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Skeins, SU(N) three-manifold invariants and TQFT

W. B. R. Lickorish

Abstract. The skein theory associated to the HOMFLY polynomial invariant of oriented knots
and links in the three-sphere is explored in order to provide the background results necessary
for the creation of a Topological Quantum Field Theory. A simple local duality result in the
skein theory is proved. It allows vector space dimensions in the theory to be correlated with the
structure constants in a skein algebra associated to the solid torus.
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1. Introduction

There is an almost automatic way in which a Topological Quantum Field Theory (a
TQFT), as outlined in [1], can be constructed from a three-manifold invariant that
is generated by a skein theory. Of course the skein theory must satisfy some prop-
erties. This approach and the requisites of the skein theory are clearly explained
in [2], where it is noted that the SU(2) skein theory is exemplary. The immedi-
ate purpose of this paper is to check that the skein theoretic formulation given
by Y.Yokota [16], for the SU(N) invariants for framed links in three-manifolds,
does indeed satisfy these requirements (at least at infinitely many roots of uni-
ty). However, in addition, various other aspects of SU(N) skein theory will also
be developed. Note that this SU(N) theory is the skein theory that is based on
the defining identity of the HOMFLY polynomial invariant (of oriented knots and
links) with a specific substitution made for its variables.

A TQFT, in the dimensions under consideration, associates to every closed
oriented surface Σ a vector space V (Σ). It is required that V (Σ1tΣ2) = V (Σ1)⊗
V (Σ2) and that V (Σ) be finite dimensional. Those results are here established for
the SU(N) skein theory, the method used depending on the re-coupling properties
of an anti-symmetriser g(N), an idempotent in a certain skein algebra. As explained
in Section 3, if Σ is the boundary of an oriented three-manifold M (which can
be assumed to be contained in S3) then V (Σ) is a certain quotient S̃N (M) of
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a skein space SN (M) generated by framed links in M . It will be immediate
that V (Σ) = V (Σ)∗, where Σ is Σ with its orientation reversed and the asterisk
denotes dualisation. The general philosophy of [2] (together with the existence
of the three-manifold invariant from [16]) completes the creation of a TQFT. It
extends V to become a covariant functor, from the category of oriented surfaces
and oriented three-dimensional cobordisms with a p1-structure, to the category of
finite dimensional complex vector spaces and linear maps. A cobordism C from
Σ1 to Σ2 is an oriented three-manifold with ∂C = Σ1 ∪ Σ2. If ∂M1 = Σ1 and
∂M2 = Σ2, evaluation of the SU(N) invariant [16] of the union, in M1∪C∪M2, of
a framed link in M1 and a framed link in M2 induces a map V (Σ1)⊗V (Σ2)∗ −→ C.
This corresponds in the natural way to a map V (Σ1) −→ V (Σ2). This, modulo a
factor from the p1-structure on C, is the linear map V (C) required in the functor’s
definition. The details of all this are fully explained in [2] and will not feature
here. Here, however, further exploration shows how the dimension of V (Σ) can
be determined from the structure constants of a skein algebra of the solid torus
S1 × D2. That is made possible by a new local duality lemma, a skein theory
result that, in a sense, allows the directions on any desired segments of a link to
be reversed. Next, a version of ‘fusion theory’ is developed that, in particular,
permits direct verification of the fact that the underlying three-manifold invariant
of S1 × Σ is equal to the dimension of V (Σ). Finally, an SU(N) skein theory
version of the Turaev-Viro invariants is established by means of an extension of
the ‘chain mail’ method of J.D.Roberts [13].

Originally the quantum three-manifold invariants were propounded by E.Witten,
[15]. Those corresponding to the Lie group SU(N) were substantiated in the work
of V.G.Turaev and H.Wenzl [14] using the details of representation theory. An
alternative proof of the existence of these invariants using skein theory was later
given by Yokota [16]. Many of the results of his work are quoted here. This skein
theory approach has advantages in that it stays close to the visualisable ideas of
elementary knot theory and is able to employ ‘obvious’ geometric manoeuvres.
It should be noted that the theory for N = 2 is very much easier than that for
general integer values of N . That can be attributed in part to the fact that the
representation theory of the Lie algebra sl2 is self dual or to the fact that the
Jones polynomial, [3] or [8], is (when viewed by means of the elegant ‘bracket’
of L.H.Kauffman [4]) really a theory for unoriented framed links. Representation
theory for slN is not self dual, and the HOMFLY polynomial insists that links be
oriented. The SU(2) theory was established in [12] using representation theory
and a simple skein theoretic method was given in [5] and [6] and was improved in
[7].

The author is grateful to Gregor Masbaum for a stimulating conversation over
lunch at the Mathematical Sciences Research Institute in Berkeley, California. He
is also grateful for the generous hospitality of the Mathematics Department at the
University of California at Santa Barbara.
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2. An outline of the SU(N) skein theory of Yokota

What follows in this section is a précis of Yokota’s paper [16]. Throughout, N will
be a fixed integer, N ≥ 2, and t ∈ C a primitive 2N(K+N) root of unity for some
integer ‘level’ K. Let M be an oriented three-manifold together with a finite set
of framed points in ∂M , each such point being oriented (that is, it has assigned
to it a direction ‘into’ or ‘out of’ the manifold).

