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Compact minimal hypersurfaces with index one in the real
projective space

Manfredo do Carmo, Manuel Ritoré and Antonio Ros

Abstract. Let Mn be a compact (two-sided) minimal hypersurface in a Riemannian manifold
M
n+1

. It is a simple fact that if M has positive Ricci curvature then M cannot be stable (i. e.
its Jacobi operator L has index at least one). If M = Sn+1 is the unit sphere and L has index
one, then it is known that M must be a totally geodesic equator.

We prove that if M is the real projective space Pn+1 = Sn+1/{±}, obtained as a metric
quotient of the unit sphere, and the Jacobi operator of M has index one, then M is either a totally
geodesic sphere or the quotient to the projective space of the hypersurface Sn1 (R1)×Sn2 (R2) ⊂
Sn+1 obtained as the product of two spheres of dimensions n1, n2 and radius R1, R2, with
n1 + n2 = n, R2

1 +R2
2 = 1 and n1R2

2 = n2R2
1.
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Introduction

Given a compact minimal hypersurface (without boundary) M in a compact Rie-
mannian manifold M

n+1
, the second variation formula for the area determines

on the normal bundle of M a selfadjoint elliptic operator L called the Jacobi
operator of M . If the normal bundle of M is trivial or, in other words, if M
has a globally defined unit normal vector field N , then we say that M is two-
sided. When M is orientable, this property is equivalent to the orientability of
M . In the two-sided case the Jacobi operator acts on functions and it is given by
Lu = ∆u+(Ric(N)+ |σ|2)u, for any u ∈ C∞(M), where ∆ is the Laplacian of M ,
Ric(N) is the Ricci curvature of M in the direction of the normal vector N and
|σ| is the length of the second fundamental form of the immersion. The index of
M is defined as the number of negative eigenvalues of L. If the index is zero, then
M is said to be stable. Although stability play an important role in the theory of
minimal hypersurfaces it is easy to see that some manifolds M admit no two-sided
stable compact hypersurfaces: this holds, for instance, if the Ricci curvature of M
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is positive. On the other hand, Pitts [11] has proved that any compact Rieman-
nian manifold M admits an embedded compact minimal hypersurface with index
less than or equal to one (which is free of singularities when n 6 7). Also Pitts
and Rubinstein [12] have produced, by minimax method a certain number of index
one examples in three-manifolds. Ross [16] has proved that the classical Schwarz
surface has index one in the cubic flat three torus.

If the ambient manifold has nonnegative Ricci curvature it is natural to hope
that the family of two-sided compact index one minimal hypersurfaces has specific
nice properties. In particular complete classifications of these hypersurfaces seems
to be possible for ambient spaces M simple enough. The constant curvature case,
i. e., when M is a flat or elliptic space form, is of special interest. At the present
there are few classifying results, even for simple three manifolds. We have the
following results: Simons [17] proved that index one minimal surfaces in the sphere
are totally geodesic. López and Ros [9], using results by Fischer-Colbrie [7], showed
that the only complete minimal surfaces with index one are the Catenoid and
Enneper surface. Previously do Carmo and Peng [6] and Fischer-Colbrie and
Schoen [8] had shown that the only stable (index zero) complete minimal surface
is the plane. From the work by Ritoré and Ros [14] a classification of index
one minimal surfaces in P3 can be obtained: it must be a two-fold covering of
a linear subvariety or a tube of certain radius around a line. These authors [15]
also obtained a compactness result for the space of index one minimal surfaces in
flat three tori. They prove that the set of flat three tori that admit embedded
orientable compact minimal surfaces with index one is a compact subset in the
moduli space. Ritoré ([13]) made a study of index one minimal surfaces in flat
three space forms. For general 3-dimensional ambient space some partial results
are known. The interested reader can consult [14] and the references there.

In this paper we treat compact two-sided index one minimal hypersurfaces in
the real projective space Pn+1. Our main result, Theorem 3, is

The only compact two-sided minimal hypersurfaces with index one in the
real projective space Pn+1 are the totally geodesic spheres and the minimal
Clifford hypersurfaces.

The first ones are the twofold covering of the linear hypersurfaces (which are
one-sided) while the Clifford hypersurfaces are embedded. These hypersurfaces
are simply the quotient to Pn+1 of the product of two spheres of right dimension
and radii that lie in Sn+1. They are defined in section 1.

