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On a problem of Nazarova and Roiter
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Abstract. In the present paper we introduce the notion of representations of a bush which
is a generalization of matrix problems (self–reproducing systems) introduced by Nazarova and
Roiter. We show that the problem of classifying representations of clannish algebras come down
to such generalized matrix problems. Based on the classification of Crawley–Boevey, we provide
a description of indecomposable representations of bushes over any field. The proof is based on
a categorical formulation of the matrix reduction of Nazarova and Roiter.
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Introduction

In the present article, we consider a generalization of matrix problems (self–
reproducing systems) introduced by Nazarova and Roiter [8]. Their motivation
was to solve a problem posed by Gelfand [6]: classify the indecomposable repre-
sentations of the quiver

a
1

b
1

a
2

b
2

subjected to the relation a1b1 = a2b2.
In [2] Crawley–Boevey reconsiders the problem and introduces a new class of

matrix problems called “clans”. The approach used in [2] is the functorial filtration
method. It seems to us that both the notion of a clan and the functorial method
are not well adapted to the problem treated by Crawley–Boevey.
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Our aim here is to replace clans by a generalization of self–reproducing systems
and to use the method presented in [8] instead of the functorial one. Our method
also works for fields of cardinality 2, a case which Crawley–Boevey was unable to
handle with his method. Our classification however is based on that of Crawley–
Boevey. For the proof of our classification theorem we use a categorical formulation
of the matrix reduction of Nazarova and Roiter (see [3]).

After the completion of a preliminary version of the present paper, Prof. Serge-
jchuk pointed out to me that the matrix problems considered here have been
studied by Bondarenko [1].

Throughout the paper, k denotes an arbitrary field.
The terminology used throughout the paper is taken from [5].

1. Tangles and Bushes

1.1. Let A be an aggregate over a field k with spectroid S. A tangle over A
is a pair (M−,M+) formed by sequences M− = (M−1 , · · · ,M−n ) and M+ =
(M+

1 , · · · ,M+
n ) of pointwise finite left A–modules. Given such a tangle, we de-

note by rep(M−,M+) the aggregate whose objects are the representations of
(M−,M+), i.e. the sequences (X ; f1, · · ·, fn) where X∈A and fi∈Homk(M−i (X),
M+
i (X)), i = 1, · · · , n. A morphism from (X ; f1, · · · , fn) to (X ′; f ′1, · · · , f ′n) is

given by a morphism µ ∈ A(X,X ′) such that f ′iM
−
i (µ) = M+

i (µ)fi for i =
1, · · · , n.

1.2. Our aim is to classify the indecomposables of rep(M−,M+) for particular
tangles (M−,M+) which we describe now.

By definition, a rod is a finite ordered set R such that each x ∈ R admits at
most one y ∈ R satisfying y <> x (i.e. incomparable with x).

Examples. The ordered sets with the following Hasse–quivers are rods:

R
1

R
2

R
3
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A tangle (M−,M+) is called rodded if the following conditions are satisfied:
(R1) For each i, the lattices of submodules of M−i and M+

i are rods;
(R2) For each s ∈ S,

n∑
i=1

(dimkM
−
i (s) + dimkM

+
i (s)) ≤ 2;

(R3) If the submodules of Mε
i generated by elements a ∈ Mε

i (s) and b ∈ Mε
i (t)

are incomparable for some i, some s, t ∈ S and some ε ∈ {−,+}, then∑
j,η

dimkM
η
j (s) = 1 =

∑
j,η

dimkM
η
j (t);

(R4) For any s, t ∈ S, the canonical map

θ(s, t) : RS(s, t) −→
n∏
i=1

R−i (s, t)×R+
i (s, t)

is surjective.
Here RS denotes the radical of S and Rεi (s, t) the set of all f ∈ Homk(Mε

i (s),
Mε
i (t)) satisfying f(N(s)) ⊂ RN(t) for each submodule N of Mε

i .

1.3. Given a tangle (M−,M+) over A, we denote by I the intersection of the
annihilators of all M−i and M+

i . The tangle is called faithful if I = 0. In the case
of a faithful rodded tangle, the maps θ(s, t) are bijective. Our purpose is to give
a concrete construction of faithful rodded tangles.

Let S be a pair formed by two sequences of disjoint rods S− = (S−1 , · · · , S−n )
and S+ = (S+

1 , · · · , S+
n ). We then equip the union |S| = ∪ni=1(S−i ∪ S+

i ) with the
smallest order relation containing the order relations of the rods S−i and S+

i . If
there is no risk of confusion, we simply write S instead of |S|. By kS we denote the
spectroid whose objects are the elements of S, whose morphism–spaces kS(x, y)
are one–dimensional with basis (y|x) if y ≥ x, or else are 0. The composition is
such that (z|y) ◦ (y|x) = (z|x) [5]. Each interval I of S gives rise to a module kI
over kS such that kI(x) = 0 if x /∈ I and kI(y) = k, kI(z|y) = 11k if y, z ∈ I and
y ≤ z [5]. We set L−i = kI if I = S−i and L+

i = kI if I = S+
i .

Let further ∼ be an equivalence relation on S such that:
(E1) Each equivalence class contains at most two elements;
(E2) In case x, y ∈ Sεi and x <> y, the equivalence class of x consists of x only.

The S together with the equivalence relation is called a bush.
Let S denote the spectroid whose objects are the equivalence classes of S, whose

spaces of radical morphisms areRS(a, b) = ⊕x∈a,y∈b,y>xk(y|x), whose composition
is such that (z|y′) ◦ (y|x) is (z|x) if y′ = y and 0 otherwise. Let further A :=
⊕S denote the additive hull of S, whose objects are sequences (X1, · · · , Xl) of
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objects of S, whose morphisms (X1, · · · , Xl) → (Y1, · · · , Ym) are identified with
the “matrices” µ = [µji] ∈ ⊕i,jS(Xi, Yj). The composition of morphisms obeys the
rules of matrix multiplication. Then each module L over kS provides a module
L̃ over A such that L̃(a) = ⊕x∈aL(x) for each a ∈ S; the action of L̃(y|t) on
m ∈ L(x) ⊂ L̃(a) coincides with that of L(y|x) if x = t or else is 0. In case L = L−i
(resp. L+

i ), we set L̃ = M−i (resp. M+
i ), thus obtaining a tangle (M−,M+) over

A. This tangle is faithful and rodded.
In the sequel, the representations of (M−,M+) will be simply called represen-

tations of S.

Proposition. For each faithful rodded tangle (N−, N+) over an aggregate B with
spectroid T , there is a bush S as above and an equivalence Φ : A → B such that
Nε
i Φ ∼= Mε

i for all i ∈ {1, · · · , n} and ε ∈ {−,+}.

Proof. Let the points of Sεi be given by the submodules X of Nε
i with simple top

X/RX, i ∈ {1, · · · , n}, ε ∈ {−,+}. We equip Sεi with an order relation such that
X ≤ Y is equivalent to X ⊇ Y . By (R1), Sεi is a rod.

Set S = (S−1 , · · · , S−n ;S+
1 , · · · , S+

n ) and equip S with an equivalence relation
such that X ∼ Y ⇐⇒ X/RX ∼= Y/RY . By (R2) and (R3), this relation satisfies
(E1) and (E2), i.e. S is a bush.

For each X ∈ S (the spectroid associated with the bush S), we denote by
tX ∈ T the point supporting X/RX , and we choose a generator eX ∈ Nε

i (tX) of
X . Then Nε

i (tX) = ⊕X′∼X,X′∈Sε
i
keX′ .

The map X 7−→ tX gives rise to a functor φ : S → T such that φ(Y |X) =
θ(tX , tY )−1(f), where f ∈ Homk(Nε

i (tX), Nε
i (tY )) maps eX to eY and annihi-

lates eX′ whenever X ′ 6= X . The functor φ is an isomorphism and induces an
equivalence Φ : A → B. The k–linear maps

µεi (X) : Nε
i Φ(X) =

⊕
X′∼X,X′∈Sε

i

keX′ −→
⊕

X′∼X,X′∈Sε
i

kX ′ = Mε
i (X)

∑
X′

λX′eX′ 7−→
∑
X′

λX′X
′

define an isomorphism between Nε
i Φ and Mε

i , i ∈ {1, · · · , n}, ε ∈ {−,+}.

1.4. Example 1. In [8] Nazarova and Roiter examine the particular case of one
pair of rods. The classification of representations in [7], [4], and [9] can be reduced
to that of bushes.

Example 2. Representations of
∼
An. We illustrate the general construction with

the following example:
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3

45

6

b

c

d

e

f

Set S−1 = {a−}, S+
1 = {a+}, · · · , S−6 = {f−}, S+

6 = {f+} and equip S =
∪6
i=1(S−i ∪ S+

i ) = {a−, a+, · · · , f−, f+} with the equivalence relation a− ∼ f−,

a+ ∼ b−, b+ ∼ c+, c− ∼ d−, d+ ∼ e−, e+ ∼ f+. Then rep
∼
A6 is equivalent to

rep(M−,M+), where (M−,M+) is the rodded tangle associated with the bush S
(see 1.3).

Example 3. Clannish algebras[2]: Let Q be a quiver and Sp a set of loops in
Q. The arrows in Sp are called “special” and the others “ordinary”. Let further
R = Z ∪ {e2 − e : e ∈ Sp} be a set of “relations” of Q, where Z consists of
compositions µν of ordinary arrows µ, ν. The algebra A = k[Q]/R, where k[Q]
denotes the algebra of the quiver Q, is called clannish if the following conditions
hold:
(C1) At most two arrows start at each vertex, at most two stop;
(C2) For each ordinary arrow a, there is at most one arrow b with ba /∈ Z and at
most one c with ac /∈ Z;
(C3) Without real loss of generality, we further suppose that R is minimal with
respect to (C2).

Examples. The algebras with the following data are clannish:

a
x x

x

y

y y

b

e

1 2

a) b) c)

a g h

b f

e
c

d

Sp = {e} Sp = ∅ Sp = {e}
Z = {ba} Z = {all xy, yx} Z = {ba, cb, fc, d2, hg}

With each clannish algebra k[Q]/R we will associate a tangle.
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For the sake of simplicity, we identify the set Qv of vertices with {1, 2, · · · , n}.
We further set x− = (x,−), x+ = (x,+) whenever x is a vertex or an ordinary
arrow. To each i ∈ Qv, we then attach a set Ai consisting of i− and i+, of special
loops at i, and of all x− (resp. x+) where x is an ordinary arrow starting (resp.
stopping) at i. Finally, we construct two disjoint rods S−i , S

+
i such that:

a) i− ∈ S−i , i+ ∈ S+
i and Ai = S−i ∪ S+

i ,
b) Each Sεi has one of the following forms:

1) {iε <> e}, where e is a special loop at i,
2) {a− < iε}, where a is an ordinary arrow starting at i,
3) {iε < b+}, where b is an ordinary arrow stopping at i,
4) {a− < iε < b+}, where a (resp. b) is an ordinary arrow starting (resp.

stopping) at i and ab ∈ Z.
Of course, if Ai 6= {i−, i+}, there are exactly two possible choices for S−i and

S+
i . For instance, in case

1

2

a
b

Q

c
3 4

, ,

Z ab= { }

we obtain S−3 = {a− < 3− < b+}, S+
3 = {3+ < c+}, or reversely, S−3 = {3− <

c+}, S+
3 = {a− < 3+ < b+}.

We equip S = ∪ni=1(S−i ∪ S+
i ) with an equivalence relation such that a− ∼ a+

for each ordinary arrow a.
We denote by (M−,M+) the tangle associated with S and by repb(M

−,M+)
the full subcategory of rep(M−,M+) fromed by representations (X ; f1, · · · , fn)
such that all fi are bijective.

Proposition. rep(Q,R) is equivalent to repb(M−,M+).

Proof. For each arrow a /∈ Sp with a− ∈ Sεi and a+ ∈ Sηj , and each X ∈ A, we
denote by ξaX the canonical isomorphism

Mε
i (X)/RMε

i (X)→Rh
η
jMη

j (X),

where hηj = 1 (resp. 2) if Sηj consists of 2 (resp. 3) elements.
For each e ∈ Sp with e ∈ Sεi , we denote by Jεi and Lεi the simple submodules

of Mε
i supported by iε and e respectively.

