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1. Introduction

Let L/K be a finite Galois extension of number fields, or of p-adic fields for some
rational prime p. For brevity we shall refer to these cases as ‘global’ and ‘local’
respectively. We let G denote the Galois group of L/K, and OL the ring of
algebraic integers or valuation ring of L in the global and local case respectively.
In this paper we are interested in studying, for any subfield E of K, the explicit
OE [G]-structure of each G-stable OL-ideal. This is a long standing and difficult
problem.

If L/K is at most tamely ramified, then Ullom has shown that each G-stable
ideal of OL is locally-free, respectively free, as an OE [G]-module in the global,
respectively local, case [U1]. In the local case an explicit set of OE [G]-generators
for each ideal can be described (cf. [K]). In the global case, M.Taylor has char-
acterised the Z[G]-stable-isomorphism class of OL in terms of Artin root numbers
attached to the irreducible complex symplectic characters of G ( [T2], [Fr3]), and
the OK [G]-structure of OL has been studied by McCulloh [M]. The study of the
Z[G]-structure of other G-stable ideals of OL began in a special case in [Er] -
where Erez studied the square root AL/K of the inverse different of L/K - and
then the general case was investigated in [Bu5]. Taken in conjunction with Tay-
lor’s theorem the techniques of [Bu5] should in fact suffice to explicitly describe
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the Z[G]-stable-isomorphism class of each G-stable ideal of OL.
The situation for wildly ramified extensions remains much less clear. In the

local case, Ullom has shown that the freeness of any OL-ideal I over OE [G] is a
strong restriction on both the ramification of L/K and the L-valuation of I ([U1],
Theorem 2.1). Furthermore, the OE [G]-structure of an ideal I depends in general
upon more than just the L-valuation of I together with the ramification invariants
of L/K and E (cf. for example ([Be2], Chapitre II, IV)), and there are still very
few explicit results.

Keeping with the local case, the Krull-Schmidt-Azumaya theorem implies that
each ideal of OL can be uniquely expressed as a direct sum of indecomposable
OE [G]-modules. For the case E = K Borevic and Vostokov [Bo,V] and Vostokov
[V1], [V2] have characterised OK [G]-indecomposability of OL-ideals in abelian p-
extensions L/K. They prove in particular that if L/K is a non-cyclic abelian
p-extension, then all ideals of OL are indecomposible as OK [G]-modules, and an
extension of (a weaker version of) this result to arbitrary non-cyclic abelian groups
was recently obtained in [Bl,Bu].

The investigation of OL as a sum of explicitly described indecomposable Zp[G]-
modules was begun in [R-C,V-S,M], and has continued in [E], [E,M1], and [E,M2].
However, even in the case that Zp[G] is of finite representation type the full de-
scription of OL has been only partially achieved, and the general problem still
appears to be effectively intractable.

An alternative approach to these problems in both the local and global case is
to determine the full endomorphism ring A(E[G]; I) in E[G] of a G-stable ideal
I and then to study the structure of I as an A(E[G]; I)-module. This approach
was originally motivated by work of Leopoldt in [L] and of Fröhlich in [Fr1], and
has continued in for example [J], [F], [Be1], [Be2], [T3], [Bu2], [By], [Ch,L] etc.....
The extensive theory and results of the global tame theory suggest that, aside
from the case E = K, the case E = Q, respectively E = Qp, may be of particular
interest in this respect. Furthermore, whilst one knows that OL is not in general a
free A(E[G];OL)-module, and that the explicit description of A(E[G]; I) appears
in general to be an intractable problem (cf. [Bl,Bu] for example), certain recent
results (cf. [Er], [Er,T], ([Bu2], Proposition 2.2)) suggest that under suitable
conditions there may be an interesting structure theory for G-stable ideals other
than OL.

In this direction we shall give in this paper a complete classification for each odd
prime p of those abelian extensions L/K of p-adic fields in which there exists any
ideal I of OL which is free over A(Qp[G]; I). The main result given here (Theorem
1.3) is, to our knowledge, the first example of a general classification theorem
concerning the structure of ideals (over associated orders) in wildly ramified local
extensions. The result of Theorem 1.3 is in effect a natural generalisation of the
main local results of [U1] and [U2]. Furthermore, the proof we shall give involves
extending the main results of [Be1], [Bu2], and [Bl,Bu]. In conjunction with some
explicit examples (due to Werner Bley) we are also able to resolve all of the ‘Open
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Questions’ raised in ([Bu2], §2 and §4.3).
Together with standard localisation procedures, the result of Theorem 1.3 gives

a complete classification of those abelian extensions L/K of number fields in which
2 is tamely ramified and some G-stable ideal I of OL is locally-free overA(Q[G]; I).
This result shows how the local aspect of Leopoldt’s ‘Hauptsatz’ [L] fits into a
general context. In Leopoldt’s examples one has K = Q, and OL is always free
over A(Q[G];OL). In general however, even if K = Q and G is abelian the local-
freeness of an ideal I over A(Q[G]; I) does not imply that it is free (cf. [Bu3]) and
there is a genuine global problem to consider. The study of extensions in which
A(Q[G];OL) is equal to the maximal Z-order in Q[G] began in [Fr1] and a more
or less satisfactory structure theory for OL in this case was recently described in
[T4]. However, there is at present no similar theory for ideals other than OL. The
study of AL/K in weakly ramified extensions was begun by Erez in [Er] and then
subsequently refined by Erez and Taylor in [Er,T]. Erez and Taylor showed inter
alia that if L/K is at most tamely ramified, then AL/K is a free Z[G]-module, but
it is still open as to whether AL/K is free in arbitrary weakly ramified extensions.
In this direction, we present an appendix prepared by Werner Bley in which is
described an algorithm for determining the Galois structure of ideals in abelian
extensions of number fields. As particular applications Bley exhibits certain wildly
ramified extensions in which there are G-stable ideals I (including in some cases
I = AL/K) which are free over A(E[G]; I) for some subfield E of K (cf. Appendix,
Example 2). His examples are the first of this type and in particular suggest the
possibility that there are finer structure results than those proved in [Er] and
[Er,T].

§ 0. Basic notation and preliminaries

Throughout this paper, all fields considered are finite extensions of either Q or Qp
for some (odd) rational prime p. We fix algebraic closures Qc and Qcp of Q and Qp
respectively. If K is a finite extension of Qp, then we let eK denote its absolute
ramification degree, vK(−) its standard valuation, OK its valuation ring, and ℘K
and O∗K the maximal ideal and unit group of OK respectively. If K is a number
field, then OK is its ring of algebraic integers. In both cases we let IK denote the
group of fractional OK-ideals.

For any finite abelian group Γ, and any commutative ring R, we write R[Γ]
for the group ring of Γ with coefficients in R. For any finite extension E of Qp
or Q and any OE [Γ]-lattices X and Y which span the same E[Γ]-space we write
[X : Y ]OE for the OE-module index (an element of IE), and we let A(E[Γ];X,Y )
denote the set {λ ∈ E[Γ] : λX ⊆ Y }. For each such lattice X we write A(E[Γ];X)
in place of A(E[Γ];X,X). This is the ‘associated order’ of X in E[Γ], and is an
OE-order in E[Γ] which contains OE [Γ]. If X ′ ⊆ X and Y ⊆ Y ′, then of course

A(E[Γ];X,Y ) ⊆ A(E[Γ];X ′, Y ′) . (0.1)
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We write M(E,Γ) for the unique maximal OE-order in E[Γ]. For each strictly
positive integer n we let Cn denote the cyclic group of order n.

The cardinality of a finite set F is written #F . For each subgroup ∆ of Γ we set
t∆ :=

∑
δ∈∆ δ and let e∆ denote the idempotent #∆−1t∆ of E[Γ]. For eachOE [Γ]-

lattice X we write X∆ for the OE [Γ]-sublattice {x ∈ X : δx = x, all δ ∈ ∆} of
∆-fixed points. There is a natural identification e∆E[Γ] = E[Γ/∆] which restricts
to give identifications e∆M(E,Γ) = M(E,Γ/∆) and e∆OE [Γ] = OE [Γ/∆], and
with respect to this identification we regard each X∆ as an OE [Γ/∆]-lattice.

The group of irreducible Qcp-characters of Γ is written Γ∗, and for any character
θ ∈ Γ∗ we let eθ denote the idempotent #Γ−1∑

γ∈Γ θ(γ)γ−1 of Qcp[Γ].
If L/K is an abelian extension of p-adic fields of group G, then for any subfield

E of K and any integers i and j we shall write A(E[G]; i, j), or exceptionally
(i, j)E , in place of A(E[G];℘iL, ℘

j
L). If i, j, i′, and j′ are any integers such that

both i ≤ i′ and j ≥ j′, then as a special case of (0.1) one has

A(E[G]; i, j) ⊆ A(E[G]; i′, j′) . (0.2)

We now quickly recall some of the elementary ramification theory of L/K (details
of which can be found in ([S], IV)). If λ ∈ E[G] and Y is any subset of L such that
λY 6= 0, then we let vL(λY ) denote the (finite) minimum of the set {vL(λy) : y ∈
Y } . We let G(i) and G(i) denote the ith upper and lower ramification subgroups
of G, and we write u(i) and u(i) for the ith jump numbers of the upper and lower
ramification filtrations of L/K. (It is a simple computational matter to convert
between these different filtration numberings.) For each g ∈ G, each x ∈ L, and
each strictly positive integer i, one has

g ∈ G(i) \G(i+1) =⇒ vL ((g − 1)x) =
{
vL(x) + i, if p - vL(x)
> vL(x) + i, if p | vL(x).

(0.3)

For any non-negative integers m and n, any elements λ ∈ E[G] and µ ∈ OE [G],
any elements {g1, g2} ⊂ G(i) \G(i+1) for some strictly positive integer i, and any
subset Y ⊆ L such that both (g1−1)mλY 6= 0 and (g2−1)nµλY 6= 0, the property
(0.3) implies that

m < n =⇒ vL ((g1 − 1)mλY ) < vL ((g2 − 1)nµλY ) . (0.4)

For each integer j, and each subgroup H of G, one has an equality

vLH
(
tH℘

j
L

)
=

j +
∑
i≥0

(
#(G(i) ∩H)− 1

)
#(G(0) ∩H)

 . (0.5)

We now let C denote the maximal subgroup of G(0) of order prime to p. Then C

is cyclic, and C∗ has a canonical generator χ(L/K) with the following property:
for each x ∈ L, and each χ ∈ C∗ for which eχx 6= 0, one has

vL (eχx) ≥ vL (x) with equality if and only if χ = χ(L/K)vL(x) (0.6)

(cf. ([Be1], §2)).
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§ 1. Statement of the main results

Let p be an odd rational prime. Unless stated to the contrary, in this section
L/K denotes a totally ramified abelian extension of p-adic fields. The extension
L/K has group G and degree pnr with n ≥ 1 and p - r. We let P and C denote
the subgroups of G of order pn and r respectively, so that in particular one has
P = G(1) = G(1).

We recall that L/K is said to be ‘weakly ramified’ if G(2) = 1 (cf. [Er]). If this
is the case, then since L/K is totally ramified, it follows that G is an elementary
abelian p-group.

Lemma 1.1. Let E be any subfield of K.
(i) (Ullom, cf. ([U1], Theorem 2.1), ([U2], Theorem 2), and ([U3], Theorem 2)).
For any ideal ℘iL the following conditions are equivalent:-
(a) ℘iL is free over OE [G].
(b) Ĥ0(G,℘iL) = 0.
(c) L/K is weakly ramified and i ≡ 1 modulo #G .
(ii) ([Bu2], Proposition 2.2). If eK = 1 and G is an elementary abelian p-group,
then (L/K is weakly ramified and) OL is free over OE [G]{ 1, p−1tG} . �

The extension L/K is said to be ‘almost maximally ramified’ if its first (upper)
jump number u(1) satisfies u(1) = (peK−δ)/(p−1) for a positive integer δ satisfying
δr < p (cf. [J], [Fr1]). By an easy exercise in computing valuations one can prove
the following result (cf. Lemma 3.2).

Lemma 1.2. Let E be any absolutely unramified subfield of K. Then A(E[G];OL)
=M(E,G) if and only if L/K is cyclic and almost maximally ramified. �

For any ideal I of OL we shall write Fr(E[G]; I) if I is free over its associated
order A(E[G]; I) in E[G]. We shall write Fr(E[G]; IL) to mean that there exists an
ideal I of OL for which Fr(E[G]; I). In a similar way, we shall write NFr(E[G]; I),
respectively NFr(E[G]; IL), to indicate that Fr(E[G]; I) is not true, respectively
that NFr(E[G]; I) for all ideals I of OL.

We can now state our main result.

Theorem 1.3.
(i) If G(1) is not cyclic, then Fr(Qp[G]; IL) if and only if L/K is weakly ramified.
(ii) Let G(1) be cyclic of order at least p2.
(a) If eK > 1, then Fr(Qp[G]; IL) if and only if L/K is almost maximally ramified.
(b) If eK = 1 and Fr(Qp[G]; IL), then r < 2p.
(iii) Let G(1) have order p.
(a) If eK > 1, then Fr(Qp[G]; IL) if and only if L/K is either weakly or almost
maximally ramified.
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(b) If eK = 1, then Fr(Qp[G]; IL) if and only if r < 2p.

Corollary 1.4. Fr(Qp[G];OL) if and only if either L/K is cyclic and almost
maximally ramified or L/K is non-cyclic and both eK = 1 and L/K is weakly
ramified.

Proof. If G is non-cyclic and Fr(Qp[G];OL), then Theorem 1.3(i) implies that L/K
is weakly ramified. If L/K is weakly ramified and eK > 1, then it will follow from
Proposition 1.8 below that NFr(Qp[G];OL). Finally, if L/K is weakly ramified
and eK = 1, then Fr(Qp[G];OL) as a consequence of Lemma 1.1(ii).