Recall that a constant mean curvature hypersurface in an (n+ 1)-dimensional
manifold is volume preserving stable if the second derivative of the n-volume is
nonnegative for variations preserving the (n+1)-volume enclosed ([1]). An impor-
tant remark is that the boundary of the isoperimetric domains of M are volume
preserving stable. Using this fact Ritoré and Ros give in [14] a complete solu-
tion of the isoperimetric problem in the three dimensional projective space. As a
consequence of Theorem 3 we obtain in Theorem 4 a classification of the volume
preserving stable two-sided hypersurfaces in Pn+1 which are minimal.



Vol. 75 (2000) Minimal hypersurfaces with index one 249

The only compact two-sided minimal hypersurfaces which are volume pre-
serving stable in the real projective space Pn+1 are the totally geodesic
spheres and the minimal Clifford hypersurfaces.

We have organized this paper into two sections. In the first one we define and
study Clifford hypersurfaces. In the second one we state and prove our results.

The first author wishes to thank the warm hospitality of the Department of
Geometry and Topology of the University of Granada where this paper was writ-
ten.

1. Clifford hypersurfaces

In this section we review the basic properties of a simple family of hypersurfaces
in the unit sphere Sn+1 ⊂ Rn+2. Given two positive integers n1 and n2 with
n1 + n2 = n and two positive real numbers R1 and R2 such that R2

1 + R2
2 = 1,

the product Sn1(R1)× Sn2(R2) of the spheres Sni(Ri) = {pi ∈ Rni+1 : |pi| = Ri},
i = 1, 2, is a compact homogeneous hypersurface of the sphere Sn+1 usually called
a Clifford hypersurface.

If p = (p1, p2) is a point in M = Sn1(R1)×Sn2(R2), then a unit vector normal
to M at this point is given by

N =
(
−R2
R1

p1,
R1
R2

p2

)
.

Therefore the principal curvatures of M are R2
R1

, with multiplicity n1, and −R1
R2

,
which has multiplicity n2. In particular,

M minimal⇐⇒ n1R
2
2 = n2R

2
1.

Now we assume that M is a minimal Clifford hypersurface. Note that there is
just one of such hypersurfaces for any choice of n1 and n2. The square length of
the second fundamental form of M is given by

|σ|2 = n1
R2

2
R2

1
+ n2

R2
1

R2
2

= n.

As the Ricci curvature of Sn+1 is equal to n, it follows that the Jacobi operator of
M is simply L = ∆ + 2n. The eigenvalues of the Laplacian of M are known to be

k1(k1 + n1 − 1)
R2

1
+
k2(k2 + n2 − 1)

R2
2

, (1)

where k1 and k2 are nonnegative integers, see [3].
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The hypersurface M is invariant under the antipodal map and, so, it induces
an embedded minimal hypersurface M/{±} in the real projective space Pn+1 =
Sn+1/{±}, which we will also call a Clifford hypersurface. The Jacobi operator
of M/{±} is given again by L = ∆ + 2n, but the eigenvalues of the Laplacian
in the quotient hypersurface are only those in (1) for which k1 + k2 is even. In
particular, the first non zero eigenvalue of the Laplacian of M/{±} corresponds
to k1 = k2 = 1 (the other candidates are obtained for (k1, k2) = (2, 0), (0, 2), but
it can be checked directly that they give bigger eigenvalues) and its value is

n1

R2
1

+
n2

R2
2

= n1
R2

1 +R2
2

R2
1

+ n2
R2

1 +R2
2

R2
2

= n1 + n2 + n1
R2

2
R2

1
+ n2

R2
1

R2
2

= 2n.

Therefore it follows that for any minimal Clifford hypersurface M in Sn+1, the
induced hypersurface in the projective space, M/{±}, has index one.

2. Results

Let f : M → Sn+1 be an orientable compact minimal hypersurface of the sphere
and N its unit normal vector field. These maps verify the differential equations

∆f + nf = 0 and ∆N + |σ|2N = 0, (2)

where |σ| is the length of the second fundamental form of the immersion. The
Jacobi operator of M is given by L = ∆ + |σ|2 + n and its associated quadratic
form is

Q(u, u) = −
∫
M

uLu dV =
∫
M

{|∇u|2 − (|σ|2 + n)u2} dV,

for any smooth function u on M .
Given a, b ∈ Rn+2 we consider the vector valued function φa,b : M → Rn+2

defined by
φa,b = 〈f,a〉 f + 〈N,a〉N + 〈f,b〉N. (3)

Lemma 1. The value of the Jacobi operator when applied to the function φa,b is
given by

−Lφa,b = (n− |σ|2)(〈f,a〉 f − 〈N,a〉N) +X,

where X : M → Rn+2 is a vector field tangent to M .