With each object (X ; f1, · · · , fn) in repb(M−,M+) we attach an object V =
(V (i), V (α)) in rep(Q,R) as follows:
1) V (i) = M+

i (X), i = 1, · · · , n.
2) For each arrow α : i −→ j, in order to define V (α) : M+

i (X) → M+
j (X) we

consider two cases.
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Case 1. α /∈ Sp, α− ∈ Sεi , α+ ∈ Sεj . If ε = η = +, V (α) is the composition

M+
i (X)

pr−→M+
i (X)/RM+

i (X)
ξαX−→ Rh

+
j M+

j (X) im−→M+
j (X);

if ε = + and η = −, V (α) is the composition

M+
i (X)

pr−→M+
i (X)/RM+

i (X)
ξαX−→ Rh

−
j M−j (X) im−→M−j (X)

fj−→M+
j (X);

if ε = − and η = +, V (α) is the composition

M+
i (X)

f−1
i−→M−i (X)

pr−→M−i (X)/RM−i (X)
ξαX−→ Rh

+
j M+

j (X) im−→M+
j (X);

if ε = η = −, V (α) is the composition

M+
i (X)

f−1
i−→M−i (X)

pr−→M−i (X)/RM−i (X)
ξαX−→Rh

−
j M−j (X) im−→M−j (X)

fj−→M+
j (X).

(By pr we denote the canonical projection, by im the canonical immersion.)
Case 2. α ∈ Sp and α ∈ Sεi for some i ∈ {1, · · · , n}, ε ∈ {−,+}. If ε = +,

V (α) is identified with

0⊕ 11
L+
i

(X) : M+
i (X) = J+

i (X)⊕ L+
i (X) −→ J+

i (X)⊕ L+
i (X) = M+

i (X);

if ε = −, V (α) is the composition

M+
i (X)

f−1
i−→M−i (X) =J−i (X)⊕ L−i (X)

0⊕11
L
−
i

(X)
−→ J−i (X)⊕ L−i (X) = M−i (X)

fi−→M+
i (X).

Thus we obtain a functor

F : repb(M
−,M+) −→ rep(Q,R)

(X ; f1, · · · , fn) 7−→ V = (V (i), V (α))

which maps a morphism µ : (X ; f1, · · · , fn) −→ (X ′; f ′1, · · · , f ′n) to the morphism
F (µ) := (M+

i (µ))i∈Qv .
Since (M−,M+) is rodded and faithful, the functor F is fully faithful.
Let V = (V (i), V (α)) ∈ rep(Q,R). For each arrow α from i to j, we set Kα

i =
kerV (α), Iαj = ImV (α) and denote by ¯V (α) the isomorphism V (i)/ kerV (α) −→
ImV (α) induced by V (α).

In case Sεi = {iε}, we set P εi = V εi = V (i) and denote by Φεi the identity 11V (i).
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In case Sεi = {iε <> e}, we set P εi = Ke
i , V εi = Ke

i ⊕ Iei , and denote by Φεi the
canonical isomorphism Ke

i ⊕ Iei −→ V (i), (x, y) 7−→ x+ y.
In case Sεi = {a− < iε}, we set P εi = Ka

i , V εi = Iaj ⊕ Ka
i , and choose a

section ti of the canonical projection V (i) −→ V (i)/Ka
i , we then denote by Φεi the

composition

V εi = Iaj ⊕Ka
i

( ¯V (a))−1⊕11Ka
i−→ V (i)/Ka

i ⊕Ka
i

[ti im]−→ V (i).

In case Sεi = {iε < b+}, we set P εi = V (i)/Ibi , V εi = V (i)/Ibi ⊕ Ibi , and choose a
section si of the canonical projection V (i) −→ V (i)/Ibi , we then denote by Φεi the
isomorphism [si im] : V εi = V (i)/Ibi ⊕ Ibi −→ V (i).

In case Sεi = {a− < iε < b+}, we set P εi = Ka
i /I

b
i , V εi = Iaj ⊕Ka

i /I
b
i ⊕ Ibi , and

choose a section ui of the canonical projection Ka
i −→ Ka

i /I
b
i and a section vi of

the canonical projection V (i) −→ V (i)/Ka
i , we then denote by Φεi the composition

V εi = Iaj ⊕Ka
i /I

b
i ⊕ Ibi

( ¯V (a))−1⊕11⊕11−→ V (i)/Ka
i ⊕Ka

i /I
b
i ⊕ Ibi

11⊕[ui im]−→ V (i)/Ka
i ⊕Ka

i

[vi im]−→ V (i).

Finally, we set

X =
⊕

a∈Qa\Sp
ā⊗ Iaj ⊕ (

⊕
e∈Sp

e⊗ Iei )⊕ (
⊕
iε∈Sε

i

iε ⊗ P εi ) ∈ A

and denote by fi the composition

M−i (X)
can.∼= V −i

Φ−
i−→ V (i)

(Φ+
i

)−1

−→ V +
i

Ψi∼= M+
i (X),

where ā denotes the equivalence class of a.
Thus we obtain an object (X ; f1, · · · , fn) in repb(M−,M+). By Ψi we denote

the canonical isomorphism V +
i → M+

i (X). Then (Ψi(Φ+
i )−1)i∈Qv defines an

isomorphism from V = (V (i), V (α)) to F (X ; f1, · · · , fn). Therefore, F hits each
isoclass in rep(Q,R).

1.5. Remark. With each tangle (M−,M+) over A we can associate as follows a
tangle (M̄−, M̄+) over a new aggregate Ā.

Let S̄ denote the spectroid obtained from the spectroid S of A by adding
objects si and ti for i ∈ {1, · · · , n}, whose spaces of radical morphisms RS̄(x, y)
are RS(x, y) if x, y ∈ S, Homk(k,M−i (y)) if y ∈ S, x = si, Homk(M+

i (x), k)
if x ∈ S, y = ti, and 0 otherwise. The composition g ◦ f of f ∈ RS̄(x, y) and
g ∈ RS̄(y, z) is gf if x, y, z ∈ S, M−i (g)f if y, z ∈ S, x = si, gM+

i (f) if
x, y ∈ S, z = ti, and 0 in all the remaining cases.
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Let Ā denote the additive hull of S̄ and M̄−i (resp. M̄+
i ) the module over Ā

such that the value M̄−i (x) (resp. M̄+
i (x)) at x ∈ S̄ is k if x = si (resp. x = ti),

is M−i (x) (resp. M+
i (x)) if x ∈ S, and 0 otherwise. If f ∈ RS̄(x, y), the mor-

phism M̄−i (f) ∈ Homk(M̄−i (x), M̄−i (y)) (resp. M̄+
i (f) ∈ Homk(M̄+

i (x), M̄+
i (y)))

is M−i (f) (resp. M+
i (f)) if x, y ∈ S, is f if x = si (resp. y = ti), and 0 otherwise.

By the construction, the tangle (M̄−, M̄+) is rodded if so is (M−,M+).
Let Ψ : Ā −→ A be the natural functor which maps X̄ ∈ Ā onto the “largest

summand” Ψ(X̄) belonging to A. Then M−i provides a submodule M−i Ψ of M̄−i ,
M+
i provides a subquotient M+

i Ψ of M̄+
i , i ∈ {1, · · · , n}, and Ψ gives rise to a

functor

F : repb(M̄
−, M̄+) −→ rep(M−,M+)

(X̄ ; f̄1, · · · , f̄n) 7−→ (Ψ(X̄); f1, · · · , fn),

where fi is the composition

M−i (Ψ(X̄)) = M−i Ψ(X̄) im−→ M̄−i (X̄)
f̄i−→ M̄+

i (X̄)
pr−→M+

i Ψ(X̄) = M+
i (Ψ(X̄)).

Proposition. The functor F is quasisurjective, and the indecomposables annihi-
lated by F are those isomorphic to (si ⊕ ti; 0, · · · , 0, 11, 0, · · · , 0), i = 1, · · · , n.

Proof. Let (X ; f1, · · · , fn) be an object in rep(M−,M+). Consider the sequence

Ki := ker fi
im−→M−i (X)

fi−→M+
i (X)

pr−→ Cokerfi =: Ci.

Choose a retraction pi of the canonical immersion and a section µi of the canonical
projection above, then[

µi fi
0 pi

]
: Ci ⊕M−i (X) −→M+

i (X)⊕Ki

is bijective.
Set X̄ = (⊕ni=1si ⊗ Ci) ⊕ X ⊕ (⊕ni=1ti ⊗ Ki) ∈ Ā, and denote by f̄i the

composition

M̄−i (X̄)
can.∼= Ci ⊕M−i (X)

[
µi fi
0 pi

]
−→ M+

i (X)⊕Ki

can.∼= M̄+
i (X̄).

Then (X̄ ; f̄1, · · · , f̄n) ∈ repb(M̄−, M̄+) and F (X̄ ; f̄1, · · · , f̄n) ∼= (X ; f1, · · · , fn).
It is not difficult to see that each (X̄; f̄1, · · · , f̄n) ∈ repb(M̄−, M̄+) is isomorphic

to the direct sum of objects of the form (si ⊕ ti; 0, · · · , 0, 11, 0, · · · , 0) and of the
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form Ȳ = (⊕ni=1si ⊗ Si) ⊕ Y ⊕ (⊕ni=1ti ⊗ Ti); ḡ1, · · · , ḡn), where Si, Ti ∈ modk,
Y ∈ A, and ḡi has the form[

ai gi
0 bi

]
: Si ⊕M−i (Y ) −→M+

i (Y )⊕ Ti,

where ai, bi and gi are k–linear maps.
Let (X̄ ; f̄1, · · · , f̄n) and (X̄ ′; f̄ ′1, · · · , f̄ ′n) be objects in repb(M̄

−, M̄+), and µ ∈
A(Ψ(X̄),Ψ(X̄ ′)) a morphism from F (X̄ ; f̄1, · · · , f̄n) to F (X̄ ′; f̄ ′1, · · · , f̄ ′n)

Since F annihilates (si ⊕ ti; 0, · · · , 0, 11, 0, · · · , 0), we may assume that X̄ and
X̄ ′ have respectively the forms (⊕ni=1si ⊗ Si)⊕X ⊕ (⊕ni=1ti ⊗ Ti) and (⊕ni=1si ⊗
S′i)⊕X ′ ⊕ (⊕ni=1ti ⊗ T ′i ), where Si, Ti, S′i, T

′
i ∈ modk and X, X ′ ∈ A, and that

f̄i and f̄ ′i are of the forms:

f̄i =
[
ai fi
0 bi

]
: Si ⊕M−i (X) −→M+

i (X)⊕ Ti,

f̄ ′i =
[
a′i f ′i
0 b′i

]
: S′i ⊕M−i (X ′) −→M+

i (X ′)⊕ T ′i ,

where ai, bi, fi, a′i, b
′
i and f ′i are k–linear maps, i ∈ {1, · · · , n}.

Thus F (X̄ ; f̄1, · · · , f̄n) = (X ; f1, · · · , fn) and F (X̄ ′; f̄ ′1, · · · , f̄ ′n) = (X ′; f ′1, · · · ,
f ′n).

Consider the following commutative diagram

T
i

T¢
i

b
i

b¢
i

b
i i
k

b¢k¢
i i

p
i i
a

p¢  ¢
i i
a

k
i

k¢
i

p
i

p¢
i

f
i

f¢
i

Ker f
i

Ker f¢
i

Coker f
i

Coker f¢
i

a
i

a¢
i

S
i

S¢
i

M Xi
–( )

M Xi
–( )¢

Mi
–( )m Mi

+( )m

M Xi
+( )

M Xi
+( )¢

~

~

~

~

where κi and κ′i denote the canonical immersions, πi and π′i the canonical projec-
tions.

The bijectivity of f̄i and f̄ ′i implies that biκi, b′iκ
′
i, πiai and π′ia

′
i are bijective.

Set ui = (π′ia
′
i)
−1π′iM

+
i (µ)ai and vi = b′iM

−
i (µ)κi(biκi)−1. It is easy to see that

there exist a wi : Si −→ M−i (X ′) and a zi : M+
i (X) −→ T ′i such that ziai = 0,
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b′iwi = 0, M+
i (µ)ai = a′iui + f ′iwi, and b′iM

−
i (µ) = zifi + vibi, i.e. the following

square commutes.

u

w M

i

i i

0
-

L

N
M
M

O

Q
P
Pma f

M

z v

i

i i

+L

N
M

O

Q
P

ma f 0

a f

b

i i

i0

L

N
M

O

Q
P

¢ ¢

¢

L

N
M

O

Q
P

a f

b

i i

i0

M X Ti i
+( ) ÅS M X

i i
–Å ( )

S M X¢ Å ¢
i i

–
( ) M X Ti i

+( ) Å ¢

Set

µ̄ =



u1 0

0
. . . 0

un
w1 · · · wn µ

z1 v1 0

0
...

