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Abstract. Let Fn be the free group of rank n, and ∂Fn its boundary (or space of ends).
For any α ∈ AutFn, the homeomorphism ∂α induced by α on ∂Fn has at least two periodic

points of period ≤ 2n. Periods of periodic points of ∂α are bounded above by a number Mn

depending only on n, with logMn ∼
√
n logn as n→ +∞.

Using the canonical Hölder structure on ∂Fn, we associate an algebraic number λ ≥ 1
to any attracting fixed point X of ∂α; if λ > 1, then for any Y close to X the sequence
∂αp(Y ) approaches X at about the same speed as e−λ

p
. This leads to a set of Hölder exponents

Λh(Φ) ⊂ (1,+∞) associated to any Φ ∈ OutFn. This set coincides with the set of nontrivial
exponential growth rates of conjugacy classes of Fn under iteration of Φ.
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Introduction and statement of results

Let ϕ be a homeomorphism of a closed surface Σ, with χ(Σ) < 0. In [14], Nielsen
studied ϕ by lifting it to the universal coveringD of Σ and considering the induced
homeomorphism f on the circle at infinity S. In more algebraic terms, the mapping
class of ϕ corresponds to an outer automorphism Φ of π1Σ, various lifts of ϕ to
D correspond to various automorphisms α of π1Σ representing Φ, and f : S → S
corresponds to the homeomorphism ∂α induced by α on the boundary of the group
π1Σ.

Let Fn be the free group of rank n. We will study automorphisms α of Fn,
and outer automorphisms Φ ∈ OutFn, through the homeomorphisms ∂α induced
on the boundary ∂Fn. The space ∂Fn, homeomorphic to a Cantor set if n ≥ 2,
may be viewed as the (Gromov) boundary of Fn, or its space of ends, or the set
of right-infinite reduced words in the generators and their inverses.

In the case of a surface group, Nielsen proved among many other things that
f = ∂α : S → S always has at least two periodic points. Furthermore, the period
of these points may be bounded in terms of |χ(Σ)|.
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Our first main result has a similar flavor.

Theorem 1. Let α ∈ AutFn.
(1) The homeomorphism ∂α : ∂Fn → ∂Fn has at least two periodic points of

period ≤ 2n. If it has only one orbit of periodic points, then this orbit has
order two.

(2) Suppose X ∈ ∂Fn is periodic of period q under ∂α. Then q ≤ Mn, where
Mn depends only on n and logMn ∼

√
n logn as n→∞.

The bound 2n and the bound on q are sharp. The quantity
√
n logn is asymp-

totic to the logarithm of the maximum order of torsion elements in AutFn, see
[11]. As a special case of assertion 2, there is a bound depending only on n for
periods of elements g ∈ Fn under the action of α. One may also establish a uni-
form bound for periods of conjugacy classes under the action of Φ ∈ OutFn. It
is proved in [9] that, for “most” α ∈ AutFn, the homeomorphism ∂α has exactly
two fixed points, and no other periodic point.

Like many results of the present paper, the proof of Theorem 1 uses R-trees
and techniques introduced in [5]. The proof of assertion 2 uses the main result of
[5], and Bestvina-Handel’s bound [1] for the rank of the fixed subgroup (the “Scott
conjecture”).

Let us now consider local properties of fixed points of ∂α, using the canonical
Hölder structure on ∂Fn (see [3, 7]). Let X be a fixed point of ∂α not belonging to
the limit set of the fixed subgroup Fixα ⊂ Fn. It is either attracting or repelling
[5]. In the attracting case, we show that, for Y ∈ ∂Fn close enough to X , the
sequence ∂αp(Y ) converges to X super-exponentially in the sense that

lim
p→+∞

1
p

log d(∂αp(Y ), X) = −∞,

where d is any distance on ∂Fn defining the Hölder structure. We say that X is
superattracting (see the beginning of Section 4 for a detailed discussion).

Theorem 2. Let α ∈ AutFn. Let X ∈ ∂Fn be a superattracting fixed point of ∂α.
There exists an algebraic number λ = λ(α,X) ≥ 1 such that

lim
p→+∞

1
p

log
(
− log d(∂αp(Y ), X)

)
= logλ

for Y ∈ ∂Fn close to X (and d a distance on ∂Fn as above).

Thus, when λ > 1, the sequence ∂αp(Y ) converges to X at about the same
speed as fp(x) approaches 0, where f is the map x 7→ xλ : [0, 1)→ [0, 1).

