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Abstract. We show that for small knots K1, K2, t(K1) + t(K2) − 1 ≤ t(K1#K2) ≤ t(K1) +
t(K2) + 1, and that for small knots K1, . . . , Kn, t(K1# . . .#Kn) ≥ n.
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1. Introduction

The tunnel number of a knot has been shown to behave quite erratically under the
operation of connected sum. On the one hand, Kobayashi has exhibited knots for
which the tunnel number degenerates by an arbitrarily high number under con-
nected sum ([6]) and on the other hand Moriah and Rubinstein and independently
Morimoto, Sakuma and Yokota have exhibited knots for which the tunnel number
is strictly super-additive under connected sum ([8] and [10]). Restricting attention
to connected sums of small knots circumvents some of the possibilities and many
of the technical difficulties encountered in the work of Kobayashi concerning torus
decompositions of manifolds and of Morimoto concerning the additivity of the
tunnel numbers of knots ([7] and [9]). The more general question of how Heegaard
genus behaves when two manifolds are glued together along an annulus remains
open. This project was inspired by and answers problem 1.70 in [5] for the case of
small knots. I wish to thank Andrew Casson and Marty Scharlemann for helpful
conversations. I also wish to thank MSRI, where part of this research was carried
out.

2. Definitions and general facts

Definition 1. For any submanifold L of M , η(L) denotes an open regular neigh-
borhood of L in M and N(L) denotes a closed regular neighborhood of L in M .
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Definition 2. Let K be a knot in S3, then C(K) = S3 − η(K).

Definition 3. A knot K is small, if C(K) contains no closed essential surfaces.

Definition 4. A tunnel system for a knot K is a collection of disjoint arcs T = t1
∪ . . . ∪ tn embedded in C(K) such that C(K) − η(T ) is a handlebody. We require
one endpoint of ti to lie on ∂C(K) and the other to either also lie on ∂C(K), or
to meet an interior point of ti. The tunnel number of K, denoted by t(K), is the
least number of arcs required in a tunnel system for K.

Definition 5. A compression body is a 3-manifold W obtained from a closed
orientable surface F by attaching 2-handles to F×{0} ⊂ F×I and capping off any
resulting 2-sphere boundary components. We denote F×{1} by ∂+W and ∂W −
∂+W by ∂−W .

Definition 6. A spine X of a compression body W is a properly embedded 1-
complex in W such that X ∪ ∂−W is connected and such that W collapses to X
∪ ∂−W .

Definition 7. A Heegaard splitting of a 3-manifold is a pair (W1, W2) of com-
pression bodies, such that W1 ∩ W2 = ∂+W1 = ∂+W2 and M = W1 ∪ W2. We
call ∂+W1 = ∂+W2 the splitting surface or Heegaard surface and denote it by F .

Definition 8. A disk D in a compression body W is an essential disk if (D, ∂D) ⊂
(W, ∂+W ) and ∂D is an essential curve in ∂+W . A defining collection of disks for
W is a collection of essential disks D = D1 ∪ . . . ∪ Dn which cut W into ∂−W
∪ 3-balls.

Definition 9. A Heegaard splitting is (weakly) reducible if there are essential
disks D1 and D2, such that (Di, ∂Di) ⊂ (Wi, ∂+Wi) and (∂D1 ∩ ∂D2 = ∅) ∂D1
= ∂D2. A Heegaard splitting which is not weakly reducible is strongly irreducible.

Definition 10. Let K1 # K2 be the connected sum of the knots K1 and K2. Then
there is a sphere S which intersects K1 # K2 in exactly two points, the annulus
A = S ∩ C(K1 # K2) is called a decomposing annulus. Note that cutting C(K1
# K2) along A produces a copy of C(K1) and of C(K2).

The following four lemmata are well known but crucial. We repeat them here
for completeness.

Lemma 1. An incompressible and boundary incompressible surface S with ∂S 6=
∅ properly embedded in a compression body W is either an essential disk, or an
annulus with one boundary component in ∂−W and the other in ∂+W .
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Proof. This is [1, Lemma 9]. �

Lemma 2. An incompressible surface S in a compression body W with ∂S ⊂
∂+W cuts W into compression bodies.

