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1. Introduction

An n-dimensional Poincaré complex, or PDn-complex, is a connected finitely dom-
inated CW-complex P with a homomorphism w : π1(P ) → {±1} which exhibits
the equivariant Poincaré duality of a closed n-dimensional manifold with orienta-
tion class w. (See [15] or [16] for more details). We may regard Poincaré complexes
as natural homotopy analogues of closed manifolds. In dimension 3, one has a com-
pletely algebraic characterisation of the class of Poincaré complexes due to Turaev
[15], and PD3-complexes are distinguished up to homotopy equivalence by their
fundamental group, orientation class, and fundamental class [6]. The most inter-
esting and challenging problem in this area is to determine which PD3-complexes
are homotopy equivalent to 3-manifolds. With this in mind, we focus in this paper
on the connected-sum decomposition of PD3-complexes.

Let P denote an arbitrary 3-dimensional Poincaré complex with fundamental
group π = π1(P ). It is known (see Wall [16]) that if π has 0, 1, or 2 ends then P
has universal cover P̃ homotopy equivalent to S3, is aspherical (P̃ contractible),
or is homotopy equivalent to one of RP 3#RP 3, S1 × RP 2, S1 × S2 or S1×̃S2,
respectively. Otherwise, π has infinitely many ends, and in this case Wall posed
the following questions: firstly, whether it follows (for P orientable, i.e: w trivial)
that π is a proper free product, and secondly, whether such a decomposition of
the group π would imply a corresponding connected sum decomposition of the
complex P , whereby one might obtain a decomposition theorem for orientable
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PD3-complexes analogous to that for 3-manifolds. Turaev [15] has since answered
the second of these questions by showing that if π is a proper free product then P
is a nontrivial connected sum of PD3-complexes.

In the present paper we approach the first question, and show (Theorem 14)
that, for P orientable, if π has infinitely many ends then it is either a proper free
product or virtually free. Thus the hoped for decomposition into a connected sum
of PD3-complexes Pi with P̃i ' S3, S2 or contractible is at least true of some finite
cover of any PD3-complex. In particular, every 3-dimensional Poincaré complex
has virtually torsion free fundamental group. Theorem 14 also reduces the question
of whether every PD3-complex is virtually homotopy equivalent to a 3-manifold,
to the case of aspherical PD3-complexes, namely the problem of realising all PD3-
groups as (virtual) 3-manifold groups. Various partial results in this direction were
given by Hillman [7], [8], and Thomas [14] in the mid 80’s. An analogue of the
torus theorem has been given by Kropholler [11], and very recently Bowditch [1]
has proved a version of the Seifert Conjecture, namely that a PD3-group which
contains an infinite cyclic normal subgroup is the fundamental group of a closed
Seifert fibred 3-manifold. However, the problem as stated remains open. We note
that there are examples of PD3-complexes which are not homotopy equivalent
to manifolds, but these all have finite fundamental group. (Groups with periodic
cohomology of period 4 are the fundamental groups of PD3-complexes [16], but
Milnor has shown that many of these are not 3-manifold groups, the simplest
example being S3, the symmetric group on three elements).

To completely settle Wall’s question one needs to resolve the case that the fun-
damental group π is virtually free. In Theorem 17 we show that if P is orientable
then any torsion element of π has finite centraliser in π. Thus, for example, the
free product of two finite groups amalgamated over a common normal subgroup
which is proper in each group, while being virtually free, cannot be the funda-
mental group of an orientable PD3-complex. However, this does not resolve every
case. For example, the question raised in [9] as to whether S3 ∗C2 S3 may be the
fundamental group of an orientable PD3-complex remains unanswered.

Our approach in this paper is motivated by ideas in Hillman’s paper [9]. There
the groups H∗(C, H̄1(π,Zπ)), for C a cyclic subgroup of π, are known by duality
and a spectral sequence argument. Here we show, on the other hand, that these
homology groups may be calculated independently of any duality properties. In
Section 2 we do this in the general setting of groups acting on trees, where one
uses a coefficient module which is “presented” by the tree. In Section 3 we relate
this coefficient module to the module H1(π,Zπ) via the accessibility of π, and
Chiswell’s Mayer-Vietoris sequence for graphs of groups. Comparing the indepen-
dent calculations leads to the main results in Section 4, where we also recover the
main result of [9] as Corollary 18. Finally, in Section 5, we give an extension of
our theorems to finite Poincaré pairs.
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2. Trees with ∞-vertices

In this section we introduce the notion of a module Π being presented by a tree
X with ∞-vertices, and proceed to calculate the homology groups H∗(C,Π) of a
prime order cyclic group C acting by automorphisms on X . These turn out to be
precisely determined by properties of the subtree of fixed points of X under the
action of C.

