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c© 2000 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

A geometric characteristic splitting in all dimensions

Bernhard Leeb∗ and Peter Scott†
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0. Introduction

In the 1970’s, Jaco and Shalen [JS] and Johannson [J] showed that a closed ori-
entable Haken 3-manifold M has a canonical family of disjoint embedded incom-
pressible tori, no two of which are parallel, such that the complementary pieces of
M are either Seifert fibre spaces or are atoroidal. They defined the characteristic
submanifold V (M) of M to be essentially the union of the Seifert manifold pieces
of M . Further, they showed that any essential map of the torus into M is homo-
topic into V (M). Johannson called this last property the Enclosing Property. For
brevity, we will refer to these results as the JSJ results.

In this paper, we show that if M is a closed manifold of dimension three or
more, and if M has a Riemannian metric of non-positive curvature, then either
the metric on M is flat or there is a precisely analogous decomposition of M along
codimension one submanifolds. Further these submanifolds are totally geodesic in
M and are flat in the metric induced from M . Note that in dimension three, a flat
manifold must be a Seifert fibre space, so that, in particular, our arguments give
a new proof of the JSJ results for the special case when M is assumed to have a
metric of non-positive curvature. In dimension four or more, a flat manifold need
not be a Seifert manifold, see the example near the end of section 1, so this case
really is different in higher dimensions. We also prove that essentially the same
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results hold if M is non-orientable and if the boundary of M is non-empty, on the
assumption that the boundary is convex.

At the time when Jaco and Shalen and Johannson proved their results, the
methods seemed very special to dimension three and no one even asked whether
this result had any generalization to higher dimensions. Several years later in
1990, Kropholler [Kr] published an algebraic analogue of their results. He consid-
ered Poincaré duality groups of dimension three (PD3-groups). The fundamental
group of any closed aspherical 3-manifold is automatically a PD3-group, but it
is not known whether the converse holds. Note, however, that PD2-groups are
known to be fundamental groups of closed surfaces, so it is not unreasonable
to hope that every PD3-group is the fundamental group of an aspherical closed
3-manifold. There is a natural analogue, in the context of PD3-groups, of an em-
bedded incompressible surface. One considers a PD3-group G and a subgroup H
such that H is a PD2-group and G splits over H, i.e. G can be expressed as A∗H ,
or as A∗HB with A 6= H 6= B. Kropholler showed that the natural analogue of the
JSJ splitting result holds for PD3-groups. Surprisingly, he also showed that his
algebraic result had a generalization to PDn-groups in all dimensions greater than
three. This raised the question of whether the topological results of Jaco, Shalen
and Johannson also generalized to higher dimensions. As Haken manifolds are as-
pherical and Kropholler’s results correspond to results about aspherical manifolds,
it seems possible that the JSJ results might generalise to aspherical manifolds but
not to all manifolds. Note that a Riemannian manifold of non-positive curva-
ture with convex boundary is aspherical, so our results show that the JSJ results
generalize to aspherical manifolds in the special case of non-positive curvature.

Jaco and Shalen [JS] and Johannson [J] also considered non-closed manifolds
and defined a characteristic submanifold V (M) for any orientable Haken 3-manifold
M with incompressible boundary. They showed that such a manifold M has a
canonical family of disjoint properly embedded incompressible tori and annuli, no
two of which are parallel. They defined the characteristic submanifold V (M) of
M to be essentially the union of the Seifert manifold pieces of M together with
some pieces which are homeomorphic to I-bundles. Further, they showed that any
essential map of the torus or annulus into M is homotopic into V (M). In this
paper, we give analogous results for compact manifolds with non-empty boundary
in any dimension greater than or equal to three, but we assume that M has a
metric of non-positive curvature and that the boundary of M is totally geodesic.

The results in this paper were proved by the authors independently in 1992. At
about the same time, Sela [S] announced some algebraic results which are closely
related to all the preceding discussion. Sela’s results were for negatively curved
groups and were the precise analogue of the JSJ results for the case of 3-manifolds
with no incompressible tori. This is because a negatively curved group cannot
have a subgroup isomorphic to Z× Z. The topological picture is of a 3-manifold
with a canonical family of disjoint embedded annuli, and Sela’s picture is of a
group which splits over several different infinite cyclic subgroups. Sela’s Enclosing
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Property is the analogue of the JSJ Enclosing Property for embedded annuli only.
More recently, Rips and Sela [RS] have announced a generalization of Sela’s results
to cover all finitely presented groups. Thus again we are left with the question of
whether the results in this paper can be generalised to manifolds which need not
have non-positive curvature.