Proof. Let D be a defining collection of disks for W . Isotope S so that #|D ∩ S|
is minimal. Then, in particular, D ∩ S contains no simple closed curves. Cut W
along D to obtain (∂−W × I) ∪ (3− balls). Since ∂S ⊂ ∂+W , Lemma 1 implies
that S is boundary parallel in or disjoint from any given component of (∂−W
× I) and hence cuts it into (closed surface) × I and perhaps handlebodies.
Furthermore, the incompressibility of S guarantees that S intersects each 3-ball
in meridian disks. Therefore the closure of a component of W − S is obtained
by attaching (closed surface) × I components, handlebodies and 3-balls along
disks. The result is a compression body. �

Lemma 3. Let M1 and M2 be 3-manifolds such that M i has a Heegaard splitting
(V i1 , V

i
2 ) of genus gi and there is an annulus Ai in ∂M i. Then the manifold M

obtained by glueing M1 and M2 together along A1 and A2 has a Heegaard splitting
of genus g = g1 + g2.

Proof. Let Bi be the boundary component of M i containing Ai. We may assume
that Bi ⊂ V i1 . Then by shrinking V i1 , we may assume that V i1 consists of a collar
of Bi in M i, denoted by collar(Bi), 1-handles, some of which are attached to
collar(Bi) and, perhaps, other collars of boundary components of M i.

Let αi be a simple arc in Ai connecting the two components of ∂Ai and let Di

= Ai − η(αi ∪ ∂Ai). Let collar(Di) be the subset of collar(Bi) which is a collar
on Di. We may assume that collar (Di) does not meet any 1-handles. Glue M1 to
M2 along A1 and A2 so that D1 and D2 match up. Define V1 = (V 1

1 − collar(D1))
∪ (V 2

1 − collar(D2)) and V2 = (V 1
2 ∪ collar(D1)) ∪ (V 2

2 ∪ collar(D2)). Then
(V1, V2) is a Heegaard splitting of the manifold M obtained by glueing M1 and
M2 together along A1 and A2 and has genus g = g1 + g2. �

Definition 11. Suppose an arc α shares an endpoint with an arc β. An arc slide
of α over β is the result of replacing α with α ∪ β, where α ∪ β is a pushoff of
α ∪ β.

Remark 4. Tunnel systems of a knot correspond to Heegaard splittings of the
complement of the knot. Given a tunnel system T for K, set V1 = N(∂C(K)
∪ T ) and V2 equal to the closure of C(K) − V1. Conversely, given a Heegaard
splitting (V1, V2) of C(K), we may assume that ∂C(K) ⊂ V1. Then, after arc
slides, if necessary, a spine X1 of V1 is a tunnel system for K. Note that in this
correspondence, the number of arcs in T is exactly one less than the genus of (V1,
V2).
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Corollary 5. t(K1 # K2) ≤ t(K1) + t(K2) + 1.

Proof. This follows from Lemma 3 and Remark 4. �

Lemma 6. The splitting surface F of a strongly irreducible Heegaard splitting (V1,
V2) of M may be isotoped to intersect a properly embedded incompressible surface
S ⊂ M only in essential simple closed curves.

Proof. Let Xi be a spine of Vi. If Xi is disjoint from F , then, perhaps after isotopy,
F ∩ S = ∅. So suppose that Xi ∩ S 6= ∅, for i = 1, 2. Let H :F × I →M − η(X1
t X2) be a foliation, by surfaces isotopic to F , of M − η(X1 t X2). We denote
H(F, t) by Ft and assume that Fi = ∂N(Xi).