Proof. Each one of the summands of φa,b is a product of two functions, say u and
v. The lemma follows by combining the formula ∆(uv) = v∆u+u∆v+2 〈∇u,∇v〉
with equations (2) and using the fact that, in our case, the terms which correspond
to the product of gradients are always tangent to M . �
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Lemma 2. Given a, b ∈ Rn+2 we have∫
M

(|σ|2 − n) 〈N,a〉 〈f,b〉 dV = 0.

Proof. Using (2) and Green’s theorem we get∫
M

(|σ|2 − n) 〈N,a〉 〈f,b〉 dV =
∫
M

(〈N,a〉∆ 〈f,b〉 − 〈f,b〉∆ 〈N,a〉) dV = 0,

as we claimed. �

As remarked in the introduction, there are no stable two-sided hypersurfaces
in Pn+1 since its Ricci curvature is strictly positive. Examples of compact two-
sided hypersurfaces with index one in Pn+1 are the totally geodesic immersions of
Sn in Pn+1 (twofold coverings of embedded totally geodesic Pn) and the Clifford
hypersurfaces in Pn+1. Let us see that they the only examples.

Theorem 3. The only compact two-sided minimal hypersurfaces with index one
in the real projective space Pn+1 are the totally geodesic spheres and the minimal
Clifford hypersurfaces.

Moreover the only embedded ones are the Clifford hypersurfaces.

Proof. Let f̃ : M̃ → Pn+1 be a two-sided index one compact minimal hypersurface.
By using locally constant test functions we conclude from the index one assumption
that M̃ must be connected. If f̃ lifts to an immersion of M̃ to the sphere Sn+1,
then M̃ is an orientable index one minimal hypersurface of the sphere. It follows
from [17] that, in this case, M̃ is a totally geodesic sphere.

Henceforth we assume that the above lift does not exist. Therefore there is
a connected twofold covering M → M̃ and a isometric minimal immersion f :
M → Sn+1 locally congruent to f̃ and such that, if we denote by s : M →M the
isometric involution induced by the covering, then f is odd, that is f ◦ s = −f .
Moreover, the two-sidedness of M̃ implies that M is orientable and that its unit
normal vector field N : M → Sn+1 also verifies N ◦ s = −N . In particular the
functions φa,b above are even with respect to s, i. e., φa,b ◦ s = φa,b. Observe
that the first eigenfunction ϕ of the Jacobi operator L of M is also even: this
follows because the associated eigenspace is one dimensional, s is an isometry and
ϕ > 0 on M .

Our index one hypothesis, when translated to M , says that Q(u, u) > 0 for
any smooth function u on M such that u ◦ s = u and

∫
M
uϕdV = 0. Moreover, if

for a function u as above we have Q(u, u) = 0, then u is a Jacobi function, that is
Lu = 0 on M .

In our argument we will use as test functions the maps φa,b which are even
and that, under suitable choice of the parameters a, b in Rn+2 will be orthogonal
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to ϕ. From Lemmae 1 and 2 we obtain

Q(φa,b, φa,b) =
∫
M

(n− |σ|2)(〈f,a〉2 − 〈N,a〉2) dV. (4)

Note that the expression above does not depend on b. Consider the linear map
F : Rn+2 → Rn+2 defined, for any b ∈ Rn+2, by

F (b) =
∫
M

ϕ 〈f,b〉N dV.

Claim. F is a linear isomorphism.