Definition 1. The linear skein SN (M) is the C-vector space of formal linear sums
of framed oriented links in M , that consist of closed curves and arcs that meet ∂M
in precisely the given framed oriented points, quotiented by:

(1) isotopy of framed links keeping boundary points fixed;
(2) L ∪© = [N ]L, where [k] = (tkN − t−kN )/(tN − t−N) ;
(3) adding ±1 to the framing of any component of L changes L to t±(N2−1)L;
(4) the skein identity tL+ − t−1L− = (tN − t−N )L0 where L+, L− and L0 are

framed links related as in Figure 1.

Note that, when a diagram represents a framed link the framing vector is to be
considered as pointing out of the paper towards the reader. Elements of SN (M)
will sometimes be called ‘skeins in M ’. The familiar theory of the HOMFLY poly-
nomial (see [10] for example) asserts that the skein space of S3 is one-dimensional;
in what follows SN (S3) is identified with C by taking the empty link as base.

The skein space of the cube with l in-going points on its bottom face and l
out-going points on its top face will be SN (Bll). If ξ, η ∈ SN (Bll), placing ξ above
η gives a well defined product element ξη and so SN (Bll) becomes an (Hecke)
algebra. If ξ ∈ SN (Bkk ) and η ∈ SNBll then juxtaposing cubes side by side (with
the first one on the left) produces ξ ⊗ η ∈ SN (Bk+l

k+l). Similarly a tensor product
in SN (S1 ×D2) comes by embedding two solid tori in one in a standard way. If
ξ ∈ SN (Bll) then ξ̂ denotes the element of SN (S1 ×D2) obtained by placing the
cube containing ξ in the solid torus in a standard way and joining the l points at the
top of the cube to those at the bottom of the cube by l standard embedded arcs each
encircling the solid torus in a positive direction. The association ξ 7→ ξ̂ induces a
linear map SN (Bll) → SN (S1 ×D2). Another linear map χ : SN (S1 ×D2) → C
comes from taking an embedding, preserving orientation and framing, of S1 ×D2

onto a neighbourhood of a zero-framed unknot. Any embedding of one oriented
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three-manifold in another induces a linear map between their corresponding skein
spaces. Suppose the disjoint union of n solid tori is embedded in M with the
cores of the solid tori, with product framing, embedding on to a framed link L. If
α1, α2, . . . αn are elements of SN (S1 × D2), the image in SN (M) of this n-tuple
under the induced linear map will sometimes be referred to as ‘the framed link L
with its components decorated by the αi’.

Suppose that σi is the usual i-th generator of the l-string braid group which
provides diagrams for elements of SN (Bll). Regarding σi as an element of SN (Bll),
it is clear that {σ±1

i : 1 ≤ i ≤ l − 1} is a set of generators for SN (Bll) as an
algebra. Yokota [16] focusses attention on two special elements of SN (Bll). Both
are idempotents. The first f (l), the symmetriser, has the property that for each i,

σ±1
i f (l) = t±(N−1)f (l) = f (l)σ±1

i ,

and the anti-symmetriser g(l) is such that

σ±1
i g(l) = −t∓(N+1)g(l) = g(l)σ±1

i .

These are combined together to form further idempotents corresponding to Young
diagrams. A Young diagram λ is a way of partitioning a finite set of |λ| elements,
represented by little squares, in two related ways; the sets of the partitions are the
rows and columns of a diagram of little squares as on the right of Figure 2. The
Young diagram λ is specified by a sequence [lN−1, lN−2, . . . , l2, l1] of non-negative
integers where there are lN−1 + lN−2 + · · · + li squares in the ith row (the top
row being the first); there are N − 1 rows though the final rows may be empty.
The idempotent eλ ∈ SN (B|λ||λ|) is a scalar multiple of the element formed in the
following way. Take an anti-symmetriser of the size of each column of the diagram
and place them side by side to form

(g(N−1))⊗lN−1 ⊗ (g(N−2))⊗lN−2 ⊗ · · · ⊗ (g(1))⊗l1 ,

connect this to the element

f (lN−1) ⊗ f (lN−1+lN−2) ⊗ · · · ⊗ f (lN−1+lN−2+...l1)

formed by juxtaposing symmetrisers with sizes the rows of the diagram, and con-
nect that to a second tensor product of anti-symmetrisers, identical to the one
first mentioned, in the way shown in Figure 2 (where the g-idempotents are black
rectangles and the f -idempotents are white ones).

The complex number ∆λ is defined by

∆λ = χ(êλ).
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Figure 2.

In [16] it is shown that

∆λ =
N−1∏
n=1

n∏
i=1

[ln + ln−1 + · · ·+ li + n− i+ 1]/[n− i+ 1] .

Now, for K a fixed positive integer the set of Young diagrams ΓN,K is defined
by

ΓN,K = {λ :
N−1∑
i=1

li ≤ K}

and the element ΩK ∈ SN (S1 ×D2) is defined by

ΩK =
∑

λ∈ΓN,K

∆λêλ.

Recall that t is a primitive 2N(N + K) root of unity. The main technical result
of Yokota [16] is this: Suppose ΩK occurs as the decoration on any component
C of a framed link in S3, then, if that link is changed by pushing (according to
the fashion of a Kirby K2 move) any other component across C (retaining the ΩK
decoration on C), the evaluation of the decorated link in SN (S3) is not altered.
Then, in the usual way, an SUq(N) invariant for an oriented three-manifold M is
constructed as is stated in the next result (from [16]).

Theorem 2. Suppose the oriented three-manifold M is obtained by surgery on a
framed link L in S3. A well-defined invariant IN,K(M) is defined by

IN,K(M) = θ〈θΩK〉σU−〈θΩK , θΩK , . . . , θΩK〉L.