As we pointed out earlier, a Riemannian manifold M of non-positive sectional
curvature with convex boundary is aspherical and so its homotopy type is deter-
mined by its fundamental group. It is well-known that various algebraic properties
of π1(M) have strong implications for the geometry of M . The most basic exam-
ple, due to Gromoll-Wolf [GW] and Lawson-Yau [LY], is that an abelian subgroup
of π1(M) is carried by a totally-geodesically immersed flat torus. In this paper, we
obtain information about the geometric structure of non-positively curved mani-
folds from the intersection pattern of the closed flat totally-geodesic hypersurfaces.
Our main results are geometric versions of the topological decomposition theorem
in dimension three due to Jaco, Shalen [JS] and Johannson [J].

Geometric Decomposition Theorem in Dimension Three. Let M be a
compact connected non-positively curved 3-manifold which has convex boundary.
Then either M is closed and has a flat metric, or M can be canonically decomposed
along finitely many totally-geodesically embedded flat 2-tori and Klein bottles. The
resulting pieces are Seifert or atoroidal. Further any π1-injective map of the torus
or Klein bottle into M can be homotoped to a totally geodesic flat immersion, and
any such immersion must lie in one of the Seifert pieces or be homotopic to a
cover of one of the decomposing surfaces.

Note that some of the decomposing surfaces may be one-sided. In particular,
no piece in the decomposition of M will be an interval bundle over a flat surface
unless M itself is an interval bundle over a flat surface. If M is a twisted interval
bundle over a flat surface F then our construction splits M along the one-sided
surface F .

The Seifert pieces of M admit a Seifert fibration by closed geodesics and they
are rigid in the sense that they split locally as a Riemannian product, the fiber
being the one-dimensional factor. Note that if M is flat, it is also Seifert fibered
in the three dimensional case. The proof of our theorem readily applies to all
dimensions. See the end of section 1 for the definitions.

Geometric Decomposition Theorem. Let M be a compact connected non-
positively curved manifold of dimension n ≥ 3, which has convex boundary. Then
either M is closed and has a flat metric, or M can be canonically decomposed along
finitely many totally-geodesically embedded flat closed submanifolds of codimension
one. The resulting pieces are Seifert fibered or codimension-one atoroidal. Further
any essential map of a closed flat (n − 1)-manifold into M can be homotoped to
a totally geodesic flat immersion, and any such immersion must lie in one of the
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Seifert pieces or be homotopic to a cover of one of the decomposing hypersurfaces.

As in the three-dimensional case, some of the decomposing hypersurfaces may
be one-sided. There is also a more general version of this result which corresponds
to the full JSJ splitting of an orientable compact 3-manifold along annuli as well
as tori. We leave the statement to section 4.

This paper is organized as follows: In section 2 we prove that there is an up-
per bound for the number of mutually non-parallel, disjoint, totally-geodesically
embedded, closed hypersurfaces in a compact non-positively curved manifold M
with convex boundary. In section 3, we study the pattern S of totally-geodesically
immersed, flat, closed hypersurfaces in M . We show that intersecting hypersur-
faces span a geometric Seifert submanifold. The desired decomposition of M is
obtained by cutting along hypersurfaces in S which are isolated in the sense that
they do not intersect any other surface in S. In section 4, we discuss how to prove
the most general version of our results.

1. Preliminaries

Non-positive curvature. We start by recalling a few well-known facts from
the geometry of nonpositively curved manifolds, for more details the reader may
consult e.g. [ChE]. In this paper, we consider smooth Riemannian manifolds of
non-positive sectional curvature. We will always assume that they are complete
as metric spaces and that their boundaries are convex, i.e. each geodesic touching
the boundary must already be contained in the boundary. A simply-connected
manifold X of this kind has the fundamental property that its distance function
d : X × X → R is convex, that is, for any two geodesics c1, c2 : [a, b] → X the
function t → d(c1(t), c2(t)) is convex. In particular, the distance d(·, C) from a
convex subset C ⊂ X is a convex function. The convexity of d implies that any two
points in X can be connected by a unique geodesic. This has strong topological
implications: X is contractible so that any manifoldM covered by X is aspherical,
i.e. M is a K(π, 1)-space.

A smooth submanifold Y ⊆ X , possibly with boundary, is called totally-
geodesic if each geodesic in X tangent to an interior point of Y belongs locally
to Y . We call Y (geodesically) complete if each geodesic in Y is extendable ad
infinitum. If Y1 and Y2 are complete totally-geodesic submanifolds of X which
have bounded distance from each other, then the distance functions d(·, Yi) |Yj are
constant by convexity and completeness. This implies that the submanifolds Yi
are parallel, i.e. there is a totally-geodesic submanifold in X which splits metrically
as Y × [a1, a2] so that Yi = Y × {ai}.