Set V i = {t | Ft ∩ S contains simple closed curves bounding disks entirely
in Vi ∩ S}. Then for t close to 1, t ε V 1, whereas for t close to 2, t ε V 2.
To better understand V 1 and V 2, consider the singular foliation of S − η(X1
t X2) induced by H. If a regular leaf contains a simple closed curve bounding
disks entirely in Vi, then so do nearby regular leaves. Furthermore, if the regular
leaves limiting on a singular leaf σ from one side all contain simple closed curves
bounding disks entirely in Vi, then so does σ. It follows that either V 1 ∩ V 2 6= ∅
or the complement of V 1 ∪ V 2 has nonempty interior. Since (V1, V2) is strongly
irreducible, the latter must be the case. Choose t in the complement of V 1 ∪ V2
and so that Ft ∩ S is a regular leaf. Then Ft is a copy of F which intersects S
only in essential simple closed curves. �

3. Tunnel systems corresponding to weakly reducible Heegaard
splittings

Tunnel systems fall into two types, those corresponding to weakly reducible Hee-
gaard splittings and those corresponding to strongly irreducible Heegaard split-
tings. We here investigate tunnel systems for K1 # K2 which correspond to
weakly reducible Heegaard splittings and show how they define tunnel systems for
K1 and K2. We exploit the ideas in introduced in [2] and extended in [13] and
[12], linking weakly reducible Heegaard splittings and incompressible surfaces.

Definition 12. Let (V1, V2) be an irreducible Heegaard splitting of M . We may
think of M as being obtained from ∂−V1 × I by attaching all 1-handles in V1
followed by all 2-handles dual to 1-handles in V2, followed, perhaps, by 3-handles.
An untelescoping of (V1, V2) is a rearrangement of the order in which the 1-handles
(of V1) and the 2-handles (dual to the 1-handles of V2) are attached, so that M
is decomposed into submanifolds M0, . . . , Mk, meeting along surfaces S1, . . . ,
Sk, which are incompressible in M , and which inherit, from a subcollection of
the original 1-handles and 2-handles, strongly irreducible Heegaard splittings (V 0

1 ,
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V 0
2 ), . . . , (V k1 , V

k
2 ). For details see [13] and [12]. �

Remark 7. The proof of the Main Theorem in [2] shows that if (V1, V2) is
irreducible but weakly reducible, then k ≥ 1 in any untelescoping of (V1, V2).

Remark 7 shows that we must understand what sort of incompressible surfaces
occur in the complement of the connected sum of small knots.

Lemma 8. Let S be a separating essential surface in C(K1 # K2), where Ki is a
small prime knot. Then S ⊂ C(Ki) for either i = 1 or i = 2; and S is boundary
parallel in C(Ki). (See fig. 7)

Definition 13. A surface of the type described is called a swallow follow torus.

Proof. Let A be the decomposing annulus. If S ∩ A = ∅, then the claim follows.
So suppose S ∩ A 6= ∅, and set Si = S ∩ C(Ki). Here C(Ki) is obtained from
C(K1 # K2) by cutting along the decomposing annulus. Since ∂Si consists of
meridians, the meridian is a boundary slope. Hence by [3, Theorem 2.0.3], C(Ki)
contains a closed essential surface. But this contradicts the fact that C(Ki) is
small. �

Theorem 9. Let K1, K2 be small knots, and suppose the tunnel system T realizing
the tunnel number of K1 # K2 corresponds to a weakly reducible Heegaard splitting.
Then t(K1) + t(K2) ≤ t(K1 # K2).

Proof. Let (V1, V2) be the Heegaard splitting corresponding to T . Since T realizes
the tunnel number of K1 # K2, (V1, V2) is irreducible. Consider an untelescoping
of (V1, V2). By Remark 7, k ≥ 1. If an Si were boundary parallel in C(K1 #
K2), then the untelescoping of (V1, V2) would define a Heegaard splitting of C(K1
# K2) of lower genus, contradicting the choice of T . Hence each Si must be a
swallow follow torus. Since the two distinct isotopy classes of swallow follow tori
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A swallow-follow torus

Figure 2.

can’t be embedded simultaneously, the Si must in fact be parallel swallow follow
tori.