Here 〈 , , . . . , 〉L is the multilinear form on SN (S1 × D2) obtained by dec-
orating all the components of L with elements of SN (S1 × D2) and evaluating.
Also, U− is the unknot with framing −1, the signature of the linking matrix of L
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is σ and θ ∈ C is a normalising factor defined so that θ−2 = 〈ΩK〉U where U is
the zero-framed unknot. The main property of ΩK mentioned above implies that

〈ΩK〉U+ 〈ΩK〉U− = 〈ΩK〉U =
∑

λ∈ΓN,K

∆2
λ

and that is non-zero. Yokota observes that the orientation of a curve to be deco-
rated with ΩK is immaterial.

3. Recoupling and fusion

The idempotent g(N) does not feature in the construction of eλ for any λ ∈ ΓN,K
but it is, nevertheless of special interest. It is very weak! An easy calculation
shows that χ(ĝ(N)) = 1 and that χ( ̂g(N+1)) = 0. Suppose that M is a three-
manifold, with specified framed oriented points in ∂M , contained in S3 and let
M ′ = S3 − Int(M). In ∂M ′ the same framed oriented boundary points are to be
specified. Then the union of a framed link of arcs and simple closed curves in M
with another such link in M ′ gives a link of framed simple closed curves in S3.
This induces a bilinear map

SN (M)× SN (M ′) −→ SN (S3) = C.

Let S̃N (M) be the quotient of SN (M) by the kernel of the induced linear map from
SN (M) to the dual of SN (M ′). The actual chosen embedding ofM in S3 is not very
important but in what follows it may be assumed that standard emdeddings are
always available. It is this quotient space S̃N (M) that is of interest. The elements
of S̃N (M) are represented by skeins in M , but any such skein that contains a copy
of g(N+1) represents zero (for the result of evaluating, in SN (S3), the union of

such a skein of M with any element of SN (M ′) will contain χ( ̂g(N+1)) as a factor).
Similarly any element of S̃N (M) represented by a skein that contains a copy of

f (K+1) is zero, because the fact that t2N(N+K) = 1 implies that χ( ̂f (K+1)) = 0.
Formulae (20) and (21) of [16] imply that in S̃N (BN+1

N+1) and in S̃N (B2N
2N ) re-

spectively, there are identities as shown in Figure 3, where an integer n beside a
curve indicates that it represents n parallel strings.
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Thus these are inherent relations in any S̃N (M). From them it is easy to deduce
the relations of Figure 4.

These relations imply that a closed curve with any framing, decorated with ĝ(N)

may be inserted anywhere in M , to augment a skein in M , without changing the
element represented in S̃N (M). That operation, together with use of the second
identity of Figure 4, implies that any occurrence of g(N) in a skein of M may be
changed, by re-routing the N strings entering g(N) around any path in M , without
changing the element represented in S̃N (M). This can be likened to unplugging a
connector of many wires (at the back of one’s computer), re-routing the cable in
any way and re-joining the connector. Likewise, by the second identity of Figure
4, any collection of g(N)’s may be ‘unplugged re-routed and re-joined’ using any
permutation of the connectors, without changing the effect in S̃N (M).

An important fusion result in the SU(N) skein theory is the following result
(Proposition 2.11 of [16]).

Proposition 3. In SN (B|λ|+1
|λ|+1),

eλ ⊗ 1 =
∑
κ>λ

e[λ|κ|λ] .

Here eλ⊗1 is eλ with an additional ‘straight’ string to the right of it. The notation
κ > λ means that Young diagram κ can be obtained from Young diagram λ by
adding one extra small square to λ (it may be assumed that the length of the top
row of κ does not exceed K). There are then two possibilities. Either the height
of the first column of κ is still less than N or it is equal to N . In the first case
e[λ|κ|λ] is of the form

(scalar)(eλ ⊗ 1)σeκσ(eλ ⊗ 1)

and in the second e[λ|κ|λ] is of the form

(scalar)(eλ ⊗ 1)σ(g(N) ⊗ eκ−)σ(eλ ⊗ 1).

Here the scalars are known complex numbers, in each case σ and σ represent a
certain braid element and its inverse, and κ− is κ with the first column removed
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(see [16]). Iteration of this result, essentially to give a consideration of eλ ⊗ 1⊗r,
proves the following.

Corollary 4. SN (Bll) is spanned by the union of all subsets of the form

SN (Bll)
(
(g(N))⊗r ⊗ eκ

)
SN (Bll)

where rN + |κ| = l and r ≥ 0. In considering the quotient of this result in S̃N (Bll)
it may be assumed that κ ∈ ΓN,K.

Another result of [16] (Lemma 4.4) is that in S̃N (B|λ||λ|), the element represented

in SN (B|λ||λ|) by the skein eλ, with all its strings encircled by a zero-framed unknot
decorated with ΩK , is zero unless λ = ∅ (when it is, trivially, 〈ΩK〉U times the
element represented by the empty diagram in S̃N (B0

0)). Now, an extension of that
result was proved in [9], but only when K + N is prime and K > N . As stated
in [9], there is no real reason to suppose that that is a necessary restriction, but
for the time being it must remain. The extension, to be interpretted in S̃N (M),
is the result shown in Figure 5.

Theorem 5. Suppose an element of S̃N (M) is represented by a framed oriented
link that meets a two-sphere Σ, embedded in M , with zero algebraic intersection.
Then, if K+N is prime and K > N , that element may be represented by a linear
sum of links each of which is disjoint from Σ.

