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Abstract. Given an improper action (= cell stabilizers are infinite) of a group G on a CW-
complex X , we present criteria, based on connectivity at infinity properties of the cell stabilizers
under the action of G that imply connectivity at infinity properties for G. A refinement of
this idea yields information on the topology at infinity of Artin groups, and it gives significant
progress on the question of which Artin groups are duality groups.
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1. Introduction

A locally finite, m-connected CW complex X is m-connected at infinity if, roughly
speaking, k-spheres near infinity can be filled by (k + 1)-balls near infinity for
−1 ≤ k ≤ m. A group G is said to be m-connected at infinity if G acts freely
and cocompactly on an m-connected complex X which is m-connected at infinity.
This is a group theoretic property in that it is independent of the choice of locally
finite space on which G acts freely and with finite quotient. The condition (−1)-
connected at infinity is a fancy way of saying G is infinite; 0-connected at infinity
is commonly referred to as “one-ended”; the group ZZm is (m − 2)-connected
at infinity. As Bestvina and Feighn point out [3], it is often possible to consider
cocompact, proper (but not necessarily free) actions: A virtually torsion free group
G is m-connected at infinity if and only if it admits a cocompact, proper (= finite
cell stabilizers) action on a locally finite, m-connected CW-complex which is m-
connected at infinity. Also, important results about connectivity at infinity have
been achieved starting with actions that are not cocompact: Bestvina and Feighn
accomplish this for Out(Fn) [3]; Borel and Serre did the same for torsion free
arithmetic groups [6]. This leaves open the question of what one can say about G
when G acts improperly (= cell stabilizers are infinite) on a given complex X .
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The only previous result along these lines is due to Jackson: If G is the fun-
damental group of a finite graph of groups where the vertex stabilizers are 1-
connected at infinity and the edge stabilizers are one-ended, then G is 1-connected
at infinity [19]. Theorem A generalizes Jackson’s result primarily in terms of mov-
ing beyond actions on trees to actions on cell complexes. Throughout this paper,
a G-complex X is a combinatorial CW complex on which G acts by permuting
the cells. (For background on combinatorial complexes see [17].) We denote the
isotropy group of a cell σ ⊂ X by Gσ. The action of G on X is rigid if every
induced action of an isotropy group Gσ on its associated cell σ is trivial.

Theorem A. Let X be a rigid G-complex with G\X (m+1) finite.
(i) If X (m+1) is m-acyclic, and for each cell σ ⊂ X , Gσ is FPm−|σ|+1 and

(m− |σ|)-acyclic at infinity, then G is m-acyclic at infinity.
(ii) Assume X (2) is 1-connected, and: the vertex stabilizers are finitely pre-

sented and 1-connected at infinity; the edge stabilizers are finitely generated and
one-ended; and the face stabilizers are infinite. Then G is 1-connected at infinity.

(iii) If (in addition to the hypotheses of (i)) each vertex stabilizer Gv is finitely
presented and 1-connected at infinity, and X is 1-connected, then G is m-connected
at infinity.

(The topology at infinity terminology will be formally defined in the next section;
we note that the condition k-acyclic at infinity for k < −1 is vacuous.)

We note that our conditions on X are very mild; it does not have to be locally
finite, or have any connectivity at infinity properties. For example, X could be a
tree where each vertex has countably infinite valence.

The “base case” of Theorem A states a known fact: If G acts on a connected
graph with compact quotient, where the vertex stabilizers are finitely generated
and one-ended, and the edge stabilizers are infinite, then G is one-ended. Because
of the close connection between connectivity at infinity and duality properties of
groups, we also get the following result.

Corollary. Let G act on a contractible complex X with G\X finite. If the cell
stabilizers Gσ are duality groups of dimension d − |σ|, then G is a duality group
of dimension d.

The most simple case of this Corollary occurs when G decomposes as a free
product with amalgamation, G = A ∗C B. Here the Corollary states that if A
and B are duality groups of dimension d, and C is a duality group of dimension
(d − 1), then G is a duality group of dimension d. This result was noted by
Bieri, and his proof uses a Mayer-Vietoris sequence [4]. It seems appropriate that
the proof of part (i) of Theorem A uses a spectral sequence argument, and this
spectral sequence immediately establishes the Corollary. The proof of part (ii)
is very geometric and borrows tools from the theory of complexes of groups. For
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those familiar with the terminology, our results could be stated in those terms. For
example, part (ii) of Theorem A could be stated as: Let G be the fundamental group
of a finite, developable 2-complex of groups where: the vertex groups are finitely
presented and 1-connected at infinity; the edge groups are finitely generated and
one-ended; and the face groups are infinite. Then G is 1-connected at infinity.

Because there is a pro-Hurewicz Theorem, stating that a complex which is m-
acyclic at infinity and 1-connected at infinity is m-connected at infinity (see [20]
or [15]), parts (i) and (ii) imply part (iii) of Theorem A.