If L/K is cyclic and almost maximally ramified, then it follows immediately
from Lemma 1.2 that Fr(Qp[G];OL). Conversely, Bergé has shown that if eK = 1
and L/K is cyclic, then Fr(Qp[G];OL) implies that L/K is almost maximally
ramified (cf. Lemma 3.11). The fact that the same is true if eK > 1 and L/K is
cyclic will follow from Theorem 1.3(iii)(a) and Proposition 1.8 below. �

Remarks 1.5. (i) Theorem 1.3 does not extend to include the case p = 2. For
example, even with K = Q2, it is possible that L/K is neither cyclic or weakly
ramified and yet Fr(Q2[G]; IL) (cf. ([Bl,Bu], Beispiel 3.2)).
(ii) We shall see that if eK > 1, then all (relevant) assertions of Theorem 1.3 remain
valid if Qp is replaced by any absolutely unramified subfield of K. However, this
is not true if eK = 1. Indeed, Example 1.6 below shows that if eK = 1, then
Fr(K[G]; IL) is possible even if L/K is neither cyclic or weakly ramified. For any
given ideal I of OL, and any absolutely unramified subfield E of K, the problems
of deciding whether either Fr(Qp[G]; I) or Fr(E[G]; I) are related by Lemma 1.7
below.
(iii) In the case eK = 1 and G abelian but not cyclic it was first conjectured
in [Bu1], respectively [Bu2], that L/K must be weakly ramified if Fr(K[G];OL),
respectively if Fr(K[G]; IL). However, Example 1.6 below shows that this stronger
form of Theorem 1.3(i) raised in ([Bu2], Open Question 2.3) is not true. Taken in
conjunction with the result of ([Bu2], Theorem 5) it also shows that the answer
to ([Bu2], Open Question 2.1) is in general negative. At the moment I know of no
counter-example to the conjecture made in [Bu1]. Nevertheless, Theorem 1.3 and
Corollary 1.4 are perhaps best regarded as verifications of a generalisation of the
‘corrected version’ of the conjectures made in [Bu2] and [Bu1] respectively.

Example 1.6. (W. Bley, cf. (Appendix, Example 1)). Let D = Q(
√
−1) , and let

F be the subfield of the ray class field D(27) of conductor 27 over D which is fixed
by the unique subgroup of Gal(D(27)/D) of order 2 and also by the Frobenius
automorphism of 10. Then F/D is an extension with group isomorphic to C9×C3
and is totally ramified at 3. If L and K denote the completions of F and D at the
unique prime ideal above 3, then Fr(K[Gal(L/K)];℘δL) for each δ ∈ {8, 9, 10 } .



Vol. 75 (2000) On the equivariant structure of ideals in abelian extensions of local fields 7

The most useful approach to the problem of determining whether modules are
locally-free over associated orders is still Fröhlich’s old observation ([Fr2], Theorem
4) that such questions can be determined by means of an index-theoretic criterion.
In the next result we use Fröhlich’s criterion to compare the conditions Fr(Qp[G]; I)
and Fr(E[G]; I) for any absolutely unramified subfield E of K.

Lemma 1.7. Let E be any absolutely unramified subfield of K. Then for any ideal
I of OL one has Fr(Qp[G]; I) if and only if both Fr(E[G]; I) and A(E[G]; I) =
A(Qp[G]; I)OE .

Proof. We fix an ideal I and write A,A′,AE ,M and ME for A(Qp[G]; I),
A(Qp[G]; I)OE ,A(E[G]; I),M(Qp, G) and M(E,G) respectively. Since A′ ⊆ AE
and ME =MOE the result of ( [Fr2], Theorem 4) implies that

Fr(Qp[G]; I)⇔ [M : A][K:Qp]
Zp = [MI : I]Zp

(and after tensoring with OE (over Zp) this is equivalent to )

⇔ [ME : A′][K:Qp]
OE = [MI : I][E:Qp]

OE

⇔ [ME : A′][K:E]
OE = [MI : I]OE

⇔ Fr(E[G]; I) and AE = A′

(where here the last equivalence is again a consequence of ( [Fr2], Theorem 4)). �

As is already clear from Theorem 1.3, the cases of G cyclic and non-cyclic
behave quite differently. In §3 we shall see that if G is cyclic, then there are often
many ideals I for which Fr(Qp[G]; I). This is in fact especially so if eK = 1 and
so in this case we shall give an explicit description of each order A(K[G]; I) (cf.
Lemma 3.7). In conjunction with the techniques of [Bu2] these descriptions are
sufficient to determine whether I is free over A(E[G]; I) (for any subfield E of K),
and so in particular resolve the issue left open by Theorem 1.3(ii)(b).

The following results show that, in contrast to the general cyclic case, if L/K
is weakly ramified, then there are few ideals I for which Fr(Qp[G]; I).

Proposition 1.8. Assume G(2) = 1, and let E be any absolutely unramified sub-
field of K.
(i) If eK > 1, then Fr(E[G];℘iL) if and only if i ≡ 1 modulo #G (in which case
A(E[G];℘iL) = OE [G]).
(ii) If eK = 1, then Fr(E[G];℘iL) if either i ≡ 1 modulo #G (in which case
A(E[G];℘iL) = OE [G]) or i ≡ 0 modulo #G (in which case A(E[G];℘iL) =
OE [G]{1, p−1tG}).

Remark 1.9. In the case G(2) = 1 the explicit Zp[G]-structure of OL has been
determined by Elder and Madan, and is in general rather complicated (cf. [EM1]).
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There are however serious technical difficulties involved in trying to extend their
methods to deal with arbitrary ideals of OL (cf. [EM2], Lemma 2).

In the special case that #G = p2 and G(2) = 1 we shall obtain a result finer
than that of Proposition 1.8, and to state this we need a preparatory lemma.

We let Σ denote the set of integers i with 1 ≤ i ≤ p + 1. If P is any group
isomorphic to Cp ×Cp we label its proper subgroups as Pi for i ∈ Σ, and for each
such subgroup we choose an element gi ∈ P \ Pi and set fi := gi − 1 ∈ Z[P ] (the
precise choice of the elements gi does not matter in what follows). For each i ∈ Σ
we write ei for the idempotent ePi , and we let kE denote the residue field OE/℘E .
We use the following lemma.

Lemma 1.10. Let E be any absolutely unramified extension of Qp. Let P be any
group isomorphic to Cp × Cp. For each integer r with 1 ≤ r ≤ p we define an
OE-lattice

Λr(E,P ) :=

{ ∑i=p+1−r
i=1 OEfr−1

i ei, if 1 ≤ r < p,
OEpeP , if r = p,

and then set

Ar(E,P ) := OE [P ] +
i=p∑
i=r

Λi(E,P ) .

Then each Ar(E,P ) is an OE [P ]-sublattice ofM(E,P ). Furthermore, if one sets
Ar(E,P )′ := Ar(E,P )/Ap(E,P ), then there is a natural filtration of kE [P ]-spaces

A1(E,P )′ ⊃ A2(E,P )′ ⊃ .... ⊃ Ap(E,P )′ = {0} ,

and an isomorphism of kE-spaces

A1(E,P )′
∼
−→

r=p−1⊕
r=1

Ar(E,P )
Ar+1(E,P )

. (1.1)

Proof. We leave this as an exercise for the reader using the following facts:-
(1.2) M(E,P ) = OE [P ] + OEeP +

∑i=p+1
i=1

∑j=p−2
j=0 OEf ji ei .

(1.3) [M(E,P ) : Ap(E,P )]OE = ℘
1
2p(p+1)
E .

(1.4) For each integer s ∈ Σ, each strictly positive integer k, and each choice
of elements {hi : 1 ≤ i < k} of P \ Ps there exists a unit u ∈ Z∗p such that∏i=k−1
i=1 (hi − 1)es is congruent to ufk−1

s es modulo fks esOE [P ] .
(1.5) Taken in conjunction with (1.4) the equality

∑
i∈Σ ei = 1 + peP can be

used to show that for each integer s ∈ Σ, and each non-negative integer k with
k ≤ p− 1, one has fks es ∈ Ak+1(E,P ) . �
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The following result is at the heart of our proof of Theorem 1.3(i).

Proposition 1.11. Let G be isomorphic to either Cp or Cp × Cp, and suppose
that G(2) = 1. Let E be any absolutely unramified subfield of K.
(i) If eK > 1, then for any integer i one has A(E[G];℘iL) = OE [G] . However, one
has A(K[G];℘iL) = OK [G] if and only if i ≡ 1 modulo #G.
(ii) If eK = 1, then A(E[G];℘iL) = OE [G] if and only if i ≡ 1 modulo #G.
Furthermore, if #G = p, then Fr(K[G];℘iL) for all integers i, whereas if #G = p2,
then Fr(K[G];℘iL) if and only if either i ≡ 0 or 1 modulo p2, or for some integer
κ with 1 ≤ κ ≤ p− 2 one has both i ≡ −κ modulo p2 and

A(K[G];℘−κL ) ∩
(
Ap−κ(K,G) \ Ap−κ+1(K,G)

)
6= ∅ .

Remarks 1.12. (i) In the case that eK > 1, G(2) = 1 and G is isomorphic to
either Cp or Cp × Cp, the question of whether Fr(E[G]; I) is completely answered
by Proposition 1.11(i) in conjunction with Lemma 1.1. Note also that since OE [G]
is Gorenstein these results imply that in this case each ideal of OL is decomposable
as an OE [G]-module (cf. ([Cu,R], (37.13))).
(ii) In the case eK = 1 Lemma 1.7 shows how Proposition 1.11(ii) gives information
concerning structure of ideals over all subfields E of K. Taken together with
Theorem 1.3(i) the Example 1.6 shows that in this case the condition Fr(E[G]; I)
certainly depends on the field E.

As recalled earlier, Fröhlich has shown that the problem of determining whether
modules are locally-free over associated orders can be decided by means of a purely
index-theoretic computation. Given the results stated above it is however clear
that the main module theoretic problem in local arithmetic is to determine the
genus of modules which are not locally-free, and so it would be interesting to know
if this more general problem can also be decided by ‘index-theoretic data’ alone.
In this direction, it is interesting to note that if G is cyclic, then Jakovlev has
shown that the isomorphism class of a finitely generated Zp[G]-lattice is uniquely
determined by its Tate cohomology groups ( [Ja]).

We now turn to consider the global case, and so let L/K denote an abelian ex-
tension of number fields. In conjunction with some standard functorial properties
of associated orders (cf. [J], [Be2]), Theorem 1.3 gives a complete classification of
those extensions L/K in which all primes over 2 are at most tamely ramified and
there exists any G-stable ideal I of OL which is locally-free over A(Q[G]; I). For
the special case I = OL one knows that if L/K is at most tamely ramified, or
if K = Q, then OL is free as an A(Q[G];OL)-module (cf. [T1], [L]). In general
however, and even if both K = Q and G is cyclic, local-freeness of an ideal I over
A(Q[G]; I) does not imply its global freeness (cf. [Bu3], Corollary 2), and so there
is a genuine global problem to consider. Theorem 1.3 implies that if any ideal
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I is locally-free over A(Q[G]; I), then (at least in most cases) the inertial sub-
group of a wildly ramified prime p is either cyclic and A(Q[G]; I)⊗ Zp is induced
from a maximal order, or the inertial subgroup is an elementary abelian group
and A(Q[G]; I) ⊗ Zp = Zp[G]. There are therefore essentially two ‘extreme’ cases
which are of interest in this context: all primes which wildly ramify in L/K are
almost maximally ramified and for some ideal I the order A(Q[G]; I) is maximal,
or L/K is weakly ramified and A(Q[G]; I) = Z[G].

§ 2. The non-cyclic case

Throughout this section p is an odd rational prime, L/K is a totally ramified
abelian extension of p-adic fields of degree pnr with n ≥ 1 and p - r, G is the
Galois group of L/K, P and C its subgroups of orders pn and r respectively, and
E is any absolutely unramified subfield of K.

In this section we shall prove Theorem 1.3(i) and Propositions 1.8 and 1.11. A
brief outline of the section is as follows. As a first key step we refine the main result
of [Bl,Bu]. This refinement is used to describe orders of the form A(E[P ]; eχI) in
the case that P is isomorphic to Cp × Cp, and in conjunction with factorisability
techniques these descriptions are then used to prove Proposition 1.11. We next
consider Proposition 1.8. Whilst Proposition 1.8(ii) follows easily from known
results, we prove Proposition 1.8(i) by a fairly straightforward induction on #G,
with the inductive base being provided by Proposition 1.11. As a first step towards
proving Theorem 1.3(i) we then show that if P is not cyclic and Fr(Qp[G]; IL),
then G = P . Easy functoriality considerations then imply we need only show that
NFr(Qp[G]; IL) whenever G is isomorphic to Cp2 × Cp. If eK > 1 this follows as
a consequence of Lemma 1.1, Proposition 1.11(i) and the main result of [Bl,Bu].
In the case eK = 1 however the argument is more involved. A comparison of Tate
cohomology groups with respect to the subgroup G(2) is used in conjunction with
Proposition 1.11(ii) to reduce the proof to detailed consideration of lattices of the
form A(E[G/G(2)]; i, j) for various integers i and j. The proof is then completed
via a careful analysis of such lattices using Lemma 1.1 and computations derived
from (0.2-5).

We let Σ∗ denote the set of integers {0, 1, 2, ..., p + 1} (= {0} ∪ Σ). If P is
isomorphic to Cp×Cp, then we shall label its subgroups of order p as Pi for i ∈ Σ,
and for each i ∈ Σ we then set ei := ePi . In addition, we shall set e0 := 2eP .

All of our results in this section are based upon the following strengthening of
the main result of [Bl,Bu].

Proposition 2.1. Let P be isomorphic to Cp × Cp. Choose a character χ ∈ C∗
and let A be any order of the form A(E[P ]; eχ℘

j
L). Let α be any element of

M(E,P ) of the form α =
∑
i∈Σ∗ λi(α)(ei−eP ) with λi(α) ∈ OE for each i ∈ Σ∗.

(i) If peP ∈ A, then α ∈ A if and only if there exists an element µ ∈ OE such that
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λi(α) − µ ∈ ℘E for all i ∈ Σ∗.
(ii) If peP /∈ A, then α ∈ A if and only if there exists an element µ ∈ OE such
that both λi(α) − µ ∈ ℘E for all i ∈ Σ∗ and λ0(α) − µ−

∑
i∈Σ(λi(α) − µ) ∈ ℘2

E.
In particular therefore, one has α ∈ A if and only if α ∈ OE [P ].

Proof. From ([Bl,Bu], Satz 3.1) we know that eP /∈ A. However, it may or may not
be the case that peP belongs to A and we shall refer to these different possibilities
as cases (i) and (ii) respectively.