Proof. The strands of the framed oriented link may be isotopped so that they all
cross Σ transversally near some point P ∈ Σ. Then, by the above corollary used
twice, the link may be replaced by a linear sum of skeins each of which crosses Σ,
near to P , in a copy of (g(N))⊗r ⊗ eκ oriented in one direction and (g(N))⊗s ⊗ eτ
in the other, for some κ, τ ∈ ΓN,K . Technically that means that these elements
of the skein of a cube are introduced in cubes near P and relevant connections
are then made in the remainder of M − Σ to create the skeins to be considered.
Trivially, such an element is unchanged if a small 0-framed unknot decorated with
ΩK is introduced in a small ball, disjoint from any links of the skein, and the result
is multiplied by the scalar 〈ΩK〉−1

U . (Intuitively think of the unknot as being near
a point on Σ ‘antipodal’ to P .) That unknot may be isotopped (by stretching
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it over Σ) until it encircles the copies of (g(N))⊗r ⊗ eκ and (g(N))⊗s ⊗ eτ which
thread through it in opposite directions. The 0-framed unknot can, by the basic
properties of g(N) (depicted in Figure 3), be allowed to pass through the copies
of g(N) ⊗ · · · ⊗ g(N). Then, by the identity of Figure 5, the result represents zero
unless κ = τ . In that case the parts labelled with eκ can be re-connected as shown
in Figure 5. The result is a skein that only pierces Σ in (g(N))⊗r in one direction
and (g(N))⊗s in the other. However the hypothesis that the original link meets Σ
with zero algebraic intersection implies that r = s. Hence the copies of g(N) may
be disconnected and rejoined (see Figure 4) so that there is then no intersection
at all with Σ.

It is this theorem that is needed to prove, in the SU(N) skein-generated TQFT,
that V (Σ1 t Σ2) = V (Σ1) ⊗ V (Σ2). The technique is carefully explained in [2].
In outline, if M is an oriented connected compact three-manifold with boundary
then V (∂M) is taken to be S̃N (M). If ∂M = Σ1 t Σ2 then M can be changed to
M ′ by surgery so that in M ′ the copies of Σ1 and Σ2 in its boundary are separated
by a two-sphere Σ embedded in M ′. Using the theorem S̃N (M ′) is generated by
elements represented by skeins that do not meet Σ; these can thus be regarded
as the tensor product of a skein in a manifold bounded by Σ1 with a skein in a
manifold bounded by Σ2.

4. Local duality

Much of the remainder of this paper will use the following local duality theorem.
Recall that a Young diagram λ specified by integers [lN−1, lN−2, . . . , l2, l1] has a
dual Young diagram λ∗ specified by [l1, l2, . . . , lN−2, lN−1]. Note that |λ|+ |λ∗| =
N(l1 + l2 + · · · + lN−1) . It was shown in [9] (Proposition 5.2) that if a skein in
M contains an oriented simple closed curve decorated with êλ then the direction
of the curve may be reversed and the decoration changed to ê∗λ without changing
the element represented in S̃N (M). A local version is as follows.

Theorem 6. Suppose K + N is prime and K > N . In S̃N (B|λ||λ|), the element
represented by eλ can also be represented by an element in the span of the elements
of SN (B|λ||λ|) depicted in Figure 6, where the X represents the set

SN (B|λ|+|λ
∗|

|λ|+|λ∗|)(g
(N))⊗(|λ|+|λ∗|)/NSN (B|λ|+|λ

∗|
|λ|+|λ∗|).

Proof. The identities shown in Figure 7 follow from that of Figure 5 and from the
reversing result in [9] mentioned above.
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In the final diagram the 0-framed unknot decorated by ΩK is threaded by a
copy of eλ and a copy of e∗λ both oriented in the same direction. By Corollary 4
they may be expressed as a linear sum of elements from sets of the form

SN (B|λ|+|λ
∗|

|λ|+|λ∗|)
(

(g(N))⊗r ⊗ eκ
)
SN (B|λ|+|λ

∗|
|λ|+|λ∗|).

However, the curve decorated with ΩK can be taken to pass through the (g(N))⊗r

and, on encircling eκ it gives zero unless κ = ∅.

In what follows, when l < m, SN (Bll) is regarded as being contained in SN (Bmm)
by means of the natural identification with SN (Bll)⊗ 1⊗(m−l).

Proposition 7. Let λ1, λ2, . . . λr ∈ ΓN,K and let n =
∑r

1 |λi| . Then the image

in S̃N (Bnn) of the subspace
(
eλ1 ⊗ eλ2 ⊗ · · · ⊗ eλr

)
SN (Bnn)

(
eλ1 ⊗ eλ2 ⊗ · · · ⊗ eλr

)
of SN (Bnn) is spanned by images of the sets(

eλ1 ⊗ eλ2 ⊗ · · · ⊗ eλr
)
X
(
eλ1 ⊗ eλ2 ⊗ · · · ⊗ eλr

)
,

where X runs through all sets of the form∏r
i=2

(
SN (B|λ1|+···+|λi|

|λ1|+···+|λi|)(g
(N) ⊗ · · · ⊗ g(N) ⊗ eκi)

)
×
∏2
j=r

(
(g(N) ⊗ · · · ⊗ g(N) ⊗ eµj )SN (B|λ1|+···+|λi|

|λ1|+···+|λi|)
)

and where κi, µj ∈ ΓN,K and κr = µr.

