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Abstract. Let X be a projective manifold over C. Fix two ample line bundles H0 and H1 on X.
It is the aim of this note to study the variation of the moduli spaces of Gieseker semistable sheaves
for polarizations lying in the cone spanned by H0 and H1. We attempt a new definition of walls
which naturally describes the behaviour of Gieseker semistability. By means of an example, we
establish the possibility of non-rational walls which is a substantially new phenomenon compared
to the surface case. Using the approach by Ellingsrud and Göttsche via parabolic sheaves, we
were able to show that the moduli spaces undergo a sequence of GIT flips while passing a rational
wall. We hope that our results will be helpful in the study of the birational geometry of moduli
spaces over higher dimensional bases.
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Introduction

Fix an n-dimensional smooth projective manifold X over the complex numbers
as well as a function p: Num(X) −→ Z, called Hilbert form. Define N1

Q(X) :=
Num(X) ⊗Z Q and similarly N1

R(X), and finally let AmpQ(X) and AmpR(X) be
the cones inN1

Q(X) andN1
R(X), resp., spanned by the classes of ample line bundles.

Assuming that H is the class of an ample line bundle, we define PH(E) as the poly-
nomial such that PH(E)(n) = χ(E ⊗H⊗n) for any natural number n. The sheaf
E is then called Gieseker H-(semi)stable (or just H-(semi)stable) if and only if
every non-zero proper subsheaf F of E satisfies PH(F)/ rkF (≤) PH(E)/ rk E .
There is a projective moduli space MH := MH(p) of S-equivalence classes of
Gieseker H-semistable torsion free coherent sheaves E with Hilbert form p, i.e.,
p([D]) = χ(E ⊗OX(D)) for all [D] ∈ Num(X). Note that this determines the rank
of E , henceforth denoted by r, the numerical equivalence class of c1E , henceforth
denoted by c1, and c2E as a linear form on the subvectorspace of H2n−4(X,Q)
spanned by (n − 2)-fold intersections of divisors, as such it is called c2. By its
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very definition, the space MH depends on the chosen polarization, and it is an
interesting and important problem to compare MH0 to MH1 for different polar-
izations H0 and H1 ∈ AmpQ(X). For surfaces, this problem has been thoroughly
studied. A brief discussion of this topic and appropriate references can be found
in [5]. The most general result in this direction has been obtained in [7] where it
is shown that the moduli spaces are related by a sequence of GIT flips. A similar
result can be obtained using moduli spaces of parabolic sheaves as mentioned in
the paper [3]. In this note we aim at a generalization of the results of [7] to higher
dimensions, using the approach of [3]. However, there arise new problems due to
the appearance of walls which do not lie in N1

Q(X). Our result is summarized in
the following

Main Theorem. Given two polarizations H0 and H1, there is a finite subset
w of ∆ :=

{
(1 − λ)H0 + λH1 | λ ∈ [0, 1]

}
such that the notion of Gieseker

(semi)stability remains constant within each connected component of ∆ \w. If the
polarization passes through a wall of w ∩N1

Q(X), then the moduli spaces undergo
a sequence of C∗-flips.

In the case of crossing a real wall, one cannot expect such a result, because
it would yield an algebro geometric construction of a moduli space of Gieseker
semistable sheaves w.r.t. a real polarization which seems most unlikely in my eyes.
However, in this case, some suitable fibre spaces over the moduli spaces can be
obtained by a sequence of C∗-flips from the same Quot scheme. This will be
explained in Section 3.

In general, the hope is that MH0 and MH1 will be — under suitable assump-
tions — birational to each other, although other results indicate that moduli spaces
over higher dimensional bases are not at all well-behaved, e.g., they can have ar-
bitrarily many components ([2], [1]). The flips between the moduli spaces can be
very helpful in this context. In fact, one should be able to obtain quite explicit
descriptions of the exceptional sets of the flips. Then, one is left with estimating
the dimension of these exceptional sets, and this might be the hard part.

In the case of crossing a rational wall, our construction gives the following:
There is a quasi-projective scheme X, an ample line bundle L on X, and a C∗-
action on X together with two linearizations σ0 and σ1 of this action in L such
that X//σ0,1C∗ = MH0,1 . Let Xi, i = 1, ..., t, be the irreducible components of
X. Since C∗ is irreducible, the action preserves those components. So, the Mi

0,1
will be the irreducible components of MH0,1 , i = 1, ..., t. By general properties of
C∗-actions (e.g. [11], [8]) one gets

Corollary. Under the above hypotheses, if for i0 ∈ { 1, ..., t } both Mi0
0 and Mi0

1
are non-empty, then they are birationally equivalent.
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1. Preparations

1.1. Walls for slope semistability

For technical reasons, we will have to consider the notion of slope semistability
for all H ∈ AmpR(X). So, let us fix such an H. For a torsion free coherent sheaf
E , define its H-slope as µHE := c1E .Hn−1/ rkE and call E slope H-(semi)stable if
µHF (≤) µHE for any non-zero proper subsheaf F of E .

