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Abstract. We show that if a simple 3-manifold M has two Dehn fillings at distance ∆ ≥ 4,
each of which contains an essential annulus, then M is one of three specific 2-component link
exteriors in S3. One of these has such a pair of annular fillings with ∆ = 5, and the other two
have pairs with ∆ = 4.
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§1. Introduction

Let M be a (compact, connected, orientable) 3-manifold with a torus boundary
component T0. If r is a slope (the isotopy class of an essential unoriented simple
loop) on T0, then as usual we denote by M(r) the 3-manifold obtained from M
by r-Dehn filling, that is, attaching a solid torus J to M along T0 in such a way
that r bounds a meridian disk in J .

We shall say that a compact, connected, orientable 3-manifold M is simple if it
contains no essential surface of non-negative Euler characteristic, i.e., sphere, disk,
annulus or torus. If M has non-empty boundary and is not the 3-ball, then M is
simple if and only if M with its boundary tori removed has a complete hyperbolic
structure of finite volume with totally geodesic boundary [Th1, Th2]. If M is
closed, then the geometrization conjecture asserts that M is simple if and only if
M is either hyperbolic or belongs to a certain small class of Seifert fiber spaces
[Th1, Th2].

If M is hyperbolic, then Dehn fillings on M are hyperbolic if we exclude finitely
many slopes from each torus boundary component [Th1, Th2]. By doubling M
along its non-torus boundary components, we see that if M is simple then M(r) is
simple for all but finitely many slopes r on any given torus boundary component T0,
and a good deal of attention has been directed towards obtaining a more precise
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quantification of this statement. Denote by ∆(r1, r2) the distance, or minimal
geometric intersection number, between two slopes r1, r2 on a torus. Define a
3-manifold to be of type S, D, A or T if it contains an essential sphere, disk,
annulus or torus, respectively. For Xi ∈ {S,D,A, T}, i = 1, 2, define ∆(X1, X2)
to be the maximum of ∆(r1, r2), where r1 and r2 are Dehn filling slopes of some
simple manifold M such that M(ri) is of type Xi. These numbers ∆(X1, X2) are
now known in all ten cases; see [GW2] for more details.

Except when (X1,X2)=(A,A), (A,T ) or (T,T ), it is also known that ∆(X1,X2)
is realized by infinitely many simple manifolds M ; see [EW]. On the other hand,
∆(T, T ) = 8, and there are exactly two simple manifolds M admitting toroidal
fillings M(r1), M(r2) with ∆ = ∆(r1, r2) = 8, exactly one with ∆ = 7, exactly
one with ∆ = 6, and infinitely many with ∆ = 5 [Go]. Similarly, ∆(A, T ) = 5
[Go, GW1], and there is exactly one simple manifold M having an annular filling
M(r1) and a toroidal filling M(r2) with ∆ = 5, exactly two with ∆ = 4, and
infinitely many with ∆ = 3 [GW1]. In the present paper we complete the picture
by dealing with the case (A,A). In this case, ∆(A,A) = 5 [Go, GW1], and there
are infinitely many simple manifolds M admitting annular fillings M(r1),M(r2)
with ∆ = 3 [GW1]. Here we show that there is exactly one such manifold M
with ∆ = 5, and exactly two with ∆ = 4. More precisely, we have the following
theorem.

Theorem 1.1. Suppose M is a compact, connected, orientable, irreducible, ∂-
irreducible, anannular 3-manifold which admits two annular Dehn fillings M(r1),
M(r2) with ∆ = ∆(r1, r2) ≥ 4. Then one of the following holds.

(1) M is the exterior of the Whitehead link, and ∆ = 4.
(2) M is the exterior of the 2-bridge link associated to the rational number

3/10, and ∆ = 4.
(3) M is the exterior of the (−2, 3, 8) pretzel link, and ∆ = 5.

The three manifolds listed in the theorem are the exteriors of the links in S3

shown in Figure 1.1.

(1) (2) (3)

Figure 1.1

That each of these link exteriors does have a pair of annular fillings with ∆ = 4,
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4 and 5 respectively is proved in [GW1]. The fillings in question are also toroidal
[GW1], so in fact these are exactly the same manifolds which admit an annular
and a toroidal filling with ∆ ≥ 4 [GW1, Theorem 1.1]. Using [GW1, Theorem
1.1], Qiu has independently proved Theorem 1.1 in the special case where M is
the exterior of a knot in a solid torus [Q].

According to the proof of [GW1, Theorem 7.5], the annular fillings on the
three manifolds listed in Theorem 1.1 are non Seifert fibered graph manifolds. If
M admits some Seifert fibered surgery, then ∂M consists of tori, in which case
M is hyperbolic if and only if it is simple. Hence the following corollary is an
immediate consequence of Theorem 1.1.

Corollary 1.2. Suppose M is a compact orientable hyperbolic 3-manifold with at
least two torus boundary components, and suppose M(r1),M(r2) are Seifert fibered
manifolds. Then ∆(r1, r2) ≤ 3.

The condition that M has at least two boundary components cannot be re-
moved. For example, if M is the figure 8 knot complement, then M(3) and M(−3)
are Seifert fibered, and ∆(−3, 3) = 6. It is not known whether the bound 3 in the
corollary is the best possible.

The proof of Theorem 1.1 proceeds as follows. For α = 1, 2, let Aα be an
essential annulus in M(rα), meeting the Dehn filling solid torus Jα in nα meridian
disks, with nα minimal over all choices of Aα. This gives rise to a punctured
annulus Fα = Aα ∩M in M , such that the boundary components of Fα which
lie on T0 have slope rα, α = 1, 2. The arcs of intersection of F1 and F2 then
define labeled graphs Gα in Aα with nα vertices, α = 1, 2. We assume that
∆ = ∆(r1, r2) = 4 or 5, and show by a detailed analysis that there are only three
such pairs of graphs, corresponding to the three examples listed in the theorem.

The paper is organized as follows. In Section 2 we give some definitions and
establish some basic properties of the graphs Gα. In Section 3 we show that any
graph in an annulus with no trivial loops or parallel edges must satisfy one of
four possibilities; if the reduced graph Ĝα is of the fourth type we say that Gα is
special. Section 4 is devoted to showing that if one of the graphs G1, G2 is special
then they both are, and (up to relabeling) n1 = 1, n2 = 2. Section 5 considers the
generic case, n1, n2 > 2. This is shown to be impossible, by eliminating in turn
the first three possibilities of Section 3 for the reduced graphs Ĝα. Section 6 shows
that the case n1 = 2, n2 > 2 is also impossible. In Section 7 we show that if G1
and G2 are special, so n1 = 1 and n2 = 2, then there is exactly one possible pair
G1, G2, with ∆ = 4, corresponding to case (1) of Theorem 1.1. Finally in Section
8, we show that if G1, G2 are not special and n1, n2 ≤ 2, then there are exactly
two possible pairs G1, G2, one with ∆ = 4, n1 = n2 = 2, and one with ∆ = 5,
n1 = n2 = 2, corresponding to cases (2) and (3) of Theorem 1.1.

We would like to thank the referee for his/her careful reading and helpful
comments.
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§2. Preliminary Lemmas

Throughout this paper, we will always assume that M is a compact, connected,
irreducible, ∂-irreducible, anannular 3-manifold, with a torus boundary component
T0. We use α, β to denote the numbers 1 or 2, with the convention that if they both
appear, then {α, β} = {1, 2}. Let r1, r2 be slopes on T0 such that M(r1),M(r2) are
annular, and let Aα be an essential annulus in M(rα) such that nα, the number of
components of intersection of Aα with the Dehn filling solid torus Jα, is minimal
among all essential annuli in M(rα), α = 1, 2. Denote by Fα the punctured
annulus Aα ∩M . Denote by ∆ = ∆(r1, r2) the minimal geometric intersection
number between r1 and r2. By [Go, Theorem 1.3] we have ∆ ≤ 5. Throughout
this paper, we will always assume ∆ = 4 or 5, unless otherwise stated.

Minimizing the number of components of F1∩F2 by an isotopy, we may assume
that F1 ∩ F2 consists of arcs and circles which are essential on both Fα. Let
u1, . . . , unα be the disks that are the components of Aα ∩ Jα, labeled successively
when traveling along Jα. Similarly let v1, . . . , vnβ be the disks in Aβ ∩ Jβ. Let
Gα be the graph on Aα with the ui’s as (fat) vertices, and the arc components of
F1 ∩ F2 with at least one endpoint on T0 as edges. Note that we do not regard
an edge endpoint on the boundary of the annulus as a vertex, so we are abusing
terminology somewhat in that our graphs may have edge endpoints that do not
lie on vertices. The minimality of the number of components in F1 ∩ F2 and the
minimality of nα imply that Gα has no trivial loops, and that each disk face of
Gα in Aα has interior disjoint from Fβ .