For an isometry φ of X , denote by MIN(φ) the set where the displacement
function dφ : x → d(x, φx) assumes its infimum. Since d is convex, MIN(φ) is a
closed convex subset of X . An isometry φ is called non-parabolic or semisimple
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if MIN(φ) is non-empty. In this case, φ is elliptic if the minimum of dφ equals
zero and loxodromic if it is strictly positive. The set of minimal displacement for
a loxodromic isometry splits metrically as

MIN(φ) ∼= R× Y (1)

where the lines R × {y} are the φ-axes, i.e. geodesics preserved by φ, and Y is a
simply-connected manifold of nonpositive curvature with convex boundary. Isome-
tries of X commuting with φ preserve the splitting (1). It follows by induction
that any abelian subgroup A of the isometry group of X preserves a flat in X
where a flat is defined to be a convex subset isometric to a Euclidean space. More
precisely, the intersection of minimal sets

⋂
γ∈A MIN(γ) =: MIN(A) is non-empty

and splits metrically as
MIN(A) ∼= E × Y (2)

where E is a Euclidean space (possibly of dimension zero) and Y is a simply-
connected manifold of nonpositive curvature with convex boundary. The layers
E × {y} are the minimal A-invariant flats and the induced action of A on E is
cocompact.

Suppose that Γ is a group which acts properly-discontinuously and cocompactly
by isometries on X , such as the group of deck-transformations corresponding to a
compact Riemannian manifold covered by X . Let A ⊂ Γ be an abelian subgroup
(which is necessarily finitely generated as X is non-positively curved) and denote
by C(A) its centraliser and by N(A) its normaliser. The action of N(A) on X
preserves MIN(A) and the splitting (2).

Lemma 1.1. The action of C(A) on MIN(A) is cocompact.

Proof. Let (pn) be a sequence of points in MIN(A). Since Γ acts cocompactly
on X , there exist isometries γn ∈ Γ so that the sequence (γnpn) is bounded. Let
a1, . . . , ar denote a basis of A. For each value of the index i, the points

γnaiγ
−1
n · γnpn = γn · aipn,

form a bounded sequence too, because d(aipn, pn) equals the minimal displacement
of the isometry ai. Since the action of Γ is properly discontinuous, the elements
γnaiγ

−1
n are contained in a finite subset of Γ. By passing to a subsequence r times,

we can assume that, for each i, γnaiγ−1
n is a fixed element of Γ for all values of

n. Let γ
′
n denote γ−1

1 γn which must lie in C(A). Then the sequence (γ′npn) is
bounded, as it is obtained from the bounded sequence (γnpn) by applying γ−1

1 .
Since (pn) ⊂MIN(A) was chosen arbitrarily, we conclude that there is a bounded
fundamental domain for the action of C(A) on MIN(A). �

The following auxiliary result will be needed later:
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Lemma 1.2. Let X1 and X2 be simply-connected Riemannian manifolds of non-
positive curvature (metrically complete and with convex boundary). If F ⊂ X1×X2
is a totally-geodesically embedded flat submanifold, then the images of F under the
projections pi : X1 ×X2 → Xi on the factors are also flat.

Proof. Let c and c′ be geodesic segments in F so that their distance function
d(t) := d(c(t), c′(t)) is constant. Denote by di the distance function of the projected
segments pi ◦ c and pi ◦ c′. Then d2 = d2

1 +d2
2. Since the di are convex, d2 can only

be constant if the di are constant. Hence pi maps parallel segments to parallel
segments and the claim follows. �

Topology. We explain the notions necessary to state the topological decomposi-
tion theorem due to Jaco, Shalen and Johannson. We work in the smooth category.
Let M be a compact orientable 3-manifold, possibly with boundary, which is irre-
ducible, i.e. every embedded 2-sphere bounds an embedded 3-ball, and has infinite
fundamental group. We consider connected, two-sided, embedded surfaces Σ in
M which are not homeomorphic to the 2-sphere. We will also require that Σ be
properly embedded in M or be embedded in the boundary of M . Such a sur-
face Σ is called incompressible if there is no disc D embedded in M such that
D ∩ Σ = ∂D and ∂D is a non-contractible curve in Σ. If M contains a properly
embedded incompressible surface, then M is a Haken manifold. The following
decomposition theorem has been proven for Haken manifolds by Jaco, Shalen [JS]
and Johannson [J]. The non-Haken case follows from the fact that if a compact
orientable irreducible 3-manifold admits a π1-injective map of the torus but does
not admit such an embedding, then it must be a Seifert fibre space. This result
requires the work of several authors and the proof was completed independently
by Casson and Jungreis [CJ] and Gabai [Ga].