Example 1.1.1. Let X ⊂ P2 × P2 be a smooth hypersurface in |O(1, 1)|. The
nef cone of X is spanned by H0 := π∗1OP2(1) and H1 := π∗2OP2(1). Set Hλ =
(1 − λ)H0 + λH1. We have H3

0 = 0 = H3
1 and H2

0 .H1 = 1 = H0.H
2
1 . Define

E := O(2,−1)⊕O(−2, 1). This bundle will be slope Hλ-semistable if and only if

0 = O(2,−1).H2
λ = −λ2 + 4λ− 1.

This equation has the (irrational) solutions λ± := 2 ±
√

3. Note that λ− gives a
real class in the ample cone. Hence, E is semistable only with respect to a single
real class! Thus, the study of sheaves which are slope semistable w.r.t. a real class
cannot necessesarily be reduced to the study of vector bundles which are slope
semistable for some rational class.

Fix two polarizations H0 and H1 in AmpQ(X) and denote the line segment
joining them by ∆. In this section, Hλ stands for the polarization (1−λ)H0+λH1,
λ ∈ [0, 1]. We are interested in the family F(∆) of isomorphy classes of torsion free
coherent sheaves E with Hilbert form p for which there exists a rational polarization
H ∈ ∆ ∩N1

Q(X) w.r.t. which E is slope semistable.
For any sheaf E and any non-zero proper subsheaf F ⊂ E define ξF ,E :=

[c1F/ rkF − c1/r]. We begin with the following observation.

Lemma 1.1.2. Let λ0 ∈ [0, 1) ∩ Q and λ1 ∈ (λ0, 1). Denote the family of
isomorphy classes of slope Hλ0-semistable torsion free coherent sheaves with Hilbert
form p by F(Hλ0). Then there is a constant C such that for any E with [E ] ∈
F(Hλ0) and any non-zero proper subsheaf F of E the condition ξF ,E .H

n−1
λ0

< C

implies ξF ,E .Hn−1
λ < 0 for all λ ∈ [λ0, λ1].

Proof. We may assume λ0 = 0. Then Hn−1
λ =

n−1∑
i=0

(
n−1
i

)
(1−λ)iλn−i−1Hi

0H
n−1−i
1 .

Since F(H0) is a bounded family, there are constants K0, ...,Kn−2 such that
ξF ,E .H

i
0H

n−1−i
1 ≤ Ki, i = 0, ..., n − 2, for all E with [E ] ∈ F(H0) and all sub-

sheaves 0 6= F ⊂ E . Setting

K := max
{ n−2∑
i=0

(
n− 1
i

)
(1− λ)iλn−i−1Ki | λ ∈ [0, 1]

}
,
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we conclude that, for λ ∈ [0, λ1], E with [E ] ∈ F(H0), and all subsheaves 0 6= F ⊂ E ,

0 ≤ ξF ,E .H
n−1
λ ≤ (1− λ)n−1ξF ,E .H

n−1
0 +K ≤ (1− λ1)n−1ξF ,E .H

n−1
0 +K

implies ξF ,E .Hn−1
0 ≥ −K/(1− λ1)n−1, and we are done. �

As important consequence, we note

Proposition 1.1.3. Let E be a torsion free coherent sheaf such that [E ] ∈ F(∆).
Suppose that E is slope semistable w.r.t. Hλ0 with λ0 6= 1 and that for any subsheaf
F ⊂ E there is an open neighborhood U ⊂ [0, 1] of λ0, such that ξF ,E .Hn−1

λ ≤ 0
for all λ ∈ U . Then
• either E is slope Hλ-semistable for every λ ∈ [λ0, 1],
• or there exists a number λ+ > λ0 such that

1. E is slope Hλ-semistable for every λ ∈ [λ0, λ+],
2. there exists a saturated non-zero proper subsheaf F+ ⊂ E with µHλ+

F+ =
µHλ+

E such that(
(rkF+ − 1)c21F+ − 2 rkF+c2F+

)
.Hn−2

λ+
≤ 0,

and, for G+ := E/F+,(
(rkG+ − 1)c21G+ − 2 rkG+c2G+

)
.Hn−2

λ+
≤ 0,

3. E is not slope Hλ-semistable for λ > λ+ close enough.

Remark 1.1.4. i) Likewise, one can construct under the assumption λ0 6= 0 a
number λ− < λ0 and a subsheaf F− with the respective properties.

ii) The need for this proposition arises from the fact that I don’t know if the
Bogomolov inequality continues to hold for real polarizations.

Proof. We may suppose that E is not slope Hλ1 -semistable for some rational
λ1 > λ0. If a subsheaf F slope desemistabilizes E for some Hλ with λ ∈ [λ0, λ1],
then we must have ξF ,E .Hn−1

λ0
≥ C, by Lemma 1.1.2. The set C of saturated

subsheaves F of E with ξF ,E .Hn−1
λ0
≥ C is bounded ([5], Lem. 1.7.9). In particular,

there are only finitely many elements ξ in (1/r!) Num(X) of the form ξF ,E for which
there is a λ ∈ [λ0, λ1] with ξ.Hn−1

λ ≥ 0. Denote these elements by ξ1, ..., ξν and
set fi(λ) := ξi.H

n−1
λ . Let λ+ be the smallest number in (λ0, λ1] at which one of

the polynomial functions fi(λ) undergoes a change of sign. Then, by construction,
E is slope semistable for all Hλ with λ ∈ [λ0, λ+), properly slope Hλ+ -semistable,
and slope unstable for values λ > λ+, close enough.