An edge e of a graph G on an annulus A is a boundary edge if it has one
endpoint on the boundary of A, otherwise it is an interior edge. A vertex v of G
is a boundary vertex if it is incident to a boundary edge, otherwise it is an interior
vertex. Similarly, a face of G is a boundary face if it contains a boundary edge.

If e is an edge of Gα with an endpoint x on a fat vertex ui, then x is labeled j
if x is in ∂ui∩∂vj . When going around the boundary of a vertex in Gα, the labels
of the edge endpoints appear as 1, 2, . . . , nβ repeated ∆ times.

An edge e at a vertex ui of Gα is called a j-edge at ui if it has an endpoint at
ui labeled j. Dually, a j-edge at ui is also an i-edge at vj in Gβ . We say that e is
an (i, k)-edge if it has labels i and k at its two endpoints.

Each vertex of Gα is given a sign according to whether Jα passes Aα from the
positive side or negative side at this vertex. Two vertices of Gα are parallel if they
have the same sign, otherwise they are antiparallel. Note that if Aα is a separating
surface in M(rα), then nα is even, and ui, uj are parallel if and only if i, j have
the same parity. An interior edge of Gα is a positive edge if it connects parallel
vertices. Otherwise it is a negative edge. We use val(v,G) to denote the valency
of a vertex v in a graph G.

By considering each family of parallel edges of Gα as a single edge E, we get
the reduced graph Ĝα on Aα. It has the same vertices as Gα. Denote by |E| the
number of edges in Gα represented by E.
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A cycle in Gα consisting of positive edges is a Scharlemann cycle if it bounds a
disk with interior disjoint from the graph, and all the edges in the cycle have the
same pair of labels (i, i+ 1) at their two endpoints. (i+ 1 = 1 if i = nβ.) The pair
(i, i+ 1) is called the label pair of the Scharlemann cycle. In particular, a pair of
adjacent parallel positive edges with the same label pair is a Scharlemann cycle.
The boundary of the disk D bounded by a Scharlemann cycle consists of edges of
the Scharlemann cycle and some arcs on the annulus Ci on T0 between ∂vi and
∂vi+1. When nβ = 2, the two annuli C1 and C2 are still distinct, allowing one to
differentiate between a (1, 2)-Scharlemann cycle and a (2, 1)-Scharlemann cycle. A
pair of edges {e1, e2} is an extended Scharlemann cycle if there is a Scharlemann
cycle {e′1, e′2} such that ei is parallel and adjacent to e′i.

A subgraph G′ of a graph G on a surface F is essential if it is not contained
in a disk in F .

Lemma 2.1. (1) (The Parity Rule) An edge e is a positive edge in G1 if and only
if it is a negative edge in G2.

(2) A pair of edges cannot be parallel on both G1 and G2.
(3) If Gα has a set of nβ parallel negative edges, then on Gβ they form mutually

disjoint essential cycles of equal length.
(4) If Gα has a Scharlemann cycle, then Aβ is separating, and nβ is even.

Moreover, the edges of the Scharlemann cycle and the vertices at their endpoints
form an essential subgraph of Gβ.

(5) Gα contains no extended Scharlemann cycle.

Proof. See [GW1, Lemma 2.2], except for (2) in the case that the pair of edges
e1, e2 are boundary edges. If e1, e2 are boundary edges parallel on both G1, G2,
then they cut off bands B1, B2 on the punctured annuli F1, F2, which can be
glued together to get an annulus in the manifold M , which intersects the Dehn
filling torus T0 in an essential circle. This contradicts the assumption that M is
∂-irreducible and anannular. �

Let E be an edge of Ĝα representing nβ parallel negative edges on Gα, connect-
ing ui to uj. Then E defines a permutation ϕ : {1, . . . , nβ} → {1, . . . , nβ}, such
that an edge e in E has label k at ui if and only if it has label ϕ(k) at uj . Call ϕ
the permutation associated to E. Because of the ambiguity in the order of ui, uj ,
the permutation is only well defined up to inverse. An E-orbit is an orbit of ϕ.
Such an orbit determines a cycle in Gβ consisting of the edges of E with endpoint
labels in this orbit, called the cycle of this orbit. Note that all the vertices in a
cycle are parallel. Topologically each such cycle is a circle. Lemma 2.1(3) says
that these circles are mutually disjoint, mutually parallel, essential circles on the
annulus Aβ .

Lemma 2.2. (1) Any two Scharlemann cycles on Gα have the same label pair.
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(2) If E is a positive edge in Ĝα, then |E| ≤ nβ/2 + 1. Moreover, if |E| =
nβ/2 + 1, then the corresponding edges of Gα contain a Scharlemann cycle.

(3) Any family of parallel interior edges in Gα contains at most nβ edges.

Proof. See [GW1, Lemma 2.5]. �

Lemma 2.3. (1) If some vertex of Gα has more than nβ negative edge endpoints,
then Gβ contains a Scharlemann cycle.

(2) No vertex of Gα has more than 2nβ negative edge endpoints.

Proof. For any label i of Gβ , let G+
β (i) be the subgraph of Gβ consisting of all

vertices of Gβ and all positive i-edges of Gβ . The edges of G+
β (i) correspond to

the negative edges of Gα incident to the vertex ui. Let the number of such edges
be k. Then if f denotes the sum of the Euler characteristics of the faces of G+

β (i),
we have

0 = χ(Aβ) = nβ − k + f.

Therefore, if k > nβ, G+
β (i) has a disk face D. Then there is a Scharlemann cycle

of Gβ in D by [HM, Proposition 5.1]. This proves (1).
To prove (2), assume k > 2nβ. Then by the above we have f = k − nβ > nβ ,

so G+
β (i) has more than nβ disk faces, and by [HM, Proposition 5.1] each such

face contains a Scharlemann cycle of Gβ . Hence Gβ contains s > nβ Scharlemann
cycles, all on the same label pair, say (1, 2), by Lemma 2.2(1). Define a graph
H in Aβ as follows; see [GL, Proof of Theorem 2.3]. The vertices of H consist of
the vertices of Gβ , together with a vertex vD in the interior of each disk face of
Gβ bounded by a Scharlemann cycle. The edges of H are defined by joining each
vertex vD, within D, to the vertices of Gβ in ∂D. Thus H has nβ + s vertices and
at least 2s edges. An Euler characteristic argument then shows that H has a disk
face E. This disk E contains a 1-cycle of Gβ (see [CGLS, p. 279] for definition),
and hence a Scharlemann cycle [CGLS, Lemma 2.6.2]. But this contradicts the
fact that E is a face of H, because by definition H would have a vertex in the disk
bounded by this Scharlemann cycle. �

Let P,Q be two edge endpoints on the boundary of a vertex u in Gα. Let
P0 = P, P1, . . . , Pk−1, Pk = Q be the edge endpoints encountered when traveling
along ∂u in the direction induced by the orientation of u. Then the distance from P
to Q (at the vertex u) is defined as ρu(P,Q) = k. Notice that since the valency of u
is ∆nβ , we have ρu(Q,P ) = ∆nβ−ρu(P,Q). If e1, e2 is a pair of edges, each having
a single endpoint Pi on the vertex u in Gα, then define ρu(e1, e2) = ρu(P1, P2).

A pair of edges e1, e2 connecting two vertices u, v in Gα is an equidistant pair
if ρu(e1, e2) = ρv(e2, e1). In particular, one can check that if e1, e2 are a pair
of parallel edges connecting a pair of parallel vertices in Gα, then e1, e2 is an
equidistant pair in Gα.
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Lemma 2.4. (The Equidistance Lemma.) Let e1, e2 be a pair of edges connecting
the same vertices on G1 and the same vertices on G2. Then e1, e2 is an equidistant
pair in G1 if and only if it is an equidistant pair in G2.

Proof. See [GW1, Lemma 2.8]. �

Given two slopes r1, r2 on the torus T0, let l be a curve intersecting r1 at
a single point. Choosing l and the orientations of the curves properly, we may
assume that homologically r2 = qr1 + ∆l, where 1 ≤ q < ∆/2. The number q is
called the jumping number of r1, r2. Note that if ∆ = 4 then q = 1, and if ∆ = 5
then q = 1 or 2.

Lemma 2.5. (1) If the jumping number q = 1, in particular if ∆ = 4, then a pair
of j-edges at a vertex ui in Gα are adjacent among all the j-edges if and only if
on Gβ they are also adjacent at vj among all i-edges.

(2) If q = 2, then a pair of j-edges at a vertex ui in Gα are adjacent among all
j-edges if and only if on Gα they are not adjacent among all the i-edges at vj.