Following [3], we define a graph X to be the disjoint union of a pair of sets
EX and V X , called the edge and vertex sets respectively, together with a pair of
functions o, t : EX → V X which specify for each edge ε an original vertex o(ε), and
a terminal vertex t(ε). In practice, however, we shall think of X as an oriented 1-
dimensional simplicial complex realised as a topological space. A nonempty graph
X is called a tree if it is connected and contains no closed loops, that is if it is
simply-connected as a topological space. Let G be a group. A tree X together
with a left action of G by orientation respecting simplicial automorphisms of X
shall be called a G-tree. Explicitly, each element g ∈ G acts via a bijection of X
such that g(EX) = EX , g(V X) = V X , and, for ε ∈ EX , o(g(ε)) = g(o(ε)) and
t(g(ε)) = g(t(ε)). Note that any tree shall be considered by default to be a G-tree
with G the trivial group if not otherwise specified.

Definition 1. By a G-tree with ∞-vertices we shall mean a G-tree X with a
distinguished G-invariant subset VfX ⊂ V X consisting of vertices with finite
valence (i.e: with finitely many adjacent edges). Vertices which do not lie in VfX
are said to be∞-vertices. (Note that an∞-vertex need not have infinite valence).
Henceforth we shall assume that every G-tree X has this extra structure. We shall
also assume that the ∞-vertex structure of any subtree of X is the one naturally
inherited from X by restriction of the set VfX .

To any tree X with ∞-vertices we may associate a Z-module Π[X ], which is
said to be presented by the tree X , as follows. Let Z[VfX ] and Z[EX ] denote the
free Z-modules with bases VfX and EX respectively. Then Π[X ] is defined to be
the cokernel of the map ∆ : Z[VfX ] → Z[EX ] defined for each ν ∈ VfX by the
formula

∆(ν) =
∑

{ε|t(ε)=ν}

ε −
∑

{ε|o(ε)=ν}

ε .

Furthermore, if X is a G-tree then Π[X ] naturally inherits a left ZG-module
structure. We write [ε]X to denote the element of Π[X ] represented by an edge
ε ∈ EX .

Example 2. Let X be a G-tree, with finite quotient G\X , and whose edge
stabilizers are finite and vertex stabilizers have at most one end. Take VfX to
be the set of vertices with finite stabilizer under the action of G. Then Π[X ] is
isomorphic as a ZG-module to H1(G,ZG) (this is shown in Section 3). Such a
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G-tree exists for any (almost) finitely presented group (see [3], Theorem VI.6.3)
and in particular for G the fundamental group of a PD3-complex.

Note that the module Π[X ] depends (up to isomorphism) only on the unori-
ented simplicial complex X (together with the G-action), the choice of orientation
corresponding simply to a choice of canonical generators ±[ε]X , for each ε ∈ X .

Definition 3. Let X be a tree. We define a geodesic segment, a geodesic ray,
and a geodesic line in X to be any subcomplex of X homeomorphic, respectively,
to a real closed interval [0, x] for x ≥ 0, a real half-line [0,∞), and the real line
R. These sets correspond to finite, half-infinite and infinite edge paths which are
geodesic in the sense of no backtracking. The fact that a tree contains no circuits
ensures that the collection of all geodesic segments rays and lines, together with
the empty set, is closed under taking finite intersections.

Define the set, EX , of ends of X to be the set of equivalence classes of geodesic
rays where two rays γ and γ′ are said to be equivalent if γ ∩ γ′ is also a geodesic
ray.

We make the following observations based on the above definitions and the
basic properties of a tree. There is a unique geodesic segment between any pair of
vertices a, b in X (that is, having boundary set {a, b}). There is a unique geodesic
ray with given boundary vertex ν, and representing a given end ε, and which
we call the geodesic ray from ν to ε. Finally, between any pair of distinct ends
ε, ε′ ∈ EX there is a unique geodesic line which is the union of a (non-unique) pair
of rays belonging to ε and ε′ respectively.

Let e(X) = |EX | denote the number of ends of X , and ∞(X) = |V X \ VfX |
the number of∞-vertices, each of which may be an infinite number. Finally write

ξ(X) = e(X) +∞(X)− 1 .

Theorem 4. Let X be a tree with ∞-vertices. Then Π[X ] is free, as a Z-module,
with infinite rank whenever ξ(X) is infinite, and finite rank equal to max{ξ(X), 0}
otherwise.