. . .
zn 0 vn


:X̄ = (⊕ni=1si ⊗ Si)⊕X ⊕ (⊕ni=1ti ⊗ Ti)

−→ (⊕ni=1si ⊗ S′i)⊕X ′ ⊕ (⊕ni=1ti ⊗ T ′i ) = X̄ ′.

Then F (µ̄) = µ, that is, F is full.
This finishes the proof of the proposition.

2. The classification

2.1. Terminology. Let S = (S−1 , · · · , S−n ;S+
1 , · · · , S+

n ;∼) be a bush.
In the sequel, we write x∧ y if x and y belong to the same rod and are incom-

parable, and we write x|y if (x, y) ∈ ∪ni=1((S−i × S+
i ) ∪ (S+

i × S−i )). We further
set

x∼ =
{
y if y ∼ x and y 6= x

x if the equivalence class of x contains only x

x∧ =
{
y if y ∧ x
x if x is comparable with all points of its rod

and x∗ = (x∼)∧.
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We call catenation of S a sequence w = w1w2 · · ·wt of points of S such that
w∗i |wi+1 for all i < t. The reverse catenation is the sequence w∗ = w∗t · · ·w∗2w∗1.
Two catenations w = w1w2 · · ·ws and w′ = w′1w

′
2 · · ·w′t are called equivalent if

s = t and w′i = wi or w∧i for all 1 ≤ i ≤ s. For each catenation w, we then
denote by [w] the equivalence class of w. Then the set of equivalence classes of all
catenations of S is equipped with an order relation such that

[v] = [v1 · · · vs] < [w1 · · ·wt] = [w]

⇐⇒


if w = v′w′, [v′] = [v], w′1 = ws+1 ∈ S−

or if v = w′v′, [w′] = [w], v′1 = vt+1 ∈ S+

or if v = uxv′, w = u′yw′, [u] = [u′], x < y.

The equivalence classes of catenations which start in a fixed rod are pairwise
comparable.

2.2. From now onwards, we suppose that S is complete, i.e. that x 6= x∗ for all
x ∈ S. [This is no real restriction. Otherwise, we replace S by a completed bush
So obtained from S by adding new rods S−ix = {xo}, S+

ix = ∅ and by agreeing
that x ∼ xo for each point x of S such that x = x∧ = x∼. The new bush So is
complete, and repS is equivalent to repSo.]

If S is complete, we attach a representation (Xw; fw1, · · · , fwn) of S to each
catenation w = w1w2 · · ·wt. First we set

Xw = ŵ1 ⊕ ŵ2 ⊕ · · · ⊕ ŵt,

where ŵi = {wi, w∗i } ∈ S (=the spectroid attached to S in 1.3) if wi 6= w∼i and
ŵi = {wi} ⊕ {w∗i } ∈ A (=the additive hull of S) if wi 6= w∧i . Thus each term x of
the sequence w1w

∗
1w2w

∗
2 · · ·wtw∗t contributes a one–dimensional summand kx to

the space Mε
i (Xw) associated with the rod Sεi containing x. Accordingly, M−i (Xw)

and M+
i (Xw) have the form:

(∗)
{
M−i (Xw) = ⊕pkwp ⊕⊕lkw∗l
M+
i (Xw) = ⊕mkw∗m ⊕⊕qkwq

where p, q, l and m are subjected to the conditions wp, w∗l ∈ S−i and wq, w
∗
m ∈

S+
i . The structure maps are defined as sums

fwi =
∑
r

fwir : M−i (Xw) −→M+
i (Xw)

where each r > 1 satisfying wr ∈ S−i ∪ S+
i provides a contribution

fwir = hwirgwir : M−i (Xw)
gwir−→ k

hwir−→ M+
i (Xw).
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To define the factors gwir and hwir, we distinguish two cases:
1) Case w∗r−1 ∈ S

−
i , wr ∈ S+

i . Construction of gwir: If wr−1 = w∧r−1, we set
gwir(w∗r−1) = 1 and let gwir vanish on the remaining basis vectors.

If wr−1 6= w∧r−1, the map gwir is the composition

M−i (Xw)
pr−→ kwr−1 ⊕ kw∗r−1

[0 1]−→ k

provided [w∗r−2 · · ·w∗1] ≤ [wr · · ·wt]. Otherwise, it is the composition

M−i (Xw)
pr−→ kwr−1 ⊕ kw∗r−1

[1 1]−→ k

(By pr we denote the projection which annihilates the basis vectors 6= wr−1, w
∗
r−1.)

Construction of hwir: If wr = w∧r , we define hwir(1) = wr. If wr 6= w∧r , hwir is
the composition

k
[1 0]T−→ kwr ⊕ kw∗r

im−→M+
i (Xw)

provided [w∗r−1 · · ·w∗1] ≤ [wr+1 · · ·wt]. Otherwise, it is the composition

k
[1 1]T−→ kwr ⊕ kw∗r

im−→M+
i (Xw).

(By im we denote the canonical immersion.)
2) Case w∗r−1 ∈ S+

i , wr ∈ S−i . Construction of gwir: If wr = w∧r , we set
gwir(wr) = 1 and let gwir vanish on the remaining basis vectors. If wr 6= w∧r , the
map gwir is the composition

M−i (Xw)
pr−→ kwr ⊕ kw∗r

[1 0]−→ k

provided [w∗r−1 · · ·w∗1] > [wr+1 · · ·wt]. Otherwise, [0 1] is replaced by [1 1].
Construction of hwir: If wr−1 = w∧r−1, we define hwir(1) = w∗r−1. If wr−1 6=

w∧r−1, hwir is the composition

k
[0 1]T−→ kwr−1 ⊕ kw∗r−1

im−→M+
i (Xw)

provided [w∗r−2 · · ·w∗1] > [wr · · ·wt]. Otherwise, [0 1]T is replaced by [1 1]T .

2.3. Example. The clannish algebra k[Q]/(ba, e2 − e), where Q denotes the
quiver

, , Z ba= { }Sp e= { }

a

b

e

1 2
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gives rise to the (non–completed) bush

e e^

b

x

a~ b~

a

y

z

S
–

1 S
+

1 S
+

2S
–

2

As a typical example, we choose the catenation w = y∼b∼ebaex of the com-
pleted bush. The maps fwi then behave as follows:

y~ a~ x~b
1
~ b

2
~b

2
x

e
1

e
2

e
1̂

e
2̂

b
1

y a

The matrices of the representation of the non–completed bush associated with
w – or, more precisely, the matrices of the linear maps fw1 and fw2 – are displayed
as follows:

e e∧ y a

b

x

a∼


1 0 0 0

1 0 1 0

0 1 0 1

0 1 0 0


z

b∼

 1 0

0 1


Similarly, the maps fvi of the representation associated with the catenation

v = x∼ebaea∼b∼e∧x are

x
1
~ b

1
~ b

2
~a

1
a

2
b

2
x

2
a

1
~ a

2
~ x

2
~b

1

e
1

e
3

e
2

e
1̂

e
3̂

e
2̂

x
1

2.4. In the first example considered above, the catenation w is asymmetric, i.e.
[w] 6= [w∗]. The matrices of the representation associated with w∗ are

e e∧ y a

b

x
a∼


0 1 0 1

0 1 0 0

1 0 1 0

1 0 0 0


z

b∼

 0 1

1 0


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By “permissible” row and column transformations, these matrices can obvious-
ly be converted into the matrices associated withw. The representations associated
with w and w∗ are therefore isomorphic.

In general, we choose a set Ω1 of asymmetric catenations which contains one
representative of each class [w]

∐
[w∗] of asymmetric catenations. For each w ∈

Ω1, we denote by R(w) the corresponding representation of S. Representations
isomorphic to such an R(w) will be called asymmetric strings.

In the second example of 2.3, the catenation v is symmetric, i.e. [v] = [v∗].
In this case, the representation associated with v is clearly the direct sum of two
representations R(v, 0) and R(v, 1).

Of course, this is a general fact (This fact will be shown in Section 4). For each
symmetric catenation v, the associated representation in 2.2 decomposes into the
direct sum of two representations R(v, 0) and R(v, 1). These representations are
indexed by Ω2 × {0, 1}, where Ω2 denotes the set of symmetric catenations which
contains one representative of each class [w] of symmetric catenations. Represen-
tations of S isomorphic to some R(v, i), (v, i) ∈ Ω2×{0, 1}, will be called dimidiate
strings.

2.5. Besides finite catenations, we consider periodic catenations. These are se-
quences u = (ui)i∈Z which satisfy u∗i |ui+1 for all i ∈ Z and admit a natural
number π ≥ 1 such that ui+π = ui or u∧i for all i. The smallest π satisfying these
conditions is the period of u. Each periodic catenation u is consorted with a reverse
u∗ such that (u∗)i = (u−i)∗ and with translates u{p} such that u{p}i = up+i. It
is called symmetric if [u∗] = [u{p}] for some p and asymmetric if not.

To each asymmetric period catenation u we shall attach a family of represen-
tations of S which are indexed by the powers

Q = P l = Xml − a1X
ml−1 − a2X

ml−2 − · · · − aml, l ≥ 1

of the irreducible unitary polynomials P in one determinate X with coefficients in
k. The index set formed by the powers Q = P l with P 6= X is denoted by P . To
each Q ∈ P we attach the invertible matrix

A(Q) =


0 0 . . . 0 aml
1 0 . . . 0 aml−1
...

. . . . . .
...

...

0 0
. . . 0 a2

0 0 . . . 1 a1


The representation (Y Qu ; ξQu1, · · · , ξQun) associated with an asymmetric periodic

catenation u of period π and a polynomial Q ∈ P of degree d is obtained as follows.
First we consider the representation (Xw; fw1, · · · , fwn) attached to the catenation

w = w1w2 · · ·wπwπ+1 · · ·w2πw2π+1 · · ·w3π

= u−πu−π+1 · · ·u−1u0u1 · · ·uπ−1uπ · · ·u2π−1.
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With the notations of 2.2 we then set

Y Qu = ŵπ+1
d ⊕ ŵπ+2

d ⊕ · · · ⊕ ŵ2π
d = û0

d ⊕ û1
d ⊕ · · · ⊕ ûπ−1

d

and thus obtain

M−i (Y Qu ) = (⊕pkup ⊕⊕lku∗l )⊗k kd

M+
i (Y Qu ) = (⊕mku∗m ⊕⊕qkuq)⊗k kd

where l, m, p and q belong to {0, 1, · · · , π − 1} and satisfy up, u
∗
l ∈ S−i and

uq, u
∗
m ∈ S+

i . The structure maps are defined as sums

ξQui = λQui + µQui : M−i (Y Qu ) −→M+
i (Y Qu ),

where λQui is the composition

M−i (Y Qu ) im−→M−i (Xw)⊗k kd
fwi⊗11d−→ M+

i (Xw)⊗k kd
pr−→M+

i (Y Qu )

(By im we denote the canonical immersion, and by pr the canonical projection.),
and where µQui is the composition

M−i (Y Qu ) im−→M−i (Xw)⊗k kd
gwi 2π+1⊗A(Q)−→ k ⊗k kd

hwiπ+1⊗11d−→ M+
i (Xw)⊗k kd

pr−→M+
i (Y Qu )

if u0 ∈ S+
i ;

M+
i (Y Qu )

pr←−M+
i (Xw)⊗k kd

hwi 2π+1⊗11d←− k⊗k kd
gwi π+1⊗A(Q)−1

←− M−i (Xw)⊗k kd

im←−M−i (Y Qu )

if u0 ∈ S−i ; and zero if u0 /∈ S−i ∪ S+
i .

As a typical example, we consider the case where S is as in 2.3, and

u0u1 · · ·uπ−1 = aebae∧a∼b∼eb.

The structure maps gQui are then visualized by the following diagram

( )ka1
d

( )ka~
1

d ( )kb~
1

d ( )ka~
2

d ( )kb~
3

d

( )ke1
d

( )ke1̂
d ( )ke3̂

d

( )kb1
d ( )ka2

d ( )ke2̂
d

( )ke2
d

( )ka~
3

d

( )ka3
d

( )kb~
2

d

( )kb2
d

( )ke3
d ( )kb3

d

A Q( )
–1
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The corresponding matrices are

e e∧

b
x

a∼



11d 0 0 11d 0 0
0 0 11d 0 0 0
0 0 11d 0 0 11d

11d 0 0 0 0 0
0 0 0 0 11d 0
0 11d 0 0 11d 0



y a

z

b∼

 0 11d 0
0 0 11d

A(Q)−1 0 0



In view of the required classification, we now choose a set Ω3 of asymmetric
periodic catenations which contains one representative of each class

∐
p∈Z([u{p}]∐

[u{p}∗]). For each (u,Q) ∈ Ω3 × P , we denote the representation constructed
above by R(u,Q). A representation of S isomorphic to such an R(u,Q) will be
called an asymmetric band.