It is easy to see that if α satisfies the conditions in the conclusion of Proposition
2.1 with respect to some element µ ∈ OE , then it also satisfies the same conditions
with respect to any element µ′ ∈ OE such that µ − µ′ ∈ ℘E . Setting m(α) :=
#{i ∈ Σ : λi(α) ∈ ℘E} it follows that if m(α) > 0, then we are required to prove
that α satisfies the conditions in the conclusion of Proposition 2.1 with respect to
the element µ = 0.

We shall prove Proposition 2.1 by inducting on the cardinality n(α) of the set
{i ∈ Σ : λi(α) /∈ ℘2

E }.
If n(α) = 0, then α ≡ λ0(α)eP modulo OE [P ] and so α ∈ A if and only if

λ0(α)eP ∈ A . This occurs if and only if λ0(α) belongs to ℘E , respectively ℘2
E ,

in case (i), respectively case (ii), and this is in turn equivalent to the element α
satisfying the conditions in the conclusion of Proposition 2.1 with respect to the
element µ = 0.

To prove the inductive step we shall assume that the result of Proposition 2.1
is valid for all elements α for which n(α) ≤ s− 1 (and also, as noted above, that
if m(α) > 0, then the element µ can be taken to equal 0). We now suppose that
n(α) = s, and we relabel so that none of λ1(α), λ2(α), ..., λs(α) belong to ℘2

E . We
set α1 :=

∑i=s
i=0 λi(α)(ei − eP ) so that α ≡ α1 modulo OE [P ], and hence α ∈ A if

and only if α1 ∈ A.
We deal first with the case that at least one of the elements λi(α), 1 ≤ i ≤ s,

belongs to ℘E . By relabelling if necessary, we assume that λi(α) = pκ1 with
κ1 ∈ OE . Setting α2 := (λ0(α) − pκ1)eP +

∑i=s
i=2 λi(α)(ei − eP ) one has α1 ≡

α2 modulo OE [P ] . Since n(α2) ≤ s − 1 and m(α2) > 0 we may now apply our
inductive hypothesis to α2 to deduce that

λi(α) ≡ 0 ≡ λ0(α)− pκ1 modulo ℘E for 2 ≤ i ≤ s

and
i=s∑
i=2

λi(α) ≡ λ0(α)− pκ1 modulo ℘2
E

in case (ii), and

λi(α) ≡ 0 ≡ λ0(α)− pκ1 modulo ℘E for 2 ≤ i ≤ s

in case (i). These congruences in turn imply that α satisfies the conclusions of
Proposition 2.1 with respect to the element µ = 0.
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We now consider the case that none of the elements λi(α), 1 ≤ i ≤ s, belong to
℘E . In this case we may assume without loss of generality that λ1(α) = 1. Setting

α3 := α2
1 − α1 = (λ0(α)2 − λ0(α))eP +

i=s∑
i=2

(λi(α)2 − λi(α))(ei − eP )

we have n(α3) ≤ s − 1 and m(α3) > 0. Now if α1 ∈ A, then α3 ∈ A and so by
applying the inductive hypothesis to α3 we may deduce that

λ0(α)2 − λ0(α) ≡ 0 ≡ λi(α)2 − λi(α) modulo ℘E for 2 ≤ i ≤ s

and
i=s∑
i=2

(λi(α)2 − λi(α)) ≡ λ0(α)2 − λ0(α) modulo ℘2
E

in case (ii), and

λ0(α)2 − λ0(α) ≡ 0 ≡ λi(α)2 − λi(α) modulo ℘E for 2 ≤ i ≤ s

in case (i). From these congruences it follows that for each i ∈ Σ∗ there are
elements κi ∈ OE , and δi ∈ {0, 1} (with κ1 = 0 and δ1 = 1) such that

λi(α) = δi + pκi ,

and also in case (ii) that

κ0(2δ0 − 1) ≡
i=s∑
i=1

κi(2δi − 1) modulo ℘E . (2.1)

Since p(
∑i=s
i=1 κiei) ∈ OE [P ] we may at this stage replace α by α4 := α −

p(
∑i=s
i=1 κiei) . In the above computation, this change has the effect of replac-

ing κi by 0 for each 1 ≤ i ≤ s and replacing κ0 by κ0 −
∑i=s
i=1 κi, and after this

change the condition (2.1) becomes

κ0 −
i=s∑
i=1

κi ≡ 0 modulo ℘E . (2.2)

Setting α5 :=
∑i=s
i=0 δi(ei − eP ) we have

α4 = α5 + p(κ0 −
i=s∑
i=1

κi)eP ,
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and in both cases (i) and (ii) (as a consequence of (2.2)) this implies that if α ∈ A,
then α5 ∈ A. Since however α5 is an idempotent the result of ([Bl,Bu], Satz 3.1)
implies that α5 ∈ A if and only if α5 ∈ {0, 1} . But we know that α5 6= 0 (as
δ1 = 1) and hence we must have α5 = 1. This implies both that s = p + 1 and
δi = 1 for all i ∈ Σ∗, and this in turn implies that α satisfies the conditions of the
conclusion of Proposition 2.1 with respect to the element µ = 1. �

Corollary 2.2. Let P be isomorphic to Cp×Cp. Then for each character χ ∈ C∗
one has A(E[P ]; eχI) = OE [P ] if and only if peP /∈ A(E[P ]; eχI).

Proof. We set A := A(E[P ]; eχI). We shall assume that peP /∈ A and use this to
deduce that A = OE [P ].

For each index i ∈ Σ we choose elements gi ∈ P \ Pi and g′i ∈ Pi \ {1}, and
set fi := gi − 1 and f ′i := g′i − 1 respectively. The maximal orderM(E,P ) is the
OE-span of the set

P ∪ {ei − eP : i ∈ Σ∗} ∪ {f ji ei : 1 ≤ j ≤ p− 2, 1 ≤ i ≤ p− j}

(cf. Lemma 1.10). A set of representatives ofM(E,P ) modulo OE [P ] is therefore
contained in the set of elements of the type

α :=
∑
i∈Σ∗

λi(ei − eP ) + β

with each λi ∈ OE and β equal to a sum of elements of the form λi,jf
j
i ei with

1 ≤ j ≤ p− 2, 1 ≤ i ≤ p− j and each λi,j coming from a set of representatives of
OE modulo ℘E. Now if α ∈ A, then αp ∈ A. But

αp ≡
∑
i∈Σ∗

λpi (ei − eP ) modulo OE [P ] , (2.3)

and hence the element
∑
i∈Σ∗ λ

p
i (ei − eP ) must belong to A. Proposition 2.1 now

implies that there is an element µ ∈ OE such that λpi ≡ µ modulo ℘E for all
i ∈ Σ∗. This in turn implies that there exists an element µ′ ∈ OE such that
λi ≡ µ′ modulo ℘E for all i ∈ Σ∗. By subtracting µ′ =

∑
i∈Σ∗ µ

′(ei − eP ) from α
we may thus henceforth assume that λi ∈ ℘E for each i ∈ Σ∗.

Recall now that we are assuming peP /∈ A. If β = 0, then (since α ∈ A)
Proposition 2.1(ii) implies that α ∈ OE [P ]. We therefore assume that β 6= 0, and
we let j0 denote the least value of j such that there is a term λi0,j0f

j0
i0
ei0 in the

expression for β for which λi0,j0 /∈ ℘E . Now since λi ∈ ℘E for each i ∈ Σ∗ there is
a unit u ∈ Z∗p such that ∏

1≤i≤p−j0
i6=i0

f ′i

α ≡ uλi0,j0f
p−1
i0

ei0 modulo OE [P ]
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(cf. (1.4)), and since fp−1
i0

ei0 ≡ −p(ei0 − eP ) modulo pfi0ei0OE [P ] this last
expression is congruent to uλi0,j0peP modulo OE [P ]. Since however uλi0,j0 ∈ O∗E
this implies that peP ∈ A and this in turn contradicts our original assumption.
This now completes the proof of Corollary 2.2. �

We now turn to give the proof of Proposition 1.11. The first parts of both
Proposition 1.11(i) and (ii) are consequences of Corollary 2.2 and an easy compu-
tation of valuations to show that peG /∈ A(E[G];℘iL) if and only if either eK > 1
or eK = 1 and i ≡ 1 modulo p2. The final part of Proposition 1.11(i) follows from
Lemma 1.1(i) and the fact that the order OK [G] is Gorenstein, whilst the case
#G = p of Proposition 1.11(ii) follows from the fact that each order A(K[G]; I) is
equal to either OK [G] or M(K,G) and both of these orders are Gorenstein. The
sufficiency of the conditions i ≡ 0 or 1 modulo p2 in Proposition 1.11(ii) follows
immediately from Lemma 1.1. To prove the last part of Proposition 1.11(ii) we
first make two general observations.

Lemma 2.3. Let P be isomorphic to Cp × Cp. If Q is any subgroup of order p,
then for any ideal I of OL one has tQA(E[G]; I) = tQOE [G] .

Proof. We may assume that E is the maximal absolutely unramified subfield of
K. Since in this case the algebra E[C] is split one has A(E[G]; I) = ⊕χ∈C∗eχAχ
where for each χ ∈ C∗ we have set Aχ := A(E[P ]; eχI). We therefore need only
prove that for each character χ one has tQAχ ⊆ tQOE [P ] , and to do this we shall
use the same argument (and notation) as in the proof of Corollary 2.2. Thus if

α :=
∑
i∈Σ∗

λi(ei − eP ) + β ∈ Aχ,

then ∑
i∈Σ∗

λpi (ei − eP ) ∈ Aχ

(cf. (2.3)) and so Proposition 2.1 implies that there is an element µ ∈ OE such
that λi ≡ µ modulo ℘E for all i ∈ Σ∗. Relabelling so that Q = P1, and noting
that t1β ∈ OE [P ], it follows that

t1α = pλ0eP + pλ1(e1 − eP ) + t1β ≡ p(λ0 − λ1)eP ≡ p(µ− µ)eP ≡ 0
modulo OE [P ] ,

and hence t1Aχ ⊆ t1OE [P ] . �

Lemma 2.4. Let H be any subgroup of G. If Fr(E[G]; I), then Fr(E[G/H]; tHI)
and A(E[G/H]; tHI) = eHA(E[G]; I).
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Proof. If Fr(E[G]; I), then tHI is isomorphic to a direct sum of copies of
eHA(E[G]; I). This implies the result since eHA(E[G]; I) identifies with an order
in E[G/H]. �

We now turn to complete the proof of Proposition 1.11(ii). If G is isomorphic
to Cp × Cp and Q is any subgroup of order p, then Lemmas 2.3 and 2.4 imply
that tQI is free over OE [G/Q] and hence, from Lemma 1.1, that vLQ(tQ(I)) ≡ 1
modulo p. Using (0.5) it follows from this that vL(I) ≡ −κ modulo p2 for some
integer κ with −1 ≤ κ ≤ p− 2. Excluding the cases κ = −1 and κ = 0 (which are
dealt with in Lemma 1.1) we may thus assume that κ satisfies 1 ≤ κ ≤ p− 2. Our
proof is therefore now completed by the following computation.

Lemma 2.5. Let G be isomorphic to Cp ×Cp, and assume that eK = 1. Let κ be

any integer with 1 ≤ κ ≤ p− 2. If Fr(E[G];℘p
2−κ
L ), then

[A(E[G];℘p
2−κ
L ) : OE [G]]OE = ℘κ+1

E .

If E = K, then in all cases

[A(K[G];℘p
2−κ
L ) : OK [G]]OK | ℘κ+1

K ,

and the following conditions are equivalent:-
(i) [A(K[G];℘p

2−κ
L ) : OK [G]]OK = ℘κ+1

K .

(ii) Fr(K[G];℘p
2−κ
L ).

(iii) A(K[G];℘p
2−κ
L ) ∩

(
Ap−κ(K,G) \ Ap−κ+1(K,G)

)
6= ∅ .

Proof. At the heart of this proof are Fröhlich’s observation that OL is factor
equivalent to OE [G][K:E] (cf. [Fr4], Theorem 7 (Additive)), and the factorisability
techniques developed in [Bu2] and [Bu4]. To be more precise, we shall use the
notion of factorisable quotient functions as described in ([Bu2], §1).

Let κ be any integer with 1 ≤ κ ≤ p− 2. Then for any subgroup H of G one
has

(℘p
2−κ
L )H =

{
℘p
LH
, if #H = p,

℘K , if H = G.

Upon evaluating the OE [G]-factorisable quotient function f̃
℘p

2−κ
L

,OL
of ℘p

2−κ
L and

OL at G∗ (for the precise definition of such functions see for example ([Bu2],(1.4)))
one therefore has

f̃
℘p

2−κ
L

,OL
(G∗)

= [℘K : OK ]OE .

 ∏
H<G

#H=p

[
℘p
LH

: OLH
]
OE .[℘K : OK ]−1

OE

 · [℘p2−κ
L : OL

]−1

OE



16 D. Burns CMH

= (℘−κE )[K:E] .

Now if #H = p, then vLH
(

(℘p
2−κ
L )H

)
= p and (0.5) implies that vLH

(
eH℘

p2−κ
L

)
= 1. Setting AE := A(E[G];℘p

2−κ
L ) , it follows from these valuations (and (0.3))

that

AHE =
{ OE [G]{tH , p−1tG}, if #H = p,
OEp−1tG, if H = G.

(2.4)

The value of the factorisable quotient function f̃AE ,OE[G] at G∗ is therefore equal
to

[AGE : OE [G]G]OE ·

 ∏
H<G

#H=p

[
AHE : OE [G]H

]
OE .[A

G
E : OE [G]G]−1

OE

· [AE : OE [G]]−1
OE

= ℘E . [AE : OE [G]]−1
OE .

The first assertion of Lemma 2.5 now follows easily from the fact that OL is factor
equivalent to OE [G][K:E]. Indeed, this fact implies that if Fr(E[G];℘p

2−κ
L ), then

f̃
℘p

2−κ
L

,OL
is equal to the [K : E]th-power of f̃AE ,OE [G] , and hence therefore that

f̃
℘p

2−κ
L

,OL
(G∗) =

(
f̃AE ,OE [G](G

∗)
)[K:E]

.