Proof. Choose an arbitrary vertex ν0 in X . Without loss of generality we may
suppose that X is oriented such that, for every edge ε, o(ε) lies on the geodesic
segment between ν0 and t(ε). In other words, t(ε) is always further from ν0 than
o(ε). For ν ∈ V X write γν for the geodesic segment between ν0 and ν, and write
Xν for the subtree of X spanned by the set of vertices ν′ for which γν′ passes
through ν. Finally, write E+

ν for the set of edges ε ∈ EX with o(ε) = ν. That is
E+
ν contains those edges in Xν which are adjacent to ν.

Define X ′ to be the subgraph of X spanned by ν0 and those vertices ν for
which Xν is either infinite or contains an ∞-vertex. If ν is a vertex of X ′ other
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than ν0 then γν ⊂ X ′ since, for each ν′ in γν , Xν′ contains Xν and so is also either
infinite or contains an ∞-vertex. Thus X ′ is connected and hence a subtree of
X . Note also that the edges of X ′ are precisely those ε for which Xt(ε) is either
infinite or has an∞-vertex. Thus, if ε ∈ EX \EX ′, then Xt(ε) is a finite tree with
no ∞-vertices and one may easily check that

ε =
∑

ν∈VXt(ε)

∆(ν) , as an element of Z[EX ] ,

and hence [ε]X = 0 in Π[X ]. It follows, easily, that Π[X ] ∼= Π[X ′].
Note that if X = Xν0 is finite with no ∞-vertices then ξ(X) = −1, while X ′

is trivial (consisting only of the vertex ν0) and so Π[X ] ∼= 0. Hence the theorem
holds in this case, and we may assume henceforth that Xν0 is either infinite or
contains an ∞-vertex, as is already the case for every other vertex in X ′.

If ν ∈ V X ′ is not an ∞-vertex then E+
ν is a finite set of edges ε1, .., εn in EX ,

and EX ′∩E+
ν must be non-empty, for if each Xt(εi) were finite with no∞-vertices

then the same would be true of Xν , a contradiction. For each ν ∈ VfX ′ make an
arbitrary choice of edge in EX ′ ∩E+

ν and denote this succ(ν). Now define the set
G = EX ′ \ {succ(ν) | ν ∈ VfX ′} .

We claim that Π[X ′] is freely generated as a Z-module by the subset G of EX ′.
Consider Π[X ′] as the Z-module presented by the generating set EX ′ and the
relations ∆′(ν) = 0 for each ν ∈ VfX ′, where ∆′ is defined as in Definition 1 but
with respect to the tree X ′. The claim follows immediately from the observation
that each relation ∆′(ν) = 0 may be replaced by an equivalent relation which
expresses succ(ν) as equal to a Z-linear combination of edges in G. This is clearly
true if ν = ν0. Otherwise ν = t(ε) for some ε ∈ EX ′, and the relation ∆′(ν) = 0
expresses succ(ν) as a Z-linear combination of elements of G and the edge ε which
is either in G itself, or may be assumed, by induction on the length of γt(ε), to be
otherwise expressed as a Z-linear combination of elements of G.

Finally, it suffices to show that |G| and ξ(X) are either equal (and finite) or
both infinite. (We have already dealt with the case where ξ(X) = −1). Define P
to be the union of the set of all geodesic rays with boundary vertex ν0 and the
set of all geodesic segments between ν0 and some ∞-vertex. It is clear that P
corresponds bijectively to the set EX ∪{∞-vertices in X}, so that |P| = ξ(X)+1.
(Note that every segment or ray belonging to P is contained in X ′. It will follow
from the next step that in fact X ′ is precisely the union of the elements of P).
When ν is an ∞-vertex every edge of E+

ν ∩ EX ′ lies in G, and, when ν ∈ VfX ′,
all but one (namely succ(ν)). Thus, given any vertex ν1 of X ′, there is a unique
maximal subcomplex of X ′, which we call pν1 , which is a geodesic segment or ray
containing the segment γν1 , with ν0 as a boundary vertex, but not containing any
edges of G other than those already in γν1 . In fact, the set pν1 is an element of P .

Let G0 = G ∪ {0} and define the function π : G0 → P such that π(ε) = pt(ε) for
ε ∈ G and π(0) = pν0 . Note that, amongst the edges in π(ε) which belong to G, ε is
distinguished as the furthest from ν0, while π(0) contains no edge belonging to G.
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It follows that π is injective. Moreover, when |G| is finite, π is also surjective, for
then, given any γ ∈ P , there are only finitely many edges of G in γ and γ = π(ε)
where ε is the furthest of these from ν0, or γ = π(0) if there are no such edges.
Hence if |G| is infinite then so is ξ(X), and otherwise |G| is finite and the bijection
gives |G| = ξ(X). �

Note that when |G| is infinite it need not have the same cardinality as ξ(X). For
example, the infinite tree of valence 3 has countably many edges but uncountably
many ends, so that in this case |G| would be countable but ξ(X) uncountable.