2.6. We finally turn to the case of a symmetric periodic catenation u. It is easy
to prove that u0u1 · · ·uπ−1 then has the form

u0u1 · · ·uπ−1 = a1 · · · arebr · · · b1c1 · · · csfds · · ·d1

where [a∗r · · · a∗1] = [br · · · b1], [c∗s · · · c∗1] = [ds · · · d1], e 6= e∧, and f 6= f∧. Setting

w = w1w2 · · ·wπwπ+1 · · ·w2πw2π+1 · · ·w3π

= u−πu−π+1 · · ·u−1u0u1 · · ·uπ−1uπ · · ·u2π−1.

as in 2.5. We shall associate a representation (ZKu ; ηKu1, · · · , ηKun) with each matrix

K =
[
A B
C D

]
∈ k(m+m′)×(l+l′)

belonging to Q. By Q we denote the set of the following matrices (q ≥ 0):

1)

 0
11q

11q+1

11q 11q 0

 ,
 11q 0 11q

11q+1
0

11q

 , [ 11q+1 11q+1
11q+1 Jq+1

]
,

[
Jq+1 11q+1
11q+1 11q+1

]
,

2)

 11q+1
0

11q
11q 0 11q

 ,
 11q 11q 0

0
11q

11q+1

 , [ 11q+1 11q+1
Jq+1 11q+1

]
,

[
11q+1 Jq+1
11q+1 11q+1

]
,

3)
[
A(Q) 11q+1

11q+1 11q+1

]
,
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where

Jq+1 =


0 1 0 · 0 0
0 0 1 · 0 0
0 0 0 · 0 0
· · · · · ·
0 0 0 · 0 1
0 0 0 · 0 0

 ,

and where Q = P r is a power of an irreducible unitary polynomial P 6= X, X − 1
(see 2.5).

For this sake, we consider the following summands of Xw

E = â1 ⊕ â2 ⊕ · · · ⊕ âr ⊕ {e}, E′ = {e∧} ⊕ b̂r ⊕ · · · b̂2 ⊕ b̂1,
F = ĉ1 ⊕ ĉ2 ⊕ · · · ⊕ ĉr ⊕ {f}, F ′ = {f∧} ⊕ d̂r ⊕ · · · d̂2 ⊕ d̂1,

and set ZKu = El ⊕E′l
′
⊕ Fm′ ⊕ F ′m.

The structure maps ηKui : M−i (ZKu ) −→M+
i (ZKu ) are defined as sums

ηKui = ηKuiE + ηKuiE′ + ηKuiF + ηKuiF ′ + νKui,

where the first four summands are induced by fwi : M−i (Xw) −→ M+
i (Xw). For

instance, ηKuiE is the composition

M−i (ZKu )
pr−→M−i (E)l im−→M−i (Xw)l

f lwi−→M+
i (Xw)l

pr−→M+
i (E)l im−→M+

i (ZKu ).

The last summand νKui is also a composition, namely,

M−i (ZKu )
pr−→M−i (E)l ⊕M−i (E′)l

′ im−→M−i (Xw)l ⊕M−i (Xw)l
′

glwi π+1⊕g
l′
wi π+2r+2−→ kl ⊕ kl′ K−→ km ⊕ km′

hmwiπ+2r+2⊕h
m′
wi 2π+1−→

M+
i (Xw)m ⊕M+

i (Xw)m
′ pr−→M+

i (F ′)m ⊕M+
i (F )m

′ im−→M+
i (ZKu )

if a1 ∈ S−i ;

M+
i (ZKu ) im←−M+

i (E)l ⊕M+
i (E′)l

′ pr←−M+
i (Xw)l ⊕M+

i (Xw)l
′

hlwi π+1⊕h
l′
wiπ+2r+2←− kl ⊕ kl′ K′←− km ⊕ km′

gmwiπ+2r+2⊕g
m′
wi 2π+1←−

M−i (Xw)m ⊕M−i (Xw)m
′ im←−M−i (F ′)m ⊕M−i (F )m

′ pr←−M−i (ZKu )

if a1 ∈ S+
i , where K ′ =

[
D C
B A

]
if K is one of matrices listed in 1), and

K ′ = K otherwise. The νKui is zero if a1 /∈ S−i ∪ S+
i .
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As an example, we consider the bush of 2.3 and the case

u0u1 · · ·uπ−1 = aea∼b∼e∧b.

The structure maps are then visualized by the following diagram:

( )ka1
l( )ka~

1
l

( )kb~
2

m¢( )ka~
2

l¢

( )kb~
1

m( )ke1
l

( )ke1̂
l¢ ( )ke2̂

m¢

( )kb1
m

( )ka2
l¢

( )ke2
m

( )kb2
m¢

A

BC

D

and the corresponding matrices are

e e∧ y a

b

x

a∼


0 11m 0 0

0 0 0 11m′

11l 0 0 0

0 0 11l′ 0


z

b∼

 A B

C D


In view of our classification, we finally choose a set Ω4 of symmetric periodic

catenations which contains one representative of each class
∐
p∈Z[u{p}]. For each

(u,K) ∈ Ω4×Q the preceding construction then provides a representationR(u,K).
A representation of S isomorphic to such an R(u,K) will be called a dimidiate
band.

2.7. Main Theorem. Each indecomposable representation of a (completed) bush
S is a string (asymmetric or dimidiate) or a band (asymmetric or dimidiate). The
represetations R(δ), where

δ ∈ Ω1 qΩ2 × {0, 1} qΩ3 ×P q Ω4 ×Q ,

are indecomposable and pairwise non–isomorphic.

The proof of the main theorem is based on the reduction in section 3 and will
be given in section 4.

2.8. Remark. (a) Let w = w1w2 · · ·wt be an asymmetric catenation. then the
reverse catenation w∗ = w∗t · · ·w∗2w∗1 is also asymmetric. By the construction of
R(w) and R(w∗), we may identify Xw with Xw∗ by identifying ŵi with ̂w∗t−i+1
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for 1 ≤ i ≤ t. In fact, one sees easily that such an identification induces an
isomorphism between R(w) and R(w∗).

(b) Let w = w1w2 · · ·wt be a symmetric catenation. Then w is of the form

w = a1a2 · · · asebs · · · b2b1,

where [a∗s · · · a∗2a∗1] = [bs · · · b2b1] and e 6= e∧. Set

v = a1a2 · · · asea∗s · · · a∗2a∗1.

Then v is a symmetric catenation and equivalent to w. By the construction in
2.2, one easily sees that (Xv; fv1, · · · , fvn) is decompose into a direct sum of two
representations.

(c) Let u = (ui)i∈Z be an asymmetric periodic catenations of period π. Let
v = (vi)Z be such that vkπ+i = ui for all k ∈ Z and 0 ≤ i ≤ π − 1. Then v is also
an asymmetric periodic catenation of period π which is eqiuvalent to u. By the
construction in 2.5, there holds that R(u,Q) ∼= R(v,Q) for each Q ∈ P . Moreover,
by changing basis vectors, one can easily prove that R(v,Q) ∼= R(v{p}, Q) for
all p ∈ Z. Thus u and v{p} (p ∈ Z) provide the same family of isoclasses of
representations of S.

Further, the reverse catenation v∗ of v is asymmetric. By the construction in
2.5, for each

Q = P l = Xml − a1X
ml−1 − a2X

ml−2 − · · · − aml, l ≥ 1

in P , we set Q′(X) = (−1) 1
aml

XmlQ( 1
X ) ∈ P , then there holds that R(v,Q) ∼=

R(v∗, Q′) since A(Q′) = A(Q)−1. Conversely, R(v∗, Q) ∼= R(v,Q′). Thus v and
v∗ provide the same family of isoclasses of representations of S.

(d) Let u = (ui)i∈Z be a symmetric periodic catenations of period π. As in (c),
let v = (vi)i∈Z be such that vkπ+i = ui for all k ∈ Z and 0 ≤ i ≤ π − 1. Then v
is also a symmetric periodic catenation of period π which is eqiuvalent to u. By
changing basis vectors, there holds that R(u,K) ∼= R(v{p},K) for each K ∈ Q
and each p ∈ Z. Hence u and v{p} (p ∈ Z) provide the same family of isoclasses
of representations of S.

3. A reduction of representations of bushes

In this section, we shall formulate the algorithm in [3] with respect to tangles
formed by sequences of modules. We shall see in next section that such an algo-
rithm will lead us to an efficient reduction of representations of bushes. All the
proofs are analogous to those in [3]. We omit them.

3.1. Let S = (S−1 , · · · , S−n ;S+
1 , · · ·S+

n ;∼) ba a bush as in 1.3 and (M−,M+) the
tangle associated with S. For each representation (X ; f1, · · · , fn) of (M−,M+), we
denote by f the sequence (f1, · · · , fn) and simply write (X ; f) for (X ; f1, · · · , fn).
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Let 1 ≤ i ≤ n. We start with submodules K− ⊆ L− of M−i and sub-
modules K+ ⊆ L+ of M+

i . We are interested in the representations (X ; f) =
(X ; f1, · · · , fi, · · · fn) of (M−,M+) which satisfy fi(K−(X)) ⊆ K+(X) and
fi(L−(X)) ⊆ L+(X).

From now on, for each X ∈ A, we fix subspaces U−1 (X), U−2 (X) of M−i (X)
and subspaces U+

1 (X), U+
2 (X) of M+

i (X) such that

L−(X) = K−(X)⊕ U−1 (X), M−i (X) = L−(X)⊕ U−2 (X),

L+(X) = U+
1 (X)⊕K+(X), M+

i (X) = U+
2 (X)⊕ L+(X).

Then for each representation (X ; f) of (M−,M+), the fi can be written as the
form:

fi =

 fi1 fi2 fi3
fi4 fi5 fi6
fi7 fi8 fi9

 : M−i (X) =K−(X)⊕ U−1 (X)⊕ U−2 (X)

−→U+
2 (X)⊕ U+

1 (X)⊕K+(X) = M+
i (X).

To the tangle (M−,M+) we now attach a new tangle as follows. First, we
denote by B the full subcategory of rep(M−,M+) formed by representations
(X ; ρ̃), where ρ : U−1 (X) → U+

1 (X) is a k–linar map and ρ̃ denote the sequence
(0, · · · , 0, ρ0, 0, · · · , 0) with ρ0 of the form:

ρ0 =

 0 0 0
0 ρ 0
0 0 0

 : M−i (X) =K−(X)⊕ U−1 (X)⊕ U−2 (X)

−→U+
2 (X)⊕ U+

1 (X)⊕K+(X) = M+
i (X).

Further, for each (X ; ρ̃) ∈ B, we define

N−j (X ; ρ̃) := M−j (X), N+
j (X, ρ̃) := M+

j (X), for all j 6= i,

N−i (X ; ρ̃) := Kerρ̃ = K−(X)⊕Kerρ⊕ U−2 (X),

and N+
i (X ; ρ̃) := Cokerρ̃ = U+

2 (X)⊕ Cokerρ⊕K+(X).

For a morphism µ : (X ; ρ̃) → (X ′; ρ̃′), we denote by N−j (µ) and N+
j (µ) the

k–linear maps induced respectively by M−j (µ) and M+
j (µ) for 1 ≤ j ≤ n. Then we

obtain two sequences of modules N− = (N−1 , · · · , N−n ) and N+ = (N+
1 , · · · , N+

n )
over B, that is, a tangle (N−, N+) over B. Moreover, the modules N−i and N+

i

admit respectively submodules J− and J+ such that

J−(X, ρ̃) = K−(X)⊕Kerρ, J+(X, ρ̃) = K+(X).
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Finally, we denote byM the full subcategory of rep(M−,M+) formed by repre-
sentations (X ; f) satisfying fi(K−(X)) ⊆ K+(X) and fi(L−(X)) ⊆ L+(X), and
by N the full subcategory of rep(N−, N+) formed by representations ((X, ρ̃);h) =
((X ; ρ̃);h1, · · ·hn) satisfying hi(J−(X, ρ̃)) ⊆ J+(X, ρ̃). Our purpose is to build up
a relation between categoriesM and N .

3.2. From now on, we suppose that K− = Ri1M−i and L− = Ri2M−i for some
i1 ≥ i2, and that K+ = Rj1M+

i and L+ = Rj2M+
i for some j1 ≥ j2.