If we assume, for convenience of notation, that Si ⊂ C(K1) for i = 1, . . . , k,
then M0 is homeomorphic to C(K1) minus a 2-handle, hence (V 0

1 , V
0
2 ) defines a

Heegaard splitting for C(K1), and Mk is homeomorphic to C(K2), hence (V k1 ,
V k2 ) defines a Heegaard splitting for C(K2). Counting the 1-handles in V 0

1 and
V k1 , which is the number of arcs in the corresponding tunnel system, shows that
t(K1) + t(K2) ≤ t(K1 # K2). �

Remark 10. By Lemma 3, k ≤ 2. For more subtle reasons (certain properties of
the Heegaard splittings (V i1 , V

i
2 ) and of Heegaard splittings of (surface) × I), k

= 1.

4. Tunnel systems corresponding to strongly irreducible Hee-
gaard splittings

In this section we restrict our attention to tunnel systems of knots which corre-
spond to strongly irreducible Heegaard splittings. Most importantly, we show how
to use a tunnel system for a connected sum of knots to construct tunnel systems
for its summands when all tunnel systems realizing the tunnel number of the con-
nected sum of knots correspond to strongly irreducible Heegaard splittings. The
trick in Definition 14 allows us to choose the original tunnel system so that this
process proves bounded degeneration of tunnel number under connected sum.
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The results were originally inspired by [9]. However, the arguments changed
dramatically due to the use of the notion of strongly irreducible Heegaard splittings
and the terminology and techniques available for their study.

Theorem 9 allows us to make certain assumptions. Since these assumptions
will be used over and over again, we summarize them here:

Assumption 1: All tunnel systems realizing t(K1 # K2) correspond to strongly
irreducible Heegaard splittings.

Assumption 2: The tunnel system T realizing t(K1 # K2) is chosen so that
the splitting surface of the corresponding Heegaard splitting may be isotoped to
intersect the decomposing annulus in the least number of essential curves.

The following definition gives an operation which helps move arcs in a tunnel
system away from a decomposing annulus. The trick is due to Marty Scharlemann.

Definition 14. Let T be a tunnel system for the knot K, let (V1, V2) be the
corresponding Heegaard splitting of C(K) and suppose there is an annulus Ã with
interior(Ã) ⊂ V2, such that one component, ∂1Ã, of ∂Ã lies on ∂V1 and inter-
sects the boundary of a meridian disk D of V1 exactly once and such that the other
component, ∂2Ã, of ∂Ã lies on the boundary of an arbitrarily small regular neigh-
borhood of ∂C(K). Then setting Ṽ1 = N(∂C(K) ∪ T ∪ Ã) and Ṽ2 the closure
of the complement produces a Heegaard splitting of C(K). To see that Ṽ1 is a
compression body, consider a collection D1 of defining disks for V1 containing D.
By [16, Lemma 2.1] N(D ∪ ∂1Ã) is a solid torus summand of V1. Let D̃ be an
essential disk in V1 which cuts off this solid torus summand. Then (D1 − D) ∪
D̃ is a defining collection of disks for Ṽ1. Ṽ2 is a handlebody by the proof of [1,
Lemma 9]). This Heegaard splitting has the same genus as the Heegaard splitting
corresponding to T . (For the splitting surface of the former is obtained by cut-
ting the splitting surface of the latter along two essential curves and reconnecting
the resulting boundary components along annuli, this operation doesn’t change the
Euler characteristic of the surface.) The new Heegaard splitting corresponds to a
new tunnel system T ′. We will say that T ′ is obtained from T by replacing one of
the arcs in T by its dual. (The terminology generalizes that used in the case where
the tunnel system contains only one arc.)

Lemma 11. Let K1 and K2 be small knots. Suppose that K1 # K2 satisfies As-
sumption 1, and the tunnel system T for K1 # K2 satisfies Assumption 2. Then,
after isotopy, the splitting surface F of the Heegaard splitting (V1, V2) correspond-
ing to T intersects A only in essential curves, and #| F ∩ A| ≤ 4.