Suppose now that X is a C-tree, where C = 〈g〉 denotes a finite cyclic group
of prime order p, and write Π = Π[X ] for the ZC-module presented by X . Note
that the set XC of fixed points of X under the action of C is a subtree of X (see
[13], I.6.1) and so a tree with ∞-vertices where we set VfXC = VfX ∩ XC . At
this point we recall the following standard notation, that, for M a ZG-module,
one writes MG and MG respectively for the invariant submodule and coinvariant
quotient module of M . In order to compute the homology Hq(C,Π), for q > 0,
one defines the norm map N : ΠC → ΠC with respect to C, which is induced by
the map N : Π → ΠC such that N(x) = x + g(x) + ... + gp−1(x) for x ∈ Π. The
homology groups Hq(C,Π), q > 0, are given by the kernel and cokernel of N when
q is even and odd respectively. These will now be computed purely in terms of the
fixed subtree XC .

Let A denote the set of edges of X which are not in XC but which have a
vertex in XC . So ε ∈ A precisely if one, but not both, of o(ε) or t(ε) lie in XC .
Note that each connected component of X \XC contains the interior of a unique
element of A. For each ε ∈ A write Xε for the tree (with∞-vertices) obtained from
the component of X \ XC containing int(ε) by replacing the missing vertex of ε
with an ∞-vertex. Define the ZC-module B =

⊕
ε∈A

Π[Xε] with a natural C-action

induced by the action of C on X . Since g(Π[Xε]) = Π[Xg(ε)] with g(ε) 6= ε for
each ε ∈ A, and moreover, by Theorem 4, each Π[Xε] is a free Z-module, it follows
that B is a free ZC-module.

We may think of B as the module presented by the edges and vertices of
X which lie outside XC . Indeed Π is simply the quotient of the ZC-module
B ⊕ Z[EXC ] obtained by imposing the remaining relations due to the vertices of
VfX

C . Namely, Π ∼= coker(∆ : Z[VfXC ]→ B ⊕ Z[EXC ]) where

∆(ν) =
∑

{ε|t(ε)=ν}

ε −
∑

{ε|o(ε)=ν}

ε , and ε =
{
ε if ε ∈ EXC ,

[ε]Xε if ε ∈ A .

Let φ : B ⊕ Z[EXC ] → Π denote the corresponding quotient map, and write D
for ∆(Z[VfXC ]) which is the kernel of this map. Significantly, each element of D
is fixed by the group C, since g(∆(ν)) = ∆(g(ν)) = ∆(ν) for each ν ∈ VfXC .
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Define the map N on B ⊕ Z[EXC ] by N (x) = x + g(x) + .. + gp−1(x) for
x ∈ B ⊕ Z[EXC ], and observe that, since φ is a ZC-homomorphism, φ ◦ N =
N ◦ φ. Also since B is a free ZC-module, while Z[EXC ] is a direct sum of copies
of the augmentation module Z, we have that kerN = (g − 1)B and imN =
BC ⊕ p.Z[EXC ].

Lemma 5. Let K denote the submodule of Π generated by those edges which do
not lie in XC, that is K = φ(B). Then K ∩ΠC ⊂ imN .

Proof. Suppose that x ∈ B represents an element φ(x) of K∩ΠC . Then x−g(x) =
η where η ∈ D and so must be fixed by g. Thus

p.η = η + g(η) + ...+ gp−1(η) = N (x− g(x)) = 0 ,

and, since B is free, it follows that η = 0. Thus x ∈ BC ⊂ imN , and consequently
φ(x) ∈ imN . �

Lemma 6. The norm map N : ΠC → ΠC has cokernel (Z/pZ)R, where R =
max{(ξ(XC), 0} for ξ(XC) finite, and R is infinite otherwise.

Proof. Write Π̂ for the quotient module Π/K and let ψ : Π → Π̂ denote the
canonical projection. Note that Π̂ ∼= Π[XC ] which, by Theorem 4, is free as a
Z-module with rank R. Now, one has Π = K + ΠC . So the restriction ψC of
ψ to ΠC is clearly surjective and has kernel KC = K ∩ ΠC . It now follows that
cokerN = cokerN ∼= coker(ψC ◦N), since, by Lemma 5, one has that KC ⊂ imN .
Moreover, since K is a ZC-submodule, one has N(K) ⊂ KC and hence a well-
defined map N̂ : Π̂→ Π̂ such that N̂ ◦ψ = ψC ◦N . Thus coker(ψC ◦N) = coker N̂
and, since im N̂ = pΠ̂, the Lemma is proven. �

Lemma 7. The kernel of the norm map N : ΠC → ΠC is Z/pZ in the case that
ξ(XC) = −1 , and is trivial otherwise.