Topological Decomposition Theorem. A compact orientable irreducible 3-
manifold with infinite fundamental group and incompressible boundary can be cut
along finitely many disjoint incompressible 2-tori into atoroidal and Seifert pieces,
and any π1-injective map of the 2-torus into the manifold is homotopic into one
of the Seifert pieces or to a covering of one of the decomposing tori. Moreover, a
minimal such decomposition is unique up to isotopy.

It remains to explain the types of pieces which occur: These are compact
3-manifolds N with boundary. A 3-manifold N is atoroidal if any π1-injective
map of the torus into N is homotopic into the boundary of N. It is a Seifert
manifold if it admits a Seifert fibration, i.e. if it can be expressed as a disjoint
union of embedded circles, the fibres, so that the following is true: Every fibre
has a neighborhood which is isomorphic, as a fibred space, to a fibred solid torus
or Klein bottle. A fibred solid torus is a quotient of the trivially fibred product
D2 × R by a diffeomorphism (φ, τ) where φ is an isometry of finite order of the
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unit disc D2 and τ is a translation on the real line.
We also need to define what is meant by the terms Seifert manifold and

atoroidal in higher dimensions. In dimension three, a Seifert manifold is a Seifert
bundle over a 2-dimensional orbifold with fiber the circle. In the context of this
paper, we define a Seifert manifold N of dimension n to be a Seifert bundle over
a 2-dimensional orbifold with fiber a flat (n− 2)-manifold. This means that N is
foliated by (n−2)-dimensional closed flat manifolds so that each leaf has a foliated
neighborhood which has a finite cover whose induced foliation is a product F×D2.
A manifold M of dimension n is codimension-one atoroidal if any π1-injective map
of a flat (n− 1)-torus into M is homotopic into the boundary of M .

2. Immersed totally-geodesic submanifolds

From now on, M will denote a compact connected Riemannian manifold M of non-
positive curvature with convex boundary. We denote by π : M̃ →M the universal
covering map and think of π1(M) =: Γ as the group of deck transformations acting
on M̃ .

Let φ : Σ → M be a totally-geodesic Riemannian immersion of a closed con-
nected non-positively curved manifold Σ into M . Every lifting to a map of uni-
versal covers is a totally-geodesic embedding φ̃ : Σ̃ ↪→ M̃ and induces an injective
homomorphism π1(Σ) ↪→ Γ = π1(M) of fundamental groups. Different lifts yield
conjugate subgroups of Γ. Note that Σ̃ is geodesically complete.

2.1. Intersections

Lemma 2.1. Let C1, C2 ⊂ M̃ be closed subsets so that the stabiliser Γi :=
StabΓ(Ci) acts cocompactly on Ci. Then Γ1 ∩ Γ2 acts cocompactly on C1 ∩ C2.

Proof. The natural map (Γ1∩Γ2)\Γ2 → Γ1\Γ is injective and the corresponding
immersion (Γ1 ∩ Γ2)\C2 → Γ1\M̃ is therefore proper. Hence the inverse image
under this immersion of the compact subset Γ1\C1 is compact. As this inverse
image equals (Γ1 ∩ Γ2)\(C1 ∩ C2), the lemma follows. �

Note that the lemma holds more generally for properly discontinuous group
actions on locally-compact topological spaces.

Corollary 2.2. Let Σ1 and Σ2 be closed non-positively curved Riemannian ma-
nifolds and suppose that φ1 : Σ1 →M and φ2 : Σ2 →M are totally-geodesic Rie-
mannian immersions. Then φ1(Σ1)∩φ2(Σ2) is a finite union of totally-geodesically
immersed closed non-positively curved Riemannian manifolds.

Proof. The immersion φi lifts to an embedding of universal covers with image
a closed convex subset Yi ⊂ M̃ . By the previous lemma, the totally-geodesic
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submanifolds γ1 · Y1 ∩ γ2 · Y2, γ1, γ2 ∈ Γ, have cocompact stabilisers in Γ. The
corollary follows because, by compactness, φ1(Σ1) ∩ φ2(Σ2) is the projection of
finitely many submanifolds γ1 · Y1 ∩ γ2 · Y2. �

2.2. Finiteness for disjoint non-parallel totally-geodesic hypersurfaces

Definition 2.3. We call two totally-geodesic Riemannian immersions φ1 : Σ1 →
M and φ2 : Σ2 → M of closed non-positively curved manifolds into M parallel
if there are a totally-geodesic embedding Φ : Σ̃1 × [a1, a2] ↪→ M̃ and Riemannian
covering maps pi : Σ̃1 × {ai} → Σi such that φi ◦ pi = π ◦ Φ |Σ̃1×{ai}

.