In the last sections we outline how one can use these techniques to discuss
connectivity at infinity properties of Artin groups. Given a finite simplicial graph
G, with edges labelled by integers greater than one, the associated Artin group,
denoted AG, has a finite presentation with generators corresponding to the vertices
of G, and relations

aba · · ·︸ ︷︷ ︸
n letters

= bab · · ·︸ ︷︷ ︸
n letters

where {a, b} is an edge of G labelled n. (References include [1], [10], [14] and [25].)
Given any Artin group AG there is an associated Coxeter group CG which is

the quotient of AG formed by adding the relations v2 = 1 for each generator v.
An Artin group is of finite type if its associated Coxeter group is finite. Let Ĝ be
the simplicial complex formed by attaching a simplex σ of appropriate dimension
to each complete subgraph C ⊂ G for which AC is an Artin group of finite type.

Charney and Davis describe a “modified Deligne complex” ΦG on which AG
acts with the cone of Ĝ as fundamental domain [10]. The action is improper;
cell stabilizers are Artin groups of finite type. By modifying the arguments given
for Theorem A, and applying them to this action, we establish the following two
results.

Theorem B. Let AG be an Artin group, let Ĝ be the complex described above, and
assume that G is not a single vertex or edge. If Ĝ is 1-connected and contains no
cut vertex, then AG is 1-connected at infinity.

Theorem C. Let AG be an Artin group and assume ΦG is contractible. If Ĝ is
Cohen-Macaulay, then AG is a duality group.

Charney and Davis give general conditions implying that ΦG is contractible,
and they conjecture that ΦG is always contractible (Conjecture 2 of [10]). We also
note that these results partially extend work in [7] which completely determines
connectivity at infinity and duality properties for right-angled Artin groups; there
is also a strong parallel with Davis’s results on duality for Coxeter groups [12].
Theorem C gives substantial progress toward resolving a question of Mike Davis
about which Artin groups are duality groups (see Question 2 in [7]).
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2. Definitions & background

A group G is Fm if there is a K(G, 1) with finite m-skeleton; G is FPm if there is a
projective resolution of ZZ as a trivial ZZG-module that’s finite through dimension
m. The action of G on the universal cover of a K(G, 1) provides a free resolution
of ZZ, so Fm ⇒ FPm, but the converse is false for m > 1 [2]. A group is of type
FP if there is a finite projective resolution of ZZ as a trivial ZZG-module.

Let G be Fm+1 and let Y be the (m + 1)-skeleton of the universal cover of a
K(G, 1). The group G is m-connected at infinity if given any compact set C ⊂ Y
there is a compact subcomplex D ⊂ Y such that any map φ : Sk → Y−D extends
to a map φ̂ : Bk+1 → Y − C for −1 ≤ k ≤ m. We call D the m-connectivity
subcomplex associated to C. We note that our condition “1-connected at infinity” is
stronger than what some authors term “simply connected at infinity”; although the
literature is not consistent on terminology, some would consider finitely generated
free groups to be simply connected at infinity.

If G is of type FPm+1 and Hk(G,ZZG) = 0 for −1 ≤ k ≤ m + 1 and
Hm+2(G,ZZG) is ZZ-torsion free, then G is m-acyclic at infinity. This definition
can be made more geometrically intuitive in the presence of stronger finiteness
conditions. When G is Fm+1, one can say that G is m-acyclic at infinity if any
k-cycle supported in Y −D is the boundary of a (k+ 1)-chain supported in Y −C.
In particular, one has the following result (see §4.3 and §5.5 in [15]).

Proposition 2.1. Let X be a K(G, 1) complex with X (m+1) finite, and let {Ki}
be a nested, exhaustive sequence of compact subcomplexes of X̃ (m+1). Then the
following are equivalent.

(i) G is m-acyclic at infinity;
(ii) The sequences of reduced homology groups H̃k(X̃ (m+1) −Ki;ZZ) are pro-

trivial for −1 ≤ k ≤ m; and
(iii) Hk(G,ZZG) = 0 for −1 ≤ k ≤ m+ 1 and Hm+2(G,ZZG) is ZZ-torsion free.

According to our definitions, in order for a group to be m-acyclic at infinity,
it must be FPm+1. Hence it is natural that in Theorem A we have finiteness
conditions along with connectivity at infinity conditions on our isotropy groups.
But in order for Theorem A to even make sense we would need G to be FPm+1
or Fm+1, which we did not explicitly require. However, this follows from our
hypotheses by the following result.

Theorem 2.2. ([9]) If G acts on an m-acyclic complex X with G\X (m+1) finite,
and for each cell σ ⊂ X , Gσ is FPm−|σ|, then G is FPm. Further, if the vertex
stabilizers are finitely presented, and X is simply connected, then G is Fm.

In our proof of Theorem A we use the technology of complexes of groups. In
particular, we focus on the following two-dimensional case. Say X is a 1-connected,
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rigid G-2-complex with G\X finite. Then there is a free G-2-complex Y and a G-
equivariant cellular projection π : Y→→X which we’ll describe below. Because of
our conditions, G\Y is finite, so to establish part (ii) of Theorem A it suffices to
show that Y is 1-connected at infinity.