Moreover, for every inclusion 0 ⊂ F1 ⊂ F2 ⊂ E occuring among subsheaves
in C, we have a function ξF2/F1,E/F1 .H

n−1
λ . These are again only finitely many
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functions. Call them g1(λ), ..., gµ(λ). We can now choose a number λ′ close to λ+
in such a way that none of the functions fi(λ), fi(λ) − fj(λ), i, j = 1, ..., ν, and
gi(λ), gi(λ) − gj(λ), i, j = 1, ..., µ, changes its sign in (λ+, λ

′). We let

0 ⊂ F1 ⊂ · · · ⊂ Ft ⊂ E

be the slope Harder-Narasimhan filtration of E w.r.t. the polarization Hλ′ . One
has µHλ′Fi > µHλ′E for i = 1, ..., t, so that the functions ξFi,E .H

n−1
λ are among

the functions fi(λ), i = 1, ..., ν. By our choice of λ′, the above filtration is also
the slope Harder-Narasimhan filtration of E w.r.t. to all the polarizations Hλ,
λ ∈ (λ+, λ

′). We choose F+ := Ft. Then, G+ := E/F+ is slope Hλ-semistable
w.r.t. all polarizations λ ∈ [λ+, λ

′], and the Bogomolov Theorem ([5], Thm. 7.3.1)
implies (

(rkG+ − 1)c21G+ − 2 rkG+c2G+
)
.Hn−2

λ ≤ 0

for all λ ∈ [λ+, λ
′]. We claim that we also have(

(rkFi − 1)c21Fi − 2 rkFic2Fi
)
.Hn−2

λ+
≤ 0

for i = 1, ..., t. For F1 it follows from the fact that this sheaf is slope Hλ-semistable
for all λ ∈ [λ+, λ

′]. Suppose now that we have established the above inequality
for Fi. Write

D(F) :=
(
(rkF − 1)c21F − 2 rkFc2F

)
for every coherent sheaf F . We have an exact sequence 0 −→ Fi −→ Fi+1 −→
Fi+1/Fi −→ 0. The sheaf Fi+1/Fi is again slopeHλ-semistable for all λ ∈ [λ+, λ

′],
so that D(Fi+1/Fi).Hn−2

λ ≤ 0 for all λ ∈ [λ+, λ
′]. One has the equality

D(Fi+1)
rkFi+1

=
D(Fi)
rkFi

+
D(Fi+1/Fi)
rkFi+1/Fi

+
rkFi rkFi+1
rkFi+1/Fi

ξ2
Fi,Fi+1

.

Since ξFi,Fi+1 .H
n−1
λ+

= 0, the Hodge-Riemann bilinear relations ([4], p. 123) for

the Kähler class Hλ+ imply ξ2
Fi,Fi+1

.Hn−2
λ+
≤ 0, and we are done. �

Example 1.1.5. This time, we consider a smooth hypersurface X ⊂ P2 × P2 in
the linear system |O(3, 3)|. Using notations analogous to those in Example 1.1.1,
we have generators H0 and H1 of the nef cone of X with H3

0 = 0 = H3
1 and

H2
0 .H1 = 3 = H0.H

2
1 . The space X is a Calabi-Yau threefold with c2(X) =

3H2
0 + 3H2

1 + 9H0H1. First, we check that there is a non-split extension

0 −→ OX(3, 0) −→ E −→ OX(0, 1) −→ 0.

Such extensions are parametrized by

Ext1(OX(0, 1),OX(3, 0)) = H1(OX(3,−1)).
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Observe h0(OX(3,−1)) = 0 = h0(OX(−3, 1)) = h3(OX(3,−1)), so that Riemann-
Roch gives

−h1(O(3,−1)) ≤ (1/6)(3H0−H1)3+(1/12)(3H0−H1).(3H2
0 +3H2

1+9H0H1) = −3.

Besides subsheaves of O(3, 0), E could have subsheaves of the form O(−k, 1) with
k ≥ 1, because the extension does not split. Subsheaves of the latter form do
not destabilize if ξO(−1,1),E .H

2
λ < 0 where ξO(−1,1),E = −(5/2)H0 + (1/2)H1.

One checks that this is fulfilled for all λ > λ∗ := (5/4) − (
√

21/4). Thus, for
λ > λ∗, the middle term E of such a non-split extension is slope Hλ-(semi)stable
if and only if OX(3, 0) does not de(semi)stabilize E. We have ξ := ξOX(3,0),E =
(3/2)H0 − (1/2)H1, and the equation ξ.H2

λ(≤)0 reads

3
2
(
−2λ2 + 6λ− 1

)
(≤) 0.

Thus, E is slope stable for all polarizations Hλ with λ∗ < λ < (3/2) − (1/2)
√

7,
properly slope semistable for H(3/2)−(1/2)

√
7, and not semistable for any polariza-

tion Hλ with λ > (3/2)− (1/2)
√

7.