In order to establish a reduction from objects of M to those of N , for each
(X ; ρ̃) in B, we choose a supplement T−(X ; ρ̃) of Kerρ in U−1 (X) and a supplement
T+(X ; ρ̃) of Imρ in U+

1 (X). Then ρ0 can be written in the form:

ρ0 =


0 0 0 0
0 0 ρ̄ 0
0 0 0 0
0 0 0 0

 :M−i (X) = K−(X)⊕Kerρ⊕ T−(X ; ρ̃)⊕ U−2 (X)

−→U+
2 (X)⊕ Imρ⊕ T+(X ; ρ̃)⊕K+(X) = M+

i (X),

where ρ̄ : T−(X ; ρ̃)→ Imρ is induced by ρ.
Further, for each object (X ; f) in M, the fi is of the form:

fi =

 0 0 fi1
0 fi2 fi3
fi4 fi5 fi6

 :M−i (X) = K−(X)⊕ U−1 (X)⊕ U−2 (X)

−→U+
2 (X)⊕ U+

1 (X)⊕K+(X) = M+
i (X).

In such a way, (X ; f) gives rise to an object (X ; f̃i2) in B. By further decom-
posing U−1 (X) and U+

1 (X), we infer that fi has the form:

fi =


0 0 0 fi1
0 0 f̄i2 f ′′i3
0 0 0 f ′i3
fi4 f ′i5 f ′′i5 fi6

 :M−i (X) = K−(X)⊕Kerf2 ⊕ T−(X ; f̃i2)⊕ U−2 (X)

−→U+
2 (X)⊕ Imf2 ⊕ T+(X ; f̃i2)⊕K+(X)=M+

i (X).

Since the tangle (M−,M+) is rodded, (X ; f) is isomorphic to the object
(X ; f ′) = (X ; f1, · · · , fi−1, f

′
i , fi+1, · · · , fn) with f ′i of the form:

f ′i =


0 0 0 fi1
0 0 f̄i2 0
0 0 0 f ′i3
fi4 f ′i5 0 f ′i6

 :M−i (X) = K−(X)⊕Kerf2 ⊕ T−(X ; f̃i2)⊕ U−2 (X)

−→U+
2 (X)⊕ Imf2 ⊕ T+(X ; f̃i2)⊕K+(X)=M+

i (X),
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where f ′i6 = fi6 − f ′′i5f̄i2
−1
f ′′i3. Finally, we denote by η(X;f) an isomorphism from

(X ; f) to (X ; f ′).
Thus each object (X ; f) then gives rise to an object ((X ; f̃i2), f̂) in N with

f̂ = (f1, · · · , fi−1, f̂i, fi+1, · · · , fn), where f̂i is of the form

f̂i =

 0 0 fi1
0 0 p(X;f̃i2)f

′
i3

fi4 f ′i5 f ′i6

 :N−i (X ; f̃i2) = K−(X)⊕Kerf2 ⊕ U−2 (X)

−→U+
2 (X)⊕ Cokerf2 ⊕K+(X) = N+

i (X ; f̃i2).

(Here p(X;f̃i2) denotes the restriction of the canonical projection π(X;f̃i2) : U+
1 (X)

→ Cokerf2 = U+
1 (X)/Imf2 to T+(X ; f̃i2).)

3.3. Remark. Up to isomorphisms, the representation ((X ; f̃i2), f̂) induced by
(X ; f) is independent on the choice of supplements T−(X ; f̃i2) and T+(X ; f̃i2).

3.4. In view of Remark 3.3, for each (X ; ρ̃) in B, we may fix a supplement T−(X ; ρ̃)
of Kerρ in U−1 (X) and a supplement T+(X ; ρ̃) of Imρ in U+

1 (X). By the discussion
in 3.2, each object (X ; f) in M then gives rise uniquely to an object ((X ; f̃i2); f̂)
in N .

Let (X ; f) and (Y ; g) be objects inM and µ a morphism from (X ; f) to (Y ; g).
With µ we now associate a morphism from ((X ; f̃i2); f̂) to ((Y ; g̃i2); ĝ).

Again by 3.2, one has that µ̃ =: η(Y ;g)µ(η(X;f))
−1 is a morphism from (X ; f ′)

= (X ; f1, · · · , f ′i , · · · , fn) to (Y ; g′) = (Y ; g1, · · · , g′i, · · · , gn), where f ′i and g′i are
of the forms:

f ′i =


0 0 0 fi1
0 0 f̄i2 0
0 0 0 f ′i3
fi4 f ′i5 0 f ′i6

 :M−i (X) = K−(X)⊕Kerf2 ⊕ T−(X ; f̃i2)⊕ U−2 (X)

−→U+
2 (X)⊕ Imf2 ⊕ T+(X ; f̃i2)⊕K+(X)= M+

i (X)

and

g′ =


0 0 0 gi1
0 0 ḡi2 0
0 0 0 g′i3
gi4 gi5 0 g′i6

 :M−i (Y ) = K−(Y )⊕Kerg2 ⊕ T−(Y ; g̃i2)⊕ S−2 (Y )

−→S+
2 (Y )⊕ Img2 ⊕ T+(Y ; g̃i2)⊕K+(Y ) = M+

i (Y ).
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Further, the maps M−i (µ̃) and M+
i (µ̃) can be written as the following forms:

M−i (µ̃) =


a11 a12 a13 a14
0 a22 a23 a24
0 a32 a33 a34
0 0 0 a44

 :M−i (X)

= K−(X)⊕Kerf2 ⊕ T−(X ; f̃i2)⊕ U−2 (X)
−→ K−(Y )⊕Kerg2 ⊕ T−(Y ; g̃i2)⊕ S−2 (Y )=M−i (Y )

and

M+
i (µ̃) =


b11 0 0 0
b21 b22 b23 0
b31 b32 b33 0
b41 b42 b43 b44

 :M+
i (X)

= U+
2 (X)⊕ Imf2 ⊕ T+(X ; f̃i2)⊕K+(X)

−→ S+
2 (Y )⊕ Img2 ⊕ T+(Y ; g̃i2)⊕K+(Y ) = M+

i (Y ).

Then there holds that
0 0 0 gi1
0 0 ḡi2 0
0 0 0 g′i3
g′i4 g′i5 0 g′i6



a11 a12 a13 a14
0 a22 a23 a24
0 a32 a33 a34
0 0 0 a44



=


b11 0 0 0
b21 b22 b23 0
b31 b32 b33 0
b41 b42 b43 b44




0 0 0 fi1
0 0 f̄i2 0
0 0 0 f ′i3
fi4 f ′i5 0 f ′i6

 (1)

since µ̃ is a morphism.
It then follows that a32 = 0 and b32 = 0. Since (M−,M+) is rodded, there is

a morphism µ′ ∈ RA(X,Y ) such that

(M−j (µ′),M+
j (µ′) = (0, 0) for all j 6= i,

(M−i (µ′),M+
i (µ′)) =




0 0 0 0
0 0 0 0
0 0 0 a34
0 0 0 0

 ,


0 0 0 0
0 0 0 0
0 0 0 0
0 b42 0 0


 .

We then set µ̂ = µ̃−µ′ : X → Y . It is easy to show that µ̂ is a morphism from
(X ; f̃i2) to (Y ; g̃i2). By (1) there also holds that

ĝN−i (µ̂) = N+
i (µ̂)f̂ ,
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that is, µ̂ is a morphism from ((X ; f̃i2); f̂) to ((Y ; g̃i2), ĝ).
As a conclusion, we obtain two correspondences (X ; f) 7−→ ((X ; f̃i2); f̂) and

µ 7−→ µ̂ which induce a functor

Φ :M−→ N/I

such that Φ(X ; f) = ((X ; f̃i2); f̂) and Φ(µ) = µ̂+ I, where I denotes the ideal of
N generated by ν̂µ− ν̂µ̂ for µ : (X ; f)→ (Y ; g) and ν : (Y ; g)→ (Z;h) in M.

Proposition. (1) The ideal I lies in the radical of N .
(2) The functor Φ is an epivalence, i.e. Φ is full, hits each isoclass, and detects

isomorphisms.

3.5. For the practical application, in certain situations it imports us to translate
the reduction into the language of matrix problems. We illustrate the translation
with an example: Let S be the (non–complete) bush in 2.3, i.e. S is formed by
the following pairs of rods:

e e^

b

x

a~ b~

a

y

z

S
–

1 S
+

1 S
+

2S
–

2

The associated tangle consists of two pairs of modules (M−1 ,M
+
1 ) and (M−2 ,M

+
2 ).

Let (X ; f1, f2) be a representation of S. If X is fixed, the chosen bases of M−i (X)
and of M+

i (X) provide us a matrix problem given by a pair of partitioned matrices

e e∧

b
x
a∼

A1 A2
A3 A4
A5 A6

 y a
z
b∼

[
B1 B2
B3 B4

]
together with the following admissible transformations

(a) arbitrary row transformations within stripes x and z and abitrary column
transformations within stripes e, e∧ and y;

(b) row transformations within stripe a∼ coupled with the conjugate column
transformations within stripe a, row transformations within stripe b coupled with
the same row transformations within stripe b∼ (Note that the number of rows in
stripe a∼ equals to the number of columns in stripe a and that the number of rows
in stripe b equals to the number of rows in stripe b∼);

(c) additions of multiples of rows between different stripes are allowed from b
to x and a∼, from x to a∼, and from z to b∼, additions of multiples of columns
between different stripes are only allowed from y to a.
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Thanks to the algorithm, we first reduce [A1|A2] to the following form:
0 0 0 0 0 0
– – – – – – – – – – – – – – – – –
0 0 0 0 11 0
– – – – – – – – – – – – – – – – –
0 11 0 0 0 0
– – – – – – – – – – – – – – – – –
0 0 11 0 0 11


By performing admissible transformations, we reduce A3, A4, A5 and A6 to

the following forms (the row partition of stripe b induces a partition of stripe b∼):

e e∧

b

x

a∼



0 0 0 0 0 0
– – – – – – – – – – – – – – – – – – –

0 0 0 0 11 0
– – – – – – – – – – – – – – – – – – –

0 11 0 0 0 0
– – – – – – – – – – – – – – – – – – –

0 0 11 0 0 11
A31 0 0 A41 0 A42

A51 0 0 A61 0 A62



y a

z

b∼


B1 B2
B31 B41– – – – –
B32 B42– – – – –
B33 B43– – – – –
B34 B44



Thus we are reduced to the matrix problems described by the following matri-
ces:

0 0 0

31 41 42

51 61 62

A A A

A A A

L

N

M
M
M

O

Q

P
P
P

e
0

b
0

b~
0

z

b¢
1

b¢
2

b¢
3

x

a~

e
0̂

e¢ B B

B B

B B

B B

B B

1 2

31 41

32 42

33 43

34 44

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

y a

Without spoiling the reduced form of [A1|A2], we can perform the following
transformations to the matrices above:

(a’) arbitrary row transformations within stripes x, z, b∼0 , b
′
1, and b′2, and

abitrary column transformations within stripes e0, e
∧
0 , and y;

(b’) row transformations within stripe a∼ (resp. b2) coupled with the conjugate
column transformations within stripe a (resp. e′),

(c’) additions of multiples of rows and columns between different stripes are
illustrated by the arrows in the figure above.

Thus the reduced matrices can be viewed as a matrix representation of a new
bush T given by the following pair of rods:
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e0 e0̂

e¢

b0

x

a~

b0
~

b¢1 b¢2

b¢3

a

y

z

T
–

1 T
+

1 T
+

2T
–

2

together with the equivalence relation such that a ∼ a∼, b0 ∼ b∼0 and e′ ∼ b′3.
This matrix problem coincides with that obtained from the algorithm. For further
reduction, one can reduce matrix [A31|A41], and so on.

4. The proof of the main theorem

4.1. In this section, we shall keep all the notations in the preceding Sections.
Let S be a bush and (X ; f1, · · · , fn) a representation of S. By definition, the
dimension of (X ; f1, · · · , fn) is

n∑
i=1

(dimkM
−
i (X) + dimkM

+
i (X)),

where M−i and M+
i are the modules associated with S (see 1.3).

Let us now return and stick to complete bushes. We start from a complete bush
S = (S−1 , · · · , S−n ;S+

1 , · · · , S+
n ;∼).

By abuse of notations in Section 2 , we call a representation (X ; f1, · · · , fn) of S
an asymmetric string if it is isomorphic toR(w) for some asymmetric catenationw,
a dimidiate string if it is isomorphic to a non–trivial summand of (Xv; fv1, · · · , fvn)
for some symmetric catenation v, and an asymmetric (resp. a dimidiate) band if it
is isomorphic to R(u,Q) (resp. R(u,K)) for some asymmetric (resp. symmetric)
periodic catenation u and some Q ∈ P (resp. K ∈ Q).