The space Y and the projection π : Y→→X have a number of useful properties:

(i) The fibres over vertices, π−1(v), are Cayley complexes for the isotropy
groups Gv.
(ii) The subspace π−1(e), e being an open edge, has a product structure.
The fibre over the barycenter be of e is a Cayley graph for Ge, and π−1(e) '
π−1(be)×(0, 1). The closure of π−1(e), π−1(e), looks like a product π−1(be)×
[0, 1] where π−1(be)×{0} is a copy of the Cayley graph π−1(be) inside of the
Cayley complex π−1(ι(e)); such a copy exists because Ge injects into Gι(e).
Similarly, π−1(be)× {1} is a copy of π−1(be) in π−1(τ(e)).
(iii) For any open 2-cell f ⊂ X , π−1(f) is Gf × B where B is an open 2-
cell. Given an element gf ∈ Gf , gf × B is attached to an edge path circuit
as follows. Let f be an n-gon, with bounding edges {e1, . . . , en}, where
vi = ι(ei), and let ∂B be divided into 2n pieces labelled {ṽ1, ẽ1, . . . , ṽn, ẽn}.
Each ẽi attaches to the edge in π−1(ei) corresponding to the image of gf
in Gei induced by Gf ↪→ Gei ; the edges ṽi are sent to paths in π−1(Gvi )
connecting the end vertex of ẽi−1 to the initial vertex of ẽi.

The construction of the complex Y and projection π is very similar to the Scott
and Wall “ball-and-stick” construction for groups acting on simplicial trees [24].
For details on the construction in dimension two, see [11], [16] and [23]. Note:
This construction can be carried out in any dimension (see [16]), however we only
require it in dimension two.

In [5], Bieri and Eckmann introduce the idea of a duality group, general-
izing Poincaré duality groups. An FP group G is a duality group if there is
an integer n and a G-module D (the dualizing module) such that Hi(G,M)
≈ Hn−i(G,D ⊗ M) for all integers i and G-modules M . Equivalently, it’s a
duality group if its cohomology with group ring coefficients is torsion free and
concentrated in dimension n; in this case the dualizing module D is Hn(G,ZZG).
So once one knows that an FP group G has cohomological dimension n, one only
needs to establish that G is (n − 2)-acyclic at infinity in order to show that G is
a duality group. (See [4], [8], and [13] for further information.)

3. Homology at infinity

In establishing part (i) of Theorem A, we use the following lemma, which may
be well known. While cohomology commutes with direct sums in the presence of
strong finiteness conditions — such as the FP condition — Theorem A (i) only
assumes G has more limited finiteness properties, such as the FPm property.
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Lemma 3.1. Let G be a group of type FPm and let {Mi} be a collection of
G-modules.

(i) The canonical map
⊕
i

Hm(G,Mi) → Hm(G,
⊕
i

Mi) is an isomorphism.

In particular, if Hm(G,Mi) = 0 for all i, then Hm(G,
⊕
i

Mi) = 0.

(ii) If Mi and Hm+1(G,Mi) are ZZ-torsion free for all i, then Hm+1(G,
⊕
i

Mi)

is ZZ-torsion free.

Proof. (i) By hypothesis there is a partial free resolution

Fm → Fm−1 → · · · → F1 → F0 → ZZ → 0

where each Fi is a finitely generated free ZZG-module. Let K = im{Fm → Fm−1}.
Then an m-cocycle of G with coefficients in a G-module M can be identified with
a G-module homomorphism u : K → M , and u is a coboundary if and only if u
extends to a map Fm−1 → M (see the proof of Lemma VIII.2.1 in [8]). In other
words, Hm(G,M) is the cokernel of the restriction map

HomG(Fm−1,M)→ HomG(K,M).

Since Fm−1 and K are finitely generated, it follows that Hm(G,−) preserves direct
sums, whence (i).

(ii) Let L = ker{Fm → Fm−1}. As above, Hm+1(G,M) is the cokernel of

HomG(Fm,M)→ HomG(L,M).

Let u : L→
⊕
i

Mi represent a torsion element of Hm+1(G,
⊕
i

Mi). Then some

multiple k · u (k 6= 0) extends to a map Fm →
⊕
i

Mi. Since Fm is finitely

generated, all but finitely many components of this map are trivial, so the same is
true of k · u and hence of u. (This last assertion uses our assumption that Mi is
ZZ-torsion free.)

There is then a family of cocycles ui : L → Mi such that almost all are
trivial and all represent torsion elements of Hm+1(G,Mi). Since the latter is
torsion free, we may extend ui to ũi : Fm → Mi, taking ũi = 0 for almost all i.
These ũi’s give an extension ũ : Fm →

⊕
i

Mi of u. Thus u represents the trivial

element of Hm+1(G,
⊕
i

Mi).

Proof of part (i) of Theorem A. By Proposition 2.1, we need to establish that
Hi(G,ZZG) = 0 for 0 ≤ i ≤ m+ 1 and Hm+2(G,ZZG) is ZZ-torsion free. We use



Vol. 75 (2000) Improper actions and higher connectivity at infinity 177

the well-known spectral sequence

Epq1 =
∏
σ∈Σp

Hq(Gσ, ZZG)⇒ Hp+q(G,ZZG)

where Σp is a set of representatives for the G-orbits of p-cells. (See for instance
§VII.7 of [8].) If σ ∈ Σp our hypothesis says that Gσ is FPm−p+1 and that
Hq(Gσ, ZZGσ) vanishes for q ≤ m− p+ 1 and is ZZ-torsion free for q = m− p+ 2.
Now ZZG, as a Gσ-module, is a direct sum of copies of ZZGσ; so Lemma 3.1
implies that Epq1 vanishes for p+q ≤ m+1 and is ZZ-torsion free for p+q = m+2.
The same is therefore true of Epq∞ , so Hi(G,ZZG) vanishes for i ≤ m + 1 and is
ZZ-torsion free for i = m+ 2.