Example. Consider α : F2 → F2 given by α(a) = aba, α(b) = ab. The number
associated to X = limp→+∞ αp(a) = ababaaba . . . is the Perron-Frobenius eigen-

value of the matrix
(

2 1
1 1

)
. On the other hand, for the polynomially growing
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α : F3 → F3 given by α(a) = a, α(b) = ba, α(c) = cba, the number associated to
the superattracting point X = limp→+∞ α

p(c) = cbaba2ba3 . . . equals 1.

We now associate a canonical set of Hölder exponents Λh(Φ) ⊂ (1,+∞) to any
Φ ∈ OutFn. View Φ as a collection of automorphisms α ∈ AutFn. We say that
µ > 1 belongs to Λh(Φ) if there exist β ∈ Φq, with q ≥ 1, and a superattracting
fixed point X of ∂β with λ(β,X) = µq. The set Λh(Φ) is a conjugacy invariant of
Φ.

Example. If Φ is induced by a homeomorphism ϕ of a compact surface Σ with
π1Σ ' Fn, then Λh(Φ) consists of (roots of) the expansion factors of the pseudo-
Anosov pieces of ϕ. They are algebraic units.

If α ∈ AutF3 is given by α(a) = ab−1, α(b) = bac−1, α(c) = ca−3 (see [6,
Example II.7]), then Λh(Φ) consists of the real root λ of x3 − 3x2 + 2x− 3. Note
that λ is not an algebraic unit, and therefore cannot be read off the graph of groups
constructed by Sela in Theorem 4.1 of [15].

Theorem 3. Given Φ ∈ OutFn, the set of Hölder exponents Λh(Φ) equals the
set Λ(Φ) of nontrivial exponential growth rates of conjugacy classes of Fn under
iteration of Φ.

The (exponential) growth rate of a conjugacy class γ is λ(γ) = limp→+∞ |Φp(γ)|1/p
(see Proposition 3.3). It is nontrivial if λ(γ) > 1. It will be shown in [10] that Λ(Φ)
has at most [3n−2

4 ] elements and consists of certain Perron-Frobenius eigenvalues
of the transition matrix associated to a relative train track representative of Φ.

This paper is organized as follows. In Section 1 we prove the existence of peri-
odic points for ∂α. The proof of Theorem 1 is completed in Section 2 (Theorems
2.1 and 2.3). In Section 3 we briefly discuss growth rates. We start Section 4 by
a general discussion of superattractivity, valid for an arbitrary hyperbolic group.
We then prove Theorem 2.

1. Existence of periodic points

Let Fn be a free group. We consider its boundary ∂Fn, equipped with the natural
action of Fn by left-translations. It is a Cantor set if n ≥ 2 (it consists of two
points if n = 1). In section 4, we will view ∂Fn as a set of right-infinite reduced
words. A finitely generated subgroup J ⊂ Fn is quasiconvex [16]. In particular,
we can identify the boundary (or limit set) ∂J with a subset of ∂Fn.

An automorphism α ∈ AutFn is a quasi-isometry of Fn. It induces a homeo-
morphism ∂α : ∂Fn → ∂Fn, and a homeomorphism α = α ∪ ∂α on the compact
space Fn = Fn ∪ ∂Fn.

The fixed subgroup Fixα = {g ∈ Fn | α(g) = g} has finite rank (Gersten, see
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e.g. [2]). Its boundary ∂(Fixα) is a subspace of ∂Fn upon which ∂α acts as the
identity. Note that for any integer q the subgroup Fixαq is α-invariant (i.e. it is
mapped to itself by α).

Following Nielsen [14], we say that a fixed point X of ∂α is singular if X ∈
∂(Fixα), regular otherwise.

It is shown in [5, Proposition 1.1] that a regular fixed point X of ∂α is either
attracting or repelling. Attracting means that αp(Y ) converges to X for every Y
in a neighborhood of X in Fn ∪ ∂Fn (as p→ +∞), repelling means attracting for
α−1 (see a detailed discussion in Section 4).

We say that X ∈ ∂Fn is periodic if there exists q ≥ 1 with ∂αq(X) = X .
The smallest such q is the period of X and the set {X, ∂α(X), . . . , ∂αq−1(X)} is a
periodic orbit of order q. We define X to be regular, attracting... if it is as a fixed
point of ∂αq. We give a similar definition for a periodic orbit, noting that all its
elements have the same type.