Let (X ; f) = (X ; f1, · · · , fn) be an indecomposable representation of S with
dimension d. Our objective is to prove by induction on d that (X ; f1, · · · , fn) is a
string or a band.

If d = 1, it is clear that (X ; f1, · · · , fn) is a dimidiate string. We now suppose
that d > 1 and that every indecomposable representation of an arbitrary complete
bush T with dimension < d is a string or a band.

If all fi vanish, X is indecomposable in A and (X ; f1, · · · , fn) = (X ; 0, · · · , 0)
is an asymmetric string (since d > 1). Otherwise, let 1 ≤ i ≤ n be such that
fi 6= 0. Then there are m−, m+ ∈ N such that

i) fi(Rm
−+1M−i (X)) ⊆ Rm++1M+

i (X),
ii) fi(Rm

−
M−i (X)) ⊆ Rm+

M+
i (X),

iii) the induced map

f̄i : Rm−M−i (X)/Rm−+1M−i (X) −→ Rm+
M+
i (X)/Rm++1M+

i (X)
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is not zero, where R denotes the radical of A.
We then set K− = Rm−+1M−i , L

− = Rm−M−i , K+ = Rm++1M+
i , and

L+ = Rm+
M+
i .

By Proposition 3.4, we may reduce (X ; f) to a representation ((X ; f̃i2); f̂) of a
new tangle (N−, N+) over the aggregate B such that ((X ; f̃i2); f̂) is indecompos-
able and has dimension strictly less than d.

Since the lattices of submodules of M−i and M+
i are rods, both the supports of

L−/K− and of L+/K+ contain one or two elements in S. We examine the various
cases seperately.

4.2. Case I. supp(L−/K−) = {x̄}, supp(L+/K+) = {ȳ} and x̄ 6= ȳ for some
x ∈ S−i and y ∈ S+

i .
By way of example, we may suppose that x∼ ∈ S−j1 , y∼ ∈ S−j2 for some j1 6=

i, j2 6= i. All the other situations can be treated similarly.
In order to apply the algorithm described in 3.2–3.4, we choose the supplements

U−1 , U
−
2 , U

+
1 and U+

2 in the following canonical way: For each a ∈ S, we set

U−1 (a) =
{

0 if a 6= x̄

kx if a = x̄
U−2 (a) = ⊕u∈a,u∈P−,u<xku

and

U+
1 (a) =

{
0 if a 6= ȳ

ky if a = ȳ
U+

2 (a) = ⊕v∈a,v∈P+,v<ykv

where x̄ and ȳ denote the equivalence classes of x and y in S, respectively. Finally,

for each X
µ∼= ⊕a∈San(a) ∈ A, we set

U−i (X) = M−i (µ)−1(⊕a∈SU−i (a)n(a))
and i = 1, 2.

U+
i (X) = M+

i (µ)−1(⊕a∈SU+
i (a)n(a))

The representations (a; 0) = (a; 0, · · · , 0), a ∈ S, and (x̄ ⊕ ȳ; η), furnish a
complete list of indecomposables in the aggregate B, where η denotes the sequence
(0, · · · , 0, ηi = 1, 0, · · · , 0). Then there holds that

N−j1(Y ; g) =
{
M−j1(Y ) if (Y ; g) = (a; 0)
kx∼ if (Y ; g) = (x̄⊕ ȳ, η)

N−j2(X ; f) =
{
M−j2(Y ) if (Y ; g) = (a; 0)
ky∼ if (Y ; g) = (x̄⊕ ȳ, η)

We denote by S̄ the spectroid of B formed by representations (a; 0) = (a; 0, · · · , 0),
a ∈ S and (x̄⊕ ȳ; η).
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By T = (T−1 , · · · , T−n ;T+
1 , · · · , T+

n ;∼) we denote the bush formed by rods
T−j1 = S−j1 q {x1}, T−j2 = S−j2 q {y1}, and T εl = Sεl for (l, ε) 6= (j1,−), (j2,−). The
union ∪ni=1(T−i ∪ T+

i ) is equipped with the smallest order relation which contains
that of S induced by Sεk and is such that x∼ > x1, y

∼ < y1 and z ≷ x1 (resp.
z ≷ y1) iff z ≷ x∼ (resp. z ≷ y∼). Finally we equip T with the equivalence
relation induced by S and extended by x1 ∼ y1. The spectroid associated with T
(see 1.3) is denoted by T .

An easy observation shows that the correspondence

(z̄; 0) 7−→ z̄, z ∈ S, (x̄⊕ ȳ; η) 7−→ x̄1 = ȳ1

gives rise to an isomorphism from S̄ to T . Therefore, by identifying S̄ with T , the
reduced form ((X ; f̃i2), f̂) of (X ; f) can be considered as a representation of the
new bush T .

By induction hypothesis, ((X ; f̃i2); f̂) is a string or a band which is associated
with a catenation v (finite or periodic) of T .

We denote by w the catenation of S obtained from v by replacing each term
x1 by x∼y and y1 by y∼x.

We first consider the case where v is an asymmetric catenation. Then w is
also an asymmetric catenation and R(w) = (Xw; fw1, · · · , fwn) is an asymmetric
string. By the construction of R(w), one sees that each part x∼y or y∼x in w
provides a summand (x̄⊕ ȳ; η) of (Xw; f̃wi2). Thus (Xw; f̃wi2) and Xv considered
as objects in B are isomorphic. By identifying (Xw; f̃wi2) with Xv, the action of
f̂wi coincides with that of fvi, so the representation ((Xw; f̃wi2); f̂w) is isomorphic
to R(v). By Proposition 3.4, we infer that (X ; f) ∼= R(w), that is, (X, f) is an
asymmetric string (The decisive point is the following: If a term wr of w arises
from some term vq 6= v∧q , then [w∗r−1w

∗
r−2 · · · ] ≤ [wr+1wr+2 · · · ] is equivalent to

[v∗q−1v
∗
q−2 · · · ] ≤ [vq+1vq+2 · · · ]).

If v is a symmetric catenation, so is w. One then obtains that (X ; f) is isomor-
phic to a non–trivial summand of (Xw; fw1, · · · , fwn) since (X ; f̃i2); f̂) is isomor-
phic to a non–trivial summand of (Xv; fv1, · · · , fvn), that is, (X ; f) is a dimidiate
string.

In the case where v is a periodic catenation, one can similarly prove that
(X ; f) ∼= R(w,Q) (resp. R(w,K)) according as (X ; f̃i2); f̂) ∼= R(v,Q) (resp.
R(v,K)) for someQ ∈ P (resp. K ∈ P), that is, an asymmetric (resp. a dimidiate)
band.

4.3. Case II. supp(L−/K−) = supp(L+/K+) = {x̄} for some x ∈ S−i with
x∼ ∈ S+

i .
In this case, one can easily see that the representations (a; 0), a ∈ S and

((x̄)t; η(t)), t > 1, furnish a complete list of indecomposables in B which are not
annihilated by J , where J denotes the intersection of annihilators of all N−j and
N+
j , and where η(t) denotes the sequence (0, · · · , 0, η(t)i, 0, · · · , 0) with η(t)i of
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the form:

η(t)i =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 : M−i ((x̄)t) = (kx)t −→ (kx∼)t = M+
i ((x̄)t).

(Note that the supplements S−1 , S
−
2 , S

+
1 and S+

2 are chosen in a cononical way
similar to the case I.)

Since (X ; f) is finite dimensional, there exists an L > 0 such that the in-
duced representations (X ; f̃i2) does not contain a summand isomorphic to some
((x̄)t, η(t)) for t > L.

Let S̄ denote the spectroid formed by (a; 0), a ∈ S, and ((x̄)t; η(t)), 1 < t ≤ L+
1, and T the spectroid associated with the bush T = T (L) = (T−1 , · · · , T−n ;T+

1 , · · · ,
T+
n ;∼), where the order relation on the union of the sets T−i = S−i q{x1, · · · , xL},
T+
i = S+

i q {x∼1 , · · · , x∼L}, and T εl = Sεl , (l, ε) 6= (i,−), (i,+), are defined as in
case I (in particular, x < x1 < · · · < xL, x

∼
L < · · · < x∼1 < x∼). The equivalence

relation equipped with T is induced by that of S and extended by xj ∼ x∼j for
j = 1, · · · , L.

Then the correspondence

(z̄; 0) 7−→ z̄, z ∈ S, ((x̄)t; η(t)) 7−→ x̄t−1, 1 < t ≤ L+ 1

defines an isomorphism from S̄ to T .
If (X ; f̃i2) contains a non–zero summand annihilated by J , (X ; f) is isomorphic

to (x,Q) for some Q ∈ P because of the indecomposability of (X ; f), thus is an
asymmetric band.

If (X ; f̃i2) does not contain a non–zero summand annihilated by J , the reduced
form ((X ; f̃i2), f̂) of (X ; f) can be considered as a representation of the bush T .

By induction hypothesis, ((X ; f̃i2); f̂) is a string or a band associated with
a catenation v of T . We denote by w the catenation of S obtained from v by
replacing each term xj (j ≥ 1) by x · · ·x︸ ︷︷ ︸

j+1

and each term x∼j by x∼ · · ·x∼︸ ︷︷ ︸
j+1

.

By a similar argument in case I, there holds that (X ; f) is a string or a band
according as ((X ; f̃i2); f̂) is a string or a band.

4.4. Case III. supp(L−/K−) = {{x}, {x∧}} and supp(L+/K+) = {ȳ} for some
x, x∧ ∈ S−i with x <> x∧ and some y ∈ S+

i .
By way of example, we suppose that y∼ lies in S−j for some j 6= i. In this

case, the representations (a; 0), a ∈ S, ({x} ⊕ ȳ; η(1)), ({x∧} ⊕ ȳ; η(2)) and
({x} ⊕ {x∧} ⊕ ȳ; η(3)), furnish a complete list of indecomposables in B, where
η(1) = η(2) denotes the sequence (0, · · · , 0, 1, 0, · · · , 0), and η(3) the sequence
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= (0, · · · , 0, [1 1], 0, · · · , 0). By S̄ we denote the spectroid formed by these repre-
sentations.

Let T be the spectroid associated with the bush T = (T−1 , · · · , T−n ;T+
1 , · · · , T+

n ;
∼), where the union of the sets T−i = S−i q {x′1}, T

−
j = S−j q {y′1, y′2, y′3}, and

T εl = Sεl ((l, ε) 6= (i,−), (j,−)) is equipped with the order relation defined as in
case I (in particular, x > x′1, x

∧ > x′1, y
′
3 > y′1 > y∼, y′3 > y′2 > y∼). Finally,

we equip T with the equivalence relation induced by that of S and extended by
x′1 ∼ y′3.

Then the correspondence

(z̄; 0) 7−→ z̄, z ∈ S, ({x} ⊕ ȳ; η(1)) 7−→ {y′1},
({x∧} ⊕ ȳ; η(2)) 7−→ {y′2}, ({x} ⊕ {x∧} ⊕ ȳ; η(3)) 7−→ x̄′1 = ȳ′3

induces an isomorphism from S̄ and T . Hence (X ; f̃i2); f̂) can be viewed as a
representation of the new bush T .

By induction hypothesis, ((X ; f̃i2); f̂) is a string or a band associated with
a catenation v of T . We denote by w the catenation of S obtained from v by
substituting xy for each term x′1, y∼x∧ for y′3, y∼xy for y′1, and y∼x∧y for y′2.

First we suppose that v = v1v2 · · · vs is an asymmetric catenation, thus w =
w1w2 · · ·wt is also an asymmetric catenation. We consider the following parts in
w.

a) wrwr+1 = xy (obtained from a term vq = x′1 in v). By construction of R(w),
the maps gwir and fwir+1 associated with w (2.2) behave as follows:

k

1

1

1

kw
r

kw
r+1

kw*
r

kw*
r+1

Note that [w∗r−1 . . . w
∗
1] > [wr+1 . . . wt] since v∗q−1 = w∗r−1 > x (This follows from

the fact that ((X ; f̃i2); f̂) satisfies f̂i(J−(X ; f̃i2)) ⊆ J+(X ; f̃i2)) (see 3.1)). Thus
every part xy in w provides a summand ({x} ⊕ {x∧} ⊕ ȳ; η(3)) in (Xw; f̃wi2).
Such a summand contributes a one–dimensional subspace k(x−x∧) in Kerfwi2 ⊆
N−i (Xw; f̃wi2) and a one–dimensional subspace ky∼ in N−j (Xw; f̃wi2).