Remark 1.1.6. This example exhibits an interesting phenomenon. Although our
set-up is completely algebro-geometric, we naturally encounter objects which are
not readily accessible by algebraic methods. In particular, it becomes clear that in
order to completely solve our problem we have to find the right notion of Gieseker
semistability w.r.t. an arbitrary Kähler class and to construct moduli spaces for
them. As Andrei Teleman informed me, this problem has been raised by Tyurin.

Local definition of no future importance. We will say that a pair (F , E), consisting
of a torsion free coherent sheaf E and a saturated non-zero proper subsheaf F ,
satisfies the condition (∗), if
1. [E ] ∈ F(∆),
2. there exists a polarization H ∈ ∆ such that

(a) µH(F) = µH(E), and
(b)

((rkF − 1)c21F − 2 rkFc2F).Hn−2 ≤ 0

and ((rkG − 1)c21G − 2 rkGc2G).Hn−2 ≤ 0, G := E/F .

Lemma 1.1.7. W 1 :=
{
x ∈ (1/r!) Num(X) | ∃ (F , E) satisfying (∗) : x = ξF ,E

}
is a finite set.

Proof. This is an easy adaptation of the proof of Thm. 1.3 in [7]: Let x be in W 1.
Choose a pair (F , E) satisfying (∗) with x = ξF ,E . Define

h := max
{

(s− 1)/2s+ (r − s− 1)/(2(r − s)) | s = 1, ..., r
}
, l := (r − 1)/(2r),
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k1 := max
{
c2.H

n−2 | H ∈ ∆
}
, k2 := min

{
c21.H

n−2 | H ∈ ∆
}
.

Then exactly as in [7], p. 105, one shows that

0 ≤ −x2.Hn−2 ≤ r2(k1 − lk2)/(1− h) =: N.

Observe that N depends only on r, c1, and c2. So, it suffices to show that{
x ∈ (1/r!) Num(X) | ∃H ∈ ∆ : x.Hn−1 = 0 ∧ −x2.Hn−2 ≤ N

}
is a finite set. Again, this can be proved in the same manner as Lemma 1.5 in [7].
Indeed, the bilinear form 〈. , .〉H with 〈x, y〉H = x.y.Hn−2 depends continuously
on H, and, since H is supposed to be a Kähler class, it has signature (1, ρ(X)−1),
by the Hodge-Riemann bilinear relations ([4], p. 123). �

1.2. A boundedness result

The basis of our investigations is the following

Proposition 1.2.1. The set F(∆) is bounded.

Proof. Denote by W 1∗ the set of elements x ∈ W 1 such that x.Hn−1 = 0 for
only finitely many polarizations H ∈ ∆. For each such x, let w1(x) be the set of
H such that x.Hn−1 is zero. We set w1 :=

⋃
x∈W1∗ w1(x). Let [E ] be in F(∆),

such that E is slope Hλ0 -semistable, λ0 ∈ Q, but fails to fulfill the assumptions
of Proposition 1.1.3. Then it is easy to check that Hλ0 lies in w1. Let U1, ..., Us
be the connected components of ∆ \ w1. Pick polarizations Ai ∈ Ui ∩ N1

Q(X),
i = 1, ..., s, and denote by As+1, ..., At those elements in w1 which are rational.
By Proposition 1.1.3, the concept of slope (semi)stability remains constant within
each Ui. So, any E with [E ] ∈ F(∆) will be slope semistable w.r.t. one of the
polarizations A1, ..., At. �

2. Passing through a rational wall

2.1. Riemann-Roch

For any torsion free coherent sheaf E on X , we have its Chern character ch(E) ∈
A∗(X). We will denote its homogeneous component of degree d by chd(E). We
denote by tde the degree e part of the Todd character of the tangent bundle of X .
Then, the Riemann-Roch theorem asserts

χ(E) =
n∑
i=0

chi(E).tdn−i.
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For any line bundle L on X , we know that ch(E ⊗ L) = ch(E).ch(L) so that

χ(E ⊗ L) =
1
n!
rLn +

1
(n− 1)!

Ln−1.(ch1(E) + rtd1) + · · ·+ χ(E).

In particular, the Hilbert polynomial of E w.r.t. the ample line bundle H is

PH(E) =
(

1
n!
rHn

)
xn+

(
1

(n− 1)!
Hn−1.(ch1(E) + rtd1)

)
xn−1 + · · ·+χ(E).

Define hilbd(E) := chd(E)+chd−1(E).td1+ · · ·+rtdr for d = 1, ..., n. To abbreviate
notation, for a subsheaf F ⊂ E and 0 ≤ d ≤ n, we define

hilbd(F , E) :=
hilbd(E)

rkE − hilbd(F)
rkF .

2.2. More walls

We have already defined a set of walls w1, such that the concept of slope (se-
mi)stability remains constant between these walls. Define w2 as follows: The
set of isomorphy classes of sheaves F which are saturated subsheaves of sheaves
in the family F(∆), such that [(c1F/ rkF) − (c1/r)].Hn−1 = 0 for all polariza-
tions in ∆ is bounded, so that they provide us with a finite set of equations
hilbi(F , E).Hn−i = 0. We consider only those equations which are non-trivial and
let w2 be set of the respective solutions. Set w := w1 ∪ w2. By the very defi-
nition of w, the concept of Gieseker (semi)stability remains constant within each
connected component of ∆ \ w.

