assume for simplicity, that n > 2. We will denote by M1#M2 the connected sum
of M1 and M2. Given cohomology classes ξν ∈ H1(Mν ; R), where ν = 1, 2, the
class ξ1#ξ2 ∈ H1(M1#M2; R) is well defined, in an obvious way.

In the description of examples (cf. 1.10) we will use the following statement:

Proposition 1. In the situation described above,

cl(ξ1#ξ2) = max{cl(ξ1), cl(ξ2)}. (1-8)

Proof is given in §3.

1.10. Examples. 1. In the notations of the previous subsection, let ξ1 = 0 and
suppose that ξ2 6= 0 can be realized by a closed 1-from with no critical points
(for example, fibration over the circle). Then we obtain from Proposition 1 that
cl(ξ1#ξ2) = cl(ξ1). Since ξ1 = 0, the cup-length cl(ξ1) can be estimated from
below by the usual cup-length of the manifold M1 with complex coefficients.

To have a specific example, let us take M1 = Tn, M2 = S1×Sn−1, ξ1 = 0 and
ξ2 ∈ H1(M2; Z) being a generator, where n > 2. Then we have for ξ = ξ1#ξ2 ∈
H1(M1#M2; R)

cl(ξ1#ξ2) = n. (1-9)

Therefore, by Theorem 1, any closed 1-form ω on M1#M2 lying in class ξ has a
least n− 1 critical points.

2. In a similar way one may construct examples of cohomology classes of higher
rank with many critical points. Namely, suppose that M1 = Tn, where n > 2 and
ξ1 = 0; take for M2 arbitrary closed manifold of dimension n with a cohomology
class ξ2 ∈ H1(M2; R) of rank q. Then for the class ξ = ξ1#ξ2 ∈ H1(M1#M2; R)
(having rank q) we again obtain cl(ξ) = n (by Proposition 1).

One may take, for example, M2 = T q×Sn−q with ξ2 induced from a maximally
irrational class on the torus T q.

3. Let M be a 3-dimensional manifold obtained by 0-framed surgery on the
knot 52:



Vol. 75 (2000) Lusternik–Schnirelman theory for closed 1-forms 161

....
....
.....
....
........
...................................................

.......
..
...
..
.
..
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
..
.
.
..
.
.
...
.
..
.
..
..
.
.
.
...
.
..
.
....
..
....
.
..
..
.
...
...
..
..
..
....
...
..
...
..
...
...
..
..........................................................................................................................................

..
..
...
.
.
..
.
..
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
..
.
.

......
.....
.....
...
.....
....
.....
.
..
...
.
..
..
....
...
....
.
..
..
...
.
..
..
...
.
..
.
....
..
...
..
....
...
...
.....
...
.
..
.
.
.
.
...
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
..
.
.
..................................

.....
....
.....
...
....
...
...
....
...
....
...
..
...
..
...
..
.

..
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
...
.
..
.
...
..
..
...
..
..
..
...
..
...
...
...
...
...
...
...
....
....
....
....
......
........
..........................................................

...

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

..

.

..

.

..
.
..
.
..
.
.
...
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
...
..
..
...
...
...........................................

Figure 1.

This knot has Alexander polynomial ∆(τ) = 2−3τ+2τ2. Then H1(M ; Z) = Z
and taking ξ ∈ H1(M ; Z) to be a generator we find that H1(M ; aξ) is trivial for
all a ∈ C∗, which are not the roots of the Alexander polynomial. It is easy to
check that if a is one of the roots of 2− 3a+ 2a2 = 0 then H1(M ; aξ) 6= 0. Note
that the roots of 2 − 3a+ 2a2 = 0 are not Dirichlet units. Hence we obtain that
all Novikov Betti numbers are trivial (since, as it is known [N3], that the Novikov
Betti numbers equal to dimH∗(M ; aξ) for generic a ∈ C). However by Corollary
1.4 we obtain that any closed 1-forms in class ξ has at least 1 critical point.