We henceforth consider the case E = K. We note first that if #H = p, then
(℘p

2−κ
L )H = ℘pLH so that

A(K[G/H]; (℘p
2−κ
L )H) = A(K[G/H];OLH ) =M(K,G/H)

and hence, in the language of [Bu2], the lattices ℘p
2−κ
L and AK are G-◦-equivalent

(cf. [Bu2], 1.11). It follows from ([Bu2], Corollary 1.10) (see also ([Bu4], Theorem
1 and Remarks 1.7)) that

f̃AK ,OK [G](G
∗) | f̃

℘p
2−κ
L

,OL
(G∗) (2.5)

and furthermore that there is equality here if and only if Fr(K[G];℘p
2−κ
L ). The

second assertion, and also the equivalence of conditions (i) and (ii), of Lemma 2.5
now follows by substituting the above explicit expressions for f̃AK ,OK[G](G

∗) and
f̃
℘p

2−κ
L

,OL
(G∗) into (2.5). At this stage, to complete the proof of Lemma 2.5 it

only remains for us to show that the conditions (i) and (iii) are equivalent.
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Sublemma 2.6. Let κ be any integer with 1 ≤ κ ≤ p − 2. We set A(κ) :=
A(K[G];℘p

2−κ
L ), and for each integer r with 1 ≤ r ≤ p we let Ar denote the lattice

Ar(K,G). If r < p and α ∈ A(κ) ∩ (Ar \ Ar+1) , then

α =
i=p+1−r∑
i=1

cif
r−1
i ei + α′

with each ci ∈ O∗K , and α′ ∈ Ar+1 . Furthermore, if A(κ)∩ (Ar \ Ar+1) 6= ∅, then
for each integer s with r ≤ s ≤ p− 1 one has A(κ) ∩ (As \ As+1) 6= ∅ .

Proof. Any element α which belongs to both A(κ) and Ar \ Ar+1 is of the form

α =
i=p+1−r∑
i=1

cif
r−1
i ei + α′

with each ci ∈ OK and α′ ∈ Ar+1, and we need only show that each coefficient ci
belongs to O∗K . We set d := #{ci : ci ∈ O∗K} so that 0 ≤ d ≤ p+1−r and our aim
is to show that d = p+ 1− r. We argue by contradiction, and so shall assume that
r + d ≤ p. Since α /∈ Ar+1 we have d > 0, and (perhaps after relabelling) we can
assume that each of the elements c1, c2, ..., cd belongs to O∗K . For each integer j
with 2 ≤ j ≤ p+ 1 we choose a non-trivial element g′j ∈ Pj and then let γ denote
the product

∏j=d
j=2(g′j − 1) . Since (g′j − 1)ej = 0 for each j with 2 ≤ j ≤ d one has

γα ≡ γc1fr−1
1 e1 + γα′ modulo OK [G]

≡ uc1f
r−1+d−1
1 e1 modulo Ar+d

for some unit u ∈ Z∗p (cf. (1.4)). Now r − 1 + d− 1 = (r + d) − 2 ≤ p− 2 and so
(2.4) implies that uc1f

r−1+d−1
1 e1 /∈ A(κ). By using this and (0.4) one can show

that
vL
(
uc1f

r−1+d−1
1 e1℘

p2−κ
L

)
< vL

(
β℘p

2−κ
L

)
for any β ∈ Ar+d. The above congruence therefore implies that γα /∈ A(κ) and
this is a contradiction. Hence we must have d = p+ 1− r.

To show that A(κ) ∩ (As \ As+1) 6= ∅ for any integer s with r < s ≤ p− 1 we
simply note that if α is as above, then writing γ for the product

∏i=p+1−r
i=p+2−s(g

′
i−1)

one has

γα ≡ γ
(
i=p+1−s∑
i=1

cif
r−1
i ei

)
modulo As+1 .

Using this congruence it is easy to check that γα belongs to As \ As+1. �

We now turn to prove the implication (iii) ⇒ (i) of Lemma 2.5. If A(κ) ∩(
Ap−κ \ Ap−κ+1

)
6= ∅, then Sublemma 2.6 implies that for each non-negative
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integer s with s < κ we have A(κ) ∩
(
Ap−κ+s \ Ap−κ+s+1

)
6= ∅. Using Lemma

1.10 it now follows that [A(κ) : OK [G]]OK is divisible by ℘κ+1
K . Since this implies

that (2.5) must be an equality it follows that (iii) does indeed imply (i).
Finally, we prove the implication (i) ⇒ (iii) of Lemma 2.5. If A(κ) ∩ (Ap−κ\

Ap−κ+1
)

is empty, then by using Sublemma 2.6 one can show that A(κ) ⊆
Ap−κ+1. We let s denote the least integer t such that both p− κ+ 1 ≤ t ≤ p− 1
and A(κ) ∩ (At \ At+1) 6= ∅. If αs is any element of this intersection, then

αs = α∗s + α∗∗s

with α∗s ∈ Λs(K,G) and α∗∗s ∈ As+1. For any such element Sublemma 2.6 implies
that no coefficient of α∗s belongs to ℘K . From this last fact it follows that if βs is
any other element of A(κ) ∩ (As \ As+1), with a decomposition βs = β∗s + β∗∗s as
above, then there exists an element µ ∈ OE such that β∗s ≡ µα∗s modulo As+1.
There is therefore an inclusion

A(κ) ⊆ OKαs + As+1 .

By repeating this argument one can find for each integer i with s ≤ i ≤ p− 1 an
element αi ∈ A(κ) ∩ (Ai \ Ai+1) which is such that

A(κ) = Ap +
i=p−1∑
i=s

OKαi .

Since pαi ∈ Ap it follows from this equality that the index
[
A(κ) : OK [G]

]
OK

divides ℘p−s+1
K , and hence is not equal to ℘κ+1

K . We have now proved that (i)
implies (iii). �

This completes the proof of Proposition 1.11, and so we shall now turn to con-
sider Proposition 1.8. Since the assertion of Proposition 1.8(ii) follows immediately
from Lemma 1.1 we need only consider the case that eK > 1.

We suppose for the moment that G(2) = 1 and eK > 1. We shall prove
Proposition 1.8(i) by an induction on #G. (Recall that G is a p-group since
G(2) = 1.) From Proposition 1.11(i) we know that if #G = p, then A(E[G];℘iL) =
OE [G] and so the inductive base is a consequence of Lemma 1.1(i).

For the inductive step we take #G = pk for an integer k > 1 and assume that
the result is true if #G = pk−1. We let H denote a subgroup of G of order p and
let Γ denote the quotient G/H and F the fixed field LH . We consider an ideal
℘iL with i an integer satisfying 0 ≤ i < pk. If Fr(E[G];℘iL), then Fr(E[Γ]; tH℘iL)
(cf. Lemma 2.4) and so by our inductive hypothesis it follows that vF

(
tH℘

i
L

)
≡ 1

modulo pk−1. A simple valuation computation using (0.5) shows that this implies
that either i = 0, i = 1, or i = pk − j for an integer j satisfying 0 < j ≤ p − 2.
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Since the case i = 1 is dealt with by Lemma 1.1(i) we only need to show that the
other two possibilities cannot occur. Now Fr(E[G];℘iL) implies that

(℘iL)H ∼=
(
A(E[G];℘iL)H

)[K:E]
(2.6)

(a direct sum of [K : E] copies of A(E[G];℘iL)H). We next note that

(℘iL)H =

{
OF , if i = 0,

℘p
k−1

F , if i = pk − j, 0 < j ≤ p− 2

and so, since A(E[G];℘iL)H = A(E[Γ]; eH℘iL, (℘
i
L)H) , one has

A(E[G];℘iL)H =
{ A(E[Γ]; 1− pk−1, 0), if i = 0,
A(E[Γ]; 1, pk−1), if i = pk − j, 0 < j ≤ p− 2.

In both cases one therefore has

(℘iL)H ∼= OF and A(E[G];℘iL)H ∼= A(E[Γ]; 1, 0) . (2.7)

We next show that
A(E[Γ]; 1, 0) = A(E[Γ]; 0, 0) . (2.8)

To prove this we note that if α ∈ A(E[Γ]; 1, 0), then tΓα℘F ⊆ tΓOF . But if ε(α)
denotes the augmentation of α (so that ε(α) ∈ E), then tΓα℘F = ε(α)tΓ℘F =
ε(α)℘K whereas tΓOF = ℘K and so we must have ε(α) ∈ OE . Now since F/K is
totally ramified one has OF = OK + ℘F . Thus if α ∈ A(E[Γ]; 1, 0), then

αOF = αOK + α℘F = ε(α)OK + α℘F ⊆ OF ,

and so α ∈ A(E[Γ]; 0, 0). Since the inclusion A(E[Γ]; 0, 0) ⊆ A(E[Γ]; 1, 0) is
clear we have now proved the equality (2.8). Now from (2.6-8) it follows that
Fr(E[Γ];OF ) and this is a contradiction to our inductive hypothesis. �

In the rest of this section we shall give the proof of Theorem 1.3(i). To this
end, we first observe that if G is not cyclic and Fr(E[G]; IL), then G is a p-group.
Indeed, this follows immediately from Lemma 2.4 in conjunction with the following
result for the special case that P is isomorphic to Cp × Cp.

Lemma 2.7. Let P be isomorphic to Cp×Cp. If Fr(E[G]; IL), then G(2) = 1 and
G = P .

Proof. Take a subgroup Q of P with #Q = p. From Lemmas 2.3 and 2.4 we know
that tQI is free over tQA(E[G]; I) = tQOE [G] ∼= OE [G/Q], and so from Lemma
1.1(i) we deduce that (G/Q)(2) = 1. It follows from this that G/Q, and hence
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also G, is a p-group. Now since (G/Q)(2) = 1 for each subgroup Q of order p it
follows from Herbrand’s theorem that G(2) = 1, and hence (since G is a p-group)
that G(2) = 1. �

We shall henceforth restrict to the case that G is a p-group. In this case Lemma
2.4 implies that Theorem 1.3(i) will follow if one has NFr(E[G]; IL) whenever G
is isomorphic to Cp2 × Cp. To prove this we will use the following general result.

Lemma 2.8. Let G be isomorphic to Cp2 ×Cp, and let H denote the subgroup of
pth powers in G. Then for any element α ∈ A(E[G]; I)H one has ε(α) ∈ ℘E.

Proof. For any positive integer m one has ε(αm) = ε(α)m, and so it suffices for
us to prove that ε(αp

n

) ∈ ℘E for any sufficiently large integer n. Since the group
G/H is of type (p, p) there are p + 1 subgroups of G which have order p2 and
contain H. We label these subgroups as Gi, i ∈ Σ, and we set ei := eGi for each
i ∈ Σ and e0 := 2eG. If for each i ∈ Σ we choose an element gi ∈ G \Gi and set
fi := gi − 1, then a typical element α of eHM(E,G) is of the form

α =
∑
i∈Σ∗

λi(ei − eP ) +
∑
i∈Σ
j≥1

λi,jf
j
i ei (2.9)

with each coefficient λi, λi,j belonging to OE . For any such element α it is not
difficult to show that

αp
3 ≡

∑
i∈Σ∗

λp
3

i (ei − eP ) modulo OE [P ] . (2.10)

Now from (2.9) it follows that ε(α) = λ0 and so, given the congruence (2.10), it
suffices for us to show that for any element β of the form

β =
∑
i∈Σ∗

µi(ei − eP ) ∈ A

one has µ0 ∈ ℘E . If now J(β) denotes the set {i ∈ Σ∗ : µi /∈ ℘E}, then with N

denoting the exponent of
(
OE/℘3

E

)∗
one has

βN ≡
∑
i∈J(β)

(ei − eP ) modulo OE [P ] ,

and so we may deduce that γ :=
∑
i∈J(β)(ei − eP ) belongs to A. Since however γ

is an idempotent it follows from ([Bl,Bu], Satz 3.1) that it is equal to either 0 or
1. It is however clear that γ 6= 1 (since, for example, γh = γ for each h ∈ H) and
so we must have γ = 0. This in turn implies that J(β) is empty, and in particular
therefore that µ0 ∈ ℘E . �



Vol. 75 (2000) On the equivariant structure of ideals in abelian extensions of local fields 21

Proposition 2.9. Let G be isomorphic to Cp2×Cp. If eK > 1, then NFr(E[G]; IL).

Proof. Let A be A(E[G]; I). We first note that if Fr(E[G]; I), then p2eG ∈ A.
Indeed, if Fr(E[G]; I) and p2eG /∈ A, then Ĥ0(G, I) = Ĥ0(G,A)[K:E] = 0, and
since G(2) 6= 1 this contradicts Lemma 1.1.

If Fr(E[G]; I), then as a consequence of Lemma 2.4 and Lemma 2.7 we must
have G(2) equal to the subgroup H of pth-powers in G. Now Lemma 2.8 im-
plies that if α ∈ AH , then peGα = pε(α)eG ∈ AH . This implies that peG/H ∈
A(E[G/H];AH) = A(E[G/H]; IH) , and since (G/H)(2) = 1 this in turn contra-
dicts Proposition 1.11(i). �

Proposition 2.10. Let G be isomorphic to Cp2×Cp, and suppose that eK = 1. If
Fr(E[G]; I), then A(E[G]; I) 6= A(Qp[G]; I)OE .

Remark 2.11. It follows immediately from Proposition 2.10 that NFr(Qp[G]; IL).
However, as Example 1.6 above showed, the possibility that for some field E and
ideal I one has Fr(E[G]; I) cannot be ruled out.

In the remainder of this section we shall prove Proposition 2.10. We set AE :=
A(E[G]; I) and then A := AQp . Since eK = 1 the ramification filtration of G is
given by G = G(1) > G(2) > G(3) = {1} with G(2) equal to the subgroup of
pth powers in G (cf. [Bu2], Lemma 1.13). We set H = G(2), and write Γ for the
quotient G/H, F for the subfield LH , and v(−) for the valuation vF (−).

We shall henceforth assume that Fr(E[G]; I), and our aim is therefore to deduce
that AE 6= AOE . Now, under this assumption, I is a free AE-module of rank
[K : E] and so, comparing Tate cohomology (with respect to H) in dimension 0,
one must have [

IH : tHI
]
OE =

([
AHE : tHAE

]
OE

)[K:E]
.