Proof. Suppose that F ∩ A consists only of essential curves and that #| F ∩ A|
> 4. Then one of the components of V1 ∩ A is boundary reducible in V1. We may
assume, by choosing an outermost one, that the boundary reducing disk is disjoint
from A. Then after performing the boundary compression along this disk, V1 ∩ A
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consists of one disk and at least three annuli. Perform an ambient 2-surgery on F
along the disk, and then perform ambient 2-surgery on the resulting surface,along
all compressing disks disjoint from A, to obtain a surface F ∗, each component of
which is separating. We will denote the two sides of F ∗ by V ∗1 and V ∗2 . A priori,
neither V ∗1 nor V ∗2 need be connected.

Note that the ambient 2-surgeries may be performed in sequence. Then at
each step, the next compressing disk E can be isotoped so that ∂E lies entirely in
F . Consider the annulus in F consisting of a bicollar of ∂E. It follows from [14,
Lemma 2.6] and the strong irreducibility of (V1, V2), that E lies either entirely in
V1 or entirely in V2. The strong irreducibility further implies, that in this case, E
lies entirely in V1. It follows that V ∗1 ⊂ V1 (whereas V ∗2 = V2 ∪ 2-handles). In
particular, V ∗1 needn’t be connected, but V ∗2 must be.

Consider a component F̃ ∗ of F ∗ ∩ C(Ki). If F̃ ∗ were an essential surface
in C(Ki), then the meridian of C(Ki) would be a boundary slope, hence by
[3, Theorem 2.0.3], C(Ki) would contain a closed essential surface. Since Ki

is small, and since F̃ ∗ is incompressible in C(Ki), F̃ ∗ must be boundary parallel
in C(Ki). Hence F̃ ∗ is either parallel into a subannulus of A, or into ∂C(Ki) ∪
2 subannuli of A. In the former case, we will call F̃ ∗ a narrow annulus, and in the
latter case a wide annulus. Note that since a component of F ∗ can be constructed
by identifying annuli along their boundary, it must be a torus.

Claim 1: A narrow annulus in F ∗ cobounds, together with a subannulus of A, a
solid torus entirely in V ∗1 .

Suppose the solid torus T cobounded by a narrow annulus N1 in F ∗ and a
subannulus A′ of A meets the interior of V ∗2 . Then we may assume, by replacing
N1 with a narrow annulus properly embedded in T if necessary, that a collar of
N1 in T lies in V ∗2 . The torus T defines an isotopy of N1 into A′. Since V ∗2 =
V2 ∪ 2-handles, that is, since V ∗2 contains V2, this isotopy defines an isotopy of F
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which reduces #| F ∩ A|. Since this number was chosen to be minimal, the Claim
follows.

Claim 2: There can be at most two nested components of F ∗.

This follows from the fact that (the “side”) V ∗2 (of F ∗) is connected.

Claim 3: There is exactly one component of F ∗ which is parallel into ∂C(K1 #
K2).

By Claim 2, there can be no more than two such components. If there were
exactly two such components, then, again by Claim 2, V ∗1 ⊂ V1 would contain a
copy of C(K1 # K2), but this is impossible. If there were no such component,
then the component C of V ∗1 containing ∂C(K1 # K2) would be cobounded by
tori in F ∗ none of which was parallel to ∂C(K1 # K2). Since V ∗1 is obtained
by cutting V1 along essential disks, a process which produces 3-balls, handlebod-
ies, and compression bodies with only one interior boundary component, this is
impossible. This proves Claim 3.

Let T̃ be a component of V ∗1 − C (for C as above). Then ∂T̃ is a torus, so, by
the same reasoning as above, and Claims 1,2 and 3, T̃ must be a solid torus. It
follows that ∂T̃ is comprised of narrow annuli and, by Claims 1, 2, and 3, pairs of
adjacent wide annuli.