We note that in the proof of this homological version of Theorem A, the
only place we used the fact that the action of G on X (m+1) is cocompact is in
establishing finiteness properties of G; if one already knows that G is FPm+1 then
the hypothesis that the quotient is finite can be dropped.

4. Simple connectivity at infinity

Let X be a 1-connected G-2-complex, where X and the G-action satisfy the condi-
tions of part (ii) of Theorem A. Let Y be the free G-2-complex and let π : Y→→X be
the G-equivariant surjection (briefly) described in §2. The space Y is 1-connected
with G\Y finite, so our goal is to show that Y is 1-connected at infinity. That it
is one-ended follows from part (i) of Theorem A.

Start with a finite subcomplex C ⊂ Y. Recall that for each v ∈ X (0),
π−1(v) is 1-connected at infinity. Let Cv = C ∩ π−1(v). If Cv is empty, set
Dv = ∅. Otherwise let Dv be the 1-connectivity at infinity subcomplex in π−1(v)
that is associated with Cv. For convenience we will assume Dv is sufficiently large
so that π−1(v)−Dv is connected. Set C′ = C ∪ (

⋃
v∈X (0)

Dv).

For any edge e ⊂ X , π−1(e) is the product of a Cayley graph for Ge with
[0, 1]. Let C′e be C′∩π−1(e) and set D′e to be the empty set when C′e is empty. If C′e
is not empty, then the projection from π−1(e) onto π−1(be) describes a subgraph
Ĉe of the Cayley graph π−1(be). Let D̂e be the 0-connectivity at infinity subgraph
of π−1(be) corresponding to Ĉe, and let D′e be the union of 2-cells in π−1(e) given
by the product of D̂e with [0, 1]. Finally, set D = C′ ∪ (

⋃
e∈X (1)

D′e). We will show

that any edge path circuit p ⊂ Y − D is null-homotopic in Y − C. It suffices
to consider simple edge path circuits, and we restrict ourselves to that case. We
note that if the image of p in X , π(p), is a single vertex v then p is contained in
π−1(v)−Dv, and hence it is null-homotopic in π−1(v)− Cv by our choice of Dv.
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Figure 1. Joining the edges ε0 and ε1.

In the arguments which follow we will be subdividing the path p according
to which π-preimages it runs through. A local subpath of p is a maximal subpath
of p that is contained in the π-preimage of a single vertex in X . The path p can
be viewed as the union of its local subpaths, where each pair of consecutive local
subpaths are joined by a single edge contained in the π-preimage of an edge in X .

Lemma 4.1. It suffices to consider only those simple edge path circuits p ⊂ Y−D
where π(p) ⊂ X is also a simple edge path circuit.

Proof. Assume first that some subpath p′ of p projects onto a simple circuit in
X that is a proper subset of the entire image. Let the vertices of this subpath p′

be {a, b, . . . , z}. Since the image of p′ is a simple circuit, π(a) = π(z) = v. But
π−1(v) is one-ended, hence by our choice of the subcomplex Dv, there is a path
p′′ in π−1(v) − Dv connecting a to z. Thus p′ ∪ p′′ is a simple circuit in Y − D
projecting onto a simple circuit in X , and (p− p′)∪p′′ is a simple circuit in Y −D
projecting onto a graph in X containing one fewer simple sub-circuit.

This process reduces us to the case where π(p) is a simple circuit, or a tree.
It remains then to resolve the possibility that π(p) is a tree. Let v ∈ π(p) be a
vertex of valence 1 in π(p), let “e” be the edge in π(p) which is attached to v,
and let w be the other vertex of e. Then in p there is a subpath p′ consisting of
an edge ε0 followed by a local subpath ν, and concluding with an edge ε1, where
π(εi) = e and π(ν) = v. The barycenters of the edges εi correspond to vertices in
the Cayley graph of Ge that are outside of D̂e. By our choice of D̂e, there is a path
pe connecting bε0 to bε1 in π−1(be)−D̂e. The induced collection of 2-cells in π−1(e)
connects the edges ε0 and ε1 in Y −D. The path pe (in the Cayley graph of Ge)
projects to paths pv and pw contained in the π-preimages of v and w respectively.
Combining pv with ν gives a circuit in π−1(v) − Dv that by hypothesis can be
filled outside of π−1(v) − Cv. Using this filling, along with the 2-cells in π−1(e)
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induced by pe, allows us to replace the subpath p′ (= ε0 ∪ ν ∪ ε1) by the path pw.
Thus it remains to find a filling for an edge path circuit whose image in X is a
tree with one less edge — the edge connecting w to v having been removed — and
this we can do by induction.

Proof of Theorem A (ii). Our proof is highly geometric, so we strongly recommend
that the reader sketch several pictures of their own as they work through this proof.