Proof. This is essentially [GW1, Lemma 2.10]. It was shown that if P1, ..., P∆
are the consecutive j-edge endpoints at ui, then on ∂vj they appear in the order
Pq, P2q, ..., P∆q, hence the result follows. �

A graph G on an annulus A is special if every vertex has at least two nonparallel
boundary edges. Note that G is special if and only if the corresponding reduced
graph Ĝ is special.

Lemma 2.6. (1) If G is special then every vertex has exactly two boundary edges
in Ĝ, going to distinct boundary components of A.

(2) If Gα has 2nβ parallel boundary edges, then Gβ is special. Gα cannot have
more than 2nβ parallel boundary edges.

(3) If some edge E of Ĝα represents nβ negative edges, and if Gα has some
positive edges, then Gα has at most nβ parallel boundary edges, and each vertex of
Ĝβ has at most one boundary edge.

Proof. (1) Otherwise there would be a pair of edges of Ĝ at some vertex v going
to the same boundary component of A. By looking at an outermost such pair one
can see that some vertex u of Ĝ has a single boundary edge in Ĝ, contradicting
the definition of a special graph.

(2) If Gα has 2nβ parallel boundary edges, then for any label i it has two
parallel i-edges. Since no two edges are parallel on both graphs, these two edges
are non-parallel on Gβ , hence Gβ is special. If Gα has more than 2nβ parallel
boundary edges, then there is a label i such that Gα has three parallel boundary
i-edges. Since by (1) the vertex vi in Ĝβ has only two boundary edges, two of
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these edges would be parallel on both graphs, contradicting Lemma 2.1(2).
(3) Since Gα has some positive edges, the vertices of Gβ cannot all be parallel,

so there are at least two E-orbits, which form parallel essential cycles on Gβ .
Hence all boundary edges at a vertex of Gβ must be parallel to each other. If Gα
has more than nβ parallel boundary edges then two of them would be parallel on
both graphs, contradicting Lemma 2.1(2). �

Lemma 2.7. Suppose all vertices of Ĝα are boundary vertices, and suppose there
are two boundary edges E1, E2 of Ĝα incident to the same vertex v and going to
the same boundary component of Aα. Then Ĝα has a vertex v′ of valency at most
3 which is incident to a single boundary edge, and Gβ is special.

Proof. Let D be the disk on Aα cut off by E1 ∪E2. Since E1, E2 are nonparallel,
D contains a vertex v1 6= v, hence by adding an edge if necessary we may assume
that there is an edge incident to v other than E1, E2. Let D̃ be the double of D
along E1 ∪ E2, and let G̃ be the double of Ĝα ∩ D. Then each vertex of G̃ has
a boundary edge. By [CGLS, Lemma 2.6.5] G̃ has a vertex v′ of valency at most
3 and incident to at most one boundary edge. Since v has valency at least 4 in
G̃, v′ 6= v. Hence val(v′, Ĝα) = val(v′, G̃) ≤ 3. By Lemma 2.2(3) each interior
edge of G̃α represents at most nβ edges. Since ∆ ≥ 4, this implies that the unique
boundary edge at v′ represents at least 2nβ edges. By Lemma 2.6(2) in this case
Gβ is special. �

§3. Reduced graphs on annuli

By a reduced graph on a surface we mean one with no trivial loops or parallel
edges; in other words, no faces of the graph are monogons or bigons.

Definition 3.1. Let G be a reduced graph on an annulus A. Then G is said to
be triangular if

(i) every vertex has at most one boundary edge;
(ii) every interior vertex has valency 6;
(iii) every boundary vertex has valency 5;
(iv) every face of G is a disk with three edges.

We remark that the only properties of a triangular graph that we will use are
(i), (iii), and the fact that the graph has at least one boundary vertex (which
follows from (iv)).

Proposition 3.1. Let G be a reduced graph in an annulus A. Then either
(1) G contains an interior vertex of valency at most 5; or
(2) G contains a boundary vertex of valency at most 4 with exactly one boundary
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edge; or
(3) G is triangular; or
(4) G is special.

Proof. Let G1 be a graph obtained from G by adding extra edges so as to make
each face of G1 a disk with three edges. In particular, in G1, each boundary face
has three edges, and if some vertex v has two boundary edges e1, e2, then v has
an edge on each side of e1 ∪ e2, so it has valency at least 4.

Let G2 be the union of G1 and ∂A, with the obvious graph structure. Thus
the points of G1 ∩ ∂A are now considered vertices, and the segments of ∂A cut by
these vertices are considered edges of G2. Note that val(v,G2) = 3 for all vertices
v on ∂A, and each boundary face now has four edges. Let G3 be obtained from
G2 by adding a diagonal edge in each boundary face of G2, all sloping in the same
direction; in other words, no two edges added have a common vertex on ∂A. We
have val(v,G3) = 4 if v ∈ ∂A. One can see that if we remove all edges and vertices
on ∂A then we get a graph that is obtained from G1 by adding an extra copy of
each boundary edge. Hence if val(v,G1) = p and v has q boundary edges in G1,
then val(v,G3) = p+ q. In particular, if v has two boundary edges in G1, then its
valency in G3 is at least 4 + 2 = 6. Each face of G3 is now a triangle.

The double of A along ∂A is a torus T , and the corresponding double of G3
is a reduced graph G̃3 on T with triangular faces. By an Euler characteristic
argument, one can show that the number of edges in G̃3 is three times the number
of vertices of G̃3. Thus either (i) some vertex v of G̃3 has valency at most 5, or (ii)
all vertices of G̃3 have valency 6. All vertices on ∂A have valency 4 in G3, hence
valency 6 in G̃3, and we have shown that if v has two boundary edges in G1 then
it has valency at least 6 in G3; therefore (i) implies that either v is an interior
vertex of G with valency at most 5, or it is a boundary vertex of G with valency
at most 5− q ≤ 4 and incident to at most one boundary edge, so the graph is of
type (1) or (2) in the proposition. Hence we may assume that all vertices of G3
in the interior of A have valency 6.

If no vertex of G1 has two boundary edges then each boundary vertex of G1 has
valency 6− q = 6−1 = 5. Since each interior vertex of G1 has valency 6, it follows
that G1 is triangular. Since G is a subgraph of G1 with the same vertices, either
G = G1 and hence G is of type (3), or G has a vertex v with val(v,G) < val(v,G1),
in which case G is of type (1) or (2).

Now assume some vertex v of G1 has two boundary edges e1, e2 going to dif-
ferent boundary components. Then the valency of v in G1 is at most 6 − 2 = 4.
Since each face of G1 has three edges, there is exactly one interior edge e′ on each
side of e1 ∪ e2. Let v′ be the other endpoint of e′. Since each face has three edges,
v′ must also have two boundary edges going to different boundary components of
A. Repeating this process, we see that G1 is a special graph such that each vertex
has valency 4. Since G is a subgraph of G1, either it is special, hence of type (4),
or it has a vertex of valency at most 3 and incident to at most one boundary edge,
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in which case it is of type (1) or (2).
Finally, assume G1 has a vertex v which has two boundary edges going to the

same boundary component. Then they cut off a disk D from the annulus, which
we may assume to be outermost. However, arguing as in the previous paragraph,
we see that the vertex on the other end of an edge e′ in D incident to v must
have two boundary edges, which is a contradiction. Therefore this case does not
happen. �

§4. Special graphs

Recall that a graphG on an annulus A is special if every vertex has two nonparallel
boundary edges. By Lemma 2.6(1) this implies that every vertex of G has exactly
two boundary edges in Ĝ, going to different boundary components of A.

To simplify notation, denote nβ by n.

Lemma 4.1. If Gα is a special graph, then Gβ is also special.

Proof. First notice that since each vertex ui of Gα is incident to at most two
families of interior edges and each such family contains at most n edges (Lemma
2.2(3)), there are at most two interior j-edges at ui for any j. Hence there are
at least ∆ − 2 boundary j-edges at ui. Since this is true for all i, j, we see that
each vertex vj of Gβ has at least 2nα (3nα if ∆ = 5) boundary edges. Since each
parallel family contains at most 2nα edges (Lemma 2.6(2)), the lemma follows
immediately when ∆ = 5.