If we have two totally-geodesic Riemannian immersions of Σ into M which
are homotopic, then there will be totally-geodesic submanifolds Y and Y ′ in M̃
covering these immersions and lying a bounded distance apart. Thus Y and Y ′

are parallel, and hence so are the two immersions of Σ into M .
Our aim is to prove the following result.

Proposition 2.4. Let M be a compact non-positively curved Riemannian mani-
fold with convex boundary. Then there is an upper bound to the number of disjoint,
closed, totally-geodesically embedded hypersurfaces in M so that no two of them
are parallel.

As discussed above, any such hypersurface is π1-injective and if two such hy-
persurfaces are homotopic, they must be parallel. Now in the topological setting
in dimension three, it is a standard result [H] that, in any compact 3-manifold
M , there is an upper bound to the number of disjoint, embedded, π1-injective
closed surfaces in M which are pairwise non-parallel, where two surfaces S and S′

are parallel if they together bound a submanifold homeomorphic to S × I. This
upper bound is called the Haken number of M . In higher dimensions, there is no
such result in the general topological setting, but there is an algebraic analogue
due to Dunwoody [D], which discusses splittings of PDn-groups over PD(n− 1)-
subgroups. This implies that if one considers a closed aspherical manifoldM , there
is an upper bound to the number of disjoint closed aspherical π1-injective embed-
ded codimension-one submanifolds in M such that no two are homotopic. Clearly
this result will also apply to any aspherical compact manifold with boundary so
long as the boundary is also π1-injective and aspherical. Now the hypotheses of the
above proposition imply that M is aspherical and that its boundary is π1-injective
and aspherical. Thus one can prove this proposition in dimension three by using
the Haken number, and can prove it in any dimension by using Dunwoody’s result.
However, we will give a direct geometric proof.

Proof of Proposition 2.4. Let Σ1, . . . ,Σn be such a family of hypersurfaces. It
is possible that some of these hypersurfaces are components of ∂M . Consider a
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component N of M \∪ni=1Σi. Identify the universal cover Ñ with a component of

π−1(N) ⊂ M̃ . We will use ∂Ñ to denote the boundary of Ñ as a manifold. Then
∂Ñ consists of a union of components of ∂M̃ and of totally geodesic hypersurfaces
in M̃ each of which covers one of the surfaces Σi. Also ∂Ñ consists of at least
two components. For otherwise, N would have infinite diameter contradicting the
compactness of M .

Consider the case that ∂Ñ has exactly two components Y1 and Y2. At least one
of them, say Y1, covers a hypersurface which we denote Σ1. The distance function
d(·, Y1) is bounded on Y2, and vice versa, because the subgroup of Γ preserving Ñ
and Y1 also preserves Y2 and acts cocompactly on Ñ . Thus Y1 and Y2 are parallel
and Ñ is isometric to a product Y1 × [−a, a]. If also Y2 covers a hypersurface Σi,
then Σi is parallel to Σ1 and hence Σi = Σ1 by our assumption. If Ñ projects
onto M , then n = 1. Otherwise the image of Ñ is a twisted interval bundle over
the hypersurface Σ′1 covered by Y1 × {0}. In this case, we replace Σ1 by Σ′1. If
Y2 covers no hypersurface Σi and hence Y2 ⊂ ∂M̃ , then we remove N from M .
In both cases, this reduces by one the number of components of M \ ∪ni=1Σi and
does not alter the number of hypersurfaces Σi. By repeating these steps, we may
assume that for all pieces N , the universal cover Ñ has at least three boundary
components. The pieces then have a certain minimal size:

Lemma 2.5. Each component N of M \∪ni=1Σi contains a point p at distance at
least ρ0 from the boundary ∂N , where ρ0 is a positive constant only depending on
the lower sectional curvature bound of M .

Proof. We re-scale so that the sectional curvature of M is bounded by −1 ≤ KM ≤
0. Let p̃ ∈ Ñ be a point at maximal distance ρ from ∂Ñ . The ball B of radius
ρ centered at p̃ touches three components Y1, Y2, Y3 of ∂Ñ in respective points
p̃1, p̃2, p̃3. Let vi be the unit vector in p̃ pointing in the direction of p̃i. Among
the vectors v1, v2, v3 at least two, say v1 and v2, enclose an angle ∠(v1, v2) ≤ 2

3π.
Consider the arc in the unit sphere in Tp̃M̃ joining v1 and v2. It contains a
vector v such that the geodesic ray r : [0,∞) → M̃ emanating from p̃ in the
direction of v intersects neither Y1 nor Y2. We assume without loss of generality
that ∠(v, v1) ≤ 1

3π. The angles of the triangles p̃p̃1r(t) satisfy for all t > 0:

∠p̃(p̃1, r(t)) ≤
1
3
π, ∠p̃1(p̃, r(t)) ≤ 1

2
π

Consider comparison triangles with the same side lengths in the hyperbolic plane
H2. By Toponogov’s triangle comparison theorem [K], the angles in the comparison
triangles are not greater than the corresponding angles in the triangles p̃p̃1r(t).
So they satisfy analogous inequalities. Since t may be arbitrarily large, we can
bound ρ from below by a positive constant ρ0, namely by the finite sidelength of
the triangle in H2 with angles 0, 1

3π,
1
2π and one ideal vertex. �
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Denote by c(n) the number of components of M \ ∪ni=1Σi. According to Lem-
ma 2.5, there is a 2ρ0-net in M with one point in each component of M \ ∪ni=1Σi.
By compactness of M , c(n) stabilizes as n tends to infinity. More precisely, it can
be bounded above in terms of the lower curvature bound and the volume of M .
If c(n1) = c(n2) for n1 < n2, then we can choose for each n with n1 < n ≤ n2
a closed smooth path αn which does not intersect Σ1, . . . ,Σn−1 but intersects Σn
once transversally. Looking at the intersection numbers modulo 2 of the paths αn
with the surfaces Σn, we see that the αn represent linearly independent homology
classes in H1(M,Z/2Z). Since M is compact, we conclude that n2−n1 is bounded
in terms of the topology of M . This completes the proof of Proposition 2.4. �

3. Geometric decomposition along closed submanifolds

In this section, M will always denote a compact, connected, non-positively curved
Riemannian manifold of dimension at least 3 which has convex boundary. We
investigate how the pattern of closed totally-geodesic flat hypersurfaces in M is
organized to yield a canonical geometric decomposition. In dimension three this
is a geometric realization of the canonical topological decomposition due to Jaco,
Shalen and Johannson. The decomposition of M will be obtained by cutting along
hypersurfaces of the following kind (see section 3.2):

Definition 3.1. A totally-geodesically immersed, closed, flat hypersurface in M
is called isolated if it does not intersect any such hypersurface transversally.

Note that the definition also excludes self-intersections. It is immediate that
isolated closed flat hypersurfaces cover embedded hypersurfaces and the images of
two of them must coincide or be disjoint.

Denote by Γ the fundamental group of M thought of as a group of deck trans-
formations acting on M̃ . Closed flat hypersurfaces in M are covered by (n−1)-flats
in M̃ which are periodic in the sense of:

Definition 3.2. A Γ-periodic flat or Γ-flat is a flat F in M̃ such that the
subgroup ΓF of Γ preserving F acts cocompactly on F . We call F isolated if it
intersects no other Γ-flat transversally.

Unless explicitly stated otherwise, all flats considerd in this section will be
(n − 1)-dimensional. A totally-geodesically immersed closed flat hypersurface is
isolated if and only if it is covered by isolated Γ-flats in M̃ .

3.1. Seifert fibred submanifolds

From now on we will assume that M is not closed and flat. We prove in this
section that intersecting, totally-geodesically immersed, closed, flat hypersurfaces
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in M span a submanifold which is foliated by parallel closed flat submanifolds of
codimension two. In dimension three, this foliation is a Seifert fibration by closed
geodesics. Our arguments are closely related to those in Casson’s proof of the
Torus Theorem in dimension three [C], but are simpler because of the curvature
assumption which we are imposing on the metric of M .

Let A ⊂ Γ be a free abelian subgroup of rank n − 2. Recall from section
1 that the normaliser N(A) of A in Γ acts cocompactly on the set of minimal
displacement MIN(A) and preserves its metric splitting (2). The induced action
of A on E is cocompact, so E is Euclidean space of dimension n− 2.

Now let HA denote the closed convex hull of the union of all A-invariant Γ-
flats. HA is A-invariant and hence has the form HA = Z ×R ⊆ Y ×R = MIN(A)
for a closed convex subset Z of Y . Furthermore HA is preserved by N(A) and
Lemma 1.1 implies that the action of N(A) on HA is cocompact. Note that it is
possible that HA consists of a single A-invariant Γ-flat and so has empty interior.
In this case it will be convenient to write ∂HA = HA.

Lemma 3.3. The boundary ∂HA is a disjoint union of Γ-flats.

Proof. Each A-invariant Γ-flat projects to a complete geodesic in Y . Let Z denote
the closed convex hull of the family F of all such geodesics, so that Z is either a
geodesic or a convex subset of Y with non-empty interior whose boundary ∂Z is
a union of disjoint complete geodesics. Consequently, ∂HA is a disjoint union of
A-invariant (n − 1)-flats lying above ∂Z. According to Lemma 1.1 the quotient
manifold N(A)\HA is compact and therefore also its closed subset ∂(N(A)\HA) =
N(A)\∂HA. Hence the components of ∂HA are Γ-flats. �

Next we consider how codimension-one flats in M̃ can meet MIN(A).