Theorem 1.1. Let α ∈ AutFn. The homeomorphism ∂α : ∂Fn → ∂Fn has at
least two periodic points. More precisely, either ∂α has at least two periodic orbits,
or the unique periodic orbit has order 2 and is the boundary of an α-invariant
infinite cyclic subgroup.

Example 1.2. We construct a ∂α with only one periodic orbit. First define
β : F2 → F2 by a 7→ a, b 7→ aba. Then ∂β has two singular fixed points a±∞ =
limp→+∞ a±p. It is easily checked that these are the only periodic points of ∂β.
The automorphism β is the square of α : a 7→ a−1, b 7→ a−1b−1. The map ∂α
permutes a∞ and a−∞.

The proof of Theorem 1.1 (to be found below) uses an α-invariant R-tree T .
The main properties of T are summarized as follows.

Theorem 1.3. ([5]) For every automorphism α of Fn there exists an R-tree T
and a number λ ≥ 1 such that:

(1) Fn acts on T non-trivially, minimally, with trivial arc stabilizers.
(2) There exists a homothety H: T → T with stretching factor λ such that

α(g)H = Hg

for all g ∈ Fn (viewing elements of Fn as isometries of T ). If λ = 1, then
T is simplicial.

(3) There exists an Fn-equivariant injection j : ∂T → ∂Fn satisfying ∂α ◦ j =
j ◦H. tu

Furthermore:

Theorem 1.4. ([6]) Given Q ∈ T , its stabilizer StabQ has rank ≤ n−1, and the
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action of StabQ on π0(T \ {Q}) has at most 2n orbits. The number of Fn-orbits
of branch points is at most 2n− 2. tu

A homothety is a map H such that d(Hx,Hy) = λd(x, y) for some λ > 0 (the
stretching factor). We denote ∂T the set of equivalence classes of infinite rays
ρ : (0,+∞) → T , and again H : ∂T → ∂T the induced map. See [5, Sections
2 and 3] for other definitions and a proof of Theorem 1.3. Theorem 1.4 follows
from Theorem III.2 of [6]. Given α and T , the number λ and the homothety H
satisfying α(g)H = Hg are unique.

A homothety H with λ > 1 has a unique fixed point Q, which may be in T
or only in its metric completion T . We define an eigenray of H as in [5], as an
isometric map ρ : (0,∞)→ T such that ρ(λx) = Hρ(x). We note:

Proposition 1.5. If HR = R, the stabilizer StabR is α-invariant. If ρ is an
eigenray, then j(ρ) is a fixed point of ∂α. Now suppose λ > 1, and let Q be the
fixed point of H. If Q ∈ T \T , then there exists a unique eigenray. If Q ∈ T , then
any component of T \ {Q} that is fixed by H contains a unique eigenray. tu

Proof of Theorem 1.1. First assume that the fixed subgroup Fixαq is nontrivial
for some q ≥ 1. If it is cyclic, its two boundary points are either fixed points of ∂α
or a periodic orbit of order 2. If Fixαq has rank ≥ 2, we get uncountably many
periodic orbits. From now on we assume that Fixαq is trivial for every q, and we
construct an attracting periodic orbit of ∂α. The same argument, applied to α−1,
will yield a second orbit.

Let T be as in Theorem 1.3. If H fixes some Q ∈ T with StabQ nontrivial,
recall that StabQ is α-invariant. Since it has rank less that n and ∂StabQ embeds
into ∂Fn, we will be able to use induction on n (of course n = 1 is trivial). Also
note that, if ρ is an eigenray of H (with λ > 1), then the fixed point j(ρ) of ∂α is
attracting (see the proof of Assertion 2 of Proposition 4.4 in [5]).

Recall that we want to find an attracting periodic orbit of ∂α. First assume
λ > 1. Let Q ∈ T be the fixed point of H. If Q ∈ T \T , there is an eigenray ρ and
j(ρ) is an attracting fixed point of ∂α. Suppose Q ∈ T . If StabQ is nontrivial, we
use induction on n. Otherwise T \ {Q} has at most 2n components by Theorem
1.4, and some power of H has an eigenray. This gives an attracting periodic orbit
as before.

Now we assume λ = 1. In this case T is simplicial and H is an isometry.
First suppose H fixes some Q. We may assume StabQ is trivial (otherwise,

we do induction). Then some Hk fixes an edge e. Replacing α by αk, we assume
k = 1. Collapse to a point every edge not in the orbit of e (under the action of Fn).
We get a new tree T ′ with an isometry H ′ satisfying the conclusions of Theorem
1.3. The map H ′ fixes some point with nontrivial stabilizer (since all vertices now
have nontrivial stabilizer) and we use induction.