Remark 2.2.1. i) The walls in w \w1 do not affect the concept of slope stability,
i.e., the moduli spaces for two polarizations separated only by a wall in w\w1 will
be isomorphic at least over the open subsets parametrizing slope stable sheaves.

ii) As we have seen in Example 1.1.5, it is possible that w contains points which
do not lie in N1

Q(X). In this case the methods presented in this section break down
and have only the weak results of Section 3. However, the reader may check that
on some simple manifolds such as P1×Pn, all the walls are rational. In those cases,
our results completely describe the situation, at least from an abstract viewpoint.
The phenomenon of real walls might explain the difficulties encountered by Qin in
the definition of walls for higher dimensional varieties [9].

2.3. The crucial lemma

Suppose that H0 and H1 lie in neighbouring connected components of ∆\w which
are separated by a rational polarization A. We can furthermore assume that there
is an effective Q-divisorD such that H1 = A+D and H0 = A−D. If X is a surface,
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then in both [7] and [3] the result is based on the fact that there is an integer l0
such that E is Gieseker H1- (H0-)(semi)stable if and only if E(l0D) (E(−l0D))
is Gieseker A-(semi)stable. This result allows one to explore some parameter
dependent (semi)stability concept w.r.t. the polarization A such that for different
choices of the parameter one obtains MH0 , MH1 , and MA, respectively. Now,
this choice of parameter corresponds in a suitable construction to the choice of
a linearization of a group action. The variation of the quotients in the latter
setting is well understood. Indeed, this problem can be appropriately dealt with
in the context of master spaces. In the abstract GIT setting, the construction of
master spaces is carried out in [11]. Examples of master spaces which solve moduli
problems can be found in [8] and [10].

Lemma 2.3.1. There is an integer l0 such that for every l ≥ l0 and every torsion
free coherent sheaf E with Hilbert form p the following conditions are equivalent.
1. E is Gieseker H1-(semi)stable (H0-(semi)stable).
2. E(lD) (E(−lD)) is Gieseker A-(semi)stable.

Proof. We will explain the proof for H1 in the semistable case. It is our task to
compare the Hilbert polynomials PH1(E) and PA(E(lD)). Let E be a torsion free
coherent sheaf with Hilbert form p, and let F ⊂ E be a non-zero proper subsheaf.
One computes

δ(F , E , l)(m) :=
χ(E(lD)⊗Am)

r
− χ(F(lD)⊗Am)

rkF
= Bn−1hilb1(F , E).An−1mn−1

+
(
B1
n−2A

n−2.hilb2(F , E) +B2
n−2lA

n−2.D.hilb1(F , E)
)
mn−2+

...

+
(
B1
n−iA

n−i.hilbi(F , E) + · · ·+Bin−il
i−1An−i.Di−1.hilb1(F , E)

)
mn−i+

...

+B1
0hilbn(F , E) + · · ·+Bn0 l

nDn−1.hilb1(F , E).

The Bji are just some positive constants of no importance. The coefficient of mn−i

in δ(F , E , l) will be denoted by δi(F , E , l).
Assume E is Gieseker H1-semistable. First, we know by the H1-semistability

of E and our assumptions on the walls that E is at least slope A-semistable. If
F is a non-zero proper subsheaf of E with hilb1(F , E).An−1 > 0, then we see
that F(lD) won’t A-desemistabilize E(lD) for any l. Thus, we can assume that
hilb1(F , E).An−1 = 0. But the family of all sheaves F such that there is a Gieseker
A-semistable sheaf E containing F as a non-zero proper saturated subsheaf and
hilb1(F , E).An−1 = 0 is bounded. This is important to keep in mind for the rest of
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the proof, because it shows that the number of equations arising in the following
is indeed finite, and therefore one can find an l0 working for all of them. Now,
suppose we have a subsheaf F of E such that δi(F , E , l) = 0 for i = 1, ..., j. By
induction we know that then we must have hilbi(F , E).An−i = 0 for i = 1, ..., j, and
hilbi(F , E).Hn−i

λ = 0 for i = 1, ..., j−1 and every Hλ := A+λD with λ ∈ [0, 1]. If
hilbi(F , E).Hn−i

λ = 0 for all Hλ, λ ∈ [0, 1], then obviouslyAn−ι.Dι−i.hilbi(F , E) =
0 for ι = i, ..., n. Therefore,

δj+1(F , E , l) = B1
n−j−1A

n−j−1.hilbj+1(F , E) +B2
n−j−1lA

n−j−1.D.hilbj(F , E).

If we assume hilbj(F , E).Hn−j
1 > 0, then our assumption on the walls implies that

hilbj(F , E).Hn−j
λ > 0 for all λ ∈ (0, 1]. One checks, by choosing λ very small, that

this forces An−j−1.D.hilbj(F , E) > 0. But then for large l, δj+1(F , E , l) > 0, and
we don’t have to care about F any more. If, on the other hand, hilbj(F , E).Hn−j

1 =
0, then our assumption on the walls shows that hilbj(F , E).Hn−j

λ = 0 for all
λ ∈ [0, 1]. The H-semistability of E implies in this case hilbj+1(F , E).Hn−j−1

1 ≥ 0.
Again using the assumption on the walls, we will also have hilbj+1(F , E).An−j−1 ≥
0. In the present circumstances hilbj+1(F , E).An−j−1 > (=) 0 is equivalent to
δj+1(F , E , l) > (=) 0. Either we can stop, or we go on with our induction.