Lemma 3.4. Suppose that MIN(A) contains two non-parallel A-invariant Γ-flats.
Then any codimension-one flat intersecting MIN(A) is also A-invariant and so is
completely contained in MIN(A).

Proof of Lemma 3.4. Let F be a (n − 1)-flat in M̃ and denote by U ⊂ Y the
image of F ∩MIN(A) under the canonical projection MIN(A) = E × Y → Y .
U is a convex subset with the property that every geodesic segment σ ⊂ Y which
intersects U in more than one point is contained in U . If F intersects MIN(γ)
and is not A-invariant then F intersects some A-flat E ×{y} transversally. Hence
U ⊂ Y has non-empty interior and therefore U = Y . Lemma 1.2 implies that
Y is flat. By our assumptions, Y contains two complete non-parallel geodesics.
Therefore Y is isometric to the Euclidean plane and M̃ is isometric to Euclidean
n-space. This implies that M is closed and flat which contradicts the assumption
made at the beginning of this section. �
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The above result is a key step in our argument, and a very similar result appears
in Casson’s proof of the Torus Theorem in the 3-dimensional case [C]. In Casson’s
argument, no assumption is made about the metric on M . Instead of considering a
totally geodesic immersion of the torus in M , he considers a least area immersion.
This means that in the universal cover of M , he considers area minimizing planes
rather than flats. Any two such planes must be disjoint or intersect transversely in
a single line. Again this situation is very similar to that in this paper, but double
lines of area minimising planes need not be geodesics. Call two of these double
lines weakly parallel if there is a non-trivial element of π1(M) which stabilises both
of them. The analogue of our lemma is his result that either π1(M) contains the
free abelian group of rank three, so that M is closed and must admit a flat metric,
or that all the double lines are weakly parallel.

This result shows that under the hypotheses of 3.4, no Γ-flat can cross ∂HA

transversally, as such a flat would have to be A-invariant and so be completely
contained in HA. With Lemma 3.3, we obtain:

Proposition 3.5. If MIN(A) contains two non-parallel A-invariant Γ-flats, then
HA has non-empty interior and the boundary ∂HA is a disjoint union of isolated
A-invariant Γ-flats.

The quotient of HA by N(A) is a Seifert fibred manifold SA with fibres being
closed flat manifolds of dimension n − 2, and the fibres form a totally geodesic
foliation of SA. (The definition of Seifert fibered manifolds in arbitrary dimension
is given at the end of section 1.) In dimension three, this is a foliation by closed
geodesics.

3.2. The decomposition

We continue to assume that M is not a closed flat manifold. By Proposition 2.4,
there are finitely many families of parallel isolated flat closed hypersurfaces in M .
In order to avoid unnecessary flat pieces (which are topologically interval bundles
over closed flat (n− 1)-manifolds) in the decomposition of M obtained below, we
choose in each family of parallel hypersurfaces a canonical one as follows: For a
Γ-flat F ⊂ M̃ the set of all Γ-flats parallel to F splits as a product F × I where I
is a closed connected subset of R. Since M is assumed not to be flat, I is isometric
to a compact interval [−a, a].

Definition 3.6. We call the Γ-flat F×{0} and the immersed hypersurface which it
coveres central. We call the isolated Γ-flat F ⊂ M̃ and the embedded hypersurface
covered by it in M preferred if either F ⊂ ∂M̃ or F is central and F ⊂ Int(M̃).

A preferred Γ-flat F has the useful property that every (n−1)-flat F ′ parallel to
F satisfies StabΓ(F ′) ⊆ StabΓ(F ). Accordingly, each isolated closed hypersurface
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can be homotoped to the unique preferred hypersurface parallel to it.
We now consider the finite collection F of all preferred isolated hypersurfaces

in M . They are disjoint, embedded and pairwise non-parallel. They decompose
M into finitely many pieces which are compact non-flat manifolds with convex
boundary. LetN be a piece of the decomposition and denote its fundamental group
by Γ′ := π1(N). N has the property that all its preferred isolated flat hypersurfaces
are contained in the boundary and hence every isolated closed flat hypersurface
can be homotoped into the boundary. We have the following dichotomy:

• All immersed closed flat hypersurfaces are isolated and can be homotoped into
the boundary.
• N contains non-isolated closed flat immersed hypersurfaces.