Now AHE = A(E[Γ]; eHI, IH) and, since Fr(E[G]; I), also tHAE = pA(E[Γ]; tHI),
and hence this equality is equivalent to

℘
v(tHI)−v(IH )
E =

[
A(E[Γ]; eHI, IH) : pA(E[Γ]; tHI)

]
OE . (2.11)

Henceforth, for each pair of integers i and j we shall write (i, j)E as shorthand for
the lattice A(E[Γ];℘iF , ℘

j
F ).

It suffices for us to check the validity of (2.11) for each ideal I = ℘δL with δ
satisfying 0 ≤ δ < p3. To restrict further the possibilities for δ we note that by
Lemma 2.4 one has Fr(E[Γ]; tHI), and hence by Proposition 1.11(ii) that v (tHI) ≡
0, 1, or −κ modulo p2 for some integer κ satisfying 1 ≤ κ ≤ p− 2. Applying (0.5)
one sees that there are correspondingly three different cases to consider.

To describe these cases we let ε be any integer satisfying 0 ≤ ε < p, and we let
ε̂ denote 1, respectively 2, if ε 6= p− 1, respectively ε = p− 1.
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Case (i) δ = p2 − 2p+ 2 + ε. In this case one has v(tH℘δL) = p2, and v((℘δL)H) =
p− 2 + ε̂ .

Case (ii) δ = p2−p+2+ε. In this case one has v(tH℘δL) = p2 +1, and v((℘δL)H) =
p− 1 + ε̂ .
Case (iii) δ = p(p− 2− κ) + 2 + ε for some integer κ satisfying 1 ≤ κ ≤ p− 2. In
this case one has v(tH℘δL) = p2 − κ and v((℘δL)H) = p− 2− κ+ ε̂ .

Taking into account the explicit valuations recorded in each of these cases (i-iii)
the equality (2.11) gives

℘p
2−p+2−ε̂
E = [(0, p− 2 + ε̂)E : p(0, 0)E]OE (2.12)

in case (i),

℘p
2+1−p+1−ε̂
E = [(1, p− 1 + ε̂)E : p(1, 1)E]OE (2.13)

in case (ii), and

℘p
2−κ−p+2+κ−ε̂
E = [(−κ, p− 2− κ+ ε̂)E : p(−κ,−κ)E]OE (2.14)

in case (iii). Furthermore, in case (iii) one has Fr(E[Γ];℘p
2−κ
F ) and hence Lemma

2.5 implies that
[(−κ,−κ)E : OE [Γ]]OE = ℘κ+1

E .

By incorporating this into the equality (2.14) one obtains in case (iii) the condition

℘p
2−p+2−ε̂+κ+1
E = [(−κ,−κ+ p− 2 + ε̂)E : pOE [Γ]]OE ,

or equivalently

℘−p+3−ε̂+κ
E = [(−κ,−κ+ p− 2 + ε̂)E : OE [Γ]]OE . (2.15)

Writing Jp(E,Γ) for the kernel of the natural surjection OE [Γ] −→ kE which is
induced by taking augmentation, one has

[OE [Γ] : Jp(E,Γ)]OE = ℘E . (2.16)

Now (−κ,−κ+p−2+ ε̂)E ⊆ (1, 1)E (cf. (0.2)). But we know from Lemma 1.1 that
(1, 1)E = OE [Γ] and since it is clear that 1 does not belong to (−κ,−κ+p−2+ ε̂)E
we may deduce that (−κ,−κ+ p − 2 + ε̂)E ⊆ Jp(E,Γ). Taking into account the
index (2.16) we may thus rewrite the condition (2.15) as

[Jp(E,Γ) : (−κ,−κ+ p− 2 + ε̂)E ]OE = ℘p−4−κ+ε̂
E . (2.17)
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This equality implies in particular that in case (iii) we can assume p−4−κ+ ε̂ ≥ 0.
In what follows we fix a non-trivial element γ of Γ (the precise choice doesn’t

matter) and we set f := γ − 1 ∈ OE [Γ].

Lemma 2.12. If p− 4− κ+ ε̂ ≥ 0, then fp−4−κ+ε̂ /∈ (−κ,−κ+ p− 2 + ε̂)E.

Proof. To prove this lemma we shall use the following

Sublemma 2.13. For each integer i with 0 ≤ i ≤ p− 1 one has

v(f i℘−κF ) =
{ −κ+ i, if i ≤ κ
i+ 1, if κ < i ≤ p− 1.

(2.18)

Proof. Note that γ ∈ Γ(1) \ Γ(2). If i ≤ κ we may thus apply (0.3) i times to
obtain v(f i℘−κL ) = −κ+ i .

If ∆ is the subgroup of Γ which is generated by γ, then fp−1 ≡ t∆ modulo
pOE [∆]. Using this congruence (and a simple application of (0.5)) one computes
that

v(fp−1℘−κF ) = v(t∆℘
−κ
F ) = p . (2.19)

This proves 2.18 in the case i = p−1. If on the other hand i > κ, with i = p−1−s
say, and s 6= 0, then applying (0.3) i times shows that v(f i℘−κF ) is strictly positive
whilst (2.19) implies that it is not divisible by p. Taken together (0.3) and (2.19)
now imply that

p = v(fp−1℘−κF ) = v
(
fs(f i℘−κF )

)
= v(f i℘−κF ) + s

so that v(f i℘−κF ) = p− s = i+ 1 . �

We now return to the proof of Lemma 2.12. Following upon Sublemma 2.13
we see that there are naturally two cases to consider.

Subcase (i) p− 4− κ+ ε̂ ≤ κ . In this case (2.18) gives

v(fp−4−κ+ε̂℘−κF ) = −κ+ (p− 4− κ+ ε̂)
< −κ+ p− 2 + ε̂ ,

and this implies the stated claim.
Subcase (ii) p− 4− κ+ ε̂ > κ . In this case (2.18) implies that

v(fp−4−κ+ε̂℘−κF ) = (p− 4− κ+ ε̂) + 1
= (−κ+ p− 2 + ε̂)− 1
< −κ + p − 2 + ε̂ ,
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and once again this implies the stated result. �

Lemma 2.14. Let s and t be any pair of integers such that both s < t and
pOE [G] ⊆ (s, t)E ⊆ Jp(E,Γ). Let n be any strictly positive integer such that
fn /∈ (s, t)E .
(i) The elements {f i : 1 ≤ i ≤ n} are linearly independent in the kE-space
Jp(E,Γ)/(s, t)E .
(ii) If p - s, then the Fp-span of {f i : 1 ≤ i ≤ n} is strictly smaller than
Jp(Qp,Γ)/(s, t)Qp .

Remark 2.15. Example 1.6 shows that assertion (ii) of Lemma 2.14 is in general
false if Qp is replaced by a bigger (absolutely unramified) field E.

Proof. We deal first with assertion (i). To do this we set α =
∑i=n
i=1 cif

i with
ci ∈ OE for each i, and we assume that α ∈ (s, t)E . We must show that {ci :
1 ≤ i ≤ n} ⊂ ℘E . However, if this is not true, and i0 denotes the least integer
such that ci0 /∈ ℘E , then there exist elements x ∈ OE [Γ] and y ∈ (s, t)E such that
ci0f

i0 = f i0+1x + y . Upon applying these elements to ℘sF and taking valuations
this equality implies that

v
(
f i0℘sF

)
= v

(
ci0f

i0℘sF
)

≥ min
{
v
(
f i0+1℘sF

)
, v (y℘sF )

}
> v

(
f i0℘sF

)
,

and this is obviously a contradiction.
To prove (ii) we shall again argue by contradiction, and so assume that Jp(Qp,Γ)

=
∑i=n
i=1 Zpf i + (s, t) , where we now write (s, t) in place of (s, t)Qp . It follows from

this that for each element h ∈ Γ there are elements c(h) ∈ Zp, d(h) ∈ Zp[Γ]f2 and
e(h) ∈ (s, t) such that h−1 = c(h)f +d(h)+ e(h) . Now #Γ = p2 and so there are
elements h1, h2 of Γ with h1 6= h2 and c(h1) ≡ c(h2) modulo p. For these elements
one has

h1h
−1
2 − 1 = h−1

2 (h1 − h2) = h−1
2 ((h1 − 1)− (h2 − 1)) ∈ Zp[Γ]f2 + (s, t) .

Since f /∈ (s, t) one therefore has

v
(

(h1h
−1
2 − 1)℘sF

)
≥ min

{
v
(
f2℘sF

)
, t
}

> v (f℘sF )
= s+ 1

(where the last equality here is a consequence of (0.3) and the fact that p - s).
However, since h1h

−1
2 ∈ Γ(1) \ Γ(2) and p - s this inequality contradicts (0.3). �
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Since −κ < 1 ≤ −κ+ p− 2 + ε̂ and (1, 1)E = OE [Γ] one has an inclusion (cf.
(0.2))

(−κ,−κ+ p− 2 + ε̂)E +
i=p−4−κ+ε̂∑

i=1

OEf i ⊆ Jp(E,Γ) . (2.20)

Now Lemma 2.12 implies that we may apply Lemma 2.14 with s = −κ, t = −κ+
p − 2 + ε̂ and n = p − 4 − κ + ε̂. From the conclusion of Lemma 2.14(i) we may
thus deduce that if condition (2.17) is satisfied, then the inclusion (2.20) must be
an equality. However, if E = Qp, then (since p - κ) Lemma 2.14(ii) implies that
the inclusion (2.20) is strict and so (2.17) cannot be valid in this case.

At this stage we have shown that (2.11) cannot be valid in case (iii) if we have
E = Qp. It therefore remains for us to deal with the cases (i) and (ii), and since
the argument in these cases is somewhat similar to the above we shall be a little
briefer with our explanations.

We first deal with the case (i). From Lemma 1.1(ii) we know that (0, 0)E =
OE [Γ]{1, peΓ} and so [

(0, 0)E : OE [Γ]
]
OE = ℘E . (2.21)

Also (1, 1)E = OE [Γ] and (0, p − 2 + ε̂)E ⊆ (1, 1)E (cf. (0.2)) so that in fact
(0, p− 2 + ε̂)E ⊆ Jp(E,Γ). The condition (2.12) can therefore be rewritten as[

(0, p− 2 + ε̂)E : OE [Γ]
]
OE = ℘−p+2−ε̂+1

E ,

or equivalently [
Jp(E,Γ) : (0, p− 2 + ε̂)E

]
OE = ℘

(p−3+ε̂)−1
E

= ℘p−4+ε̂
E . (2.22)

Lemma 2.16. One has fp−4+ε̂ /∈ (0, p− 2 + ε̂)E = (1, p− 2 + ε̂)E .

Proof. The stated equality follows from the inclusion (1, p − 2 + ε̂)E ⊆ Jp(E,Γ)
together with the fact that OF = OK + ℘F . By repeatedly using (0.3) one checks
that v

(
fp−4+ε̂℘F

)
= 1 + (p− 4 + ε̂) = p− 3 + ε̂ < p− 2 + ε̂ , and so fp−4+ε̂ /∈

(1, p− 2 + ε̂)E . �

Lemma 2.16 implies that we can apply Lemma 2.14 with s = 1, t = p − 2 + ε̂
and n = p− 4 + ε̂. If firstly p− 4 + ε̂ ≥ 1, then Lemma 2.14(i) implies that (2.22)
is equivalent to an equality

Jp(E,Γ) =
i=p−4+ε̂∑
i=1

OEf i + (1, p− 2 + ε̂)E ,
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and Lemma 2.14(ii) implies that this cannot occur if E = Qp. If on the other hand
p − 4 + ε̂ = 0 then p = 3 and ε̂ = 1, and then one has δ ∈ {5, 6} and (2.22) is
equivalent to the equality J3(E,Γ) = (0, 2)E. It is not difficult to check that this
equality is in fact correct.

We must finally deal with the case (ii). We first recall from Lemma 1.1(i) that
(1, 1)E = OE [Γ]. From this it follows that (1, p − 1 + ε̂)E ⊆ Jp(E,Γ) and so the
condition (2.13) is therefore equivalent to[

Jp(E,Γ) : (1, p− 1 + ε̂)E
]
OE = ℘

(p−2+ε̂)−1
E

= ℘p−3+ε̂
E . (2.23)

Lemma 2.17. One has fp−3+ε̂ /∈ (1, p− 1 + ε̂)E .

Proof.: Applying (0.3) gives v
(
fp−3+ε̂℘F

)
= 1+(p−3+ ε̂) = p−2+ ε̂ < p−1+ ε̂ .

�

This result implies that we may apply Lemma 2.14 with s = 1, t = p−1+ ε̂ and
n = p− 3 + ε̂. In conjunction with the conclusion of Lemma 2.14(i) the condition
(2.23) is therefore equivalent to an equality

Jp(E,Γ) =
i=p−3+ε̂∑
i=1

OEf i + (1, p− 1 + ε̂)E ,

and Lemma 2.14(ii) implies that this equality cannot occur if E = Qp.

At this stage we have proved that if E = Qp, then the equality (2.11) can only
occur if p = 3 and δ ∈ {5, 6}. Taking into account the result of Lemma 1.7 our
proof of Proposition 2.10 will therefore be completed by the following result.

Lemma 2.18. Let L/K be any extension as in Proposition 2.10 with p = 3. Then
both NFr(Q3[G];℘5

L) and NFr(Q3[G];℘6
L) .

Proof. Let Q be any subgroup of G of order 3 with Q 6= G(2) and set Γ = G/Q
and F = LQ. With δ ∈ {5, 6} the formula (0.5) implies that vF (tQ℘δL) = 3 and
so, given the result of Lemma 2.4, we need only prove that NFr(Q3[Γ];℘3

F ).

Sublemma 2.19. NFr(Q3[Γ];℘3
F ).

Proof. We let ∆ denote the unique subgroup of Γ which has order 3. If M = F∆,
then vM ((℘3

F )∆) = 1 , whilst (0.5) implies that vM (e∆℘
3
F ) = −1. From this it

follows that

A(Q3[Γ/∆]; (℘3
F )∆) = A(Q3[Γ/∆];℘M) = Z3[Γ/∆] (2.25)
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(where the last equality is a consequence of Lemma 1.1), and also that

A(Q3[Γ];℘3
F )∆ = A(Q3[Γ/∆];−1, 1) .