§2. Proof of Theorem 1

2.1. Since we assume that the cohomology class ξ of ω is integral, ξ ∈ H1(M,Z),
there exists a smooth map f : M → S1, such that ω = f∗(dθ), where dθ is the
standard angular form on the circle S1 ⊂ C, S1 = {z; |z| = 1}.

Denote f−1(b) by V ⊂M , where b ∈ S1 is a regular value; it is a codimension
one submanifold. Let N denote the manifold obtained by cutting M along V .
Note that N and V could be disconnected.

Each connected component of V yields two connected components of ∂N , the
positive and the negative. In order to distinguish between the positive and the
negative boundary components of ∂N , we use the orientation of the normal bun-
dle to V in M , given by the form ω. The positive components are defined as
those with the internal normal vector field to N being positive. The union of all
positive (negative) boundary components of N will be denoted by ∂+N , or ∂−N ,
correspondingly.

Let p : N → M denotes the natural projection. Then p∗ω = dg, where
g : N → R is a smooth function, determined up to a constant on each connected
component of N . It is clear that g is constant on each connected component of
∂N . The points of ∂+N are points of local minimum of g; the points of ∂−N are
points of local maximum of g. The map g sends the set S(g) of critical points of
g diffeomorphically onto the set S(ω).
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2.2. Relative Lusternik - Schnirelman category. We will use the well-known
notion of relative Lusternik - Schnirelman category, cf. [Fa], [Fo], [S]. Let’s recall
it.

For any subset X ⊂ N containing ∂+N we will denote by cat(N,∂+N)(X) the
minimal number k such that X can be covered by k + 1 closed subsets

X ⊂ A0 ∪A1 ∪A2 ∪ · · · ∪Ak ⊂ N

with the following properties:
(1) A0 contains ∂+N and the inclusion A0 → N is homotopic to a map A0 →

∂+N keeping the points of ∂+N ⊂ A fixed;
(2) for j = 1, 2, . . . , k, each inclusion Aj → N is null-homotopic.
We claim, that

catS(ω) = catS(g) ≥ cat(N,∂+N)(N). (2-1)

This follows from known results, cf., for example, [Fo], Th. 4.2. We apply Theorem
4.2 of [Fo] to each of the connected components of N and to the restriction of
function g on it; we use the additivity of the relative Lusternik - Schnirelman
category with respect to disjoint union, cf. [Fo], Prop. 2.8.

Our next purpose will be to prove the inequality

cat(N,∂+N)(N) ≥ cl(ξ)− 1. (2-2)

Together with (2-1) this will complete the proof of the Theorem.

2.3. The deformation complex. The proof of (2-2) will consist of building
a polynomial deformation, a finitely generated free cochain complex C∗ over the
ring P = Z[τ ] of polynomials with integral coefficients, having properties (a), (b)
described below. With the help of the deformation complex we will prove the
Lifting Property, cf. Corollary 2.6, playing a crucial role in the proof.

In [F3] we show how the deformation complex leads to inequalities, which are
stronger than the Novikov inequalities.

The construction of the deformation complex is similar to [F2]; the difference
is that in the present paper we will work over the integers, and in [F2] over a field.

Claim. Let E →M be a flat vector bundle over M , admitting an integral lattice,
and let Ẽ be a local system of free abelian groups over M such that Ẽ ⊗ C '
E. Denote by Ẽ0 = p∗(Ẽ); it is a local system over N . There exists a free
finitely generated cochain complex C∗ over the ring P = Z[τ ] having the following
properties:

(a) for any nonzero complex number a ∈ C∗ there is a canonical isomorphism

Hq(C∗ ⊗P Ca) '−→ Hq(M ; a−ξ ⊗E). (2-3)
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Here Ca is C, which is viewed as a P -module with the following structure: τx = ax
for x ∈ C.

(b) for a = 0 there is a canonical evaluation isomorphism

Hq(C∗ ⊗P Z0)→ Hq(N, ∂+N ; Ẽ0), (2-4)

where Z0 is Z with the following P -module structure: τx = 0 for any x ∈ Z.

To construct C∗, we shall assume that N is triangulated and ∂N is a subcomplex.
Let i± : V → N be the inclusions, which identify V with ∂±N correspondingly. Ẽ
determines also an isomorphism of local systems σ : i∗+Ẽ0 → i∗−Ẽ0 over V .