Now, let E(lD) be A-semistable for all l sufficiently large. First of all, we
remark that this implies that E is slope A-semistable. For any subsheaf F ⊂ E
with hilb1(F , E).An−1 > 0, we will also have hilb1(F , E).Hn−1

1 > 0. Hence, only
the saturated subsheaves with hilb1(F , E).An−1 = 0 are of interest. But these
sheaves live again in a bounded family. Suppose we have a subsheaf F ⊂ E such
that hilbi(F , E).Hn−i

1 = 0 for i = 1, ..., j − 1 (j = 1 is allowed). Then, of course,
hilbi(F , E).Hn−i

λ = 0 for i = 1, ..., j−1 and every λ ∈ [0, 1]. Moreover, δi(F , E , l) =
0 for i = 1, ..., j − 1 in this case, and δj(F , E , l) = B1

n−jA
n−j .hilbj(F , E). Again,

δj(F , E , l) > 0 implies Hn−j
1 .hilbj(F , E) > 0, so only the case δj(F , E , l) = 0

matters. If j = n, we get (χ(E)/r) − (χ(F)/ rkF) = 0, whence F does not
H1-desemistabilize E . Otherwise, we look at

δj+1(F , E , l) = B1
n−j−1A

n−j−1hilbj+1(F , E) + lB2
n−j−1A

n−j−1.D.hilbj(F , E).

If Hn−j−1
1 .hilbj(F , E) < 0, then Hn−j−1

λ .hilbj(F , E) < 0 for all λ ∈ (0, 1]. For
small λ this means An−j−1.D.hilbj(F , E) < 0. In this case δj+1(F , E , l) < 0 for
large l, contradicting our assumptions on E . �

2.4. Flips between moduli spaces of parabolic sheaves

As for dimX = 1 [11], one can describe the variation of moduli spaces of parabolic
sheaves in terms of GIT flips. Furthermore, they can be flipped to the correspond-
ing Gieseker moduli space. This will be worked out in the present section.
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Parabolic sheaves. Let X be as before, let A be an ample line bundle on X , and
D ⊂ X an effective divisor. Fix polynomials P , P1,...,Pk. Let α = (α0, ..., αk)
be a weight vector with rational entries 0 < α0 < · · · < αk < 1. A parabolic
sheaf of weight α is a filtration E = F0 ⊃ F1 ⊃ · · · ⊃ Fk ⊃ Fk+1 = E(−D). To
shorten notation, we just denote it by E . Define its (parabolic) Hilbert polynomial
as PαA (E) := PA(E) −

∑k+1
i=1 εiPA(E/Fi), where εi := αi − αi−1, i = 0, ..., k,

αk+1 := 1. Given a parabolic sheaf E of weight α, every subsheaf F of E can
be viewed as a parabolic sheaf of weight α . We say that a parabolic sheaf of
weight α is (semi)stable if for every non-zero proper subsheaf F the condition
P
α
A(F)/ rkF (≤) PαA (E)/ rkE holds. Of course, one can also define the parabolic

slope µαA of E and speak of slope semistability.
We restrict our attention to parabolic sheaves E = F0 ⊃ F1 ⊃ · · · ⊃ Fk ⊃

Fk+1 = E(−D) of weight α where PA(E) = P and P (E/Fi) = Pi, i = 1, ..., k. The
moduli space for S-equivalence classes of semistable parabolic sheaves of weight α
was constructed in [6] and [12]. Let us denote it byMpar

A (P, P1, ..., Pk;α). Below,
we will briefly review the construction.

Theorem 2.4.1. Let P , P1,...,Pk be as before. Suppose we are given two weight
vectors α = (α0, ..., αk) and α′ = (α′0, ..., α

′
k), and let MA(P ) be the moduli space

of S-equivalence classes of Gieseker A-semistable torsion free coherent sheaves with
Hilbert polynomial P .

Then the spaces MA(P ), Mpar
A (P, P1, ..., Pk;α), and Mpar

A (P, P1, ..., Pk;α′)
can be all constructed via GIT out of the same quasi-projective scheme, i.e., there
exists a quasi-projective scheme X with an ample line bundle L on it, a natural
C∗k+1-action, and there are linearizations σ0, σ, and σ′ of this C∗k+1-action in
L such that

X//σ0C
∗k+1 =MA(P ),

X//σC∗k+1 =Mpar
A (P, P1, ..., Pk;α),

X//σ′C∗k+1 =Mpar
A (P, P1, ..., Pk;α′).

Thus, by the Mumford-Thaddeus principle ([11], [8], Part 1), these spaces are
related by a sequence of C∗k+1-flips.

Some useful semistability criteria. Let W0, ...,Wk be finite dimensional C-vector
spaces. Define W := W0 ⊕ · · · ⊕Wk, and let C∗k act on W in the following way:
The i-th factor of C∗k acts by scalar multiplication on Wi and trivially on all
other summands, i = 1, ..., k. In this way, we obtain a linearized action of C∗k on
P(W ). By means of an induction, one derives the following observation from [8],
Example 1.2.5.