But one can check that A(Q3[Γ/∆];−1, 1) ⊆ J3(Q3,Γ/∆) whilst

eΓ/∆J3(Q3,Γ/∆) ⊆ Z3.tΓ/∆ ⊂ A(Q3[Γ/∆];−1, 1)

so that eΓ/∆ ∈ A(Q3[Γ/∆];A(Q3[Γ];℘3
F )∆) . In conjunction with (2.25) this im-

plies that NFr(Q3[Γ];℘3
F ). �

This completes the proof of Proposition 2.10, and hence that of Theorem 1.3(i).
�

§ 3. The cyclic case

In this section p is an odd prime, L/K is a totally ramified cyclic extension of p-
adic fields of degree pnr with n ≥ 1 and p - r, and E is any absolutely unramified
subfield of K. We write G for the Galois group of L/K, and let P and C denote
its subgroups of order pn and r respectively. For each integer i with 1 ≤ i ≤ n
we let Pi denote the subgroup of P of order pi, and we write ti and ei for tPi and
ePi respectively. We set e0 := 1 ∈ G. We write eK for the absolute ramification
degree of K and set êK := eK/(p− 1).

In this section we shall inter alia prove Theorem 1.3(ii-iii). A brief outline of the
section is as follows. We first characterise the condition Fr(E[G]; IL) in the case
that G = P by combining results of Fontaine concerning ramification filtrations
with Lemma 1.1, Proposition 1.11, Lemma 2.4 and some explicit computations
based on (0.3-5). Using similar techniques we then characterise Fr(E[G]; IL) in
the case that n = 1 and eK > 1 and combine this with Lemma 2.4 so as to prove
Theorem 1.3(ii)(a) and (iii)(a). To prove Theorem 1.3(ii)(b) and (iii)(b) we use
the approach of [Bu2]. Via this approach the proof is reduced to giving an explicit
description of each order A(K[G]; I), and to obtain such descriptions we refine the
techniques of [Be1].

We first recall the close connection between êK and the upper jump numbers
u(j) of L/K.

Lemma 3.1. (Fontaine [Fo]):
(i) One has either u(1) = pêK or 0 < u(1) < pêK and p - u(1).
(ii) For each j ∈ {1, 2, ..., n− 1} one has

(a) if u(j) ≥ êK, then u(j+1) = u(j) + eK .

(b) if u(j) < êK, then either u(j+1) = pu(j), or u(j+1) = pêK, or pu(j) < u(j+1) <

pêK and p - u(j+1). �
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Lemma 3.1(i) allows us to define a non-negative integer δ by setting

δ := peK − (p− 1)u(1) .

We recall that L/K is said to be ‘almost maximally ramified’ if δr < p. If eK = 1
and r = 1, then this is in fact no restriction on L/K. Indeed, in this case Lemma
3.1(i) implies that u(1) = 1 so that δ = 1.

Lemma 3.2. The following conditions are equivalent :-
(i) A(E[G];OL) =M(E,G).
(ii) A(E[G/Q];OLQ) =M(E,G/Q) for any given subgroup Q < P .
(iii) L/K is almost maximally ramified.

Proof. The implication from (i) to (ii) is clear.
We next assume that (ii) is true with respect to some given subgroup Q of

P . If now H ≤ G with #H = pn−1r, then Q ≤ H and so A(E[G/H];OLH ) =
M(E,G/H). Since the unique jump number of LH/K is equal to u(1) the formula
(0.5) implies that eG/HOLH ⊆ OLH if and only if δ < p. Now if δ < p, then
u(1) ≥ êK and hence Lemma 3.1(ii)(a) implies that u(i) = u(1) +(i−1)eK for each
integer i ∈ {2, , .., n}. Upon converting to the lower ramification numbering and
using (0.5) one now computes that for each integer j with 1 ≤ j ≤ n

vL (ejOL) = pj

pj − 1− δr
(
pj−1
p−1

)
pj

 .
It is clear from this expression that any idempotent ej belongs to A(E[G];OL) if
and only if δr < p . This proves the implications from (ii) to (iii) and from (iii) to
(i). �

In proving Theorem 1.3(ii-iii) we shall first deal with extensions of p-power
degree.

Lemma 3.3. Let L/K be a cyclic extension of degree p. Then Fr(E[G]; IL) if
and only if L/K is either weakly or almost maximally ramified.

Proof. We must prove that if Fr(E[G]; IL), then either u(1) = 1 or δ < p.
In this case u(1) = u(1) and so the formula (0.5) gives

vK
(
e1℘

i
L

)
=

[
i+ (1 + u(1))(p− 1)

p

]
− eK =

[
i+ p− 1− δ

p

]
. (3.1)

If δ ≥ p, then this is strictly less than di/pe and so A(E[G];℘iL) = OE [G] for
all integers i. In this case therefore it follows from Lemma 1.1(i) that Fr(E[G]; IL)
if and only if L/K is weakly ramified.
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If on the other hand δ < p, then (3.1) implies that vK(e1OL) = 0 so that
A(E[G];OL) =M(E,G) and hence certainly Fr(E[G];OL) . �

Lemma 3.4. Let L/K be a cyclic extension of degree pn with n > 1. Then
Fr(E[G]; IL) if and only if L/K is almost maximally ramified.

Proof. Since u(1) is equal to the first (upper) jump number in any non-trivial
subextension F/K of L/K we deduce from Lemma 2.4 and Lemma 3.3 that if
Fr(E[G]; IL), then either u(1) = 1 or u(1) = (peK − δ)/(p − 1) with δ < p . If
δ < p, then L/K is almost maximally ramified and Fr(E[G];OL) (Lemma 3.2),
and so we shall henceforth assume that u(1) = 1. In addition, if eK = 1, then L/K
is necessarily almost maximally ramified, and so we shall also henceforth assume
that eK > 1. It suffices for us to prove that, under these assumptions, if n = 2,
then NFr(E[G]; IL) . To do this we now restrict to the case n = 2, and we set
Γ := G/P1. We shall use the following result.

Sublemma 3.5. Let G be cyclic of order p2. We choose an element g ∈ G \ P1
and set f := g−1. If A is any order of the form A(E[G]; I) which contains neither
fe1 or e2, then either A = OE [G] or A(E[Γ];AP1) = M(E,Γ) . In particular, if
eK > 1 and u(1) = 1, then NFr(E[G]; I).

Proof. If

α = c0e1 +
i=p−2∑
i=1

cif
ie1 + ce2 ∈ A (3.2)

(with c, c0 and each ci belonging to OE), then

fα = c0fe1 +
i=p−2∑
i=1

cif
i+1e1 ∈ A

and hence (0.4) implies that c0fe1 ∈ A. Since fe1 /∈ A it follows that c0 ∈ ℘E and
hence that the element

β := α − c0e1 =
i=p−2∑
i=1

cif
ie1 + ce2

belongs to A. It follows that βp
2 ∈ A and since

βp
2 ≡ cp

2
eG modulo OE [G]

we deduce that cp
2
e2 belongs to A, and hence (since e2 /∈ A) that there exists an

integer c′ ∈ OE such that c = pc′. Since ce2 ≡ c′fp−1e1 modulo OE [G], we may
now deduce from (0.4) and the above explicit expression for β that{

cif
ie1 : 1 ≤ i ≤ p− 2

}
∪ {ce2} ⊂ A . (3.3)
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There are now two cases for us to consider.
Case (i) pe2 /∈ A. To within addition of an element of OE [G] each element of
M(E,G) is of the form (3.2). It follows that if pe2 /∈ A, then (3.3) implies that
ci ∈ ℘E for each i ∈ {1, 2, ... p− 2} and also c ∈ ℘2

E , and hence that α ∈ OE [G].
In other words, in this case we have A = OE [G] and so since L/K is not weakly
ramified it follows that NFr(E[G]; I).
Case (ii) pe2 ∈ A. Any element of AP1 is of the form (3.2). However, since both
c0 and c belong to ℘E one has e2α = (c0 + c)e2 ∈ A so that eΓ ∈ A(E[Γ];AP1)
and hence A(E[Γ];AP1) = M(E,Γ). If eK > 1 and u(1) = 1, then this im-
plies NFr(E[G]; I). Indeed, if Fr(E[G]; I), then A(E[Γ]; IP1) = A(E[Γ];AP1) =
M(E,Γ) and this contradicts Proposition 1.11(i). �

Returning to the proof of Lemma 3.4 we now fix an integer i and shall show that
NFr(E[G];℘iL) if u(1) = 1 and eK > 1. To do this we set F = LP1 , and first note
that since F/K is weakly ramified Proposition 1.11(i) implies that A(E[Γ]; I) =
OE [Γ] for each ideal I ∈ IF . Lemma 2.4 and Lemma 1.1 therefore imply that

Fr(E[G];℘iL)⇒ Fr(E[Γ]; t1℘iL)⇒ vF
(
t1℘

i
L

)
≡ 1 modulo p . (3.4)

We set A := A(E[G];℘iL). In completing the proof of Lemma 3.4 there are two
cases for us to consider.

Case (i) 1 = u(1) < êK . In this case Lemma 3.1(ii)(b) implies that u(2) = (peK −
η)/(p − 1) for some non-negative integer η. Converting to lower numbering gives
u(1) = 1 and u(2) = 1 + p ((peK − η)/(p− 1)− 1) . The formula (0.5) now shows
that e2 /∈ A. In addition, as a consequence of (3.4), (0.3) and (0.5) one has

vF
(
fe1℘

i
L

)
= vF

(
e1℘

i
L

)
+ 1

=

[
i+ (1 + u(2))(p− 1)

p

]
− eKp + 1

=
[
i+ (2(p− 1) + p(peK − η − (p− 1)))

p

]
− eKp + 1

=
[
i+ p− 2

p

]
− η − (p− 3) .

Unless p = 3 and η = 0 (and i 6≡ 1 modulo 3) this last expression is strictly
less than di/pe so that fe1 /∈ A , and hence NFr(E[G];℘iL) as a consequence of
Sublemma 3.5. In the special case p = 3 and η = 0 one can show that

℘Ee2 ⊂ A ⊆ OE [G] {1, fe1, e1 − e2}

so that A(E[Γ];AP1) = M(E,Γ) . However since eK > 1 and F/K is weakly
ramified Proposition 1.11(i) implies that A(E[Γ]; (℘iL)P1) = OE [Γ] and hence
NFr(E[G];℘iL).
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Case (ii) 1 = u(1) ≥ êK . In this case Lemma 3.1(ii)(a) implies that u(2) = 1 + eK .
After converting to lower numbering this implies (via (0.5)) that e2 /∈ A and
(taking into account (3.4), (0.3) and (0.5)) also that

vF
(
fe1℘

i
L

)
= vF

(
e1℘

i
L

)
+ 1

=
[
i+ (2 + peK)(p− 1)

p

]
− eKp + 1

=
[
i+ p− 2

p

]
+ 2 − eK .

If eK > 2 it follows that fe1 /∈ A and the required result follows by applying
Sublemma 3.5. If however eK = 2, then it is possible that fe1 ∈ A. But in this
case it is easy to check that pe2 also belongs to A so that

℘Ee2 ⊂ A ⊆ OE [G]{1, fe1, e1 − e2 }

and hence that eΓ ∈ A(E[Γ];AP1). This again implies that NFr(E[G];℘iL). �

At this stage, we can turn to consider extensions of mixed degree.

Lemma 3.6. Let G be a cyclic group of order pr. If eK ≥ 2, then Fr(E[G]; IL) if
and only if L/K is either weakly ramified or almost maximally ramified.

Proof. We need only show that if L/K is neither weakly or almost maximally
ramified, then NFr(E[G]; IL). As a consequence of Lemma 1.7 it is in fact enough
for us to show that in this case NFr(K0[G]; IL) where here K0 denotes the maximal
absolutely unramified subfield of K. Now since L/K is totally ramified it follows
that K0 contains a primitive rth root of unity, so that the algebra K0[C] is totally
split. From the decomposition I = ⊕χ∈C∗eχI it is therefore enough for us to
prove that for each ideal I there is at least one character χ ∈ C∗ which is such
that eχI is not free as an A(K0[G]eχ; I)-module.

As a consequence of Lemma 2.4 and Lemma 3.3 we may henceforth assume
that either u(1) = 1 or u(1) = (peK − δ)/(p− 1) with 0 ≤ δ < p. We let π denote a
uniformising parameter of K, and write F for the field LP . From (0.5) we obtain
in this case

vF
(
π−jt1℘

i
L

)
=

[
i+ (1 + ru(1))(p− 1)

p

]
− jr

=


[
i+p−1+r(p−1−pj)

p

]
, if u(1) = 1,[

i+p−1+r(p(eK−j)−δ)
p

]
, if u(1) = (peK − δ)/(p− 1), 0 ≤ δ < p.

(3.5)

We set I := ℘iL. If u(1) = 1, then by substituting j = eK into (3.5) one can show
that A(K0[G]; I) = OK0 [G], and hence Lemma 1.1 implies that NFr(K0[G]; IL)
unless L/K is weakly ramified.
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Henceforth we assume that δ ≤ p − 1, and that δr = p + ξ for some positive
integer ξ, and we shall prove that NFr(K0[G]eχ; I) for some character χ. By
substituting j = eK into (3.5) we obtain

vF (e1I) =
[
i+ p− 1− ξ

p

]
− 1 ≤

⌈
i

p

⌉
− 1 ,

and so there is at least one character χ ∈ C∗ such that e1eχ /∈ A(K0[G]eχ; I). For
any such character χ one hasA(K0[G]eχ; I) = OK0 [G]eχ and hence if Fr(K0[G]; I),
then eχI is a free OK0 [G]eχ-module. If this is true, then Ĥ0(P, eχI) =
Ĥ0(P,OK0 [G]eχ) = 0 and so

(eχI)P = t1eχI . (3.6)

However, substituting j = 1 into the expression (3.5) one has

vF
(
π−1t1I

)
=
[
i+ p− 1 + r(p(eK − 1)− δ)

p

]
and since eK ≥ 2 and δ ≤ p − 1 this is at least di/pe . In other words, one has
π−1t1I ⊆ I so that π−1t1eχI ⊆ (eχI)P and this contradicts the equality (3.6). �

By combining the results of Lemmas 3.4 and 3.6 with Lemma 2.4 one obtains
proofs of Theorem 1.3(ii)(a) and (iii)(a), and so it only remains for us to consider
more fully the case that eK = 1.