Because X is 1-connected, there is a cellular 2-disk K and a combinatorial
map φ : (K, ∂K) → (X , π(p)). We use K as a guide to constructing a cellular
2-disk K̃ and a map φ̃ : (K̃, ∂K̃) → (Y, p), where φ̃(K̃) ⊂ Y − C. In particular,
we construct a cellular projection $ : K̃→→K such that the following diagram
commutes:

K̃
φ̃−→ Y

↓ $ ↓ π
K

φ−→ X

The disk K̃ is essentially a complex formed by expanding all the vertices and edges
of K to polygons, and then attaching these polygons to each other in a manner
prescribed by the intersections in K. We describe this “blowing up” process in
detail below.

Islands: For each n-gon f ⊂ K, let If be a (2n)-gon, which we will refer to
as an island. Because φ : K → X is combinatorial, we think of f as a cell
in X . So ∂f can be thought of as an edge path determined by a sequence of
vertices {v1, v2, . . . vn} ⊂ X (0); let ei be the edge [vi, vi+1] (with indices taken
modulo n). Label the edges of the island If by the sequence of vertices and edges
{ṽ1, ẽ1, ṽ2, ẽ2, . . . , ṽn, ẽn}. Then the map $ is defined on If by sending the edges
ẽi to the edges ei and collapsing the edges ṽi to the vertices vi.

Bridges: Let e be an edge in K; associate to it a rectangle Be = [0, 1] × [0, 1]
which we call a bridge in K̃. If e is contained in the boundaries of two n-gons
f and f ′, then Be will join If and If ′ by attaching {0} × [0, 1] to the edge of If
labelled ‘ẽ’ and {1}× [0, 1] to the edge of If ′ also labelled ‘ẽ’. The map $ collapses
the bridge Be by sending {a}× [0, 1] homeomorphically onto e for every a ∈ [0, 1].

If e is on the boundary of K, let f be the single n-gon whose boundary
contains e. We attach the bridge Be to If by sending {0}× [0, 1] to the edge of If
labelled ‘e’. Again $ is defined on Be by sending {a} × [0, 1] homeomorphically
onto e. In either case, label the sides [0, 1]× {0} and [0, 1]× {1} by the vertices
they map onto under $.

Moats: For each vertex v we construct an associated 2-cell Mv which we call a
moat. First, let v be a vertex in the interior of K, let {f1, . . . , fm} be the circuit
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Figure 2. The image of a path, and a filling disk in K.

of faces surrounding v, and let {e1, . . . , em} be the sequence of edges attached to
v where fi ∩ fi+1 ⊃ ei. Then in the union of bridges and islands there is a circuit
formed by the edges labelled ṽ in the islands Ifi and the bridges Bei . For every
such v let Mv be a 2m-gon filling the corresponding circuit.

Now let v be a vertex on the boundary of K. Again, v is surrounded by
faces {f1, . . . , fm} and is attached to edges {e1, . . . , em−1} where fi ∩ fi+1 ⊃ ei.
Let e0 and em be the edges on ∂K which are attached to v. For each such vertex,
add to the union of islands, bridges and moats formed so far, an edge connecting
the terminal vertex (1, 1) of Be0 to the initial vertex (1, 0) of Bem . Finally, attach
the moat Mv (a (2m+ 2)-gon) to the circuit formed by the edges labelled ṽ in the
islands Ifi and the bridges Bei , and this additional edge we have just attached.

The map $ : K̃→→K collapses the moat Mv to the vertex v.
The union of these islands, bridges, and moats is our cellular 2-disk K̃. Note

that the boundary of K̃ consists of edges labelled ṽi and ẽi where the vi’s and ei’s
are the vertices and edges of ∂K. If it helps, consider a specific example, where
π(p) is the boundary of four cells as in Figure 2.

Each of the 2-cells will be covered by octagons in K̃, the edges are covered
by rectangles, and the vertices are covered by a variety of n-gons (see Figure 3).

We begin to define φ̃ : K̃ → Y by describing the image of the boundary.
For each i, send the edge of ∂K̃ which is labelled ẽi to the edge in p projecting
to ei in π(p). The edges of ∂K̃ labelled by vertices ṽi are then sent to the edge
paths of p contained in π−1(v). Thus we have a well-defined map φ̃ : ∂K̃→→p and
we need to extend this to a map φ̃ : K̃ → Y − C.

For each island If ⊂ K̃, define φ̃(If ) to be any 2-disk in π−1(φ(f)) whose
closure does not intersect D. (This is always possible since D is compact, and
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Figure 3. The corresponding collection K̃.

π−1(φ(f)) is a countably infinite number of disjoint disks.)
Now consider a bridge Be in K̃. The φ̃-image of two sides of this bridge are

already determined; {0}× [0, 1] and {1}× [0, 1] are the two sides of the bridge that
either connect two islands (if e is an interior edge) or an island to the boundary of
K̃ (if e is on the boundary of K). The barycenters of these two edges are mapped
by φ̃ to vertices in the Cayley graph π−1(bφ(e)) which lie outside of D̂φ(e). By our

choice of D̂φ(e) there is a path in π−1(bφ(e))− D̂φ(e) connecting these two vertices.
Send the bridge Be to the collection of 2-cells induced by this path.

At this stage the φ̃-images of the boundaries of the moats have been deter-
mined by where φ̃ sends the boundary of K̃, the islands and the bridges. If $
maps the moat Mv to a vertex v ∈ K, then φ̃(∂Mv) ⊂ π−1(φ(v)) − Dφ(v). But
the π-pre-images of vertices in X are 1-connected at infinity, so one can extend
the map φ̃|∂Mv to a map φ̃|Mv where φ̃(Mv) ⊂ π−1(φ(v)) − Cφ(v).