Let Ã be a subannulus of A connecting ∂T̃ and ∂C. We may assume, by
rechoosing T̃ to be outermost if necessary, that Ã ⊂ V2. It follows from the pre-
ceeding paragraph that T̃ has a meridian disk D consisting of boundary reducing
disks in the subtori cut off by narrow annuli and of disks (rectangles) defining a
parallelism between the pairs of wide annuli. Now #|∂D ∩ Ã| = 1. Hence the
requirements of Definition 14 are met. So the splitting surface of the Heegaard
splitting (Ṽ1, Ṽ2) obtained by replacing the appropriate arc in the tunnel system
under consideration into its dual intersects A in two fewer essential curves. It thus
corresponds to a tunnel system which violates the minimality assumptions. �

Theorem 12. Let K1 and K2 be small knots. Suppose K1 # K2 satisfies As-
sumption 1 and the tunnel system T for K1 # K2 satisfies Assumption 2. Then
t(K1) + t(K2) − 1 ≤ t(K1 # K2).

Proof. Let (V1, V2) be the Heegaard splitting corresponding to the tunnel system
for K1 # K2. Isotope the splitting surface F of (V1, V2) so that it intersects the
decomposing annulus A for K1 # K2 only in essential circles and so that |F ∩ A|
is minimal.

Case 1: |F ∩ A| = 2.

Cut C(K1 # K2) along A and set V i1 = (V1 ∩ C(Ki)) ∪ collar(A ∩ V2), and
let V i2 be the closure of the complement of V i1 in C(Ki).
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Claim: (V i1 , V
i
2 ) is a Heegaard splitting for C(Ki). (See fig. 5a and fig. 5b)

Let D1 be a defining collection of disks for V1. After isotopy, we may assume
that D1 ∩ A = ∅. Then Di1 = D1 ∩ M i cuts V i1 into (closed surface) × I. (Here
D cuts V1 into ∂−V1; then cutting ∂−V1 along A′ t A′′ and adding the collar
creates (closed surface) × I.) Hence V i1 is a compression body.

V i2 is a compression body by Lemma 2.
Let gi be the genus of (V i1 , V

i
2 ) and g the genus of (V1, V2). Then, by an Euler

characteristic argument, g1 + g2 = g + 1. Here the spine of V i1 defines a tunnel
system corresponding to the Heegaard splittings (V i1 , V

i
2 ), hence t(K1) + t(K2) ≤

t(K1 # K2).

Case 2: |F ∩ A| = 4.
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As in the proof of Lemma 11, one of the components of V1 ∩ A is boundary
reducible in V1. We may assume, by choosing an outermost one, that the boundary
reducing disk is disjoint from A. Then after performing the boundary compression
along this disk, V1 ∩ A consists of two annuli and one disk, and V2 ∩ A is a pair
of pants.

As before, cut C(K1 # K2) along A and set V i1 = (V1 ∩ C(Ki) ∪ (collar(V2
∩ A)) and V i2 equal to the closure of the complement of V i1 in C(Ki). (See fig. 6a
and fig. 6b.) Then by an argument similar to the one above (add the disk D to
Di1 as necessary), (V i1 , V

i
2 ) is a Heegaard splitting of M i. By the same reasoning

as above, we find that t(K1) + t(K2) −1 ≤ t(K1 # K2).
By Lemma 11, this completes the proof. �

Corollary 13. Let K1 and K2 be small knots, then t(K1) + t(K2) − 1 ≤ t(K1
# K2).
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Proof. This follows from Theorem 9 and Theorem 12. �

5. Simultaneous decomposing annuli

The arguments in the two preceeding sections can be tailored to show that for small
knots K1, . . . , Kn, t(K1 # . . . # Kn) ≥ n. In the following we will assume that the
decomposing annuli for C(K1 # . . . # Kn) have been chosen so that each C(Ki)
meets at most two decomposing annuli (i.e., we assume that the decomposing
spheres are nested in “Matryoshka” fashion).

Lemma 14. Let S be a separating essential surface in C(K1 # . . . # Kn), where
each Ki is a small knot. Then, after isotopy, for any i, S ∩ C(Ki) is either empty,
or boundary parallel; i.e., S is a swallow follow torus.