The important point in this case is that (in conjunction with Lemma 1.7) the
techniques of [Bu2] reduce the question of whether Fr(E[G]; I) to the problem of
obtaining an explicit description of each order A(K[G]; I).

Since K[C] is totally split, the direct sum decomposition I = ⊕χ∈C∗eχI induces
a decomposition

A(K[G]; I) =
⊕
χ∈C∗

A(K[G]eχ; I) ,

and so it suffices to describe each order A(K[G]eχ; I). To do this we choose any
generator g of P , and set f := g−1. We recall first that for each character χ ∈ C∗
one has

M(K,G)eχ =
i=n∑
i=0

∑
j≥0

OKf jeieχ (3.7)

(cf. for example ([Be1], §2.2, Lemme 2)). The case I = OL of the following result
is equivalent to ([Be1], Théorème 1).

Lemma 3.7. Let eK = 1. Then for each ideal I of OL and for each character
χ ∈ C∗ the order A(K[G]eχ; I) is generated over OK [G]eχ by a set of the form

{1} ∪ {fei : 1 ≤ i ≤ n− 1} ∪ {ciei : 1 ≤ i ≤ n}
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where ci ∈ {1, p} for each index i.

Remark 3.8. Using (0.5) and (0.6) it is easy to determine whether any given
element eieχ belongs to A(K[G]eχ; I).

Proof. Lemma 3.1 implies that u(j) = j for each integer j with 1 ≤ j ≤ n. Using
(3.7), (0.3) and (0.5) one can now check that

fM(K,G)eχ + pM(K,G)eχ ⊆ A(K[G]eχ; I)

(cf. [Bu2], proof of Lemma 5.6), and so, given the description (3.7), we need only
consider elements of the form

∑i=n
i=1 cieieχ with ci ∈ O∗K for each integer i.

We now fix I and χ and let A denote the order A(K[G]eχ; I). We suppose we
are given s integers

i(1) < i(2) < ... < i(s)

which are such that ei(k)eχ /∈ A for each k ∈ {1, 2, ..., s}. We must show that for

any subset {ci(k) : 1 ≤ k ≤ s} of O∗K the element α :=
∑k=s
k=1 ci(k)ei(k)eχ does not

belong to A. We shall argue by contradiction, and so shall assume that α ∈ A.
We set J := {i(k) : 1 ≤ k ≤ s} and let M denote the minimum ele-

ment of the set { vL(ejeχI) : j ∈ J } , so that M < vL(I). We also set J ′ :=
{j ∈ J | vL(ejeχI) = M } and s′ := #J ′. Note that since M < vL(I) and α ∈ A
one has s′ ≥ 2.

We now relabel the elements of J ′ as i′(1) < i′(2) < .. < i′(s′), so that in
particular M is divisible by pi

′(s′) . In addition, for each integer k with 1 ≤ k ≤ s′
we shall in the remainder of this proof write Mk for p−i

′(k)M , Gk for Pi′(k), Qk
for G/Gk, Lk for LGk , vk(−) for vLk(−), ek for ei′(k), and ck for ci′(k).

We let β denote the element
∑k=s′
k=1 ckekeχ , and write β1 for the image of β

in K[Q1]. Since α ∈ A we must have vL (βI) > M and so v1 (β1e1I) > M1, or
equivalently (taking into account (0.6))

β1 ∈ A(K[Q1]eχ;M1,M1 + r) . (3.8)

We now choose any element x of Ls′−1 such that vs′−1(x) ≥Ms′−1 + r. Then one
has

β1x =
k=s′−1∑
k=1

ckeχ(x) + cs′es′eχ(x) . (3.9)

It is clear that

v1

k=s′−1∑
k=1

ckeχ(x)

 ≥ v1(x) = pi
′(s′−1)−i′(1)vs′−1(x) > M1 . (3.10)
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On the other hand, writing ℘s′−1 for the maximal ideal of OLs′−1 , the formula (0.5)
(together with our knowledge of the ramification filtration of Ls′−1/Ls′) implies
that

vs′
(
es′℘

Ms′−1+r
s′−1

)
=

[
1

pi
′(s′)−i′(s′−1)

(
(Ms′−1 + r)− r

(
pi
′(s′)−i′(s′−1) − 1

p− 1

)
+ pi

′(s′)−i′(s′−1) − 1

)]

= Ms′ +

[
1

pi
′(s′)−i′(s′−1)

(
r − r

(
pi
′(s′)−i′(s′−1) − 1

p− 1

)
+ pi

′(s′)−i′(s′−1) − 1

)]

so that
Ms′ − r < vs′

(
es′℘

Ms′−1+r
s′−1

)
≤ Ms′ .

In conjunction with these inequalities the property (0.6) implies that
vs′
(
es′eχ℘

Ms′−1+r
s′−1

)
= Ms′ , and so we may assume that our chosen element

x satisfies v1(es′eχx) = M1 . But for any such element we may deduce from (3.9-
10) and cs′ ∈ O∗K that v1(β1x) = M1 < M1 + r , and this in turn contradicts
the inclusion (3.8). �

Lemma 3.7 has reduced the problems of explicitly describing the order A(K[G]; I)
and then of checking whether Fr(K[G]; I) to straightforward computational mat-
ters. (It incidentally can also be used to give a much quicker proof of ([Bu2],
Theorem 6) than the one originally given in ([Bu2], §5)).

Theorem 1.3(ii)(b) is a consequence of Theorem 1.3(iii)(b) and Lemma 2.4, and
so to complete the proof of Theorem 1.3 we need only prove Theorem 1.3(iii)(b).
We thus now suppose that L/K has degree pr and that eK = 1. In this case it is
easy to check that all OK -orders in K[G] which contain OK [G] are Gorenstein (or
‘self-dual’ in the language of ([Fr2], Theorem 10)) and so one has Fr(K[G]; I) for
all ideals I of OL. From Lemma 1.7 it follows that

Fr(Qp[G]; I) ⇔ A(K[G]; I) = A(Qp[G]; I)OK .

Our proof of Theorem 1.3(iii)(b) is thus completed by the following result.

Lemma 3.9. Suppose that #G = pr and that eK = 1. Then there exists an ideal
I of OL for which A(K[G]; I) = A(Qp[G]; I)OK if and only if r < 2p .

Proof. Let I = ℘iL. Since u(1) = 1 the formula (0.5) gives

v1 (e1I) =
[
i+ (1 + r)(p − 1)

p

]
− r
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=
[
i+ p− 1− r

p

]
, (3.11)

and hence
di/pe −

[
r/p
]
− 1 ≤ v1 (e1I) ≤ di/pe −

[
r/p
]
. (3.12)

The generator χ(L/K) of C∗ (cf. (0.6)) induces a bijection between C∗ and any
complete set J of residues modulo r: each χ ∈ C∗ corresponds to the integer
j(χ) ∈ J such that χ = χ(L/K)j(χ). If F is the absolute Frobenius of p, then

j(χF ) ≡ pj(χ) modulo r . (3.13)

Moreover, if J ′(i) denotes the subset of J consisting of those integers j(χ) for
which eχe1 /∈ A(K[G]; I), then (0.6) implies that we may choose J in such a
way that both J and J ′(i) is a set of consecutive integers. We shall henceforth
suppose that J is chosen in this way. We note that the inequalities (3.12) imply[
r/p
]

+ 1 ≥ #J ′(i) ≥
[
r/p
]
.

Now if A(K[G]; I) = A(Qp[G]; I)OK , then (3.13) implies that J ′(i) must be
stable (at least modulo r) under multiplication by p. The fact that A(K[G]; I) 6=
A(Qp[G]; I)OK if r > 2p is thus a consequence of the following sublemma.

Sublemma 3.10. If r > 2p, then for any integer i there exists an integer j ∈ J ′(i)
such that pj is not congruent modulo r to any element of J ′(i).

Proof. We write J ′ for J ′(i). We shall argue by contradiction and so assume
that multiplication by p induces a bijection of J ′ (with its elements considered as
residue classes modulo r). We let j1 and j2 denote the least and greatest elements
of J ′ respectively. There are two cases for us to consider.

Case (i) j2 − j1 ≥ p− 1 . In this case we know that for some s ∈ {1, 2} there is an
integer λ ∈ J ′ such that pλ ≡ j2− (p− s) modulo r and λ+ 1 ∈ J ′. One therefore
has

p(λ+ 1) ≡ j2 − (p− s) + p ≡ j2 + s modulo r ,

and since by assumption this is congruent modulo r to an element of J ′ we must
have j2 + s ≥ j1 + r. However, this inequality implies that

r/p+ 1 ≥
[
r/p
]

+ 1 ≥ #J ′ = j2 − j1 + 1 ≥ r − s+ 1 ≥ r − 1 ,

and this certainly cannot happen if r > 2p.

Case (ii) j2 − j1 < p − 1. Since #J ′ ≥ [r/p] and r > 2p one has #J ′ ≥ 2 . For
some s ∈ {0, 1} there is therefore an integer λ ∈ J ′ such that pλ ≡ j1 + s modulo
r and λ+ 1 ∈ J ′. Then we have p(λ+ 1) ≡ j1 + s+ p modulo r. Since however

j2 < j1 + p− 1 < j1 + p+ s < j1 + r
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this implies that p(λ + 1) is not congruent modulo r to any element of J ′, and
this is a contradiction. �

At this stage it suffices for us to show that if r < 2p, then there exists an ideal
I of OL such that A(K[G]; I) = A(Qp[G]; I)OK . Now if r < p, then

A(K[G];OL) =M(K,G) =M(Qp, G)OK ,

and so we shall assume that r = p+ ξ with 1 ≤ ξ ≤ p− 1. From (3.11) one has

v1
(
e1℘

i
L

)
=
[
i+ p− 1− ξ

p

]
− 1 . (3.14)

We write i+ p− 1 = sp+ t with s and t integers such that 0 ≤ t ≤ p− 1. If t ≥ ξ,
then the expression (3.14) is equal to di/pe − 1 = s− 1, and so the subset J ′(i) is
the singleton consisting of the unique integer j′ ∈ J such that j′ ≡ s− 1 modulo
r. Regarding j′ as a residue class modulo r it is invariant under multiplication by
p if and only if the integer s satisfies p(s− 1) ≡ s− 1 modulo r. Choosing s and
t to satisfy the above stated conditions it follows that

A(K[G]eχ; I) =
{M(K,G)eχ, if j(χ) 6= j′,
OK [G]eχ, if j(χ) = j′.

(3.15)

We reiterate that, since j(χ) = j′ implies that χ is Qp-valued, the orderA(K[G]; I)
which is described by (3.15) is indeed induced from a Zp-order. �

We have now completed the proof of all parts of Theorem 1.3. It therefore only
remains for us to complete the proof of Corollary 1.4 by showing that if eK = 1,
then Fr(Qp[G];OL) implies that L/K is almost maximally ramified.

Lemma 3.11. (Bergé): Suppose that eK = 1, and that L/K is cyclic. Then
Fr(Qp[G];OL) implies that L/K is almost maximally ramified.

Proof. If Fr(Qp[G];OL), then Lemma 1.7 implies that A(K[G];OL) = A(Qp[G];
OL)OK , and this condition can be investigated by using the same techniques as in
the proof of Lemma 3.9. Just such an analysis is made in ([Be1], §2.3, Corollaire
4 and Lemme 5) and shows that A(K[G];OL) = A(Qp[G];OL)OK if and only if
L/K is almost maximally ramified. �

Appendix: An algorithmic approach to determining local and
global module structures (W. Bley)

In this appendix we let L/K denote an abelian extension of number fields with
Galois group G. We let E be a subfield of K with class number one, and we
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shall consider G-stable ideals I of OL which are locally free over A(E[G]; I). Our
aim is to algorithmically determine their class in the locally free class group of
A(E[G]; I).

We recall that if A(E[G]; I) is explicitly known, then the question of local free-
ness of I over A(E[G]; I) is reduced to an index-theoretical computation using
([Fr2], Theorem 4) (see also Lemma 2.7 in [Bl]). Algorithms for computing associ-
ated orders of unit lattices and for deciding if these lattices are locally or globally
free over their associated orders are already given in [Bl]. These algorithms can
be easily adapted to the rank one case of the present problem (that is, the case
E = K), and so we shall focus on the problems which arise when E 6= K.

In the following we write n = [L : K] and m = [K : E]. By the normal
basis theorem we know that there exist elements θ1, . . . , θm of I such that L =⊕m

i=1 E[G]θi. We first describe an algorithm for explicitly computing such a set
{θ1, . . . , θm}. This is a generalization of a procedure introduced by K. Girstmair
in [G].

The simple Wedderburn components of E[G] are parametrized by the set D(G)
of irreducible E-characters of G. For each ρ ∈ D(G) we write eρ for the corre-
sponding idempotent 1

n

∑
g∈G ρ(g)g−1 of E[G].

ALGORITHM
Given a basis ω1, . . . , ωnm of L over E and matrices A(g) ∈ Glnm(E) for each

g ∈ G such that  ω1
...

ωnm

g

= A(g)

 ω1
...

ωnm

 ,

this algorithm computes normal basis generators θ1, . . . , θm of L over E[G].
STEP 1: Set j = 1, W = {ω1, . . . , ωnm}, V = {} and let A be the identity matrix
of size nm.
STEP 2: For each ρ ∈ D(G) choose ω(j)

ρ ∈W such that eρ(ω
(j)
ρ ) 6∈ spanE(V ) and

put θj =
∑
ρ∈D(G) eρ(ω

(j)
ρ ).

STEP 3: Compute the E-basis T = {θgj : g ∈ G} of E[G]θj and a subset W ′ of
W such that L = spanE(V )⊕ spanE(T )⊕ spanE(W ′). Also compute a matrix B
that transforms our new basis V ∪ T ∪W ′ to the old basis V ∪W . Set j ← j + 1,
W ←W ′, V ← V ∪ T and A← AB.
STEP 4: If j ≤ m go to step 2. Otherwise output θ1, . . . , θm.