Lemma 2.4.2. Considering all possible linearizations of the above C∗k-action on
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P(W ), one obtains the following polarized quotients((
P(Wι1)× · · · × P(Wικ)

)
,
[
O(a1, ..., aκ)

])
.

Here, { ι1, ..., ικ } can be any subset of { 0, ..., k }, and (a1, ..., aκ) any tuple of
positive integers.

Consider a reductive algebraic group G and representations ρi:G −→ GL(Wi),
i = 0, ..., k. The direct sum of these representations defines an OP(W )(1)-linearized
action of G on P(W ). We also have OP(Wi)(1)-linearized actions of G on P(Wi),
i = 0, ..., k, and for a point [vi] ∈ P(Wi) and a one parameter subgroup λ:C∗ −→ G
we let µi([vi], λ) be minus the weight of the induced C∗-action on the fibre of
OP(Wi)(1) over the point limz−→∞ λ(z) · [vi].

Proposition 2.4.3. Let w = [v0, ..., vk] ∈ P(W ) be a point, and let (ν1, ..., νµ) be
the indices with vνj 6= 0, j = 1, ..., µ. Then the following conditions are equivalent:
1. w is G-semistable w.r.t. given linearization.
2. There exist non-negative integers lν1 , ..., lνµ, not all zero, such that for any one

parameter subgroup λ:C∗ −→ G

lν1µν1([vν1 ], λ) + · · ·+ lνµµνµ([vνµ ], λ) ≥ 0.

Remark 2.4.4. In view of Lemma 2.4.2, the second condition means that we find
a linearization of the C∗k-action such that the image of w in the corresponding
polarized quotient is G-semistable w.r.t. the induced linearization.

Proof. We observe that the hypothesis that G have no characters in Section 1.2.
of [8] only assures that the linearization of G is unique. In the proofs, this as-
sumptions is never used. So, we can apply [8], Thm. 1.4.1, to prove the assertion
by induction. The details are left to the reader. �

A ”baby” master space construction. In this section, we explain the proof of
Theorem 2.4.1. To avoid excessive indices and formulas, we will only treat the
case k = 0 which is the only one we will need for our applications. Using the
semistability criteria given above, the reader will have no difficulty to extend the
proof to the case of arbitrary k. We need to fix a Poincaré sheaf P on PicX ×X .

First of all, we may choose an integer m0 such that for every m ≥ m0 and every
torsion free coherent sheaf E which is either slope A-semistable or which appears
in a parabolic sheaf of either weight α or α′

• Hi(X, E(mA)) = 0 for i = 1, ..., n.
• E(mA) is generated by global sections.
• The same holds for E|D(mA).
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Moreover, let A ⊂ PicX be the union of all components containing elements of
the form [det E ].
• Then L(rmA) is globally generated and without higher cohomology for every

[L] ∈ A.
As usual, we consider the Quot scheme F of equivalence classes of quotients q:V ⊗
OX(−mA) −→ E where E is a coherent OX -module with Hilbert polynomial P .
Furthermore, there is a universal flag

V ⊗ π∗XOX(−mA) −→ EF −→ EF|F×D

over F × X . Let U0 be the set of points
[
q:V ⊗ OX(−mA) −→ E −→ E|D

]
for

which E is Gieseker A-semistable, let Uα and Uα′ be the sets for which E ⊃ E(−D)
is a semistable parabolic sheaf of weight α and α′, resp., and U := U0 ∪Uα ∪Uα′ .
The sheaf πF∗

(
EF ⊗ π∗XOX(mA)

)
is locally free of rank P (m), and the sheaf

πF∗
(
EF|F×D ⊗ π∗XOX(mA)

)
is locally free of rank, say, R. The scheme U can the

be mapped SL(V )-equivariantly to

P
(

Hom
( r∧

V ⊗OA, πA∗
(
P⊗ π∗XOX(mA)

)∨)× P( R∧(
V ⊗H0(OX(mA))

)∨)
.

Let PA be the first factor of this product, and PR the second. Choose some ample
sheaf HA on A, so that LA := OPA

(1) ⊗ π∗AHA is ample. The sheaf π∗PA
L
⊗a
A
⊗

π∗PROPR(b) on PA×PR will be denoted by O(a, b). Denote by U ′0 the set of SL(V )-
semistable points w.r.t. the linearization in O(1, 0). Then U0 is mapped injectively
and properly to U ′0, and for suitable choices of (a, b) and (a′, b′), the sets Uα and
Uα′ get immersed into the sets U ′α and U ′α′ of points which are SL(V )-semistable
w.r.t. the linearization in O(a, b) and O(a′, b′), respectively. Altogether, we obtain
an injective and proper map of U to U ′ := U ′0 ∪ U ′α ∪ U ′α′ . It is now clear that
the moduli spaces we are interested in are obtained from U by dividing out SL(V )
for different linearizations. To understand the assertion about the C∗-flips, we
proceed as follows. Define R as the projective bundle over Q associated to the
vector bundle

πF∗Hom
(

det
(
EF ⊗ π∗XOX(mA)

)
, (det×idX)∗P

)
⊕

R∧(
V ⊗H0(OX(mA))