5. Background on Artin groups

Artin groups are a vexing collection of groups. Artin groups of finite type (those
whose Coxeter quotients are finite) arise naturally in topology as fundamental
groups of complex hyperplane complements and as fundamental groups of (2, n)-
torus link complements. The Braid groups are Artin groups of finite type with
Coxeter quotient the symmetric groups. While much is known about Artin groups
of finite type, little is known about Artin groups in general. Charney and Davis
have introduced a promising approach to the study of arbitrary Artin groups,
viewing them as products — in a very vague sense outlined below — of Artin
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groups of finite type.
Let AG be an Artin group with defining graph G. In [10], Charney and

Davis describe a complex ΦG on which AG acts. Let Sf be the poset of complete
subgraphs of G which correspond to Artin groups of finite type, ordered by inclu-
sion. The empty subgraph is included in Sf , hence the geometric realization of Sf
is the cone over the barycentric subdivision of Ĝ where the cone point corresponds
to ∅. Let

ΦG = {aAC | a ∈ AG , C ∈ Sf}

be the geometric realization of the poset of indicated cosets, ordered by inclusion.
Clearly AG acts on ΦG on the left with a copy of Sf as fundamental domain. The
stabilizers of the cells of ΦG under this action are conjugates of the Artin groups
of finite type corresponding to {C ∈ Sf}.

Using work of Haefliger on complexes of groups, Charney and Davis establish
that ΦG is 1-connected. The complex ΦG has a natural cubical structure, and so
it inherits a piecewise Euclidean metric such that each cube isometric to the unit
Euclidean cube of the appropriate dimension. If for each complete subgraph C ⊂ G,
the associated Artin group AC is of finite type, then AG is said to be of FC type.
The “FC” stands for “flag complex”; the geometric realization of Sf is a flag
complex if and only if AG is of FC type. In Theorem 4.3.5 of [10], Charney and
Davis show that ΦG with its piecewise cubical metric is CAT(0) if and only if AG
is of FC type. In this case it follows that ΦG is contractible; Charney and Davis
conjecture that ΦG is always contractible (Conjecture 2 in [10]).

Our arguments exploit the fact that the cell stabilizers for the action of AG
on ΦG are Artin groups of finite type. The connectivity at infinity properties of
finite type Artin groups are understood by work of Squier and Bestvina (see [25]
and [1]). Let |G| be the rank of G, that is, the number of vertices in G.

Theorem 5.1. Let AG be an Artin group of finite type. Then AG is a duality
group of dimension |G| and is (|G| − 2)-connected at infinity.

Squier’s (little known) work in [25] only establishes duality, hence only homological
connectivity at infinity; the homotopy at infinity result is done by Bestvina [25]
using an insightful geometric argument.

One might hope that Theorem A could be applied to the action of AG on
ΦG to establish connectivity at infinity properties for Artin groups. Regrettably
this is not the case. The essential difficulty is that the stabilizers are not well
behaved. For example, the isotropy groups for the cone points in ΦG are trivial,
not infinite; the isotropy groups of the other vertices of ΦG are Artin groups of
dimensions 1, 2, 3, . . . up to dim(Sf ). Because the vertex stabilizers are not always
top dimensional, nor are edge stabilizers of codimension one, etc., the spectral
sequence used in §3 doesn’t have zeros below the critical diagonal. To avoid this
difficulty, we use a different AG-equivariant filtration of ΦG other than by skeleta,
and this filtration induces a more tractable spectral sequence.
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Let dim(ΦG) = n. We reserve the letter C for subgraphs in Sf ; so AC
will always denote an Artin group of finite type contained in AG . Let Φ0

G be the
geometric realization of the poset of cosets {aAC | |C| = n}; this is a discrete
collection of points that will fill the role of a 0-skeleton. In general, ΦiG is the
geometric realization of the poset {aAC | |C| ≥ n − i}. At the final stage we add
the cone points forming ΦnG = ΦG. Equivalently one can think of the complex ΦiG
as the union of the fixed point sets of the conjugates of {AC | |C| ≥ n− i}. From
this point of view one can talk about the rank of a cell as being the rank of the
isotropy group of the cell, and one sees that our filtration is given by “corank.”

Following Charney and Davis, we let Sf≥C denote the subposet {C′ ∈ Sf | C′ ⊇
C} ⊂ Sf . The fundamental domain for the action of AG on ΦiG is

⋃
|C|=n−i

Sf≥C. We

let Sf>C be the subposet {C′ ∈ Sf | C′ ⊃ C} ⊂ Sf .

6. Simple connectivity at infinity for Artin groups

In this section we outline how the techniques of §4 can be modified to prove
Theorem B.

Theorem B. Let AG be an Artin group, let Ĝ be the complex described above, and
assume that G is not a single vertex or edge. If Ĝ is 1-connected and contains no
cut vertex, then AG is 1-connected at infinity.