Similarly, each part y∼x∧ also provides a summand ({x} ⊕ {x∧} ⊕ ȳ); η(3)) in
(Xw; f̃wi2) which contributes a one–dimensional subspace both in N−i (Xw; f̃wi2)
and in N−j (Xw; f̃wi2).

b) wrwr+1wr+2 = y∼xy (obtained from vq = x′1). By construction of R(w),
the maps fwir+1 and fwir+2 behave as follows:
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kk 1
1

1

1

1

kw
r+1

kw
r+2

kw*
r

kw*
r+1

kw
r

kw*
r+2

provided [v∗q−1 . . . v
∗
1] > [vq+1 . . . vs] (thus [w∗r . . . w

∗
1] > [wr+2 . . . wt]).

In this case, the part y∼xy provides a summand ({x} ⊕ {x∧} ⊕ (ȳ)2; η), where
η is of the form[

1 0
1 1

]
: M−({x}⊕{x∧}⊕(ȳ)2) = kx⊕kx∧ −→ ky⊕ky = M+({x}⊕{x∧}⊕(ȳ)2).

Such a summand contributes a two–dimensional subspace (ky∼)2 ofN−j (Xw; f̃wi2).
It is easy to see that the morphism

µ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1

 : {x} ⊕ {x∧} ⊕ (ȳ)2 −→ {x} ⊕ {x∧} ⊕ (ȳ)2

is an isomorphism from ({x}⊕{x∧}⊕ (ȳ)2; η) to ({x}⊕ ȳ; η(1))⊕ ({x∧}⊕ ȳ; η(2)).

In case [v∗q−1 . . . v
∗
1] ≤ [vq+1 . . . vs] (thus [w∗r . . . w∗1] ≤ [wr+2 . . . wt]), the maps

fwir+1 and fwir+2 behave as follows:

kk 1
1

1

1

1

kw
r+1

kw
r+2

kw*
r

kw*
r+1

kw
r

kw*
r+2

In this situation, the part y∼xy provides a summand ({x} ⊕ {x∧} ⊕ (ȳ)2); η′),
where η′ is of the form[

1 1
0 1

]
: M−({x}⊕{x∧}⊕(ȳ)2) = kx⊕kx∧ −→ ky⊕ky = M+({x}⊕{x∧}⊕(ȳ)2).

This summand also contributes a two-dimensional subspace(ky∼)2ofN−j (Xw;f̃wi2).
It is easy to see that the morphism

µ′ =


1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

 : ({x} ⊕ {x∧} ⊕ (ȳ)2) −→ ({x} ⊕ {x∧} ⊕ (ȳ)2)
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is an isomorphism from ({x}⊕{x∧}⊕ (ȳ)2; η′) to ({x}⊕ ȳ; η(1))⊕ ({x∧}⊕ ȳ; η(2)).
Therefore, every part y∼xy in w provides a summand in (Xw; f̃wi2) which is

isomorphic to ({x} ⊕ ȳ; η(1))⊕ ({x∧} ⊕ ȳ; η(2)).
Similarly, every part y∼x∧y in w also provides a summand isomorphic to ({x}⊕

ȳ; η(1))⊕ ({x∧} ⊕ ȳ; η(2)).
c) Each term wr (obtained from some term vq in v) in w provides a summand

(w̄r ; 0) in (Xw; f̃wi2) if wr 6= w∼r , and a summand ({wr} ⊕ {w∧r }; 0) if wr 6= w∧r .
Form the observations in a)–c), it follows that (Xw; f̃wi2) and Xv viewed as

objects in B are isomorphic.
Furthermore, by suitably choosing basis vectors of Nε

j (Xw; f̃wi2) for 1 ≤ j ≤ n
and ε = −,+, one can show that ((Xw; f̃wi2); f̂w) is isomorphic to (Xv; fv1, · · ·, fvn).
This implies that (X ; f) is isomorphic to R(w) = (Xw; fw1, · · · , fwn), that is,
(X ; f) is an asymmetric string.

Similarly, one gets that (X ; f) is a dimidiate string if so is ((X ; f̃i2); f̂) and
that (X ; f) ∼= R(w,Q) (resp. R(w,K)) according as ((X ; f̃i2); f̂) ∼= R(v,Q) (resp.
R(v,K)) for some Q ∈ P (resp. K ∈ P).

4.5. Case IV. supp(L−/K−) = {x̄} and supp(L+/K+) = {{y}, {y∧}} for some
x ∈ S−i and some y, y∧ ∈ S+

i with y <> y∧. This is an anologue to Case III.

4.6. Case V. supp(L−/K−) = {{x}, {x∧}} and supp(L+/K+) = {{y}, {y∧}} for
some x, x∧ ∈ S−i and y, y∧ ∈ S+

i with x <> x∧ and y <> y∧.
In this case, one can show that the representatons (a; 0), a ∈ S, and R(E) :=

(({x})s1⊕ ({x∧})s2⊕ ({y})t1⊕ ({y∧})t2 ; η(E)), furnish a complete list of indecom-
posables in B which are not annihilated by J , where η(E) denotes the sequences
(0, · · · , 0, E, 0, · · · , 0) and E ranges over the following matrices (m ≥ 1)(see Sect.
11 in [GKR]):

P2m−1 =

 11m
11m−1

0

11m
0

11m−1

 (
s2 = m− 1

s1 = t1 = t2 = m
),

P∧2m−1 =


0

11m−1
11m

11m−1
0 11m

 (
s1 = m− 1

s2 = t1 = t2 = m
),

P2m =

 0
11m

11m
0

11m 11m

 (
s1 = s2 = t2 = m

t1 = m+ 1
),
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P∧2m =

 11m 11m

11m
0

0
11m

 (
s1 = s2 = t1 = m

t2 = m+ 1
),

I2m−1 =

 11m 11m

11m−1 0 0 11m−1

 (
t2 = m− 1

s1 = s2 = t1 = m
),

I∧2m−1 =

 0 11m−1 11m−1 0

11m 11m

 (
t1 = m− 1

s1 = s2 = t2 = m
),

I2m =

 0 11m 11m

11m 0 11m

 (
s2 = t1 = t2 = m

s1 = m+ 1
),

I∧2m =

 11m 11m 0

11m 0 11m

 (
s1 = t1 = t2 = m

s2 = m+ 1
),

T 1
m =


11m

+ Jm
11m

11m 11m

 (s1 = s2 = t1 = t2 = m).

By the finite–dimensionality of (X ; f), there exists an L > 0 such that the
induced representation (X ; f̃i2) does not contain a summand isomorphic to some
R(E) for E = Pt, P

∧
t , It, I

∧
t or T 1

t with t > L. We then denote by S̄ the spectroid
formed by (a; 0), a ∈ S, and R(E) for E = Pt, P

∧
t , It, I

∧
t and T 1

t wiht 1 ≤ t ≤ L.
By T we denote the spectroid associated with the bush T = T (L) = (T−1 , . . . ,

T−n ;T+
1 , . . . , T

+
n ; ∼), where the sets T−i =S−i q{x−1, · · · , x−L, x1, x

∧
1 , · · · , xL, x∧L},

T+
i = S+

i q {y−1, · · · y−L, y1, y
∧
1 , · · · , yL, y∧L} and T εl = Sεl ((l, ε) 6= (i,−), (i,+))

are equipped with order relations defined as in case I. In particular, we require
that the induced order relations on {x−1, · · · , x−L, x, x∧, x1, x

∧
1 , · · · , xL, x∧L} and

{y−1, · · · , y−L, y, y∧, y1, y
∧
1 , · · · , yL, y∧L} admit respectively the following Hasse-

quivers:
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x–1

y–1

x–2

y–2

…

…

…

…

…

…

x–L

y–L

xL

yL

x
L̂

y
L̂

x
1̂

y
1̂

x^

y^

x1

y1

x

y

We then equip T with the equivalence relation induced by S and extended by
x−m∼ y−m, m = 1, . . . , L.

Then the correspondence

(z̄; 0) 7−→ z̄, z ∈ S, R(It) 7−→ {xt}, R(I∧t ) 7−→ {x∧t },
1 ≤ t ≤ L

R(T 1
t ) 7−→ x̄−t = ȳ−t, R(Pt) 7−→ {yt}, R(P∧t ) 7−→ {y∧t }

defines an isomorphism from S̄ to T .
If (X ; f̃i2) contains a non–zero summand annihilated by J , ((X ; f̃i2); f̂) is

isomorphic to R(xy,K) for some K ∈ Q, thus is a dimidiate band.
If (X ; f̃i2) does not contain a non–zero summand annihilated by J , ((X ; f̃i2); f̂)

can be considered as a representation of the bush T . In the following we simply
identify S̄ and T .

By induction hypothesis, the representation ((X ; f̃i2); f̂) is a string or a band
associated with a catenation v of T . We denote by w the catenation of S obtained
from v by replacing each term xm by xy∧ · · · y∧x︸ ︷︷ ︸

m

y x∧y · · · yx∧︸ ︷︷ ︸
m

(resp. xy∧ · · ·xy∧︸ ︷︷ ︸
m

x yx∧ · · · yx∧︸ ︷︷ ︸
m

) if m is odd (resp. even),

x∧m by x∧y · · · yx∧︸ ︷︷ ︸
m

y∧ xy∧ · · · y∧x︸ ︷︷ ︸
m

(resp. x∧y · · ·x∧y︸ ︷︷ ︸
m

x∧ y∧x · · · y∧x︸ ︷︷ ︸
m

) if m is odd (re-

sp. even), ym by yx∧ · · ·x∧y︸ ︷︷ ︸
m

x y∧x · · ·xy∧︸ ︷︷ ︸
m

(resp. yx∧ · · · y∧x︸ ︷︷ ︸
m

y xy∧ · · ·xy∧︸ ︷︷ ︸
m

) if m is

odd (resp. even),y∧m by y∧x · · ·xy∧︸ ︷︷ ︸
m

x∧ yx∧ · · ·x∧y︸ ︷︷ ︸
m

(resp. y∧x · · · y∧x︸ ︷︷ ︸
m

y∧ x∧y · · ·x∧y︸ ︷︷ ︸
m

)

if m is odd (resp. even), x−m by xy∧ · · ·xy∧︸ ︷︷ ︸
2m

, and y−m by yx∼ · · · yx∼︸ ︷︷ ︸
2m

.

First we suppose that v = v1v2 · · · vs is finite and asymmetric, and set w =
w1w2 · · ·wt. We consider the following parts in w:



Vol. 75 (2000) On a problem of Nazarova and Roiter 403

a) wrwr+1 · · ·wr+2m−1 = xy∧ · · ·xy∧ (obtained from a term x−m in v). By
construction of R(w), the map fwi associated with w acts as follows on basis
vectors wr = x1, w

∗
r = x∧1 , · · · · · · , wr+2m−2 = xm, w

∗
r+2m−2 = x∧m:

x1 x2

y1 ym

xm

y2

y1̂

x1̂ x2̂
… xm̂

ym̂y2̂
…

k
k

since [w∗j . . . w
∗
1] > [wj+2 . . . wt], for j = r − 1, . . . , r + 2m− 2.

The matrix describing the action of fwi on the basis vectors xi, x
∧
i , 1 ≤ i ≤ m

in the figure above is

1 1 · 0 0 1 0 · 0 0
0 1 · 0 0 0 1 · 0 0
· · · · · · · · · ·
0 0 · 1 1 0 0 · 1 0
0 0 · 0 1 0 0 · 0 1
1 0 · 0 0 1 0 · 0 0
0 1 · 0 0 0 1 · 0 0
· · · · · · · · · ·
0 0 · 1 0 0 0 · 1 0
0 0 · 0 1 0 0 · 0 1


= T 1

m

Thus every part xy∧ · · ·xy∧︸ ︷︷ ︸
2m

in w provides a summand in (Xw; f̃wi2) which is

isomorphic to R(T 1
m), and such a summand contributes a one–dimensional sub-

space both in N−i (Xw; f̃wi2) and in N+
i (Xw; f̃wi2).

Similarly, every part y∧x · · · y∧x︸ ︷︷ ︸
2m

(obtained from some term y−m in v) provides

a summand isomorphic to R(T 1
m), too.

b) wrwr+1 · · ·wr+2m = xy∧ · · · yx∧ (obtained from a term vq = xm).
Case 1. m = 2p− 1. By construction of R(w), the map fwi associated with w

acts as follows on basis vectors wr = x1, w
∗
r = x∧1 , · · · · · · , wr+2m = x∧2p, w

∗
r+2m =

x2p:

x1 x2

y1

y1̂

x2̂

k k

x2px2 1p–xp+1

y2 1p–ypxp

x1̂

xp̂+1 x2̂p

y2̂ 1p–
… …

x2̂ 1p–

yp̂xp̂

… …
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provided [v∗q−1 · · · v∗1] > [vq+1 · · · vs] (Hence [w∗r+2p−1 · · ·w∗1] > [wr+2p+1 · · ·wt]).