)
⊗OF,

det: F −→ A being associated with the family EF, and S the projective bundle

P
(

Hom
( r∧

V ⊗OA, πA∗(P⊗ π∗XOX(mA))
)∨ ⊕ R∧(

V ⊗H0(OX(mA))
)∨ ⊗OA

)
over A. One has the natural morphism t: R −→ S (compare [8], Section 2.4).
There are natural (SL(V ) × C∗)-actions on R and S, and t is equivariant. The
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SL(V )-action is canonically linearized, and we can choose linearizations s0, s, and
s1 of the C∗-action such that the polarized quotients are

S//s0C
∗ =

(
PA, [LA]

)
;

S//sC∗ =
(
PA × PR, [O(a, b)]

)
;

S//s′C∗ =
(
PA × PR, [O(a′, b′)]

)
.

Let U ′′′0 , U ′′′α , and U ′′′α′ be the respective sets of (SL(V ) × C∗)-semistable points,
and let U ′′′ be their union. Their preimages U ′′0 , U ′′α , and U ′′α′ under t coincide with
the preimages of U0, Uα, and Uα′ under the bundle map R −→ F. Thus, the union
U ′′ of these sets maps finitely to U ′′′. By general properties of good quotients, the
quotient Y := U ′′′// SL(V ) is an open subset of the projective scheme S// SL(V ),
and X := U ′′// SL(V ) maps finitely to Y; call the corresponding map z. Both, X

and Y inherit C∗-actions, and z is equivariant w.r.t. them. By construction and the
”commutation principle” (e.g., [8], Sect. 1.3.1), the C∗-action on Y is linearized in
an ample line bundle LY such that suitable manipulations of this linearization will
yield S//s0(SL(V )×C∗) and so on as quotients. Pulling back these linearizations
to X gives us L, σ0, σ, and σ′ as asserted. �

2.5. The proof of the Main Theorem

We return to the setting of Section 2.3 and choose some l for which Lemma 2.3.1
holds. For a torsion free coherent sheaf E and β ∈ [0, 1], we set P βA(E) := (1 −
β)PA(E(−lD))+βPA(E(lD)), and call E β-(semi)stable, if and only if P βA(F)/ rkF
(≤) P βA(E)/ rk E for any non-trivial proper subsheaf F . In Lemma 2.3.1, we
have seen that a torsion free coherent sheaf E with Hilbert form p is H1-(H0-)
(semi)stable if and only if E is 1-(0-)(semi)stable. But as the proof of Lemma 2.3.1
shows, we can choose β1 close to one and β2 close to zero, so that we will also
have that E is H1-(H0-)(semi)stable if and only if E is β1-(β0-)(semi)stable. As a
corollary to the existence of moduli of parabolic bundles (the rôle of E is the last
section will now be played by E(lD) and that of D by 2lD), for any β ∈ (0, 1), there
exists a projective moduli scheme Mβ

A(p) of S-equivalence classes of β-semistable
torsion free coherent sheaves with Hilbert form p, and as we have seen in 2.3.1
Mβi

A (p) ∼= MHi(p), for i = 0, 1. Therefore, the main theorem is a direct conse-
quence of Theorem 2.4.1. �

3. Passing through an arbitrary wall

Let H0 and H1 be two polarizations, and F(H0) and F(H1) be the set of isomorphy
classes of torsion free coherent sheaves which are slope H0-semistable and slope
H1-semistable, respectively. Let H be an arbitrary polarization and write OX(m)
for OX(mH). Since both F(H0) and F(H1) are bounded, we can find a complex
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vector space V and an integer m0 such that any sheaf E whose isomorphy class
belongs to either F(H0) or F(H1) can be embedded into V ⊗OX(m) for allm ≥ m0.
We denote by Q the Quot scheme of all submodules of V ⊗OX(m0) with Hilbert
form p. Strictly speaking, this is a fine moduli space of δ-stable pairs (E , ϕ),
ϕ ∈ Hom(E , V ⊗ OX(m0)), for some large polynomial δ. But as its universal
property shows, it is isomorphic to a Quot scheme and, in particular, does not
depend on the choice of a polarization.

Fix a Poincaré sheaf P on PicX×X , and letMHi/P/V⊗OX(m0)(p) be the mas-
ter space of S-equivalence classes of semistable P-oriented pairs (E , ε, ϕ) [8] where
E is a torsion free coherent sheaf with Hilbert polynomial PHi(n) = p(H⊗ni ), for
all n ∈ N, ε: det E −→ P|{[det E]}×X is a homomorphism, and ϕ ∈ Hom(E , V ⊗
OX(m0)), i = 1, 2. As proved in [8], there are natural C∗-actions on these mas-
ter spaces. Suitably linearized, these C∗-actions give rise to sequences of C∗-
flips which begin with a fibration πi: Mi −→ MHi(p) and end in Q. The fi-
bre of πi: Mi −→ MHi(p) over the isomorphy class of a stable sheaf E is just
P
(
Hom(E , V ⊗OX(m0))∨

)
. Therefore, we have shown that the fibrations π0: M0

−→MH0(p) and π1: M1 −→MH1(p) can be created by means of C∗-flips out of
the Quot scheme Q.
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