Our argument will use the action of AG on a subcomplex of its modified
Deligne complex. Assuming we are in the situation described in Theorem B, the
link of any cone point in ΦG is simply-connected. Hence removing all the cone
points from ΦG leaves a simply-connected space. Similarly the link of any vertex
of rank 4 or higher is simply-connected (see Lemma 4.3.1 in [10]), so they may also
be removed. The resulting space deformation retracts onto the simply-connected
subcomplex of ΦG consisting of cells of rank 1, 2 and 3. We denote this complex
ΦG .

Let YG be the space covering ΦG on which AG acts freely; as before let
π : YG→→ΦG be the AG-equivariant cellular projection. In our proof of Theorem B
we use the following fact from [7].

Lemma 6.1. Given the conditions of Theorem B, Lk(v, Ĝ) is connected for any
vertex v ∈ Ĝ, and Lk(e, Ĝ) is non-empty for any edge e ∈ Ĝ.

Given a compact set C ⊂ YG , we find the 1-connectivity subcomplex D ⊃ C
as in §4 by adding appropriate subcomplexes in the pre-images of cells in ΦG.

Any edge in ΦG connects vertices of different ranks. An edge path in ΦG
is standard if it never passes through a vertex of rank 1. Standard edge paths
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most closely match the intuition of previous sections as they never contain an
edge whose stabilizer is not one ended, and every other vertex of a standard edge
path has rank 3. Thus, in a standard edge path, every other vertex is stabilized
by a group which is simply connected at infinity.

Lemma 6.2. Let C be a compact set in YG , D the associated compact set contain-
ing C, and let p be an edge path in YG −D. Then p can be homotoped in YG − C
to an edge path p′ where π(p′) is a standard edge path in ΦG.

Proof. If π(p) passes through a rank 1 vertex v, it must arrive and depart through
vertices of higher rank. Because v is a rank 1 vertex, its stabilizer is ZZ, generated
by a conjugate of the generator corresponding to some ν ∈ Ĝ. The portion of the
link of π(v) ⊂ ΦG consisting of cells of rank > 1 is combinatorially isomorphic to
Lk(ν, Ĝ) = Sf>ν . By Lemma 6.1, this is connected, so the portion of the link of
π(v) consisting of cells of rank > 1 is also connected. Because quotient maps are
continuous, π−1(Lk(v,ΦG)) is also connected. So we can homotope p to a path
which avoids v and only passes through vertices of higher rank.

Proof of Theorem B. By Lemma 6.2 we may assume that the path π(p) ⊂ ΦG is
a standard edge path. We use essentially the same argument as in Lemma 4.1 to
reduce ourselves to the case where π(p) is a simple edge path circuit in ΦG. The
case where π(p) is a tree is the only sticky situation. If a valence 1 vertex v ∈ π(p)
is of rank 2, then π−1(v) is 0-connected at infinity, but not 1-connected at infinity.
This is a problem since in the proof of Lemma 4.1 we created a loop in π−1(v)−D
which we filled in π−1(v)−C. (This situation is illustrated in Figure 1.) However,
a rank 2 vertex in ΦG corresponds to the barycenter of an edge e in Ĝ. By Lemma
6.1, e is contained in the boundary of some 2-simplex σ ⊂ Ĝ. Let w be a vertex
adjacent to v in ΦG corresponding to the barycenter of σ. Because π−1(v) injects
into π−1(w), which is 1-connected at infinity, the loop we create in π−1(v) can be
freely homotoped into π−1(w) where it can be filled outside of C.

We may now assume that π(p) is a standard, simple edge path circuit, and
because ΦG is simply connected, π(p) can be filled in ΦG . That is to say, there is
a combinatorial disk K and a combinatorial map φ : (K, ∂K)→ (ΦG, π(p)).

At this stage we apply the techniques from §4 to the current situation.
That is, we construct K̃ by blowing up the cells of K, and then construct a map
$ : (K̃, ∂K̃) → (YG , p). We start by identifying the “islands”; recall that in the
original argument islands were 2-cells stabilized by −1-connected at infinity groups.
We say the rank of any vertex v ∈ K is the rank of its φ-image in ΦG. Every 2-cell
in ΦG contains a vertex v of rank 1; thus there is a copy of ZZ stabilizing the closed
star of v in ΦG . The role of islands is played by the stars of the rank 1 vertices in
K. These stars are combinatorial disks, and their images in ΦG are stabilized by
copies of ZZ. Thus to construct K̃ and a map φ̃ : (K̃, ∂K̃)→ (YG , p) we begin by
choosing one of the countably many disks in π−1(φ(St(v))) which misses D.
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Next we join the islands by bridges, where the brides correspond to edge
pairs with the three vertices of ranks 3, 2 and 3 respectively. The isotropy group
of the edge pair is a finite type Artin group of rank 2, hence it’s one ended. This
allows us to connect the lifts of adjoining islands by paths outside of D.

Finally, the moats correspond to rank 3 vertices in K, whose images in
ΦG are stabilized by Artin groups that are simply connected at infinity. The
moats fill edge path circuits formed in K̃ by the bridges and islands; because the
vertex groups involved are simply connected at infinity, we can map these moats
to embedded disks in simply connected at infinity subcomplexes of YG .

This same technique can be applied to graph products of groups; we quickly
outline the approach to this situation. Let G be a finite simplicial graph with
groups Gv associated to the vertices v ∈ G(0). The graph product GG is the
free product of the Gv’s modulo relations implying that adjacent vertex groups
commute. In this situation, we let Ĝ be the flag complex induced by G.