Proof. Consider the following commuting square in which π denotes the canonical
projection of Π onto the C-coinvariant module.

B ⊕ Z[EXC ]
N � imN

π ◦ φ
↓↓

	..
...

...
φ′ ...

...
..

?

φ|imN

ΠC
N
- ΠC

Note that D+(g−1)B ⊆ ker(π◦φ). Conversely, if φ(x) ∈ kerπ = (g−1)Π then
φ(x) = (g−1)φ(y) = φ((g−1)y) for some y ∈ B⊕Z[EXC ], and so x ∈ D+(g−1)B.
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Hence ker(π ◦ φ) = D + (g − 1)B = D + kerN and therefore π ◦ φ induces a
surjective map φ′ : imN → ΠC , as in the diagram, with kernel N (D) or simply
p.D since elements of D are fixed by g. It now follows from the diagram that
kerN = φ′(kerφ|imN ) = φ′(D ∩ imN ) which may be identified with the quotient
(D ∩ imN )/p.D .

Take any element a ∈ kerN with representative a ∈ D ∩ imN which we may
assume to have the form a =

∑
ν∈VXC

nν∆(ν) where 0 ≤ nν < p and nν is zero

except for finitely many ν ∈ VfXC . Each ε ∈ EXC will have coefficient nt(ε)−no(ε)
in this expression, and since a is also an element of imN = BC ⊕ p.Z[EXC ] this
coefficient must be a multiple of p. Since we chose each nν < p it follows that
no(ε) = nt(ε) and, by the connectedness of XC , the coefficients nν take a constant
value n over the whole set V XC of fixed vertices. Now n can be nonzero (that is a
nontrivial) only if XC is finite and has no ∞-vertices, that is only if ξ(XC) = −1,
in which case putting n = 1 gives a nontrivial element a of order p which clearly
generates the whole of kerN . �

Given that the homology of C with coefficients in a ZC-module may be cal-
culated from the kernel and cokernel of the norm map, the next theorem follows
immediately from Lemmas 6 and 7 combined.

Theorem 8. Suppose that the finite cyclic group C of prime order p acts on the
tree with ∞-vertices X, and let Π = Π[X ] be the left ZC-module presented by X.
Then

Hi(C,Π) =
{

(Z/pZ)R+ for i odd,
(Z/pZ)R− for i > 0 even,

where R+ = max{ξ(XC), 0} if ξ(XC) is finite, and is infinite otherwise, and
R− = max{−ξ(XC), 0}. �

3. H1(G,ZG) for accessible groups

A G-tree X is said to be terminal (see [3]) if each edge stabilizer is finite and
each vertex stabilizer has at most one end. A group G is said to be accessible if
there exists a terminal G-tree. When G is a finitely generated accessible group we
may assume, by [3], VI.7.4, that there is a terminal G-tree X with quotient graph
G\X finite, and in this case we shall adopt the convention of considering X as a
tree with ∞-vertices by taking VfX to be precisely the set of vertices with finite
stabilizers. For a group G we shall consider the group cohomology H1(G,ZG)
as a left ZG-module with action defined in terms of the natural right action by
g.x = xg−1 for g ∈ G and x ∈ H1(G,ZG).

Theorem 9. Let G be an accessible group, and X a terminal G-tree with G\X



240 J. Crisp CMH

finite. Then the module Π[X ] presented by X is isomorphic to H1(G,ZG) as a
left ZG-module.

Proof. Since the statement is evidently true for G finite (in which case X is
a finite tree with no ∞-vertices), we may assume in what follows that G is an
infinite group. Recall that a graph of groups (G, Y ) consists of a graph Y together
with a collection G of groups Gv, for each v ∈ V Y , and subgroups Ge ⊂ Go(e), for
each e ∈ EY , with injective homomorphisms φe : Ge → Gt(e). Fixing a choice of
maximal subtree T of Y , one defines the fundamental group of (G, Y ) to be the
group with presentation

〈te , Gv | rel Gv , teat−1
e = φe(a) for a ∈ Ge , te = 1 for e ∈ ET 〉 ,

noting that up to isomorphism this group is independent of the choice of T .
Let X be a terminal G-tree with finite quotient, as in the statement. By the

Bass-Serre structure theorem ([13], I.5.4 Theorem 13) G is the fundamental group
of a finite graph of groups (G, Y ) where Y = G\X and the edge and vertex groups
of (G, Y ) are isomorphic to the corresponding edge and vertex stabilizers of X
respectively. Furthermore, X is isomorphic to the G-tree X̃ defined with vertex
and edge sets