Denote by Cq(N) and Cq(V ) the free abelian groups of Ẽ0-valued cochains; δN :
Cq(N) → Cq+1(N) and δV : Cq(V ) → Cq+1(V ) will denote the corresponding
coboundary homomorphisms.

Let Cq(N)[τ ] and Cq−1(V )[τ ] denote the free P -modules formed by polyno-
mials with coefficients in the corresponding abelian groups; for example, an el-
ement c ∈ Cq(N)[τ ] is a formal sum c =

∑
i≥0 ciτ

i with ci ∈ Cq(N) and on-
ly finitely many ci’s are nonzero. The P -module structure is given as follows:
τ · c =

∑
i≥0 ciτ

i+1. It is clear that Cq(N)[τ ] and Cq−1(V )[τ ] are free finitely
generated P -modules.

The natural P -module extensions

δN : Cq(N)[τ ]→ Cq+1(N)[τ ], and δV : Cq(V )[τ ]→ Cq+1(V )[τ ]. (2-5)

of the boundary homomorphisms act coefficientwise, so that δN and δV are P -
homomorphisms. If α =

∑
i≥0 αiτ

i ∈ Cq(N)[τ ], then δN(α) =
∑
i≥0 δN (αi)τ i.

Define a finitely generated free cochain complex C∗ over P = Z[τ ] (the defor-
mation complex) as follows: C∗ = ⊕Cq, where

Cq = Cq(N)[τ ] ⊕ Cq−1(V )[τ ].

Elements of chain complex Cq will be denoted as pairs (α, β), where α ∈ Cq(N)[τ ]
and β ∈ Cq−1(V )[τ ]. The differential δ : Cq → Cq+1 is given by the following
formula

δ(α, β) = (δN (α), (σ ⊗ i∗+ − τi∗−)(α)− δV (β)), (2-6)

where α ∈ Cq(N)[τ ] and β ∈ Cq−1(V )[τ ]. Obviously, C∗ is the cylinder of the
chain map σ ⊗ i∗+ − τi∗− with a shifted grading.

To show (a) we note that M is obtained from N by identifying all points i+(v)
with i−(v), where v ∈ V ; the flat bundle E over M is obtained from the flat
bundle Ẽ over N by identifying the vectors e+ ∈ Ẽ|∂+N and e− ∈ Ẽ|∂−N with
σi∗+(e+) = ai∗−(e−). Hence Hq(M ; a−ξ⊗E) can be identified with the cohomology
of complex C∗(M ; a−ξ ⊗ E), consisting of cochains α ∈ Cq(N) satisfying the
boundary conditions

ai∗−(α) = σ ⊗ i∗+(α) ∈ Cq(V ).
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The complex Cq ⊗P Ca = Cq(N)⊕ Cq−1(V ) has the differential given by

δ(α, β) = (δN (α), (σ ⊗ i∗+ − ai∗−)(α)− δV (β)), (2-7)

where α ∈ Cq(N) and β ∈ Cq−1(V ). It is clear that there is a chain homomorphism
C∗(M ; a−ξ ⊗ E) → C∗ ⊗P Ca (acting by α 7→ (α, 0)). It is easy to see that it
induces an isomorphism on the cohomology. Indeed, suppose that a cocycle α ∈
Cq(M ; a−ξ⊗E) bounds in the complex C∗⊗P Ca. Then there are α1 ∈ Cq−1(N),
β1 ∈ Cq−2(V ) such that α = δN (α1), σ ⊗ i∗+(α1) − ai∗−(α1) − δV (β1) = 0. We
may find a cochain β2 ∈ Cq−2(N) such that σi∗+(β2) = β1 and i∗−(β2) = 0 (by
extending β1 into a neighborhood of ∂+N). Then setting α2 = α1 − δN (β2) we
have

α = δN (α2), σi∗+(α2)− ai∗−(α2) = 0, (2-8)

which means that α also bounds in Cq(M ; a−ξ ⊗E).
Similarly, suppose that (α, β) is a cocycle of complex C∗ ⊗P Ca. As above

we may find a cochain β′ ∈ Cq−1(N) with i∗+(β′) = β and i∗−(β′) = 0. Then
(α − δN (β′), 0) it is a cocycle of C∗(M ; a−ξ ⊗ E) and it is cohomologous to the
initial cocycle (α, β). This proves (a).