Now assume ∆ = 4, and assume Gβ is not special. Then it has a vertex vi
such that all boundary edges are parallel. By Lemma 2.6(2) and the above, vi has
exactly 2nα boundary edges, all parallel to each other. In particular, there are
only two boundary 1-edges e1, e

′
1 at vi. Dually this means that e1, e

′
1 are the only

boundary i-edges at u1. Since they are parallel on Gβ , they cannot be parallel on
Gα, so they belong to different families of boundary edges. Since these two edges
are adjacent among all 1-edges at vi, by Lemma 2.5(1) they must also be adjacent
among all i-edges at u1. This implies that the two interior i-edges at u1 are on
the same side of e1 ∪ e′1, so they belong to the same edge E in Ĝα because there
is only one interior edge of Ĝα on each side of e1 ∪ e′1. Since by Lemma 2.2(3) E
contains at most n edges, this is impossible. �

In the remainder of this section we will assume that both G1 and G2 are special.
The sign of a vertex u in Gα induces an orientation on ∂u, called its preferred

orientation. Thus the preferred orientations of the ∂u’s are all in the same direction
on T0. Let e1, e2 be a pair of adjacent boundary edges at some vertex u of Gα.
When traveling on ∂u along the preferred orientation, the labels at the endpoints
of e1, e2 appear as i, i+ 1 for some i (i+ 1 = 1 if i = n). They cut off a band B on
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the surface Fα, called an i-band at u (of Gα). Note that the label i is determined
by the pair e1, e2 even if n = 2. The edge labeled i at u is called the initial edge
of B, the other the terminal edge. Two i-bands of Gα are of different types if their
initial edges are nonparallel on Gβ ; otherwise they are of the same type.

If e1, ..., ek are all the edges of a parallel family E at a vertex u, appearing in
this order when traveling along the preferred orientation of ∂u, then ek is called
the ending edge of E, and the label of ek at u is called the ending label of E. Note
that if a boundary i-edge e is not an ending edge, then it is the initial edge of an
i-band.

Lemma 4.2. There is a label i such that all i-bands of Gα are of the same type.

Proof. Assuming otherwise, then there are two i-bands B1
i , B

2
i of different types

for each i. Since the graph Gβ is special, there are only two families of parallel
boundary edges for each vertex vi in Gβ , so each family contains the initial edge
of some Bji . Therefore, the terminal edge of each Bji is parallel to the initial edge
of some Bki+1, so there is a band Dj

i on Fβ connecting these two edges. Note that
Dj
i degenerates to a single edge if these two edges coincide.

Consider the 2-complex Q = ∪(Bji ∪D
j
i ). Then Q∩ T0 = ∪(eji ∪ d

j
i ) is a graph

G on T0, where eji = Bji ∩ T0 and dji = Dj
i ∩ T0. We have Q ∼= G × I. Shrinking

each dji to a point, and orienting eji so that its endpoint is on dji , we get an oriented
graph G′ in which each vertex dji is the tail of some edge eki+1. Hence G′ contains
an embedded oriented cycle. The corresponding cycle C in G is then an embedded
loop in T0. Let γ be a parallel copy of some boundary component of Fβ on T0,
intersecting some eji in C transversely at a single point. The definition of Bji and
the orientation of eji implies that C intersects γ always in the same direction; hence
C is an essential curve. Thus A = C × I ⊂ Q is an annulus properly embedded in
M intersecting T0 in the essential curve C, which contradicts the assumption that
M is ∂-irreducible and anannular. �

Lemma 4.3. Each family of boundary edges in Gα contains at least n edges.

Proof. Let E1, ..., E4 be the four edges of Ĝα at u1, with E1, E3 the boundary
edges. If |E1| < n then there is a label i which does not appear at the endpoints of
edges in E1. If ∆ = 5 then we would have |E3| = 5n−|E1|− |E2|− |E4| ≥ 2n+ 1,
contradicting Lemma 2.6(2). Hence ∆ = 4. Since |E3| ≤ 2n, E3 contains at most
two i-edges, so each of E2, E4 contains one i-edge. Let e1, e2 be the i-edges of
E2, E4 at u1, and let e3, e4 be the i-edges of E3. Since e3, e4 are adjacent i-edges
at u1, by Lemma 2.5(1) they are adjacent 1-edges at vi. On Gβ the two edges
e3, e4 belong to different families of boundary edges at vi, because they cannot be
parallel on both graphs. Therefore the two edges e1, e2 belong to the same family
of interior edges. Since they both have label 1 at vi, this would imply that the
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interior family containing them has at least nα + 1 edges, contradicting Lemma
2.2(3). �

Lemma 4.4. The jumping number q = 1.

Proof. This is automatically true if ∆ = 4. Hence assume ∆ = 5. First assume
that there is a vertex uj of Gα which has two interior i-edges e1, e2 for some
i. Since each interior family contains at most n edges, e1, e2 are nonparallel on
Gα. By Lemma 4.3 each boundary family contains an i-edge, hence e1, e2 are non
adjacent among the i-edges at uj. Dually on Gβ these are j-edges at the vertex
vi. For the same reason, they are non adjacent among all j-edges at vi. Therefore
by Lemma 2.5 the jumping number q = 1.

Now assume that uj has at most one interior i-edge for all i. Then it has at
most n interior edge endpoints. On the other hand, since each boundary family
contains at most 2n edges and the valency of uj is ∆n = 5n, we see that it cannot
have less than n interior edge endpoints; therefore it has exactly n interior edge
endpoints, and each boundary family contains exactly 2n edges. If uj has two
interior families, so each family contains less than n edges, then the two boundary
families have different ending labels. In this case for each label i there are three
i-bands, which cannot all be of the same type because each boundary family of vi
has at most two j-edges. This contradicts Lemma 4.2. Therefore uj has only one
family of interior edges, which contains n edges. For the same reason, each vertex
of Gβ has only one family of interior edges, containing nα edges. By the parity
rule one of these families is negative, and by Lemma 2.1(3) they form cycles on the
other graph, so each vertex of that graph would then have two families of interior
edges, contradicting the above conclusion. �

Lemma 4.5. Suppose all i-bands at a vertex uj of Gα are of the same type. Then
(1) there are n parallel interior edges at uj, and
(2) each family of n parallel interior edges at uj has i as its ending label.

Proof. Let E1, ..., E4 be the edges at uj of Ĝ1, appearing in this order around ∂uj
along its preferred orientation, with E1, E3 the boundary edges. Let e1, ..., e4 be
four i-edges at uj , appearing successively along the preferred orientation of ∂uj .

First assume that all ei are boundary edges. Then we may assume that e1, e2 ∈
E1, and e3, e4 ∈ E3. Thus e1, e3 are not ending edges, so they are initial edges of
some i-bands B1, B3. Since the jumping number q = 1 (Lemma 4.4), and since
e1, e3 are non adjacent among i-edges at uj , by Lemma 2.5 they are non adjacent
among j-edges at vi in Gβ , hence they are non parallel boundary edges on Gβ .
Therefore B1, B3 are of different type.

Now assume that E2 contains an i-edge e2, say. Since each of E1, E3 contains
at least n edges, we must have e1 ∈ E1 and e3 ∈ E3. Assume that either e2 is not
the ending edge of E2 or |E2| < n. Then e1 is not an ending edge of E1, and there
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is an i-band B1 with e1 as the initial edge. If e3 is not an ending edge either, then
there is an i-band B3 with e3 as initial edge. For the same reason as above, B1, B3
are of different type, and we are done. So assume that e3 is the ending edge of
E3. Now we must have |E4| < n as otherwise E4 would have n edges and have
the i-edge e4 as its ending edge, contradicting the assumption. Hence e4 is in E1,
and so there is an i-band with e4 as an initial edge. Since e1, e4 are parallel on
Gα, they are nonparallel on Gβ , so again B1, B4 are of different type. This proves
(1). To prove (2), notice that if |E2| = n but e2 is not the ending edge, then e1, e3
are not ending edges of E1, E3, so from the above the two i-bands B1, B3 are of
different type. �

Lemma 4.6. Suppose n > 2. Then each positive edge of Ĝα represents at most
n/2 edges.

Proof. When n > 2, the special graph Ĝβ has at most one edge connecting any
two vertices. If Gα has n/2 + 1 parallel positive edges, then it has a Scharlemann
cycle e1 ∪ e2 with label pair (1, 2), say. So the two edges e1, e2 would be parallel
on Gβ , contradicting Lemma 2.1(4). �

Proposition 4.7. If Gα is special then up to relabeling we have n1 = 1, n2 = 2,
and G1 has exactly two interior edges.

Proof. First assume nα ≥ 2 for α = 1, 2. By Lemma 4.2 for each graph Gα there
is a label i such that all i-bands of Gα are of the same type. Let uj be a vertex
of Gα. By Lemma 4.5(1), it has a set of n parallel interior edges E with i as its
ending label at uj. Let uk be the vertex on the other endpoint of E, then by
Lemma 4.5(2), E also has ending label i at uk. If E is negative, then the ending
edge e of E at uj is the same as that at uk, so e would have the same label i on its
two endpoints, and hence is a loop on Gβ . Since n ≥ 2 and Gβ is special, this is
absurd. If E is positive, then the two ending edges would give rise to two negative
edges at vi in Gβ , which must be nonparallel because they cannot be parallel on
both graphs. Thus both families of interior edges at vi are negative. Replacing
uj by vi in the above argument, we get a contradiction because now E must be
negative. Therefore up to relabeling we must have n1 = 1.