Proof. Isotope S so that #|S ∩ A| is minimal. Let A1, . . . , An−1 be the decom-
posing annuli for C(K1 # . . . # Kn). Consider C(Ki) and suppose it is cut off of
C(K1 # . . . # Kn) by Ai, and perhaps Ai+1. If S does not intersect Ai or Ai+1,
for any l, then S must be disjoint from C(Ki), since Ki is small. If S intersects Ai

or Ai+1, then S must be boundary parallel in C(Ki) to avoid the contradiction in
the proof of Lemma 8. �

Theorem 15. Let K1, . . . , Kn be small knots, then t(K1 # . . . # Kn) ≥ n.

Proof. Suppose the inequality does not hold, and let K1, . . . , Kn be small knots
chosen so that n is minimal among such collections of small knots. Let (V1, V2)
be the Heegaard splitting corresponding to a tunnel system T which realizes the
t(K1 # . . . # Kn).
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A generalized swallow-follow torus

Figure 7.

Claim 1: (V1, V2) is strongly irreducible.

Suppose (V1, V2) is weakly reducible. Since T realizes t(K1 # . . . # Kn),
(V1, V2) is irreducible. Consider an untelescoping of (V1, V2). By Remark 7, k
≥ 1. Again, if an Si were boundary parallel in C(K1 # . . . # Kn), then the
untelescoping of (V1, V2) would define a Heegaard splitting of C(K1 # . . . # Kn)
of lower genus, contradicting the choice of T . Hence each Si must be a generalized
swallow follow torus. A generalized swallow follow torus separates C(K1 # . . . #
Kn) into C(Ki1 # . . . # Kij ) minus a 2-handle and C(Kij+1 # . . . # Kin) for
some partition {i1, . . . , ij} t {ij+1, . . . , in} of {1, . . . , n}. Thus the untelescoping
provides at least one Heegaard splitting corresponding to tunnel systems violating
the choice of K1, . . . Kn.

In the following, we assume that the splitting surface of (V1, V2) has been
isotoped to intersect the decomposing annuli only in essential curves, and in the
least number of such curves.
Claim 2: T can be chosen so that the splitting surface F of (V1, V2) intersects at
most one of the decomposing annuli in more than 2 curves and it intersects this
decomposing annulus in exactly 4 curves.

The proof of this Claim mimics and extends the proof of Lemma 11. Suppose
the Claim is not true. Proceed as in the proof of Lemma 11, performing one
boundary compression to produce a disk in the intersection of V1 with one of the
decomposing annuli, then performing an ambient 2-surgery on F along this disk,
and then performing ambient 2-surgeries on all compressing disks for the resulting
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surface which are disjoint from all the decomposing annuli, to obtain a surface
F ∗, each component of which is separating. Again, denote the sides of F ∗ by V ∗1
and V ∗2 . Again, V ∗1 ⊂ V1 and V ∗2 is connected. Again, a component of F ∗ ∩
C(Ki) is boundary parallel. Such a component could either be a narrow annulus
as in the proof of Lemma 11, or a wide annulus, but here a wide annulus may
either have boundary components on the same decomposing annulus, or on distinct
decomposing annuli. Other possibilities would make the meridian a boundary slope
and produce the same contradiction as before. Claims 1, 2, and 3 in the proof of
Lemma 11 still hold.

Denote the component of V ∗1 containing ∂C(K1 # . . . # Kn) by C, and con-
sider a component T of V ∗1 − C. As before, T must be a solid torus. A meridian
of T can be constructed as before. Again we obtain a new tunnel system T ′ for
K1 # . . . # Kn, by changing an arc of T into its dual, which contradicts the
minimality assumptions on T . This proves the Claim.

The arguments in Theorem 12 now only give the weaker result: t(K1 # . . . #
Kn) ≥ n − 1. However, applying the argument in Case 1 of Theorem 12 along all
decomposing annuli which intersect F exactly twice, and noting that the remaining
composite summand has tunnel number at least 2, since tunnel number 1 knots
are prime (see for instance [11]), proves the Theorem. �
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