This dichotomy corresponds to the two types of pieces occurring in the topo-
logical decomposition theorem in the three-dimensional case, compare section 1.
The pieces of the first kind are codimension-one atoroidal. (See section 1 for a
definition; in dimension three this is equivalent to being atoroidal.) Assume that
N is a piece of the second kind. Then Ñ contains two Γ-flats F1 and F2 which in-
tersect transversally in a (n−2)-flat L. StabΓ′(F1)∩StabΓ′(F2) acts cocompactly
on L by Lemma 2.1, and it contains an abelian subgroup A of finite index and
rank n − 2. According to 3.5, the corresponding Seifert fibered manifold SA has
non-empty interior. Each boundary component of SA is an isolated flat hypersur-
face and can hence be homotoped into ∂N . By the construction of SA it follows
that ∂SA ⊆ ∂N and therefore SA = N . Thus N is a geometric Seifert piece. This
concludes the proof of the following result:

Geometric Decomposition Theorem 3.7. Let M be a compact connected non-
positively curved manifold which has convex boundary. Then either M is closed
and flat or the following holds.

Let F be the family of all preferred isolated totally-geodesic closed flat codimen-
sion-one submanifolds of M . Then F is a finite collection of disjoint, mutually
non-parallel, embedded hypersurfaces and decomposes M into compact manifolds
with convex boundary which are Seifert or atoroidal. The Seifert components are
foliated by codimension-two totally geodesic closed flat submanifolds and the foli-
ation is locally a Riemannian product foliation. Further any π1-injective map of
a closed flat (n − 1)-manifold into M can be homotoped to a totally geodesic flat
immersion, and any such immersion must lie in one of the Seifert pieces or be
parallel to a hypersurface of F .
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4. Splitting along submanifolds with boundary

In this section we will state and prove our most general result which corresponds
to the full JSJ decomposition of a compact 3-manifold with boundary.

If a Riemannian manifold Σ has totally geodesic boundary, we will abbreviate
this to say that Σ has TGB. A proper map into an n-manifold M of a compact
flat (n − 1)-manifold with TGB is essential if it is π1-injective and not properly
homotopic into the boundary of M . We will say that M is simple if it does not
admit an essential map of a compact flat (n− 1)-manifold with TGB.

In order to prove our general decomposition theorem, we will consider a com-
pact connected non-positively curved manifold M of dimension n ≥ 3, which has
TGB. This assumption on the boundary means that we can double M along its
boundary to obtain a closed connected non-positively curved manifold DM of
dimension n. If M is not flat, neither is DM and we can apply our main geo-
metric decomposition theorem from the preceding section to obtain the canonical
decomposition of DM by finitely many totally-geodesic flat closed submanifolds
of codimension one. The fact that this splitting is canonical means that it is in-
variant under the involution τ which interchanges the two copies of M in DM .
Thus the intersection with M of the canonical family of totally geodesic flat closed
codimension-one submanifolds of DM yields the required canonical splitting of M .
The non-simple pieces of M are obtained from the Seifert manifold pieces of DM
by intersecting them with M . Thus these pieces of M are either Seifert manifolds
themselves or they are “half a Seifert manifold”. This second case occurs when a
Seifert piece Σ of DM is τ -invariant, so that the intersection of Σ with M consists
of half of Σ. The restriction of τ to Σ is itself an isometry and it fixes Σ ∩ ∂M
pointwise. Thus, for each component Ω of Σ ∩ ∂M , this isometry of Σ lifts to an
isometry of the universal cover of Σ which fixes pointwise a copy Π of the universal
cover of Ω. Recall that the universal cover of Σ is metrically a product Z × E,
where Z is some 2-dimensional space and E is isometric to Euclidean space of
dimension n− 2. Also recall that Π is part of a flat in the universal cover of DM
and hence is a flat in Z × E. It follows that Π is of the form P × Q, where P is
some subset of Z and Q is some subset of E. Hence Σ ∩ ∂M is either vertical or
horizontal in Σ, where (as in dimension three) a codimension-one submanifold is
vertical if it is a union of fibers of the Seifert structure, and is horizontal if it is
transverse to every fibre. In the vertical case, Σ∩M is again a Seifert fiber space.
In the horizontal case, Σ∩M must be the product (or twisted product) of Σ∩∂M
with an interval.

General Geometric Decomposition Theorem. Let M be a compact connected
non-positively curved manifold of dimension n ≥ 3, which has TGB. Then either
the metric on M is flat, or M can be canonically decomposed along finitely many
totally-geodesically properly embedded flat compact submanifolds of codimension
one with TGB. The resulting pieces are simple or Seifert fibered or are bundles
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with fibre an interval over a compact (n − 1)-manifold with TGB. Further any
essential map into M of a compact flat (n−1)-manifold with TGB can be properly
homotoped to a totally geodesic flat immersion, and any such immersion must lie
in one of the non-simple pieces or be parallel to one of the canonical surfaces.
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