By Lemma 4.5(1) the only vertex u1 of G1 has n2 parallel interior edges, which
by the parity rule must be negative edges on G2, hence n2 ≥ 2. If n2 > 2, then by
Lemma 4.6 G1 has at most n2/2 interior edges, which is a contradiction. Hence
the result follows. �
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§5. The generic case

In this section except for Lemma 5.1, we assume nα, nβ > 2. By Proposition 4.7,
Gα and Gβ are not special. Again denote nβ by n.

Lemma 5.1. Suppose nα ≥ 2, n > 2, and suppose Ĝα has a negative edge E with
|E| = n, and a positive edge E′ with |E′| = n/2 + 1. Let (1, 2) be the label pair of
the Scharlemann cycle in E′. Then

(1) Gβ has at most n/2 boundary vertices;
(2) when n = 4, the two vertices v3, v4 of Gβ cannot both be boundary vertices;

and
(3) when n = 4, Gα cannot have both a (1, 4)-edge and a (2, 3)-edge.

Proof. Let k be the number of E-orbits. Since E′ contains more than n/2 edges,
hence contains a Scharlemann cycle, the annulus Aβ is separating, so Gβ has the
same number of positive and negative vertices. Each E-orbit contains the same
number (n/k) of vertices, all of the same sign, so the number of orbits containing
positive vertices is the same as the number of those containing negative ones, and
hence k must be even. Recall that each E-orbit forms an essential cycle on Gβ ,
so only the vertices on the two cycles adjacent to the two boundary components
of Aβ could be boundary vertices. Hence the number of boundary vertices is at
most 2(n/k), and since k is even, (1) follows unless k = 2.

Assume k = 2. Let C1, C2 be the two cycles of E-orbits on Gβ , and let e1, e2 be
the edges of the Scharlemann cycle in E′. By Lemma 2.1(4) e1 ∪ e2 is an essential
cycle on Gβ . The two vertices v1, v2 of e1∪e2 are on different C1, C2 because they
are antiparallel, so the cycle e1 ∪ e2 lies between C1 and C2, separating the vertex
v3 on the first orbit from the vertex vn on the second. On the other hand, since E′

contains more than two edges, there is an edge adjacent to the Scharlemann cycle
which is a (3, n)-edge, so on Gβ there would be an edge connecting v3 to vn. This
is a contradiction, showing that k = 2 is impossible. In particular, this proves (1).

Now assume n = 4. Since we have shown that k is even and k 6= 2, we must
have k = 4. In this case each vertex vi of Gβ has an essential loop Ci coming from
the n parallel negative edges in Gα. These loops and their vertices form essential
circles on Aβ which are parallel to each other. As above, there is an edge in E′

which connects v3 to v4. Hence the circles C3 and C4 are adjacent to each other,
so v3, v4 cannot both be boundary vertices. This proves (2). Since the edges in
the Scharlemann cycle connect v1 to v2, C1 is adjacent to C2. Thus either C3
separates v4 from v1, v2, so there is no edge connecting v4 to v1, or C4 separates
v3 from v1, v2, so there is no edge connecting v3 to v2. This proves (3). �

Lemma 5.2. Suppose E1, ..., E5 are the edges of Ĝα at a vertex u of valency 5.
If E1, E2, E3 are positive, and E4 is an interior edge, then |E5| > n; in particular,
E5 is a boundary edge.
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Proof. Assume |E5| ≤ n. By Lemma 2.2(2) we have |Ei| ≤ n/2 + 1 for i ≤ 3, and
by Lemma 2.2(3) |E4| ≤ n. Since n > 2, we must have ∆ = 4, and

4n = ∆n = |E1|+ · · ·+ |E5| ≤ 3(
n

2
+ 1) + 2n =

7
2
n+ 3,

which implies that n ≤ 6. Moreover, n must be even, otherwise by Lemmas 2.2(2)
and 2.1(4) we would have |Ei| ≤ n/2 for i = 1, 2, 3, hence 4n ≤ 3(n/2)+2n, which
is absurd.

If n = 6, then all the above inequalities are equalities. In particular, ∆ = 4,
|E4| = |E5| = 6, and |Ei| = 4 for i = 1, 2, 3, so each of E1, E2, E3 contains a
Scharlemann cycle, and by Lemma 2.2(1) they all have the same label pair, say
(1, 2). But since |E4| = |E5| = n, these labels also appear in E4 and E5. Thus the
label 1 appears 5 times, contradicting the fact that ∆ = 4.

Now assume n = 4. If each of E1, E2, E3 contains a Scharlemann cycle with
label pair (1, 2), say, (in particular, if |Ei| = 3 for i = 1, 2, 3), then again the labels
{1, 2} appear three times among the endpoints of E1 ∪ E2 ∪E3 at u. Also, since
E4 ∪ E5 has at least 16− 3 × 3 = 7 edge endpoints at u, one of the labels {1, 2}
appears at least twice among the endpoints of E4∪E5 at u, so it appears 5 times at
u, contradicting the fact that ∆ = 4. Hence we may assume that |E1| = |E2| = 3,
|E3| = 2, E3 contains no Scharlemann cycle, and |E4| = |E5| = 4. Since the two
edges of E3 have labels 3, 4 at u, they must have label sets {1, 4} and {2, 3}. Since
|E4| = 4, the edges in E4 are negative. This contradicts Lemma 5.1(3), completing
the proof of the lemma. �

Lemma 5.3. Ĝα has no interior vertex of valency at most 5.

Proof. Let E1, . . . , E5 be the edges of Ĝα incident to u. Since all these edges
are interior edges, by Lemma 5.2 they can have at most two positive edges, say
E1, E2. By Lemma 2.3(2), u has at most 2n negative edges in Gα, hence E1 ∪E2
represents at least 2n positive edges. By Lemma 2.2(2) we have 2n ≤ 2(n/2 + 1),
which contradicts the assumption that n ≥ 3. �

Lemma 5.4. Ĝα cannot have a boundary vertex u of valency at most 4 with a
single boundary edge.

Proof. Let E0 be the boundary edge, and E1, E2, E3 the interior edges of Ĝα at
u. By Lemma 2.6(2) and Proposition 4.7 we have |E0| < 2n. By Lemma 2.3(2),
u can have at most 2n negative edges in Gα, so one of the interior edges, say E1,
must be positive, and by Lemma 2.2(2) |E1| ≤ n/2 + 1 < n. Since each of E2, E3
represents at most n edges, we have |E0| > n.

We claim that either Gα or Gβ contains a Scharlemann cycle. If u has more
than n negative edges, then by Lemma 2.3(1) Gβ contains a Scharlemann cycle.
So assume u has at most n negative edges. Since u has less than 2n boundary
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edges, it must have more than n positive edges. If at most two of the E1, E2, E3
are positive, then one of them represents more than n/2 positive edges; if all the
three interior edges at u are positive, then since they represent more than 2n edges,
again one of them represents more than n/2 edges. In either case these parallel
edges contain a Scharlemann cycle. This completes the proof of the claim.

Now |E0| > n implies that some vertex of Gβ has two nonparallel boundary
edges. In particular, Ĝβ cannot be triangular. It follows from Lemma 5.3 and
Proposition 3.1 that Ĝβ must also have a boundary vertex v of valency at most 4
with a single boundary edge. Since one of Gα and Gβ has a Scharlemann cycle, by
considering v instead of u if necessary, we may assume without loss of generality
that Gα contains a Scharlemann cycle with label pair (1, 2).

We claim that |E0| ≤ n + 2. Otherwise each vertex of Gβ has a boundary
edge, and some vertex vi other than v1, v2 has two such edges e1, e2. Since the
edges of the Scharlemann cycle form an essential subgraph of Gβ (Lemma 2.1(4)),
separating the two boundary components of Aβ , the edges e1, e2 must go to the
same boundary component. Applying Lemma 2.7, we see that Gα is special, a
contradiction.

Since |E0| > n and u has some positive edges, by Lemma 2.6(3) the graph Gα
cannot have n parallel negative edges. Thus if k of the E1, E2, E3 are positive,
then

4n ≤ (n+ 2) + k(
n

2
+ 1) + (3− k)(n− 1) = (4− k

2
)n+ (2k − 1)

which implies that n < 4. But since Gα contains a Scharlemann cycle, n is even.
This contradicts the assumption that n > 2. �

Lemma 5.5. If both Ĝ1, Ĝ2 are triangular, then each boundary vertex has exactly
two positive and two negative edges in Ĝα.