Proof. Start with eλ1 ⊗ eλ2 . By Corollary 4 the image of this is in the image of
the span of the sets of the form

(eλ1 ⊗ eλ2)SN (B|λ1|+|λ2|
|λ1|+|λ2|)(g

(N) ⊗ · · · ⊗ g(N) ⊗ eκ)SN (B|λ1|+|λ2|
|λ1|+|λ2|)
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where κ ∈ ΓN,K . This can now be tensored with eλ3 and the process repeated. The
result of continuing such repetition is that the image in S̃N (Bnn) of the subspace(

eλ1 ⊗ eλ2 ⊗ · · · ⊗ eλr
)
SN (Bnn)

is spanned by images of the sets of the form

(
eλ1 ⊗ eλ2 ⊗ · · ·⊗ eλr

)( r∏
i=2

(
SN (B|λ1|+···+|λi|

|λ1|+···+|λi|)(g
(N)⊗ · · ·⊗ g(N)⊗ eκi)

))
SN (Bnn).

Similarly, the image of the subspace

SN (Bnn)
(
eλ1 ⊗ eλ2 ⊗ · · · ⊗ eλr

)
is spanned by images of the sets of the form

SN (Bnn)
( 2∏
j=r

(
(g(N)⊗· · ·⊗ g(N)⊗ eµj)SN (B|λ1|+···+|λj |

|λ1|+···+|λj |)
)(
eλ1 ⊗ eλ2 ⊗· · ·⊗ eλr

))
.

Composing these two formulations gives the required answer except for the term
in the middle, namely the space

(g(N) ⊗ · · · ⊗ g(N) ⊗ eκr)(SN (Bnn))(g(N) ⊗ · · · ⊗ g(N) ⊗ eµr ).

However, by [16] Lemma 2.1 and Proposition 2.9, this represents zero unless κr =
µr. Then the g(N) ⊗ · · · ⊗ g(N) can be recoupled so that this represents the same
space as (g(N)⊗· · ·⊗ g(N))⊗ (eκrSN (B|κr||κr|)eκr ) and, by [16] Proposition 2.9, that

is the space spanned by (g(N) ⊗ · · · ⊗ g(N))⊗ eκr .

This result should be thought of as saying that any element of(
eλ1 ⊗ eλ2 ⊗ · · · ⊗ eλr

)
SN (Bnn)

(
eλ1 ⊗ eλ2 ⊗ · · · ⊗ eλr

)
can, as far as its effect on the whole theory is concerned, be replaced by a sum
of elements of the form depicted (for r = 4) in Figure 8. Here the arrows at the
top and bottom of the big cube are labelled eλ1 , eλ2 , . . . , eλr and a label κi stands
for (g(N) ⊗ · · · ⊗ g(N))⊗ eκi , similarly for µi. The small shaded squares represent
elements of the various SN (Bll)).
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5. Skeins in handlebodies

Let Σ be a closed connected orientable surface of genus r. Regard this as the
boundary of a handlebody H, of genus r, which may be assumed to be embedded
in S3 in a standard way. It will be assumed that r ≥ 2, for the case of the solid
torus is relatively easy and has been described in [9]. The space S̃N (H) will now be
investigated. By definition, in the TQFT, S̃N (H) = V (Σ). Let D1, D2, . . . , D3r−3
be a maximum set of disjoint meridian discs in H no two of which are parallel.
Select a standard such set, for which cutting H along D1∪D2∪· · ·∪Dr gives a ball,
as shown in Figure 9. Note that the {∂Di} gives a ‘pair of pants decomposition’ for
Σ. Suppose that each Di has a standard transverse orientation, as shown. A skein
in H (an element of SN (H)) will be said to meet Di in x∪−y, for x ∈ SN (Bll) and
y ∈ SN (Bmm) for some l and m, if it is the result of placing x in a cube embedded as
a sub-cube of a neighbourhood Di×I of Di, with ‘up’ agreeing with the transverse
orientation of Di, placing y in another such cube for which ‘down’ agrees with the
transverse orientation, and completing to form a skein in H that otherwise does
not meet Di.

Proposition 8. Suppose K + N is prime and K > N . A spanning set for
S̃N (H) consists of elements represented by skeins that meet all D1, D2, . . . , Dr

in eλ1 , eλ2 . . . , eλr for some λi ∈ ΓN,K and meet the other Di in elements of the
form g(N) ⊗ · · · ⊗ g(N) ⊗ eκi for κi ∈ ΓN,K.
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Proof. The real significance of the proposition is that the skeins cited all meet
the Di in the positive direction. S̃N (H) is certainly spanned by the classes of
all skeins in H. The strands of such a skein can be grouped together so that,
using Corollary 4, it represents the same element as a linear sum of skeins each
meeting Di, for i = 1, 2, . . . , r, in elements of the form (g(N) ⊗ · · · ⊗ g(N) ⊗ eλ)
∪ −(g(N) ⊗ · · · ⊗ g(N) ⊗ eµ) . By using Theorem 6, that can be changed to
(g(N) ⊗ · · · ⊗ g(N) ⊗ eλ ⊗ eµ∗) ∪ −(g(N) ⊗ · · · ⊗ g(N)). Then the eλ can ‘be com-
bined with’ eµ∗ , using Corollary 4 again, to obtain a spanning set represented by
skeins that meet Di, for i = 1, 2, . . . , r, in (g(N)⊗· · ·⊗g(N)⊗eλi)∪−(g(N)⊗· · ·⊗
g(N)). Now, using the re-coupling properties of g(N), all the g(N) may be re-routed
by way of Dr+1 to leave skeins meeting the first r of the discs in eλi . Now, cutting
H along D1∪D2∪· · ·∪Dr gives a ball, and an application of Proposition 7 finishes
the proof.