(b) follows similarly. �

2.4. Relative deformation complex. We will define now a relative version of
the deformation complex C∗.

Let A ⊂ N be a simplicial subcomplex. We will assume that A is disjoint
from ∂+N . Let Cq(N,A) denote the free abelian group of Ẽ0-valued cochains on
N which vanish on A. Let Cq(N,A)[τ ] be constructed similarly to Cq(N)[τ ], cf.
above. We define the complex C∗A as follows:

CqA = Cq(N,A)[τ ] ⊕ Cq−1(V )[τ ]. (2-9)

The differential δ : CqA → Cq+1
A is defined by the following formula:

δ(α, β) = (δN,A(α), (σi∗+ − τi∗−)(α) − δV (β)), (2-10)

where α ∈ Cq(N,A)[τ ] and β ∈ Cq−1(V )[τ ]. Here δN,A : Cq(N,A)→ Cq+1(N,A)
and δV : Cq(V ) → Cq+1(V ) denote the coboundary homomorphisms and also
their P -module extension. i∗± : Cq(N,A) → Cq(V ) denote the restriction maps
of cochains, and the same symbols denote also their polynomial extensions i∗± :
Cq(N,A)[τ ]→ Cq(V )[τ ].

Similarly to (a) and (b) in 2.3 we have:
(a’) for any a ∈ C∗ there is a natural isomorphism

Hi(C∗A ⊗P Ca) ' Hi(M,p(A); a−ξ ⊗E), (2-11)

where p : N →M is the identification map, cf. 2.1;
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(b’) also,
Hi(C∗A ⊗P Z0) ' Hi(N,A ∪ ∂+N ; Ẽ0). (2-12)

2.5. Algebraic integers and lifting. In this section it will become clear why
our definition of the cup-length cl(ξ) involves the condition of not being a Dirichlet
unit.

Proposition 2. Suppose that A ⊂ N is a subcomplex, disjoint from ∂+N , such
that the inclusion A→ N is homotopic to a map A→ ∂+N . Let a ∈ C∗ be a com-
plex number, such that a−1 is not an algebraic integer. Then the homomorphism
C∗A → C∗ induces an epimorphism on the cohomology

Hi(C∗A ⊗P Ca)→ Hi(C∗ ⊗P Ca), i = 0, 1, 2, . . . . (2-13)

Proof. Let Z0 denote the group Z considered as a P -module with the trivial τ
action, i.e. Z0 = P/τP . We will show first that

Hi(C∗A ⊗P Z0)→ Hi(C∗ ⊗P Z0) (2-14)

is an epimorphism. We know from (2-4) and (2-12) that

Hi(C∗A ⊗P Z0) ' Hi(N,A ∪ ∂+N ; Ẽ0) and Hi(C∗ ⊗P Z0) ' Hi(N, ∂+N ; Ẽ0).

In the exact sequence

· · · → Hi(N,A∪ ∂+N ; Ẽ0)→ Hi(N, ∂+N ; Ẽ0)
j∗−→ Hi(A∪ ∂+N, ∂+N ; Ẽ0)→ . . .

j∗ acts trivially (since the inclusion (A∪∂+N, ∂+N)→ (N, ∂+N) is null-homotopic)
and hence Hi(N,A∪∂+N ; Ẽ0)→ Hi(N, ∂+N ; Ẽ0) is an epimorphism. This proves
that (2-14) is an epimorphism. Now, Proposition 2 follows from Proposition 3 be-
low. �

Proposition 3. Let C and D be chain complexes of free finitely generated P =
Z[τ ]-modules and let f : C → D be a chain map. Suppose that for some q the
induced map f∗ : Hq(C ⊗P Z0)→ Hq(D ⊗P Z0) is an epimorphism; here Z0 is Z
considered with the trivial P -action: Z0 = P/τP . Then for any complex number
a ∈ C∗, such that a−1 is not an algebraic integer, the homomorphism

f∗ : Hq(C ⊗P Ca)→ Hq(D ⊗P Ca) (2-15)

is an epimorphism; here Ca denotes C with τ acting as the multiplication by a.
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Proof. Denote by Zq(C), Zq(D) the sets of cycles of C and D and by Bq(C) and
Bq(D) the sets of their boundaries. Recall that the homological dimension of P is
2. We have the exact sequence

0→ Zq(C)→ Cq → Bq−1(C)→ 0

and hence Zq(C) is a free P -module (since Bq−1(C) is a submodule of a free
module and so has a homological dimension ≤ 1). Similarly Zq(D) is free.

Choose free bases for Zq(C), Zq(D) and Dq+1, and express in terms of these
bases the map

f ⊕ d : Zq(C)⊕Dq+1 → Zq(D). (2-16)

The resulting matrix G is rectangular, with entries in P .
We claim: there exist integers bj ∈ Z and minors Aj(τ) ∈ P of the matrix G of

size rkZq(D)× rkZq(D), such that the polynomial with integer coefficients

p(τ) =
∑
j

bjAj(τ) (2-17)

satisfies
p(0) = 1. (2-18)

In fact, we will show that our claim is equivalent to the requirement that f∗ :
Hq(C ⊗P Z0) → Hq(D ⊗P Z0) is an epimorphism. Namely, using the resolvent
0 → P

τ−→ P → Z0 → 0 it is easy to see that TorP1 (Bq−1(C),Z0) = 0 (since
Bq−1(C) is a submodule of a free module). Hence we have the exact sequence

0→ Zq(C)⊗P Z0 → Cq ⊗P Z0 → Bq−1(C) ⊗ Z0 → 0.

This means that Zq(C)⊗P Z0 = Zq(C⊗P Z0), and Bq−1(C)⊗P Z0 = Bq−1(C⊗P
Z0). Hence, the hypothesis of the Proposition, the homomorphism

f ⊕ d : (Zq(C) ⊗P Z0)⊕ (Dq+1 ⊗P Z0)→ Zq(D)⊗P Z0

is an epimorphism. This epimorphism is described by the matrix G(0), where we
substitute τ = 0 into G. Therefore, there are minors Aj(τ) of G of size rkZq(D)×
rkZq(D), so that the ideal in Z, generated by the integers Aj(0) contains 1. This
proves (2-18).

Since p(τ) is an integral polynomial with p(0) = 1 and a−1 is not an algebraic
integer it follows that

p(a) 6= 0. (2-19)

Let us show that (2-19) is equivalent to the statement that (2-15) is an epi-
morphism. We have the exact sequence

0→ Zq(C)⊗P Ca → Cq ⊗P Ca → Bq−1 ⊗Ca → 0
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(here we may work over C[τ ] which is a PID). Hence, similarly to the arguments
above, we obtain that the map

f ⊕ d : (Zq(C) ⊗P Ca)⊕ (Dq+1 ⊗P Ca)→ Zq(D)⊗P Ca (2-20)

is described by the matrix G with substitution τ = a. We conclude that at least
one of the rkZq(D) × rkZq(D) minors Aj(a) is nonzero because of (2-19), and
hence (2-20) and (2-15) are epimorphisms. �

2.6. Corollary (Lifting Property). Let E →M be a flat vector bundle admit-
ting an integral lattice. Let a ∈ C∗ be a complex number, not an algebraic integer.
Let A ⊂ M be a closed subset such that A = p(A′), where A′ ⊂ N − ∂+N is a
closed polyhedral subset such that the inclusion A′ → N is homotopic to a map
with values in ∂+N . Then the restriction map

Hq(M,A; aξ ⊗E)→ Hq(M ; aξ ⊗E) (2-21)

is an epimorphism.