V X̃ =
∐
v∈V Y

G/Gv , EX̃ =
∐
e∈EY

G/Ge ,

such that o(gGe) = gGo(e) and t(gGe) = gteGt(e) for g ∈ G and e ∈ EY , and
with G acting by left multiplication on cosets. Since X is a terminal G-tree the
vertex groups of Y have at most one end, so that the cohomology Mayer-Vietoris
sequence of Chiswell [2] (see also [13], II.2.8 Proposition 13) gives rise to a short
exact sequence of right ZG-modules

0→
⊕
v∈VfY

Z[Gv\G] ∆r−→
⊕
e∈EY

Z[Ge\G] −→ H1(G,ZG)→ 0 ,

where VfY = {v ∈ V Y | Gv finite} or just the set G\Vf X̃. If we choose to consider
this as a sequence of left ZG-modules and left ZG-maps (via the anti-isomorphism
g 7→ g−1 of G), then the first two modules are naturally isomorphic to Z[Vf X̃] and
Z[EX̃ ] respectively (by taking the coset Gvg to g−1Gv etc..) and one can check
that ∆r becomes exactly the map ∆ : Z[Vf X̃ ] ↪→ Z[EX̃ ] of Definition 1. Thus X̃,
or equivalently X , presents H1(G,ZG) as a left ZG-module. �

Corollary 10. If G is an infinite group and X a terminal G-tree with G\X finite
then e(X) +∞(X) = 1, 2 or is infinite according as to whether G has 1, 2 or
infinitely many ends, respectively.

Proof. This follows immediately from Theorem 9 and Theorem 4, and the fact
that rkZ(H1(G,ZG)) + 1 measures the number of ends of G. �
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4. Results on PD3-complexes

Let π be a group equipped with a homomorphism w : π → {±1}. We have
in mind, of course, the fundamental group π of a PD3-complex with orientation
character w. If Π is a left (resp. right) Zπ-module, denote by Π the left Zπ-module
with the same underlying abelian group, and action given by g.x = w(g)gx (resp.
w(g)xg−1) for all g ∈ π, x ∈ Π. The only consequence of Poincaré duality which
we shall use is the following.

Lemma 11. (Hillman, [9]) Let P be a PD3-complex with infinite fundamen-
tal group π. If C is a finite cyclic subgroup of π then there are isomorphisms
Hs(C,H

1
(π,Zπ)) ∼= Hs+3(C,Z) for all s ≥ 1.

Proof. This follows from the spectral sequence for the projection of the universal
cover P̃ onto P̃ /C given that Hq(P̃ ;Z) = Z, 0,H1

(π,Zπ), 0, ... which follows from
the duality isomorphisms, the fact that P̃ is simply connected and the assumption
that π is infinite. (We may assume, without loss, that P is a 3-dimensional CW-
complex). �

The thrust of the earlier Sections 2 and 3 was to be able to calculate these
homology groups independently of Lemma 11 (in fact without using duality). This
is achieved, for prime order cyclic subgroups, by taking Theorem 8 together with
the following lemma.

Lemma 12. Given a group π and homomorphism w : π → {±1}, let Π be a left
Zπ-module and Π as above. If C = 〈g〉 is a cyclic subgroup of π of prime order p
then

Hi(C,Π) ∼=
{
Hi(C,Π) if i > 0 and w(g) = 1,
Hi+1(C,Π) if i > 0 and w(g) = −1.

Proof. The case for w(g) = 1 is easy since then Π ∼= Π as ZC-modules. In the
case w(g) = −1 (and p = 2 necessarily), Π and Π are distinguished as ZC-modules
only by the action of g, whereby the homology, H∗(C,Π), of the complex

. . . −→ Π
1− g

- Π
1 + g

- Π
1− g

- Π - 0 ,

is just that of the complex

. . . −→ Π
1 + g

- Π
1− g

- Π
1 + g

- Π - 0 ,

The lemma now follows by comparing this with the complex for H∗(C,Π). �
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Remark 13. Given a PD3-complex P with infinite fundamental group π, then
since π is finitely presentable, it is accessible by Theorem VI.6.3 of [3], and there
exists a terminal π-tree X , as in Theorem 9, which presents Π ∼= H1(π,Zπ) as a
left Zπ-module. It is now clear, by Lemmas 11, 12 and Theorem 8, that if g is
an element of π of prime order then exactly one of the following two cases must
hold. Either w(g) = 1 and ξ(X〈g〉) = −1, or w(g) = −1 and ξ(X〈g〉) = 1. We
shall apply this to prove the following two theorems.

Theorem 14. Let P be an orientable PD3-complex with π = π1(P ). Then π
either has one end, is a proper free product, or is virtually free of finite rank. That
is to say that P is either an aspherical complex, a nontrivial connected sum (by
Turaev [15]), or finitely covered by some P̂ ' #k(S1 × S2), k ≥ 0.