Note that Proposition 8 clearly gives a finite spanning set for S̃N (H), for
there are only finitely many choices for the λi and, for each choice, the space
SN (B|λ1|+...|λr |

|λ1|+...|λr |), used in Proposition 7 has but finite dimension. Thus the TQFT
requisite, that V (Σ) have finite dimension, is established. However, to explore
what the dimension of this space might be, a little more insight is required. With
that in mind, consider spaces of the form(

(g(N))⊗r ⊗ eλ ⊗ eµ
)
SN (Bll)

(
(g(N))⊗s ⊗ eν

)
,

where rN + |λ| + |µ| = l = sN + |ν|. Note first that this is zero (and so can
be forgotten) if r > s by Lemma 2.1 of [16]. Further, if r ≤ s this space is, by
recoupling g(N)’s, equal to

(g(N))⊗r ⊗
(

(eλ ⊗ eµ)SN (B|λ|+|µ||λ|+|µ|)((g
(N))⊗(s−r) ⊗ eν)

)
.

Similarly (
(g(N))⊗s ⊗ eν

)
SN (Bll)

(
(g(N))⊗r ⊗ eλ ⊗ eµ

)
is equal to

(g(N))⊗r ⊗
(

((g(N))⊗(s−r) ⊗ eν)SN (B|λ|+|µ||λ|+|µ|)(eλ ⊗ eµ)
)
.

Now there is a natural pairing from

(eλ ⊗ eµ)SN (B|λ|+|µ||λ|+|µ|)(g
(N) ⊗ · · · ⊗ g(N) ⊗ eν)

× (g(N) ⊗ · · · ⊗ g(N) ⊗ eν)SN (B|λ|+|µ||λ|+|µ|)(eλ ⊗ eµ)

to the complex numbers defined by (x, y) 7→ χ(x̂y). Let T λ µν be the image of

(eλ ⊗ eµ)SN (B|λ|+|µ||λ|+|µ|)(g
(N) ⊗ · · · ⊗ g(N) ⊗ eν)



58 W. B. R. Lickorish CMH

in the quotient space S̃N (B|λ|+|µ||λ|+|µ|) and let T νλ µ be similarly defined. The form

φ : T λ µν × T νλ µ → C

induced by the above pairing is non-singular. Suppose
{(

λ µ
ν

)
i

}
and

{(
ν
λ µ

)
i

}
,

for i = 1, 2, . . . , N(λ,µ;ν), are bases for T λ µν and T νλ µ, respectively, so that

φ
((

λ µ
ν

)
i

,

(
ν
λ µ

)
j

)
= δij .

Note that multiplication in SN (B|λ|+|µ||λ|+|µ|) induces products

T λ µν × T νλ µ → S̃N (B|λ|+|µ||λ|+|µ|) and T νλ µ × T λ µν → S̃N (B|λ|+|µ||λ|+|µ|).

In what follows, if x ∈ SN (M) the notation [x] will be used to denote the
element it represents in the quotient S̃N (M). Recall that it was shown in [9], at
least when K + N is prime and K > N , that S̃N (S1 × D2) has a base {[êλ] :
λ ∈ ΓN,K}. As has already been mentioned S̃N (S1 × D2) has a tensor product
(induced by placing two copies of S1×D2 side by side in a third copy) that turns
it into an algebra.

Theorem 9. Suppose K +N is prime and K > N . The structure constants for
the algebra S̃N (S1×D2) with respect to the base {[êλ] : λ ∈ ΓN,K} are the integers
Nλ,µ;ν that are the dimensions of the spaces T λ µ

ν (and of the spaces T νλ µ).

Proof. By Proposition 7 the element [eλ ⊗ eµ] ∈ S̃N (B|λ|+|µ||λ|+|µ|) can be expressed as
some linear sum of the form

[eλ ⊗ eµ] =
∑
i,j,ν

ci,j,ν

(
λ µ
ν

)
i

(
ν
λ µ

)
j

for some ci,j,ν ∈ C, where ν ∈ ΓN,K . Now, by [16] Lemma 2.1 and Proposition

2.9,
(

ν
λ µ

)
j

(
λ µ
κ

)
k

= 0 unless ν = κ. Also, by [16] Proposition 2.9, and the

choice of the φ-orthonormal bases,(
ν
λ µ

)
j

(
λ µ
ν

)
k

= δjk(∆ν)−1[g(N) ⊗ · · · ⊗ g(N) ⊗ eν ].

Thus, multiplying the above expression for [eλ⊗eµ] on the right by
(
λ µ
κ

)
k

gives(
λ µ
κ

)
k

=
∑
i

ci,k,κ(∆κ)−1
(
λ µ
κ

)
i

.
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As all
(
λ µ
κ

)
i

form a base of T λ µκ , this implies that ci,k,κ = δik∆κ. This means

that

[eλ ⊗ eµ] =
∑
i,ν

∆ν

(
λ µ
ν

)
i

(
ν
λ µ

)
i

.

Taking the closure of this equality in the solid torus gives

[êλ ⊗ êµ] =
∑
i,ν

∆νdi,ν [êν ],

where di,ν are scalars (which exist by [16], Proposition 2.9) that satisfy(
ν
λ µ

)
i

(
λ µ
ν

)
i

= di,ν [eν ].

Taking the closure of this in S3 gives 1 = di,ν∆ν . Thus

[êλ]⊗ [êµ] =
∑
ν

N(λ,µ;ν)[êν ]

which is the required formula.