In order to prove the correctness of this algorithm we proceed by induction on
j. We suppose then that for some j ≤ m we have both

(i) dimE(spanE(V )) = (j − 1)n,
and

(ii) spanE(V )⊕ spanE(W ) = L.
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We note first that spanE(V ) =
⊕j−1

k=1 E[G]θk. Because of (ii) we find for each

ρ ∈ D(G) an element ω(j)
ρ ∈ W such that eρ(ω

(j)
ρ ) 6∈ spanE(V ). In particular

eρ(θj) = eρ(ω
(j)
ρ ) 6= 0 and this implies eχ(θj) 6= 0 for all irreducible Qc-characters

χ contained in ρ. Therefore dimE(E[G]θj) = n.
We now prove that spanE(V ) ∩ E[G]θj = {0}. If λ is an element in this

intersection, then eρλ ∈ eρ(spanE(V )) ∩ eρE[G]θj . Since eρE[G]θj is a simple

E[G]-module and eρ(θj) = eρ(ω
(j)
ρ ) 6∈ spanE(V ) we deduce that eρ(λ) = 0 for all

ρ ∈ D(G); hence λ = 0.
Since spanE(V ) ∩ E[G]θj = {0} the computations in step 3 can easily be per-

formed using linear algebra, and this obviously proves that both dimE(spanE(V ∪
T )) = jn and spanE(V ∪ T )⊕ spanE(W ′) = L. �

Remarks. (i) In order to implement steps 2 and 3 of the algorithm we must be
able to compute the action of elements λ of E[G] on the basis elements ω ∈W and
to express each λ(ω) in terms of the basis V ∪W . Using the matrices A(g), g ∈ G, it
is easy to compute λ(ω) as a linear combination a1ω1 + . . . anmωnm of the original
basis. Then (a1, . . . , anm)A gives the coefficients of a representation of λ(ω) in
the basis V ∪W .
(ii) If ω1, . . . , ωnm is an OE-basis of a G-stable ideal I of OL, then we obtain
normal basis generators θ1, . . . , θm which are contained in I by setting θj =

n
∑
ρ∈D(G) eρ(ω

(j)
ρ ) in step 2.

We assume henceforth that we explicitly know an OE-basis ω1, . . . , ωnm of
I and also the representation matrices A(g) ∈ Glnm(OE) induced by this basis.
By applying the above algorithm we compute normal basis generators θ1, . . . , θm
of L over E[G] that are contained in I. To shorten the notation we write θ =
(θ1, . . . , θm).

Next we compute the OE [G]-lattice

Aθ(I) := {λ ∈ E[G]m : λ · θ ∈ I},

where for any λ = (λ1, . . . , λm) ∈ E[G]m and α = (α1, . . . , αm) ∈ Lm we write
λ · α for the sum

∑m
i=1 λi(αi). To determine Aθ(I) we compute elements λj of

E[G]m such that λj · θ = ωj for j = 1, . . . , nm. Then the set {λ1, . . . , λnm} is an
OE-basis of Aθ(I).

The order A(E[G]; I) acts diagonally from the left on Aθ(I) and in fact
A(E[G]; I) = {λ ∈ E[G] : λAθ(I) ⊆ Aθ(I)}. We denote by

t : E[G]×E[G] −→ E

the symmetric, non-degenerate E-bilinear pairing which satisfies

t(g, h) =
{

1, if gh = 1,
0, otherwise,
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for all elements g, h of G, and we let

s : E[G]m ×E[G]m −→ E

be the m-fold orthogonal sum of t. For any OE [G]-module Y in E[G]m, respec-
tively E[G], we identify the linear dual Y ∗ := HomOE (Y,OE) with {λ ∈ E[G]m :
s(λ, Y ) ⊆ OE}, respectively {λ ∈ E[G] : t(λ, Y ) ⊆ OE}.

We now define an OE [G]-module homomorphism

(·, ·) : Aθ(I)×Aθ(I)∗ −→ OE [G]

by setting (µ, ν) =
∑
g∈G s(gµ, ν)g−1 for µ ∈ Aθ(I) and ν ∈ Aθ(I)∗. This homo-

morphism satisfies
t((µ, ν), δ) = s(ν, δµ) = s(νδ, µ) (2)

for µ ∈ Aθ(I), ν ∈ Aθ(I)∗ and δ ∈ E[G]. Using (2) the following lemma is proved
in the same way as Lemma 4.2 in [Bl,Bu].

Lemma 1. (Aθ(I),Aθ(I)∗) = A(E[G]; I)∗. �

This lemma leads to an algorithm for computing A(E[G]; I). (The reader
should consult [Bl,Bu] for a discussion of this algorithm in the case m = 1.)

We assume henceforth that we can compute explicit OE-bases for Aθ(I),
A(E[G]; I) andM(E,G). We shall for brevity now write AE andME in place of
A(E[G]; I) and M(E,G) respectively.

By its very definition Aθ(I) is OE [G]-isomorphic to I, and so we need only
determine the AE-structure of Aθ(I). Theorem 4 in [Fr2] implies that Aθ(I)
is locally free over AE if and only if [Aθ(I)ME : Aθ(I)]OE = [ME : AE ]mOE .
Since Aθ(I),AE andME are assumed to be explicitly known the question of local
freeness can therefore be decided by algorithm.

Example 1. Let K be Q(
√
−1) and let L be the subfield of the ray class

field K(27) of conductor 27 over K which is fixed by the unique subgroup of
Gal(K(27)/K) of order 2 and also by the Frobenius automorphism of 10. Then
L/K is an extension of group C9 × C3 and is totally ramified above 3. We let
pL denote the unique prime ideal of OL lying above 3. With the same methods
as described in ([Bl,Bu], §5) one can compute A(K[G]; piL) and Aθ(piL) (for some
normal basis element θ of L over K[G]) for each i with 0 ≤ i ≤ 26. Theoretical
considerations (similar to those used in §2) show that if piL is locally-free over
A(K[G]; piL), then i ∈ {8, 9, 10}, and computation of the relevant indices shows
that each of these 3 ideals is indeed locally-free over its associated order in K[G].

If now F/K is the unique subextension of L/K which has group isomorphic to
C3 ×C3, Γ = Gal(F/K), and pF = OF ∩ pL, then each of the orders A(K[Γ]; piF )
was computed in ([Bl,Bu], §5 and §6). From Lemma 1.1 one knows that piF is
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locally-free over A(K[Γ]; piF ) if either i = 0 or i = 1. Applying the algorithm to
check local-freeness of piF over A(K[Γ]; piF ) for each of the remaining indices i with
0 ≤ i ≤ 8 one finds local-freeness only for i = 8. Using Lemma 1.7 one can also
check that p8

F is not locally-free over A(Q[Γ]; p8
F ).

There are entirely similar results concerning powers of the unique prime ideal
above 3 in the unique extension of Q(

√
−7) which has group isomorphic to C3×C3

and lies in the ray class field Q(
√
−7)(9).

We now turn to consider the problem of global freeness. To that end we shall
suppose that Aθ(I) is a locally free AE-sublattice of E[G]m. Our aim is to re-
duce the global freeness problem to the rank one case and then simply adapt the
algorithm presented in ([Bl], §2.2).

In the following we shall for brevity write M, A and Aθ for ME , AE and
Aθ(I) respectively. We let Pic(A) denote the Picard group of A. Since A has
Krull dimension one, taking determinants (that is, top exterior powers) over A
induces an isomorphism between the locally-free class group of A and Pic(A) (cf.
[Ba], Ch. IX, §3). It follows that to determine the structure of any locally-free
A-lattice X we need only analyse the invertible A-lattice detA(X).

The lattice Aθ is by assumption a locally free A-module, and so detA(Aθ)
canonically embeds into detE[G](Aθ ⊗OE E). Using this it is easy to show that
detA(Aθ) is generated by the determinants

det


λi1,1 λi1,2 . . . λi1,m
λi2,1 λi2,2 . . . λi2,m

...
. . .

...
λim,1 λim,2 . . . λim,m

 , 1 ≤ i1 < . . . < im ≤ nm,

where Aθ =< λ1, . . . , λnm >OE with elements λi = (λi,1, . . . , λi,m) ∈ E[G]m for
each of i = 1, . . . , nm.

This gives a lattice with
(
nm
m

)
generators, and before proceeding one has to

compute an OE-basis. Whilst theoretically this is a trivial task, its actual imple-
mentation is usually quite delicate since one rapidly runs into numerical difficulties
(cf. comment following Lemma 4.2 of [Bl,Bu]).

Having now reduced the global freeness problem to consideration of lattices
which have rank one over OE [G] one can proceed just as in ([Bl], §2.2). There
is only a slight difference in the definition of the ideals Iρ in this new context:
for each irreducible E-character ρ of G we let Oρ denote the ring of algebraic
integers in the field Eρ which is generated over E by the values of any irreducible
Qc-character contained in ρ, and we now set Iρ := [AθMeρ :Meρ]Oρ . In addition,
in the present case the set D(G) is the set of all irreducible E-characters of G.

In the last part of this section we briefly describe how our algorithm can be
used to compute Pic(A), in the sense that we exhibit an explicit A-sublattice
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M of E[G] lying in each class of Pic(A). Once such a description of the Picard
group is available, we can use the algorithm to determine the class of Aθ (which
is now assumed to be of rank one). Indeed, to do this we need only compute the
tensor product Aθ ⊗A M for each representative M of Pic(A) and then apply
the algorithm to check whether Aθ ⊗AM is a free A-lattice. Note that if Aθ =<
λ1, . . . , λn >OE and M = < µ1, . . . , µn >OE , then Aθ⊗AM ' AθM is generated
over OE by the n2 elements {λiµj : 1 ≤ i, j ≤ n}.

We let J(E[G]) denote the group of finite idèles of E[G], and we regard E[G]∗

as diagonally embedded in J(E[G]). For any OE-order Λ in E[G] we write U(Λ)
for the group of unit idèles of Λ.

For each ρ ∈ D(G) we fix an irreducible Qc-character χρ contained in ρ. The
Wedderburn decomposition of E[G] is explicitly given by the E-algebra homomor-
phism

Φ : E[G] −→
⊕

ρ∈D(G)

Eρ,

which is induced by sending a group element g ∈ G to (χρ(g))ρ∈D(G).
We let f be any integral OE-ideal such that fM ⊆ A and put B = OE + fM.

We denote by clf(Eρ) the ray class group of Eρ of conductor f. Then Φ (or rather
its inverse), together with class field theory, induces a well-defined epimorphism

κf :
⊕

ρ∈D(G)

clf(Eρ) −→
J(E[G])
E[G]∗U(B)

−→ Pic(A).

For any fractional ideal aρ of Eρ, respectively any locally free A-lattice M in E[G],
we denote its class in clf(Eρ), respectively in Pic(A), by [aρ], respectively [M ].

Lemma 2. For each ρ ∈ D(G) let aρ denote an ideal of Oρ such that (aρ, f) = 1.
Then: [

Φ−1((aρ)ρ∈D(G)) ∩A
]

= κf(([aρ])ρ∈D(G)).

Proof. For each ρ ∈ D(G) we define an idèle αρ ∈ J(Eρ) by setting αρ,P = 1 for
P - aρ and choosing αρ,P ∈ Eρ,P such that vP(αρ,P) = vP(aρ) for P|aρ, where
vP(−) denotes the P-adic valuation. Identifying Eρ ⊗E Ep with ⊕P|pEρ,P we

write αρ =
∑
i x

(i)
ρ ⊗ β(i)

ρ , where x(i)
ρ ∈ Eρ, β(i)

ρ ∈ J(E) and the sum is over some
finite index set. Then κf(([aρ])ρ∈D(G)) is represented by the unique lattice whose

completions are given by θpAp with θp :=
∑
ρ∈D(G)

∑
i Φ−1(x(i)

ρ )β(i)
ρ,p. On the

other hand it is easily seen that the completion of Φ−1((aρ)ρ∈D(G)) at p is given
by θpMp. The special choice of the idèles αρ ∈ J(Eρ), ρ ∈ D(G), implies that
θp = 1 for primes p which divide f whereas Ap = Mp for primes p which do not
divide f. We therefore conclude that θpMp ∩ Ap = θpAp. �

Remarks. (i) If for each ρ ∈ D(G) we know an OE-basis of aρ, then by using an
explicit description of Φ we can compute an OE-basis of M = Φ−1((aρ)ρ∈D(G)).
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The most efficient way to compute the intersection with A is probably to use the
equality M ∩ A = (M∗ +A∗)∗.
(ii) If one explicitly knows the ray class groups clf(Eρ) for all ρ ∈ D(G), then the
algorithm can be used to determine the group structure of Pic(A). For each ele-
ment x ∈

∏
ρ∈D(G) clf(Eρ), we compute a representative of κf(x) and by applying

the algorithm we can decide if x is in the kernel of κf. This gives the exact order
of Pic(A).

Suppose in addition that
∏
ρ∈D(G) clf(Eρ) is given by a set of generators

{x1, . . . , xs} and a set of relations R. Let L′ be the free Z-module on {x1, . . . , xs}
and let L ⊆ L′ be the Z-submodule generated by R. Then

Pic(A) ' L′/ < L, ker(κf) >Z,

and by applying algorithms for Hermite Normal Form and Smith Normal Form
(see [C], Ch. II, 2.4) this gives the complete group structure of the Picard group
and also a set of explicit generators.

Example 2. Continuing with the notation of Example 1, we let K = Q(
√
−1) or

K = Q(
√
−7), and let F be the unique extension of K which has group isomorphic

to C3×C3 and is contained in the ray class field K(9). Then one knows that OF ,
pF , and p8

F are all locally-free over their respective associated orders in K[Γ]. The
algorithm described above can be used to show that each of these ideals is in
fact free over its associated order in K[Γ]. (Note that F/K is weakly ramified so
that A(K[Γ]; pF ) = OK [Γ] (cf. Lemma 1.1). Note also that in this case AF/K =

p
1−p2

F = 3−1pF ∼= pF .)

The above algorithm was implemented using the number theory package KANT
[GvS]. The numerical results and also a more detailed description of the implemen-
tation are available upon request from the author at the following address: Institut
für Mathematik der Universität Augsburg, Universitätsstr. 8, D-86159 Augsburg,
Germany (e-mail: bley@uni-augsburg.de), (http: //www.math.uni-augsburg.de/∼
bley).
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[Be2] A-M. Bergé, Anneaux d’entiers et ordres associés, Thèse, Université de Bordeaux,

1979.
[Bl] W. Bley, Computing associated orders and Galois generating elements of unit lattices,

J. Number Theory 62 (1997), 242-256.
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