Proof. We just combine the isomorphisms (2-3) and (2-11) and Proposition 2. �

2.7. End of proof of Theorem 1. We need to establish inequality (2-2). In
other words, we want to prove the triviality of any cup-product

v0 ∪ v1 ∪ v2 ∪ · · · ∪ vm+1 = 0, where vj ∈ Hdj(M ;Ej), (2-22)

(wherem denotesm = cat(N,∂+N)(N)) assuming that dj > 0 for j = 0, 1, 2, . . . ,m+

1, and the bundles E0 and E1 are of the form aξi ⊗ Fi, where i = 0, 1, with the
numbers a0, a1 ∈ C not Dirichlet units, and the bundles F0 and F1 admitting
integral lattices.

Moreover, we will assume that one of the numbers a0 and a1 is not an algebraic
integer. In the case when both a0 and a1 are algebraic integers, the inverse numbers
a−1

0 and a−1
1 are not algebraic integers, and we shall apply the arguments following

below to the form −ω (representing the cohomology class −ξ), which obviously
has the same set of critical points.)

Since we may always rename the numbers a0 and a1, we will assume below
that a0 is not an algebraic integer.

Suppose that N can be covered by closed subsets A0, A1 ∪ · · · ∪ Am = N so
that A0 contains ∂+N and the inclusion A0 → N is homotopic to a map into ∂+N
keeping the points of ∂+N fixed, (cf. 2.2), and for j = 1, 2, . . . ,m the subset Aj
is null-homotopic in N . Without loss of generality we may assume that all Aj are
polyhedral.

Let U± be a small cylindrical neighborhood of ∂±N in N . We observe that for
j = 2, 3, . . . ,m+ 1 we may lift the class vj to a relative cohomology class lying in
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V’ V V’’

+ -p(U ) p(U )

Figure 2.

ṽj ∈ Hdj(M,Bj ;Ej), where Bj = p(Aj−1 −U+), since Bj is null-homotopic in M
and dj > 0. Recall that p : N →M denotes the natural identification map.

Applying Corollary 2.6, class v0 can be lifted to a class ṽ0 ∈ Hd0(M,B0;E0),
where B0 = p(A0 − U+).

Let B1 be a closed cylindrical neighborhood of V in M containing p(U−) ∪
p(U+). We claim that we may lift the class v1 ∈ Hd1(M ;E1) to a class ṽ1 ∈
Hd1(M,B1;E1). We will use Corollary 2.6. First, find two shifts of V into M−B1,
one (denoted V ′) in the positive normal direction and the other (denoted V ′′) in
the negative normal direction (cf. Figure 2). If the number a1 is not an algebraic
integer we may apply Corollary 2.6 to the cut V ′′. If the number a−1

1 is not an
algebraic integer we may apply Corollary 2.6 to the cut V ′.

Now, it is clear that the product v0 ∪ · · · ∪ vm+1 must be trivial since it is
obtained from the product ṽ0 ∪ · · · ∪ ṽm+1 (lying in Hd(M,∪m+1

j=0 Bj;E), where
E = ⊗m+1

j=0 Ej) by restricting onto M , and the group Hd(M,∪m+1
j=0 Bj ;E) vanishes,

since M = ∪m+1
j=0 Bj . �

§3. Proofs of Theorem 2 and Proposition 1

3.1. Proof of Theorem 2. Let ω be a closed 1-form lying in a cohomology class
ξ ∈ H1(M ; R) of rank = r > 1. Let S = S(ω) denote the set of zeros of ω. It is
clear that ξ|S = 0.

Let r be the rank of ξ and let ξ1, . . . , ξr ∈ H1(M ; Z) be a basis of the free
abelian group Hom(H1(M)/ ker(ξ);Z). We may write ξ =

∑r
i=1 αiξi, and the

coefficients are real αi ∈ R.
Suppose that ξm is a sequence of rank 1 classes with cl(ξm) ≥ cl(ξ), which

converges to ξ as m → ∞, and each of the classes ξm vanishes on ker(ξ). Then
we have ξm =

∑
i αi,mξi, where αi,m = λm · ni,m, λm ∈ R, and ni,m ∈ Z for

i = 1, 2, . . . , r. Each sequence αi,m converges to αi as m tends to ∞.
Choose a closed 1-form ωi in the class ξi for i = 1, . . . , r; since ξi|S = 0 we

may choose it so that it vanishes identically on a neighborhood of S. Define the
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following sequence of closed 1-forms

ωm = ω −
r∑
i=1

(αi − αi,m)ωi.