We start with the following change of basis vectors.

x x1 2– p

y y1 2 1– p–

x x2 2– p–1

x2px2 1p–

x xp p–– 1

xp+1

y2 1p–yp

x x^ ^1 2– p x x^ ^2 2 1– p–

xp̂+1 x2̂ 1p– x2̂py y^ ^1 2 1– p–

x x^ ^p p–– 1
… … y2̂ 1p–yp̂

… …

Thus, the part wrwr+1 · · ·wr+2m = xy∧ · · · y∧x︸ ︷︷ ︸
m

y x∧y · · · yx∧︸ ︷︷ ︸
m

porvides a summand

of (Xw; f̃wi2) which is isomorphic to R(Y ) ⊕ R(Y ∧), where Y and Y ∧ are the
following matrices:

Y =



1 1 · 0 0 1 0 · 0 0
0 1 · 0 0 0 1 · 0 0
· · · · · · · · · ·
0 0 · 1 1 0 0 · 1 0
0 0 · 0 1 0 0 · 0 1
1 0 · 0 0 1 0 · 0 0
0 1 · 0 0 0 1 · 0 0
· · · · · · · · · ·
0 0 · 1 0 0 0 · 1 0



Y ∧ =



1 1 · 0 0 1 0 · 0 0
0 1 · 0 0 0 1 · 0 0
· · · · · · · · · ·
0 0 · 1 1 0 0 · 1 0
1 0 · 0 0 1 0 · 0 0
0 1 · 0 0 0 1 · 0 0
· · · · · · · · · ·
0 0 · 1 0 0 0 · 1 0
0 0 · 0 1 0 0 · 0 1


Set

Up =
[

0 expRp−1
Hp

]
∈ kp×p

where

Rp =


0 0 · 0 0
−1 0 · 0 0
0 −2 · 0 0
· · · · ·
0 0 · −p+ 1 0

 ∈ kp×p
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and Hp denotes the last row of the matrix expRp. Then there holds that[
Up 0
0 expRp−1

]
I2p−1 = Y

[
expRp 0

0 Up

]
and [

expRp−1 0
0 expRp

]
I∧2p−1 = Y ∧

[
expRp 0

0 expRp

]
that is, the morphism

expRp ⊕ Up ⊕ Up ⊕ expRp−1 :{x}p ⊕ {x∧}p ⊕ {y}p ⊕ {y∧}p−1

−→{x}p ⊕ {x∧}p ⊕ {y}p ⊕ {y∧}p−1

defines an ismorphism from R(Y ) to R(I2p−1), and the morphism

expRp ⊕ expRp ⊕ expRp−1 ⊕ expRp :{x}p ⊕ {x∧}p ⊕ {y}p−1 ⊕ {y∧}p

−→{x}p ⊕ {x∧}p ⊕ {y}p−1 ⊕ {y∧}p

defines an ismorphism from R(Y ∧) to R(I∧2p−1).
Therefore, every part xy∧ · · · y∧x︸ ︷︷ ︸

m

y x∧y · · · yx∧︸ ︷︷ ︸
m

in w porvides a summand of

(X ; f̃i2) which is isomorphic to R(I2p−1)⊕R(I∧2p−1) and which contributes a two–
dimensional subspace in N−i (Xw; f̃wi2).

The case [v∗q−1 · · · v∗1] ≤ [vq+1 · · · vs] can be treated similarly.

Case 2. m = 2p. By construction of R(w), the map fwi acts as follows on basis
vectors wr = x1, w

∗
r = x∧1 , · · · · · · , wr+2m = x∧2p+1, w

∗
r+2m = x2p+1:

x1 x2

y1 x2p x2 +1p

y2py1̂ yp̂

x1̂ x2̂
… … y2̂pyp̂+1xp̂+1

x2̂ 1p+x2̂pxp+1 yp+1
… …

yp

k k

provided [v∗q−1 · · · v∗1] > [vq+1 · · · vs].
We start with the following change of basis vectors.

x x1 2 +1+ p

y y1 2+ p x2p x2 +1p

y2py y^ ^1 2+ p

x x^ ^1 2 1+ p+ x x^ ^2 2+ p … … y2̂p

y y^ ^1 1+ p+

yp̂+1xp̂+1

x2̂ 1p+x2̂px x1 2+ p … …xp+1 yp+1

y yp p+ +1
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Thus, in this case, the part wrwr+1 · · ·wr+2m = xy∧ · · ·xy∧︸ ︷︷ ︸
m

x yx∧ · · · yx∧︸ ︷︷ ︸
m

provides

a summand of (Xw; f̃wi2) which is isomorphic to R(Z)⊕R(Z∧), where Z and Z∧

are the following matrices:

Z =



1 1 · 0 0 0 1 0 · 0 0
0 1 · 0 0 0 0 1 · 0 0
· · · · · · · · · · ·
0 0 · 1 1 0 0 0 · 1 0
0 0 · 0 1 1 0 0 · 0 1
1 0 · 0 0 0 1 0 · 0 0
0 1 · 0 0 0 0 1 · 0 0
· · · · · · · · · · ·
0 0 · 1 0 0 0 0 · 1 0
0 0 · 0 1 0 0 0 · 0 1



Z∧ =



1 1 · 0 0 1 0 · 0 0 0
0 1 · 0 0 0 1 · 0 0 0
· · · · · · · · · · ·
0 0 · 1 1 0 0 · 1 0 0
0 0 · 0 1 0 0 · 0 1 1
1 0 · 0 0 1 0 · 0 0 0
0 1 · 0 0 0 1 · 0 0 0
· · · · · · · · · · ·
0 0 · 1 0 0 0 · 1 0 0
0 0 · 0 1 0 0 · 0 1 0


then there hold that[

expRp 0
0 expRp

]
I2p = Z

[
expRp+1 0

0 expRp

]
[
Up 0
0 expRp

]
I∧2p = Z∧

[
expRp 0

0 Vp+1

]
where Up and Rp are defined as before and Vp+1 has the form

Vp+1 =
[

0 expRp
−Hp+1

]
∈ k(p+1)×(p+1)

This implies that the morphism

expRp+1 ⊕ expRp ⊕ expRp ⊕ expRp :{x}p+1 ⊕ {x∧}p ⊕ {y}p ⊕ {y∧}p

−→{x}p+1 ⊕ {x∧}p ⊕ {y}p ⊕ {y∧}p
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defines an ismorphism from R(Z) to R(I2p), and the morphism

expRp ⊕ Vp+1 ⊕ Up ⊕ expRp :{x}p ⊕ {x∧}p+1 ⊕ {y}p ⊕ {y∧}p

−→{x}p ⊕ {x∧}p+1 ⊕ {y}p ⊕ {y∧}p

defines an ismorphism from R(Z∧) to R(I∧2p).
Hence each part xy∧ · · ·xy∧︸ ︷︷ ︸

m

x yx∧ · · · yx∧︸ ︷︷ ︸
m

in w porvides a summand of (Xw; f̃wi2)

which is isomorphic to R(I2p)⊕R(I∧2p) and which contributes a two–dimensional
subspace in N−i (Xw; f̃wi2).

The case [v∗q−1 · · · v∗1] ≤ [vq+1 · · · vs] is similar.

b′) wrwr+1 · · ·wr+2m = x∧y · · · y∧x (obtained from a term vq = x∧m). As in
b), one has that every part x∧y · · · y∧x︸ ︷︷ ︸

2m+1

provides a summand in (Xw; f̃wi2) which

is isomorphic to R(Im)⊕R(I∧m).

c) By a similar argument in b), one can show that both the parts yx∧ · · ·xy∧︸ ︷︷ ︸
2m+1

(obtained from a term vq = ym) and y∧x · · ·x∧y︸ ︷︷ ︸
2m+1

(obtained from a term v∧q = ym)

provides a summand in (Xw; f̃wi2) which is isomorphic to R(Pm)⊕R(P∧m).
d) Each term wr (obtained from some term vq in v) in w provides a summand

(w̄r ; 0) in (Xw; f̃wi2) if wr 6= w∼r , and a summand ({wr} ⊕ {w∧r }; 0) if wr 6= w∧r .
From the observations in a)–d), one gets that (Xw; f̃wi2) and Xv viewed as

objects in B are isomorphic.
Furthermore, by checking each summand described in a)–d) and suitably choos-

ing basis vectors of Nε
j (Xw; f̃wi2) for 1 ≤ j ≤ n and ε = −,+, one obtains that

((Xw; f̃wi2); f̂w) is isomorphic to (Xv; fv1, · · · , fvn). Thus (X ; f) is isomorphic to
R(w), that is, an asymmetric string.

Similarly, one can show the following:
(1) If v is a symmetric catenation, there holds that (X ; f) is isomorphic to a

non–trivial summand of (Xw; fw1, · · · , fwn), that is, a dimidiate string.
(2) If v is an asymmetric periodic catenation of period π and ((X ; f̃i2); f̂) ∼=

R(v,Q) for some Q ∈ P , there holds that (X ; f) ∼= R(w, Q̄), where Q̄ denotes the
polynomial Q̄(X) = (−1)ιdegQQ((−1)ιX), and ι is the number of terms xm, x∧m,
ym, and x∧m in v = v0v1 · · · vπ−1 with m an odd number.

(3) If v is symmetric periodic and ((X ; f̃i2); f̂) ∼= R(v,K) for some K ∈ Q,
there holds that (X ; f) ∼= R(u,K).

4.7. As a conclusion of 4.2–4.6, we have the following

Proposition. Each indecomposable representation of the bush S is a string or a
band.
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4.8. Throughout the reduction above, by substituting (X ; f1, · · · , fn) for repre-
sentations associated with catenations, one can prove inductively the following
propositions.

Proposition 1. (1) The representation R(w) associated with each asymmetric
catenation w is indecomposable, and the representation (Xv; fv1, · · · , fvn) asso-
ciated with each symmetric catenation v is a direct sum of two non–isomorphic
indecomposables.

(2) For each asymmetric (resp. a symmetric) periodic catenation and each Q ∈
P (resp. K ∈ Q), the representation R(u,Q) (resp. R(u,K)) is indecomposable.

(3) The representaions R(δ), where

δ ∈ Ω1 qΩ2 × {0, 1} qΩ3 ×P q Ω4 ×Q ,

are pairwise non–isomorphic.

Proposition 2. The equivalent catenations (finite or periodic) of S define the
same family of isoclasses of indecomposables.

Proof. Let w = w1w2 · · ·wt and w′ = w′1w
′
2 · · ·w′t be equivalent catenations. We

denote by d(w,w′) the number of indices i (1 ≤ i ≤ t) such that w′i 6= wi. If
d(w,w′) = 0, the proposition holds. If d(w,w′) > 1, there exists a sequence of
equivalent catenations W1 = w,W2, · · · ,Wd = w′ such that d(Wi,Wi+1) = 1 for
1 ≤ i ≤ d − 1. So we may suppose that d(w,w′) = 1. Applying the reduction
in 4.2–4.6, the representations (Xw; fw1, · · · , fwn) and (Xw′ ; fw′1, · · · , fw′n) are
respectively reduced to representations (Xv; fv1, · · · , fvn) and (Xv′ ; fv′1, · · · , fv′n)
of a new bush T , where v and v′ are equivalent catenations of T such that d(v, v′) ≤
1. By induction, we may suppose that v and v′ define the same family of isoclasses
of indecomposables of T . By Proposition 3.4, this implies that w and w′ defines
the same family of isoclasses of indecomposables of S.

By a similar argument, the proposition holds for periodic catenations.

4.9. Remark. By Proposition 2 in 4.8 and Remark 2.8, one obtains the following
statements.

(a) For each asymmetric catenation w, catenations in the class [w]
∐

[w∗] define
isomorphic representations.

(b) For each symmetric catenation w, catenations in the class [w] define iso-
morphic representations.

(c) For each asymmetric periodic catenation u, catenations in the class∐
p∈Z([u{p}]

∐
[u{p}∗]) provide the same family of isoclasses of indecomposables.

(d) For each symmetric catenation w, catenations in the class
∐
p∈Z[u{p}] pro-

vide the same family of isoclasses of indecomposables.

The main theorem then follows from Propositions in 4.7, 4.8, and Remark 4.9.
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