Proof. Let E0, ..., E4 be the edges of Ĝα at a boundary vertex v, with E0 the
boundary edge. Since Ĝβ is also triangular, E0 represents at most n edges. There-
fore by Lemma 5.2 at most two of the Ei are positive. On the other hand, by
Lemma 2.3(2) v has at most 2n negative edges, hence at least n positive edges.
Since each Ei represents at most n/2 + 1 < n positive edges, v must have two
positive edges in Ĝα. �

Lemma 5.6. Suppose both Ĝ1, Ĝ2 are triangular. Then all vertices of G1, G2 are
boundary vertices.

Proof. Let E0, ..., E4 be the edges of Ĝα at a boundary vertex v, with E0 the
boundary edge. By Lemma 5.5 we may assume that E1, E2 are negative edges,
and E3, E4 are positive edges.

Suppose Gβ has some interior vertices. Then |E0| < n. Since v has at most 2n
negative edges, it has more than n positive edges, so E3 ∪E4 contains a Scharle-
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mann cycle with label pair (1, 2), say, and n is even. Also, one of E1, E2 must
represent n parallel edges, for otherwise E0∪E1∪E2 would contain at most 3n−3
edges, so one of E3, E4 would contain at least n/2+2 edges, contradicting Lemma
2.2(2). Now we can apply Lemma 5.1(1) and conclude that Gβ has at most n/2
boundary vertices. Thus |E0| ≤ n/2. We have the inequality

4n ≤ |E0|+ ...+ |E5| ≤
n

2
+ 2n+ 2(

n

2
+ 1) ≤ 7

2
n+ 2.

Since n is even, this implies n = 4, |E0| = 2, |E1| = E2| = 4, and |E3| = |E4| = 3.
Now each of E3, E4 contains a Scharlemann cycle on label pair (1, 2), so these
labels appear 4 times among the interior edge endpoints at v. Thus the labels of
E0 must be 3, 4. This contradicts Lemma 5.1(2). �

Lemma 5.7. Ĝ1, Ĝ2 cannot both be triangular.

Proof. Assume Ĝ1, Ĝ2 are triangular. Then by Lemma 5.6 all vertices of G1, G2
are boundary vertices, and by Lemma 5.5 each vertex v of Gα has exactly two
positive edges and two negative edges in Ĝα. Since a positive edge in Gα is a
negative edge in Gβ , it follows that either (i) some vertex v of one of the graphs,
say G1, has more positive edge endpoints than negative ones, or (ii) all vertices of
G1 and G2 have the same number of positive and negative edge endpoints.

In case (i), (writing n = n2), v has at most 2(n/2 + 1) = n+ 2 positive edges,
at most n+ 1 negative edges, and at most n boundary edges. From the inequality

4n ≤ (n+ 2) + (n+ 1) + n

we see that n ≤ 3. But if n = 3 then v has at most 2(n/2) = n positive edges, at
most n − 1 negative edges, and at most n boundary edges, which would lead to
the contradiction that 4n ≤ n+ (n− 1) + n.

In case (ii), any vertex v ofGα has at most n+2 positive edges, the same number
of negative edges, and at most n boundary edges; so from 4n ≤ (n+2)+(n+2)+n
we see that n = 4, |E| = 3 for all positive interior edges of Ĝα, and |E| = 4 for
all boundary edges of Gα. Each label appears three times among the interior edge
endpoints at any vertex v of Gα, but since each of the two families of positive edges
at v contains a Scharlemann cycle, which must all have the same label pair (1, 2),
it follows that these labels appear only once among the negative edge endpoints
at v, so the label 3 appears twice among the negative edge endpoints at v. Since
this is true for all vertices v in Gα, it means that the vertex v3 on Gβ has 2nα
positive edge endpoints, and nα negative ones, a contradiction. �

Proposition 5.8. One of the graphs Gα has at most two vertices.

Proof. Assume n1, n2 ≥ 3. By Proposition 4.7, Gα is not special, by Lemma 5.3
Ĝα does not have an interior vertex of valency at most 5, and by Lemma 5.4 it
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cannot have a boundary vertex of valency at most 4 with a single boundary edge.
Thus by Proposition 3.1 both Ĝ1, Ĝ2 are triangular, which contradicts Lemma 5.7.
�

§6. Nonspecial graphs with n1 = 2 and n2 > 2

Throughout this section we will assume that G1, G2 are not special graphs. We
will show that the case n1 = 2 and n2 = n > 2 does not happen. Together with
Propositions 4.7 and 5.8, this shows that nα must be at most 2 for both α = 1
and 2.

Lemma 6.1. If n1 = 2 then Ĝ1 is a subgraph of that shown in Figure 6.1.

Proof. Since Ĝ1 is not a special graph, one of the vertices u1, u2 has at most one
boundary edge. If either u1 or u2 does not have a loop, then one can find a vertex
u of valency at most 3 in Ĝ1, with at most one boundary edge. Since each interior
edge represents at most n edges, u would have at least 2n boundary edges, which
would imply that G2 is a special graph, a contradiction. Hence each vertex ui has
a loop. It is now easy to see that Ĝ1 must be a subgraph of that in Figure 6.1. �

E 2

E 3 E 4

E 5E 6

E 1

u 1

u 2

Figure 6.1

Label the edges of Ĝ1 as in Figure 6.1. Denote by m the number of non-loop
interior edges of G1, i.e. m = |E3|+ |E4|.

Lemma 6.2. Suppose n1 = 2, and n > 2.
(1) Either m = 2n, or m = 2n− 2 and E2 contains a Scharlemann cycle.
(2) The two vertices of G1 are antiparallel.

Proof. (1) If no label appears twice among the endpoints of edges in E2, then from
the labeling on ∂u1 one can see that either m ≥ 2n or |E1| ≥ 2n. But the second
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possibility does not occur because then by Lemma 2.6(2) the graph G2 would be
special. Hence in this case we have m ≥ 2n. Since each of E3, E4 represents at
most n edges, we conclude that m = 2n.

Now assume that some label appears twice among the endpoints of edges in
E2. Then E2 contains a Scharlemann cycle e1, e2, with label pair (1, 2), say. Since
n > 2, E2 contains no extended Scharlemann cycle (Lemma 2.1(5)), so one of
these two edges, say e1, must be an outermost edge among those in E2. Thus the
endpoints of e1 are either adjacent to those in E3 ∪ E4 or to those in E1. In the
first case, the label sequence of E3 ∪ E4 at u1 is 3, 4, ..., n, so m ≡ n − 2 mod n.
If m = 2n − 2 then we are done. If m 6= 2n − 2, then since |E3|, |E4| ≤ n, we
must have m = n− 2. Thus |E1| = ∆n−m− 2|E2| ≥ 2n, which by Lemma 2.6(2)
would imply that G2 is special, a contradiction. Therefore e1 must be adjacent
to E1. As above, we have either |E1| = 2n − 2, or |E1| = n − 2 and m ≥ 2n. In
the second case we have m = 2n because |E3|, |E4| ≤ n. It remains to show that
|E1| = 2n− 2 is impossible.

Assume |E1| = 2n− 2. Notice that this happens only if E2 contains a Scharle-
mann cycle. Moreover, if (1, 2) is the label pair of the Scharlemann cycle then all
labels other than 1, 2 would appear twice among endpoints of edges in E1. Thus
on G2 each vertex other than v1, v2 would have two boundary 1-edges. But since
the edges in the Scharlemann cycle and the vertices v1, v2 form an essential sub-
graph of G2, these two parallel 1-edges must go to the same boundary component
of A2. By looking at an outermost vertex one can see that there is a vertex vi
with i 6= 1, 2, at which the two boundary 1-edges are parallel, so they are parallel
on both graphs, contradicting Lemma 2.1(2).

(2) If u1, u2 are parallel then 2n− 2 ≤ |E3|+ |E4| ≤ 2(n/2 + 1), implying that
n = 4 and |E3| = |E4| = 3. In this case both E3, E4 contain Scharlemann cycles,
and by Lemma 2.2(1) they must have the same label pair (1, 2) as the one in E2.
But since each of the labels 1, 2 appears only once among the endpoints at u1 of
edges in E3 ∪E4, this is impossible. �

Lemma 6.3. Suppose n1 = 2, and n > 2. Then G1 cannot have 2n negative
edges.