Theorem 6.3. Let GG be a graph product of finitely presented infinite groups.
If Ĝ is 1-connected, and if Gv is 1-ended for any cut vertex v ∈ Ĝ, then GG is
1-connected at infinity.

The argument begins by noting that the direct sum of three infinite, finitely
presented groups is simply connected at infinity [18]. Next one constructs an
(improper) action of the graph product on a cell complex, similar to the action
of an Artin group on its modified Deligne complex; this construction is a minor
modification of the techniques of Moussong-Charney-Davis and is written down
in [21]. If Ĝ has no cut vertex, one then proceeds as in the argument above. If
Ĝ has a cut vertex v, then Ĝ can be expressed as the union of simply connected
components which share the common vertex v. An inductive argument shows that
GG decomposes as the fundamental group of a graph of groups. The vertex groups
correspond to subgroups associated with subgraphs G′ ⊂ G where G′ does not
contain cut vertices and Ĝ′ is simply connected. The edge groups in the graph
of groups decomposition consist of the Gv’s where v is a cut vertex. (See the
argument in §5 in [22].) The argument above establishes that each vertex group in
the arboreal decomposition is simply connected at infinity; because the edge groups
in this decomposition correspond to one-ended groups, GG is simply connected at
infinity by Theorem A.
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7. Which Artin groups are duality groups?

Here we prove

Theorem C. Let AG be an Artin group whose modified Deligne complex ΦG is
contractible. If Ĝ is an (n− 1)-dimensional Cohen-Macaulay complex, then AG is
a duality group of dimension n with ZZ-free dualizing module.

Recall that an n-dimensional simplicial complex Ĝ is Cohen-Macaulay if its
reduced homology is concentrated in dimension n, and for each simplex σ ⊂ Ĝ,
the reduced homology of Lk(σ, Ĝ) is concentrated in dimension n− |σ| − 1.

The fact that the dualizing module is ZZ-free (and not just ZZ-torsion free)
will follow from the fact that the dualizing module for Artin groups of finite type
is ZZ-free. (See Squier’s comments in the paragraph following Lemma 8.4 of [25].)

Proof. Because Artin groups of finite type are FP , and ΦG is assumed to be
contractible, AG is FP . Thus it suffices to establish that the cohomology of AG
with ZZAG coefficients is concentrated in top dimension and is ZZ-free.

We express H∗(AG , ZZAG) in terms of the equivariant cohomology for the
action of AG on ΦG , H∗AG (ΦG). Recall that our filtration of ΦG is by AG-equivariant
subcomplexes, but not by skeleta, so we need to analyze the spectral sequence
induced by this filtration.

The relative chains C(ΦpG ,Φ
p−1
G ) can be expressed in terms of induced mod-

ules based at the fundamental domain:
⊕

|C|=n−p
C
(
Sf≥C ,S

f
>C

)
↑AG
AC

.

Let F be a finite free resolution of ZZ as a ZZAG-module. Then

HomAG

(
F,HomZZ(C(ΦpG ,Φ

p−1
G ), ZZAG)

)
=

⊕
|C|=n−p

HomAG

(
F,HomZZ

(
C
(
Sf≥C,S

f
>C

)
↑AG
AC
, ZZAG

))
=

⊕
|C|=n−p

HomAC

(
F,HomZZ

(
C
(
Sf≥C,S

f
>C

)
, ZZAG

))
It follows that

Epq1 = Hp+q
AG

(ΦpG ,Φ
p−1
G ) =

⊕
|C|=n−p

Hp+q
AC

(Sf≥C ,S
f
>C) =

⊕
|C|=n−p

Hq(AC,Hp(Sf≥C ,S
f
>C))

where we’ve suppressed the ZZAG-coefficients to avoid notational clutter. The pair
(Sf≥C ,S

f
>C) is a cone over the link of the simplex described by C in the defining

complex Ĝ. Because Ĝ is Cohen-Macaulay, (Sf≥C,S
f
>C) has the homology of a wedge
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of spheres of dimension p, so the relative homology is trivial except in dimension
p where it’s free abelian. Thus

Hp((Sf≥C,S
f
>C), ZZAG) = Hom(Hp(Sf≥C,S

f
>C), ZZAG) =

⊕
ZZAG

So

Epq1 =
{
ZZ-free q = n− p
0 otherwise

and therefore the entire spectral sequence lies in total degree p+ q = n. Because
all the entries below the nth-diagonal are zero, Hq(AG , ZZAG) = 0 up to dimension
n; since each AC is an FP group, cohomology commutes with direct sums, hence
Hn(AG , ZZAG) is ZZ-free.

Corollary 7.1. If AG is an Artin group of FC-type, and Ĝ is Cohen-Macaulay,
then AG is a duality group.

We note that the spectral sequence constructed in the proof of Theorem C
works with any coefficients. In particular, in combination with Squier’s results on
the integral cohomology of Artin groups of finite type [25], it might prove useful
for computing the integral cohomology of Artin groups of infinite type. We also
mention that our proof establishes that if ΦG is contractible, and if the n-skeleton
of Ĝ is Cohen-Macaulay, then AG is (n − 1)-acyclic at infinity (even if AG might
not be a duality group).
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