It is clear that ωm has rank 1 and for m large enough S(ωm) = S(ω). The
cohomology class of ωm is ξm. By Theorem 1 we have cat(S(ω)) ≥ cl(ξm) − 1.
Hence we obtain cat(S(ω)) ≥ cl(ξ)− 1. �

3.2. Proof of Proposition 1. It is clear that it is enough to prove (1-8) assuming
that the classes ξ1 and ξ2 are integral ξν ∈ H1(Mν ; Z) for ν = 1, 2. The general
statement then follows automatically due to the nature of our definition of cl(ξ)
for general ξ, cf. 1.8. One may use here an equivalent definition of the cup-length
cl(ξ) for rk(ξ) > 1, which can be obtained from the definition given in 1.8 if in
(1-5) we will additionally require that the approximating rank 1 classes ξm belong
to H1(M ; Q).

Position M1 and M2 so that their intersection is a small n-dimensional disk Dn,
where n = dimM1 = dimM2, and then the connected sum M1#M2 is obtained
from the union M1 ∪M2 by removing the interior of Dn. Let E be a flat bundle
over the connected sum M1#M2 and let Eν be a flat bundle over Mν so that

E|
Mν−

◦
Dn
' Eν |

Mν−
◦
Dn
, (3-1)

for ν = 1, 2. Here we use the assumption that n > 2 and so the sphere Sn−1 is
simply connected.

As follows from the Mayer - Vietoris sequence, there is a canonical isomorphism

ψ : Hq(M1;E1)⊕Hq(M2;E2)→ Hq(M1#M2;E)

for 0 < q < n. It will be clear from the rest of the proof that we do not need to
worry about the case q = n. ψ is multiplicative in the following sense. Suppose
that we have another flat bundle F over the connected sum M1#M2 and let
Fν be flat bundles over Mν , ν = 1, 2, satisfying condition (3-1). Then for any
v ∈ Hi(M1;E1) and w ∈ Hj(M1;F1) with 0 < i, 0 < j, and i + j < d, holds
ψ(v ∪ w, 0) = ψ(v, 0) ∪ ψ(w, 0). Similar property holds with respect to the other
variable.

Suppose now that k = cl(ξ1) and we have cohomology classes vj ∈ Hdj(M1;Ej),
where j = 1, 2, . . . , k, satisfying all the properties of Definition 1.3; in particular,
their product v1 ∪ · · · ∪ vk is non-trivial. Then

∑
dj = n (cf. 1.7). Extend each

flat bundle Ej to a flat bundle Ẽj over M ; for j = 1, 2 we will make this extension
so, that Ẽ1 and Ẽ2 will still satisfy condition (1-2).

We will first assume that k > 2. Then the classes

uj = ψ(vj , 0) ∈ Hdj (M ; Ẽj), j = 1, 2, . . . , k − 1,
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have non-trivial cup product u1 ∪ · · · ∪ uk−1 and satisfy all the properties of Defi-
nition 1.3. Using the Poincaré duality (as in the proof of Corollary 1.4), we may
find a non-trivial cup product u1 ∪ · · · ∪ uk−1 ∪ u, where u ∈ Hdk(M ;E∗ ⊗ LM ),
E = ⊗k−1

j=1Ẽj , and LM is the orientation flat line bundle of M .
In case, when k = 2 by the same reasons we will have a non-trivial cup-product

u1 ∪ u, where u ∈ Hd2(M ; Ẽ∗1 ⊗ LM ) and the bundle Ẽ∗1 ⊗ LM satisfies (1-2)
assuming that E1 does.

This proves inequality cl(ξ) ≥ cl(ξ1). Therefore cl(ξ) ≥ max{cl(ξ1), cl(ξ2)}.
The inverse inequality follows similarly, using the properties of the map ψ

mentioned above. �
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