Theorem 10. Suppose K + N is prime and K > N . Let H be a handlebody
of genus r. Let D1, D2, . . . , D3r−3 be a maximum set of disjoint meridian discs
(transversely oriented as above) in H, no two of which are parallel. Let {Rj}
denote the balls that form the closure of the components of H − ∪Di. Then

dim S̃N (H) =
∑
f

∏
Rj

N(Rj ,f).

Here the summation is over all functions f : {D1, D2, . . . , D3r−3} → ΓN,K and
N(Rj ,f) = N(λ,µ;ν) where f maps the two equally oriented discs in the boundary of
Rj to λ and µ and maps the third disc to ν.

Proof. Proposition 8 gives a spanning set for S̃N (H). Each of the balls Rj has
three of the Di in its boundary, two oriented inwards and one outwards, or vice
versa. Such an Rj can be identified with the cube that defines a SN (Bll) with in-
going discs mapping into the bottom face and out-going discs to the top. Then, in
the notation used above, it may be arranged that the any of the generators given
in Proposition 8 is represented by a skein that meets each Rj in a representative

of [g(N) ⊗ · · · ⊗ g(N)] ⊗
(
λ µ
ν

)
i

or of [g(N) ⊗ · · · ⊗ g(N)] ⊗
(

ν
λ µ

)
i

. Let σα be

such a skein, where α is an index of all the choices for λ’s wherein the Di are
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crossed (in the given directions) and also for these base elements in the {Rj}.
Let Ĥ be a second copy of H with meridian discs D̂i, the same discs as before
but with all the transverse orientations reversed. They cut Ĥ into balls {R̂j} .
Let σ̂α ∈ S̃N (Ĥ) be constructed from the same data as was σα but, when Rj

contained [g(N) ⊗ · · · ⊗ g(N)]⊗
(
λ µ
ν

)
i

, use ρ
(
[g(N) ⊗ · · · ⊗ g(N)] ⊗

(
ν
λ µ

)
i

)
in

R̂j (the same number of g(N)’s) for σ̂α and vice versa. Here ρ denotes a rotation.
This rotation ρ, if considered as applied to a braid going upwards, is a π-rotation
about a horizontal line, which thus produces a braid going downwards. A bilinear
pairing ψ : S̃N (H)×S̃N (Ĥ)→ C can be defined as follows. Place Ĥ a little above
H in S3, take a skein in each handlebody, take zero framed unknotted curves
decorated with ΩK , one encirling each pair of discs Di ∪ D̂i, and evaluate the
resulting skein in SN (S3). Use the results depicted in Figure 3 and Figure 5, and

the φ-orthogonality of the
(
λ µ
ν

)
i

and
(

ν
λ µ

)
j

, (and the fact that χ(ĝ(N)) = 1).

It follows that ψ(σα, σ̂β) = δαβ(
∏
λ ∆−1

λ )〈ΩK〉3r−3
U where the product is over all

λ allocated by α to all the Di. Thus {σα} is an independent collection and so
represents a base of S̃N (H). The result now follows by simply counting this set.

Note that N(λ, µ; ν) is often zero. Certainly it has been taken to be zero unless
|λ| + |µ| − |ν| is divisible by N . However it is also zero unless, with a proper
interpretation of the role of the copies of g(N)⊗· · ·⊗ g(N), both ν ≥ λ and ν ≥ µ.

6. Concluding remarks

In [7] it was shown that a direct calculation for the SU(2) invariants of S1×Σ could
easily be made. That can now be repeated in the case of SU(N) in the following
theorem. Of course the actual result is well known to be a formal consequence
of the TQFT (see [1]), so that this brief proof is but a confirmation of the whole
story.

Theorem 11. Suppose K+N is prime and K > N . Let Σ be a closed orientable
surface of genus r and let H be a handlebody of genus r. Then the invariant
IN,K(S1×Σ) is equal to the dimension of V (Σ), namely the dimension of S̃N (H),
(which is evaluated in the previous theorem as

∑
f

∏
Rj
N(Rj ,f)).

Proof. The 3-manifold S1 × Σ can be obtained from S3 by surgery on a framed
link L, that consists of r copies of the Borromean rings all summed together along
one component, with each of its 2r+1 unknotted components being given the zero
framing. It is required to evaluate in SN (S3) the value of the skein obtained by
decorating each component of this link with ΩK (see Theorem 2). Exactly as in
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the analogous discussion in [7] this is equal to the evaluation of the Hopf link of
two components with one component decorated with ΩK and the other with

〈ΩK〉rU
∑

λi∈ΓN,K

(
(êλ1 ⊗ êλ∗1)⊗ · · · ⊗ (êλr ⊗ êλ∗r )

)
.

This last skein should be thought of as êλ1 ⊗ · · · ⊗ êλr , encirling the solid torus
in one direction, placed beside another copy of êλ1 ⊗ · · · ⊗ êλr in the other direc-
tion. Then both copies of êλ1 ⊗ êλ2 can, by Theorem 9, be expressed in the form∑
ν N(λ1,λ2;ν)êν . That can be thought of as correlating the present calculation

with that given in the previous theorem for S̃N (H), when that calculation con-
siders the two balls Rj that contain D1 ∪D2. Repetition of this argument (using
Figure 5 at the final step) gives that the evaluation of the decorated link is equal to
〈ΩK〉r+1

U dim S̃N (H). However, to obtain IN,K(S1 × Σ), this must (see Theorem
2) be multiplied by θ2r+2, where θ2 = 〈ΩK〉−1

U , so that the result follows at once.