Proof. Clearly we may assume that π is infinite, since a finite group is virtually
free of rank 0. Let X be the π-tree of Remark 13 and (G, Y ) the associated graph
of groups, which may be assumed to be finite since π is finitely generated ([3],
VI.7.4). Assume that π is not a proper free product, and hence that the edge
groups of (G, Y ) are all nontrivial. It now suffices to show that either the vertex
groups of (G, Y ) are all finite, for then π must be virtually free of finite rank (see
[10], also [13], II.2.6), or π has one end.

Suppose that (G, Y ) has an infinite vertex group. Then either there are no edge
groups and π has one end, or one of Go(e) or Gt(e) is infinite for some edge e ∈ EY .
But in the latter case we show that both these groups are finite thus reaching
a contradiction. Since Ge is nontrivial and finite, we may choose a nontrivial
g ∈ Ge ⊂ Go(e) of prime order. Now, since P is orientable, w(g) = 1 and Remark
13 shows that ξ(X〈g〉) = −1 in this case. That is X〈g〉 is finite with no∞-vertices,
and hence has finite vertex stabilizers. But Go(e) is the stabilizer of some vertex
of X which, since g ∈ Go(e), must lie in X〈g〉. Thus Go(e) must be a finite group.
Finally take g ∈ φe(Ge) ⊂ Gt(e) to show similarly that Gt(e) is finite. �

Corollary 15. Let P be an orientable PD3-complex. Then P is homotopy equiv-
alent to a connected sum V#P1#...#Pm where each Pi, for i = 1, ..,m, is an
aspherical PD3-complex and V is a PD3-complex with π1(V ) virtually free of
finite rank.

Proof. This follows from Theorem 14 by Turaev’s theorem ([15], Theorem 1) and
the fact that π1(P ) is finitely presented, and by observing that A∗B is a virtually
free group of finite rank if both A and B are. This last observation follows from
the theorem of [10] which states that a group is virtually free of finite rank if and
only if it is the fundamental group of a finite graph of groups with every vertex
group finite. �

Corollary 16. Let P be an arbitrary PD3-complex. Then π1(P ) is virtually
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torsion free. Indeed, P is finitely covered by an orientable PD3-complex which is
homotopy equivalent to a (possibly empty) connected sum of finitely many aspher-
ical PD3-complexes and copies of S1 × S2.

Proof. By considering the decomposition of Corollary 15 it is clear that the ori-
entation cover of P , and hence P itself, is finitely covered by such a connected
sum. Since aspherical PD3-complexes have torsion free fundamental groups, it
now follows that π1(P ) is virtually torsion free. (It is well known of course that
A ∗B is torsion free if and only if both A and B are. See [12] for instance). �

Theorem 17. Let P be a PD3-complex with π = π1(P ). If g ∈ π is a nontrivial
element of prime order p such that Cπ(g) is infinite, then p = 2, w(g) = −1 and
Cπ(g) has 2 ends.

Proof. Again let X be the π-tree with finite edge stabilizers of Remark 13. Note
that Cπ(g) acts on the subtree X〈g〉, also with finite edge stabilizers. (If x ∈ Cπ(g),
ε ∈ X〈g〉, then g(xε) = x(gε) = xε implies that xε ∈ X〈g〉 also). If ξ(X〈g〉) = −1
then X〈g〉 is a finite graph with finite vertex stabilizers in π and so in Cπ(g).
This contradicts Cπ(g) being infinite. Thus ξ(X〈g〉) ≥ 0. It now follows from the
Remark 13 that w(g) = −1, p = 2 (necessarily) and ξ(X〈g〉) = 1. Thus the set
EX〈g〉 ∪ {∞-vertices in X〈g〉} contains exactly two elements and there is a unique
geodesic segment, ray, or line γ joining them in X〈g〉. Since Cπ(g) respects the
set of∞-vertices and also acts on EX〈g〉, it must preserve the set γ. In fact, some
subgroup H of index at worst 2 in Cπ(g) must fix each end or ∞-vertex. If there
is some ∞-vertex involved then the infinite group H stabilizes every edge in γ
which is a contradiction. Thus γ is a geodesic line joining two ends and H acts
by translations. For any edge ε in γ the quotient H/stabH(ε) must be Z. But any
surjection H → Z splits, and since stabH(ε) is finite, H must be virtually Z and
have two ends. Hence Cπ(g) is also 2-ended as required. �

It follows that if P is an orientable PD3-complex then any torsion element of
π1(P ) has finite centraliser. Thus, for example π = G1∗AG2 is not the fundamental
group of an orientable PD3-complex if A is finite and a proper subgroup of both
NG1(A) and NG2(A), since then Nπ(A) is infinite, and hence so is Cπ(a) for a ∈ A.
As a corollary to this theorem we may also restate the main theorem of [9], which
also has application in that paper to 2-knot groups.