Proof. To prove this claim assume, reasoning by contradiction, that there is b 6=
0 such that F (b) = 0. Taking φ = φ0,b = 〈f,b〉N , we have from (4) that
Q(φ, φ) = 0. Thus Lφ = 0. On the other hand, Lemma 1 says that Lφ is
a certain tangent vector field X along M . Explicit computation gives, in this
special case, that X = −Abt, where A is the second fundamental form of M ,
viewed as an endomorphism, and bt is the tangent part of b along M . Thus we
have that Abt = 0 on M , which is the same to say that the function 〈N,b〉 is
constant. As N is an odd function, this constant must be zero. From that we see
that the Hessian of the linear function u = 〈f,b〉 is given by −〈, 〉u. If u 6≡ 0,
then Obata’s theorem ([3]) asserts that M is isometric to a unit sphere. In this
case the Gauss equation implies that M is totally geodesic in Sn+1. Thus M is
either a linear hypersurface in the projective space (which cannot hold because
these hypersurfaces are one-sided) or a totally geodesic sphere covering twice a
linear hypersurface (which is again not possible because this immersion lifts to the
(n + 1)-dimensional sphere). If u ≡ 0, then we conclude, now in a trivial way,
that M is again totally geodesic which is impossible as above. This contradiction
proves the claim. �

Take an orthonormal basis a1, . . . ,an+2 in Rn+2. For any i = 1, . . . , n + 2
we can find, using the claim above, a vector bi ∈ Rn+2 such that the function
φi = φai,bi is L2-orthogonal to ϕ. Therefore Q(φi, φi) > 0 and from (4) we get

0 6
n+2∑
i=1

∫
M

(n− |σ|2){〈f,ai〉2 − 〈N,ai〉2}dV =
∫
M

(n− |σ|2)(|f |2 − |N |2) dV = 0.

This implies that Lφi = 0 for i = 1, . . . , n+ 2 and so, using lemma 1 we conclude
that (n − |σ|2) 〈f,ai〉 = 0 for any i, which is possible only if n − |σ|2 = 0 on
M . Now the result of Chern, do Carmo and Kobayashi [5] says that M is locally
congruent to a Clifford minimal hypersurface. Thus M is congruent either to the
Clifford hypersurface Sn1(R1)× Sn2(R2) ⊂ Sn+1 (with n1R

2
2 = n2R

2
1) itself or to
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a nontrivial finite covering of it. We discard the second case (which, of course, is
possible only if either n1 or n2 are equal to one) because its index is bigger than
one. We can see that by checking explicitly the eigenvalues of the Laplacian, as in
(1). This proves the theorem. �

A compact constant mean curvature hypersurface Mn immersed in M
n+1

is
volume preserving stable if the second derivative of the n-volume is nonnegative
for any variation keeping constant the (n + 1)-volume. If M = Pn+1 and M is
two-sided then volume preserving stability is equivalent to

−
∫
M

u (∆u+ (|σ|2 + n)u) dV > 0,

for any smooth function u onM with mean zero, where |σ| is the square of the norm
of the second fundamental form σ of M . A complete classification of compact two-
sided volume preserving stable surfaces in P3 is given in [14]. As a consequence,
the isoperimetric domains in P3 are found.

If M is volume preserving stable then the operator ∆+|σ|2+n has index zero or
one (none or one negative eigenvalues). As |σ|2 +n > 0 then it cannot have index
zero. So a compact minimal hypersurface which is two-sided and volume preserving
stable has index one. By Theorem 3, M must be a totally geodesic sphere or a
Clifford hypersurface. Since |σ|2 + n is constant for these hypersurfaces, checking
volume preserving stability is reduced to an eigenvalue comparison as in section 1
([1]). So we have

Theorem 4. The only compact two-sided minimal hypersurfaces which are volume
preserving stable in the real projective space Pn+1 are the totally geodesic spheres
and the minimal Clifford hypersurfaces.

It is expected that, as in the three dimensional case, the isoperimetric domains
in Pn+1 are some geodesic balls and their complementary domains, and the do-
mains enclosed by some Clifford hypersurfaces, see Berger [2, pp. 141–142] and
Burago and Zalgaller [4, 10.2.3].

The main results in this paper remain valid if we allow a singular set of zero
s-dimensional Hausdorff measure, with s > n− 2 (for instance for solutions to the
isoperimetric problem), see [10].

References

[1] J. L. Barbosa, M. do Carmo and J. Eschenburg, Stability of hypersurfaces with constant
mean curvature in Riemannian manifolds, Math. Z., 197 (1988), 123–138.

[2] M. Berger, Riemannian geometry during the second half of the twentieth century, Jber. d.
Dt. Math.-Verein. 100 (1998) 45–208.



254 M. do Carmo, M. Ritoré and A. Ros CMH
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