Suppose that an oriented three-manifold M has a triangulation T with di sim-
plexes of dimension i. It was shown in [13] that an invariant of the form of IN,K(M)
has the property that

|IN,K(M)|2 = θ2d0+2d2〈ΩK ,ΩK , . . . ,ΩK〉C
where C is a framed link constructed as follows. First create a link C′ in M
by taking a component very close to the boundary of each two-simplex and con-
tained in that two simplex (together with its framing) and taking a component
corresponding to each one-simplex that simply encircles the one-simplex linking
the components in the abutting two-simplexes (give it the zero framing). This
link can be considered as being contained in a regular neighbourhood of the dual
one-skeleton. Embed this neighbourhood in any manner in S3 and let C be the
image of C′.

As already mentioned, curves decorated with ΩK can be oriented in either
direction without changing a skein evaluation. So, orient the components of C′

that encircle the one-simplexes so that any two-simplex is pierced by two of these
curves in one direction and one in the other. That can be achieved by ordering
the vertices of the triangulation, giving the one-simplexes an orientation induced
by that ordering and then orienting a curve encircling an oriented one-simplex in
a positive manner with respect to the orientation on M . Now expand each ΩK
on a component encirling a one-simplex as

∑
λ∈ΓN,K ∆λêλ. Take one term from

each summation (and sum them later). Suppose that a curve decorated with ΩK ,
around the edge of a two-simplex in the boundary of a three-simplex σ, is, by this
process, pierced by curves labelled eλ and eµ pointing into σ and by one labelled
eν pointing out of σ. In the proof of Theorem 9 it was shown that

[eλ ⊗ eµ] =
∑
i,κ

∆κ

(
λ µ
κ

)
i

(
κ
λ µ

)
i

.
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i

Figure 10.

Thus, using the property of Figure 5 to fuse this with the given eν , the situation
of Figure 10 arises.

In Figure 10 the boxes labelled ‘i’ symbolise skeins representing
(
λ µ
ν

)
i

or(
ν
λ µ

)
i

and the sum is over i = 1, 2, . . .N(λ,µ;ν) .

Using this as in [13], |IN,K(M)|2 becomes a Turaev-Viro state-sum type of in-
variant as in the next theorem. For the above oriented triangulation T , a state s is a
pair of functions s : {one-simplexes of T} → ΓN,K and s : {two-simplexes of T} →
N so that, for any two-simplex τ , s(τ) ∈ {1, 2, . . .Ns(∂τ)}. Here s(∂τ) = (λ, µ; ν)
where the three edges of τ are mapped by s to λ, µ and ν, with the two edges
oriented in the same direction around τ mapping to λ and µ. Let σ′ be a three-
simplex ‘dual’ to σ, having its vertices at the barycentres of the two-dimensional
faces of σ. The edges of σ′ inherit orientations from those of σ (essentially the
directions of the components of C that encircle the edges of σ), with two edges
oriented into each vertex of σ′ and one oriented away from it or vice versa. Given
a state s, the result of Figure 10 applied to each face of σ produces a labelling of
the edges of σ′ with eλi ’s, and a labelling of its vertices with various compatible

(representatives of) the
(
λ µ
ν

)
i

or
(

ν
λ µ

)
i

. Any g(N) ⊗ · · · ⊗ g(N) that occur

from the process of Figure 10 can be decoupled and rejoined (the number of strings
of any skein that cross ∂σ must be algebraically zero). This produces a skein of

the general form shown in Figure 11 (where the ij are the
(
λ µ
ν

)
i

or
(

ν
λ µ

)
i

and the g(N)’s that feature in the ij ’s are connected together in any way). Let the
evaluation of this in C be E(s σ); it might be called a ‘6j-symbol’.

Putting this together as in [13] gives the following.

Theorem 12. Suppose K+N is prime and K > N . Let M be a closed orientable
three-manifold with a triangulation having d0 vertices (and with edges oriented by
a vertex ordering). Then
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1

eλ6
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eλ
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3

5

Figure 11.

|IN,K(M)|2 = θ2d0
∑
s

(∏
ε

∆sε

∏
σ

E(s σ)
)
.

The summation is over all states s, and ε and σ are the edges and three-simplexes
of the triangulation.

The version of the 6j-symbols given here is as evaluations of decorated tetrahe-
dral graphs as described above (and depicted in Figure 11). As in the case when
N = 2 [7], these symbols can easily be interpretted as the elements of a matrix
representing a change of base in (the relevant quotient of) the skein space of a ball
with inputs and outputs labelled eλ1 , eλ2 , eλ3 , eλ4 , and g(N) ⊗ · · · ⊗ g(N).

The results of this paper are of a somewhat qualitative nature. To make specific
calculations it would be necessary to find specific φ-othonornal bases for T λ µν and
T νλ µ and thus calculate the integers N(λ,µ;ν). Certainly some of those integers are
non-zero, by [16] Proposition 2.11. For a complete numerical understanding of
the theory it would be necessary to find values for the ‘6j-symbols’. For SU(2)
they are explained in [7] and in [11]. The formula given in [11] for the SU(2)
case is daunting enough! Perhaps, in conclusion, it should be emphasised that
this theory of SU(N) invariants (which certainly appears to be complicated) is at
least known not to be vacuous. Many non-trivial calculations have been made for
SU(2). In [9] it is shown that the SU(N) invariants do distinguish apart a certain
pair of manifolds (a twisted torus bundle over S1 and the three-torus) that are
not distinguished by the SU(2) theory.
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