Corollary 18. (Hillman, [9]) Let P be a PD3-complex, with infinite fundamen-
tal group π. If π has a nontrivial finite normal subgroup N , then P ' S1 ×RP 2.

Proof. In this case N contains a nontrivial element g of prime order p where
Cπ(g) is a subgroup of finite index in π. Thus, applying Theorem 17, P is non-
orientable, g has order 2, and π in fact has two ends. So, by Theorem 4.4 of [16],
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P ' S1 ×RP 2. �

Ideally we should like to improve Theorem 14 by reducing the case that π is
virtually free. Beyond applying Theorem 17 as per the examples given, it appears
that some other approach is needed to eliminate the cases where π is the funda-
mental group of a graph of groups with finite vertex groups and some nontrivial
edge groups. Turaev ([15], Theorem 5) gives an explicit algebraic characterisation
of the pair (π1(X), w(X)) of a PD3-complex X , but it is not clear how to apply
this in general, let alone to decide whether the minimal example S3∗C2S3 proposed
in [9] is or is not the fundamental group of an orientable PD3-complex.

5. Extension to Poincaré pairs

Let P be a connected finitely dominated CW-complex and Q a subcomplex of
P which is a (not necessarily connected) PDn−1-complex with orientation class
induced (under inclusion) by a homomorphism w : π1(P )→ {±1}. Then the pair
(P,Q) is said to be an n-dimensional Poincaré pair if it exhibits the equivariant
Lefschetz duality of an n-dimensional manifold with boundary (See [16] for details).
A “weak loop theorem” due to C.B. Thomas [14] allows us to extend our main
results to apply to the fundamental groups of finite Poincaré pairs. However,
it is not immediately clear how to extend Turaev’s work and deduce topological
decompositions in this setting.

Theorem 19. Let (P,Q) be a finite orientable 3-dimensional Poincaré pair with
fundamental group π. Then π either has one end, is a proper free product, or
is virtually free of finite rank. Furthermore, any torsion element of π has finite
centraliser in π.

Proof. Since it is known ([4], [5]) that every PD2-complex is homotopy equivalent
to a closed surface we may suppose (by attaching mapping cylinders if necessary)
that Q is a disjoint union of closed orientable surfaces Qi and has a collar neigh-
bourhood Q×[0, 1) in P . By the weak loop theorem of [14], one may find a disjoint
collection of simple closed curves in each ‘boundary’ componentQi which represent
a set of generators whose normal closure is the kernel of the map π1(Qi)→ π1(P )
induced by inclusion. One may then modify P by attaching a copy of D2×I along
a neighbourhood of each of these closed curves to obtain a different Poincaré pair
with the same fundamental group as P . In this way one reduces to the case where
each Qi is π1-injective and, by capping off each spherical boundary component
with a 3-ball, we may assume moreover that eachQi is aspherical. In this case the
conclusion of Lemma 11 is still valid, and the theorem now follows by precisely the
same arguments as used to prove Theorems 14 and 17, since these are otherwise
independent of duality properties.
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To see that Lemma 11 holds in this context, note that, since each Qi maps
π1-injectively into P , the universal cover (P̃ , Q̃) of the pair (P,Q) has simply
connected boundary components. Thus H1(Q̃) = 0. Moreover, since each Qi is
aspherical, H2(Q̃) = 0 and therefore the relative exact sequence gives an isomor-
phism H2(P̃ ) ∼= H2(P̃ , Q̃). Now, by Lefschetz duality, H2(P̃ , Q̃) ∼= H

1
(π,Zπ)

and, since P̃ is simply-connected and π is infinite and we may suppose that P̃ is
a 3-dimensional complex, we have

Hq(P̃ ;Z) = Z, 0,H1
(π,Zπ), 0, ...

as required for the proof of Lemma 11. �
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[8] J.A. Hillman, Three-dimensional Poincaré duality groups which are extensions, Math. Z.
195 (1987), 89–92.

[9] J.A. Hillman, On 3-dimensional Poincaré duality complexes and 2-knot groups, Math. Proc.
Camb. Phil. Soc. 114 (1993), 215–218.

[10] A. Karrass, A. Pietrowski and D. Solitar, Finite and infinite cyclic extensions of free groups,
J. Aust. Math. Soc. 16 (1973), 458–466.

[11] P.H. Kropholler, An analogue of the torus decomposition theorem for certain Poincaré
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