Proof. We must have |E2| > 0, otherwise |E1| ≥ 2n, so G2 would be special,
contradicting our assumption. Assume that G1 has 2n negative edges. Then
|E3| = |E4| = n, and by Lemma 2.6(3) we have |E1| ≤ n, hence |E2| ≥ n/2. On
the other hand, by Lemma 2.2(2) |E2| ≤ n/2 + 1. Hence E2 contains either n/2
or n/2 + 1 edges. We want to show that |E2| 6= n/2 + 1. Assuming otherwise,
then since E3 contains n parallel negative edges, by Lemma 5.1 the graph G1
has at most n/2 parallel boundary edges. On the other hand, we have |E1| =
∆n −m − 2|E2| ≥ n − 2, and since E2 contains a Scharlemann cycle with label
pair (1, 2), say, n is even. Therefore we must have n = 4. Now in this case the
labels of the edges in E1 are 3, 4, contradicting Lemma 5.1(2).
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Figure 6.2

We have shown that |E2| = n/2, and |E1| = n. For the same reason, we have
|E5| = n/2 and |E6| = n. Without loss of generality we may assume that u1 is
a positive vertex, u2 is negative, and the edges of E1 have label sequence 1, ..., n
at u1. See Figure 6.2. Let t = n/2. Since |E2| = n/2, the label sequence of the
endpoints at u1 of the edges of E3 is t+ 1, ..., n, 1, ..., t. There is a number k such
that the label sequence at the other end of E3 is t+ k, t+ k+ 1, ..., t+ k− 1. The
number k 6= 1, otherwise these edges would be loops in G2, so n > 2 would imply
that some vertex of G2 does not have a boundary edge, contradicting the fact
that |E1| = n. Now from Figure 6.2 we can see that the label sequence of E6 is
k, ..., n, 1, ..., k−1, hence the two edges e3, e4 in E6 labeled n and 1 respectively, are
adjacent (because k 6= 1). Let e1, e2 be the edges of E1 labeled 1 and n respectively.
By Lemma 2.6(3), each vertex of G2 has at most one family of parallel boundary
edges, so e2 is parallel to e3, and e4 parallel to e1 in G2. Let B(e1, e2) be the band
on F1 between e1 and e2, and let B(e3, e4) be that between e3 and e4. Similarly, let
B(e2, e3) and B(e4, e1) be the bands on F2 between e2, e3 and e4, e1, respectively.
Now we can form an annulus A = B(e1, e2) ∪ B(e2, e3) ∪ B(e3, e4) ∪ B(e4, e1) in
the manifold M . Since the boundary curve C of A on T0 intersects the circle ∂v2
transversely at a single point (on the arc B(e1, e2)∩ ∂u1), it is an essential curve.
This contradicts the fact that the manifold M is ∂-irreducible and anannular. �

Lemma 6.4. Suppose n1 = 2, and n > 2. Then G1 cannot have exactly 2n− 2
negative edges.

Proof. If G1 has 2n−2 negative edges, then (up to symmetry) either |E3| = |E4| =
n − 1, or |E3| = n and |E4| = n − 2. Looking at the labeling, one can see that



450 C. McA. Gordon and Y.-Q. Wu CMH

the two loops of E2 near E3 ∪E4 form a Scharlemann cycle, with label pair (1, 2),
say. If |E3| = n then by Lemma 2.6(3) we have |E1| ≤ n, hence |E2| ≥ n/2 + 1.
Now by Lemma 5.1(1) the graph G2 has at most n/2 boundary vertices, which
contradicts the fact that |E1| = n. Therefore we must have |E3| = |E4| = n− 1.

For the same reason, the two loops in E5 near E3 ∪ E4 form a Scharlemann
cycle, which by Lemma 2.2(1) must have the same label pair (1, 2). Now we can
see that E3 has label sequence 3, 4, ..., n, 1, at u1, and has label sequence 2, 3, ..., n
at u2. However, in this case E3 has only one orbit, containing all the labels, so all
the vertices of G2 are parallel to each other, hence all edges of G1 are negative.
But since G1 contains some loops, this is a contradiction. �

Proposition 6.5. If M(r1),M(r2) are annular, and ∆ ≥ 4, then nα ≤ 2 for
α = 1, 2.

Proof. By Proposition 4.7 this is true if one of the Gα is special. By Proposition
5.8 one of the graphs, say G1, has at most two vertices. Since the two possibilities
in Lemma 6.2(1) have been ruled out by Lemmas 6.3 and 6.4, the case n1 ≤ 2 and
n2 > 2 cannot happen. �

§7. Special graphs with n1 = 1 and n2 = 2

Proposition 7.1. If Gα is special, then ∆ = 4, up to relabeling n1 = 1, n2 = 2,
and the manifold M is the exterior of the Whitehead link.

Proof. By Lemma 4.1, both graphs must be special. By Proposition 4.7, up to
relabeling we must have n1 = 1, n2 = 2, and G1 has exactly two interior edges
e1, e2.

Assume ∆ = 5. By Lemma 4.4 the jumping number q = 1. There is a pair of
adjacent boundary 1-edges e1, e2 at v1 in G2, which by Lemma 2.5(1) should also
be adjacent at u1 in G1 among all 1-edges; but since the two families of boundary
edges at u1 are separated by two interior edges, e1, e2 must be in the same family,
so they are parallel on both graphs, a contradiction. Therefore we must have
∆ = 4.

Now the Whitehead link exterior W does admit two annular Dehn fillings
W (r1),W (r2) with ∆(r1, r2) = 4, n1 = 1, and n2 = 2, see [GW1, Theorem 7.5].
It remains to show that the manifold satisfying these conditions is unique.

Each vertex of G2 has two boundary edges, which are nonparallel because G2 is
special. Thus the graph G2 must be as shown in Figure 7.1(b). Similarly, since G1
is special it has two families of parallel boundary edges. The loops have different
labels at their two endpoints, so each family of boundary edges of G1 contains an
even number of edges. Hence G1 must be as shown in Figure 7.1(a).

Label the six edges of G1 as in the figure. Orient e3, e4 so that on G1 they
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Figure 7.1

have label 1 at their tails. Up to symmetry we may assume that the edge e1 on G2
is as shown in Figure 7.1(b). The label 1 endpoints of edges e1, e3, e5, e4 appear
successively on ∂u1, hence by Lemma 2.5(1) they also appear in this order on ∂v1
in G2, so these edges must be as shown in the figure. Similarly by looking at the
label 2 endpoints of e2, e4, e6, e3 one can determine the edges e4 and e6. Therefore
up to symmetry the graphs Gα are exactly as shown in the figure. We need to
show that these graphs uniquely determine the manifold M .

Recall that Fα denotes the punctured annulus Aα ∩M . Let X = N(F1 ∪ T0),
and let Y = N(F1 ∪ F2 ∪ T0), where the regular neighborhoods are taken in M .
The frontier of X in M , i.e. X ∩M −X , is a surface F , which is a four punctured
sphere. Note that Y is obtained from X by adding regular neighborhoods of
the faces of G2. Each of the four faces of G2 is a disk Di with ∂Di = ci ∪ c′i,
where c′i is an arc on ∂M , and ci an arc on F1 ∪ T0. Let c̃i be the arc Di ∩ F .
Then the frontier of Y = X ∪ (∪N(Di)) in M is a properly embedded surface F ′,
homeomorphic to the surface obtained by cutting F along the arcs c̃i. Thus Y
and X are homeomorphic, but they are embedded in M differently. Note that Y
is uniquely determined by the graphs G1 and G2.

It is easy to see that all the c̃i are essential arcs on F . Since each boundary
component of F meets ∪c̃i twice, after cutting along all these c̃i, the remnant,
and hence F ′, consists of either two disks, or two disks and an annulus. In fact,
by examining the graphs, one can see that F ′ indeed consists of two disks and
an annulus. Since M is irreducible and ∂-irreducible, the disk components of F ′

are boundary parallel. If the annular component A of F ′ is incompressible in M
then A is also boundary parallel because M is anannular and irreducible, so M
would be homeomorphic to Y , which in turn is homeomorphic to X . Let C be
an essential curve on T0 disjoint from ∂F1. Then C × I in T0 × I would be an
essential annulus in X , contradicting the fact that M is anannular. Therefore A
must be compressible. Let D be a compressing disk of A in M . Then D lies in
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either Y or M − IntY . We show that the first case is impossible.
First notice that the surface F1 cuts X into a manifold F × I, in which both F

and the two copies of F1 are incompressible. By an innermost circle argument one
can show that F is incompressible in X . Under the homeomorphism Y ∼= X , A
can be considered as a subsurface of F , hence A is also incompressible unless the
core of A is a trivial curve on F . On the other hand, notice that A is a component
of ∂Y − IntF ′′, where F ′′ = Y ∩ (∂M − T0) is a neighborhood of ∂A1 ∪ ∂A2
on ∂M , which is connected. Since ∂A ⊂ F ′′, it follows that the core of A is
nonseparating on ∂Y , hence it is nontrivial on F . This completes the proof that
A is incompressible in Y .

Hence the compressing disk D of A lies in M − IntY . Let M ′ be the union
of Y and a regular neighborhood of D. Then the frontier of M ′ in M is a set of
disks, which must be boundary parallel because M is irreducible and ∂-irreducible.
Therefore M ′ is homeomorphic to M . It follows that M is obtained from Y by
adding a 2-handle along the core of A, and hence is uniquely determined by the
graphs G1 and G2. �

§8. Nonspecial graphs with nα ≤ 2

First note that if nα = 1 and Gα is not special, then the unique vertex of Gα has
valency at most 3 in Ĝα, and hence by Lemma 2.2(3) Gα has at least 2nβ parallel
boundary edges. By Lemma 2.6(2) this implies that Gβ , and therefore (by Lemma
4.1) Gα, is special, a contradiction. Hence if G1, G2 are not special and n1, n2 ≤ 2,
we must have n1 = n2 = 2.

Lemma 8.1. Suppose that n1 = n2 = 2 and G1, G2 are not special. Then for
α = 1, 2, the two vertices of Gα are antiparallel, Ĝα is a subgraph of the graph Ĝ
in Figure 6.1, and one of the following holds.

(i) ∆ = 4, each interior edge of Ĝα represents two edges of Gα, and Gα has
no boundary edges.

(ii) ∆ = 5, each edge of Ĝα represents two edges of Gα, and the jumping
number q = 2.

Proof. By Lemma 6.1, Gα is a subgraph of the graph Ĝ shown in Figure 6.1.
Each vertex v of Gα must have a loop, otherwise some vertex would have valency
3 in Ĝα with a single boundary edge, so by Lemma 2.6(2) Gβ would be special,
contradicting the assumption. Since a loop in Gα is a non-loop negative edge of
Gβ , it follows that each graph Gβ has some negative edges, hence the two vertices
of Gβ must be antiparallel, β = 1, 2. By Lemma 2.2(3) each interior edge of Ĝα
represents at most two edges of Gα. Similarly, each boundary edge of Ĝα also
represents at most two edges of Gα, by Lemma 2.1(2).

First assume ∆ = 4. Notice that a vertex of Gα has either no boundary edge or
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two boundary edges, for if it has exactly one boundary edge then the loops based at
that vertex would have the same label at their two endpoints, which contradicts the
parity rule. Since two boundary edges at a vertex of Gα correspond to boundary
edges at different vertices of Gβ , it follows that either both vertices of Gα have
two boundary edges, or they both have no boundary edges. The second possibility
gives rise to conclusion (i) in the lemma.

Assume that each vertex of Gα has two boundary edges. Then there are a total
of 6 interior edges in each graph. Note that an interior edge is a loop on Gα if and
only if it is a non-loop on Gβ because of the parity rule, hence one of the graphs,
say G1, has at least three loops. Without loss of generality we may assume that
there are two loops e1, e2 based at the vertex u1. Consider their label 1 endpoints.
Because there are two boundary edges at u1, these two endpoints are non adjacent
among all label 1 endpoints at u1. Now look at the graph G2. By Lemma 2.5(1)
e1, e2 are non adjacent 1-edges at v1 among all 1-edges. However, since they are
non-loops in G2, they are contained in the two adjacent families E3, E4 in Figure
6.1. Since E3∪E4 contains a total of at most four edges, e1, e2 are adjacent among
all 1-edges at v1. This contradiction completes the proof of the lemma for the case
∆ = 4.

Now assume ∆ = 5. Since each vertex of Ĝ has valency 5, and since each edge
of Ĝα represents at most two edges of Gα, ∆ = 5 implies that each edge of Ĝα
represents exactly two edges. By the same argument as above one can show that
the jumping number q cannot be 1, so we are in case (ii). �

Lemma 8.2. There is a unique irreducible, ∂-irreducible, anannular manifold M
which admits two annular Dehn fillings M(r1),M(r2) with ∆(r1, r2) = 5.

Proof. By Lemma 8.1, the graphs must be as shown in Figure 8.1. We first show
that the edge correspondence and the labelings of the vertices are unique up to
symmetry.

Reflecting the annuli vertically and changing their orientations if necessary,
we may assume that the vertices u1, v1 are positive, and the labeling of edge
endpoints at ∂u1, ∂v1 are as shown. Any non-loop edge has the same label on its
two endpoints, because it is a loop edge on the other graph. Thus the labeling on
∂u2, ∂v2 is determined by that on ∂u1, ∂v1, respectively. Orient the edges so that
a non-loop edge goes from u1 to u2 (resp. v1 to v2). Then dually the orientation
of a loop edge must go from label 1 to label 2. Label the edges of G1 as in Figure
8.1(a).

If P1, ..., P5 are the points of u1 ∩ v1, appearing in this order on ∂u1 along
its orientation, then since the jumping number q = 2, they appear in the order
P1, P3, P5, P2, P4 on ∂v1 either along or against the orientation of ∂v1. In other
words, along the orientation of ∂v1 they either appear in this order, or in the order
P1, P4, P2, P5, P3. In the second case, write (Q1, Q2, ..., Q5) = (P1, P4, P2, P5, P3);
then (P1, ..., P5) = (Q1, Q3, Q5, Q2, Q4). Hence by interchanging the roles of G1
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and G2 if necessary, we may assume that the points appear as (P1, P3, P5, P2, P4)
on ∂v1 along the orientation of ∂v1.

Now we can see that the labeling of the edges on G2 is completely determined
by that of G1: The 1-edges at u1 appear in the order a, c, e, k, d in the positive
direction, so at v1 they appear in the order a, e, d, c, k, where a is the unique
boundary edge at v1 labeled 1. The order of the 2-edges at u1 is b, d, f, l, c, so
dually the 1-edges at v2 are in the order b, f, c, d, l. Similarly by looking at u2 one
can determine the labeling of the remaining edges in G2. See Figure 8.1(b).
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Figure 8.1

It remains to show that the manifold M is uniquely determined by these graphs.
As in the proof of Proposition 7.1, consider the submanifold X = N(A1 ∪ J1) of
M(r1). Since J1 intersects A1 in two meridian disks of opposite sign, the frontier
F of X consists of two components Fb, Fw, each being a twice punctured torus,
called the black surface and the white surface respectively. A face of G2 is black
or white according to whether it intersects the black surface or the white surface.
Note that each face of G2 intersects F in a circle or an arc, so it is either black or
white, but not both.

Let D1 be a face of G2 bounded by a pair of parallel loops, and let D2 be
the triangular interior face of G2 adjacent to D1. Since they have an edge in
common, they are of different colors, so we may assume that D1 is black and D2 is
white. The boundary of D1 intersects a meridian of J1 twice in the same direction,
hence ∂D1 is a nonseparating curve on Fb. After adding a neighborhood of D1
to X , the black frontier is homeomorphic to the surface obtained by 2-surgery
on Fb along ∂D1, hence is an annulus Ab. Since its boundary components are
essential curves on ∂M , and since M is ∂-irreducible, Ab is incompressible in
M , and hence is boundary parallel in M . Similarly, since the boundary of D2
intersects a meridian of J1 three times, ∂D2 is a nonseparating curve on Fw, so
after adding N(D2) the white frontier becomes an annulus Aw, which for the same
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reason must be boundary parallel in M . It follows that M is homeomorphic to
N(F1 ∪T0 ∪D1 ∪D2), where F1 is the punctured annulus A1 ∩M . The boundary
curves of Di are determined by the graphs, which have been determined (up to
symmetry) as above. Hence the manifold M is uniquely determined. �

Lemma 8.3. There is a unique irreducible, ∂-irreducible, anannular manifold
M which admits two annular Dehn fillings M(r1),M(r2) with ∆(r1, r2) = 4 and
n1 = n2 = 2.

Proof. The proof is similar to that of Lemma 8.2. In this case the jumping number
is 1, and one can show that up to symmetry the graphs must be as shown in Figure
8.2. The proof that M is determined by the graphs is the same as in the proof of
Lemma 8.2. �
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Figure 8.2

We now prove Theorem 1.1, which we restate here for the reader’s convenience.

Theorem 1.1. Suppose M is a compact, connected, orientable, irreducible, ∂-
irreducible, anannular 3-manifold which admits two annular Dehn fillings M(r1),
M(r2) with ∆ = ∆(r1, r2) ≥ 4. Then one of the following holds.

(1) M is the exterior of the Whitehead link, and ∆ = 4.
(2) M is the exterior of the 2-bridge link associated to the rational number

3/10, and ∆ = 4.
(3) M is the exterior of the (−2, 3, 8) pretzel link, and ∆ = 5.

Proof. By Proposition 6.5, we must have nα ≤ 2 for α = 1, 2. If Gα is special, then
by Proposition 7.1 the manifold M is the exterior of the Whitehead link. If Gα is
nonspecial, then by Lemma 8.1 the graphs Gα must be as in Figure 8.1 or 8.2, and
by Lemmas 8.2 and 8.3, in each case the manifold M is uniquely determined by the
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graphs; hence there are at most three manifolds M which may admit two annular
Dehn fillings of distance at least 4 apart. On the other hand, it has been shown in
[GW1, Theorem 7.5] that each of these manifolds admits two such fillings. Hence
the result follows. �
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