The last possibility if that H is a hyperbolic isometry of T . In this case H has



420 G. Levitt and M. Lustig CMH

a translation axis A and fixes two ends of T . Orienting A by the action of H, we
consider the positive end A+ of A and the associated fixed point X+ = j(A+) of
∂α. We complete the proof by showing that X+ is not repelling (and therefore is
attracting since we assume Fixαq trivial for all q). Choose any point Q ∈ A, and
g ∈ Fn acting on T as a hyperbolic isometry whose axis has compact intersection
with A. Writing αp(g)Q = HpgH−pQ we see that the projection of αp(g)Q onto
A goes to A+ as p → ∞. By Section 3 of [5] this implies limp→∞ αp(g) = X+.
Thus X+ cannot be repelling. tu

2. Bounding periods

Theorem 2.1. Let α ∈ AutFn. Suppose X ∈ ∂Fn is periodic of period q under
∂α. Then q ≤ Mn, where Mn depends only on n and logMn ∼

√
n logn as

n→∞.

The quantity
√
n logn is Landau’s asymptotic estimate for log g(n), where g(n)

is the maximum order of elements in the symmetric group Sn [8]. It is shown in
[11] that the same estimate holds for the maximum order of torsion elements in
GL(n,Z) and AutFn.

We first prove the following special case of Theorem 2.1:

Lemma 2.2. If g ∈ Fn is periodic of period q under α ∈ AutFn, then q ≤ An,
where An is the maximum order of torsion elements in AutFn.

Proof. The subgroup Fixαq is α-invariant, and the restriction of α has order
exactly q in Aut (Fixαq). Since the rank of Fixαq is ≤ n by [1], and AutFk
naturally embeds into AutF` for k < `, the group AutFn contains an element of
order q. tu

Remark. Before the Scott conjecture was proved, Stallings showed [17] that, for
a given α, there is a bound for periods of elements g ∈ Fn.

Proof of Theorem 2.1. Lemma 2.2 shows that singular periodic points of ∂α have
period ≤ An. Now suppose X is regular, say attracting.

The points X, ∂α(X), . . . , ∂αq−1(X) are attracting fixed points of ∂αq. By
Theorem 1 of [5], the action of Fixαq on the set of attracting fixed points of ∂αq

has at most 2n orbits. Thus there exist r ≤ 2n and u ∈ Fixαq such that

∂αr(X) = uX.

By Lemma 2.2 we have
αs(u) = u

for some s ≤ An.
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The above equations yield ∂αrs(X) = aX with

a = α(s−1)r(u) . . . αr(u)u.

If a = 1 we get q ≤ rs ≤ 2nAn. Otherwise we note that a ∈ Fixαs, and from
X = ∂αqrs(X) = aqX we conclude that X is singular, a contradiction.

We have thus shown q ≤ Mn = 2nAn. Since logAn ∼
√
n logn by [11], we

have logMn ∼
√
n logn. tu

Remark. The bound q ≤ 2nAn is not quite sharp. But if α ∈ AutFn has order
An then generic points of ∂Fn have period An under ∂α. Therefore the estimate
logMn ∼

√
n logn cannot be improved.

Theorem 2.3. For any α ∈ AutFn, the map ∂α : ∂Fn → ∂Fn has at least two
periodic points of period ≤ 2n.

For the automorphism defined by ai 7→ ai+1 (1 ≤ i ≤ n− 1), an 7→ a−1
1 , every

point of ∂Fn has period 2n.

Proof. There are two cases. If α has no periodic element g 6= 1, then ∂α has at
most 2n periodic points of a given type (attracting or repelling) by Theorem 1 of
[5]. The other case is taken care of by the following result. tu

Proposition 2.4. Let α ∈ AutFn. If there is a nontrivial α-periodic element
g ∈ Fn, then there is one of period ≤ 2n.

Proof. Let q be the smallest period of nontrivial periodic elements. Arguing as in
the proof of Lemma 2.2, we may assume that α has order q. Such an α may be
realized as an automorphism of a graph ([4], [18]): there exist a finite graph Λ, an
automorphism f of Λ fixing a vertex v, and an isomorphism Fn → π1(Λ, v) such
that the following diagram commutes:

Fn
α−−−−→ Fny y

π1(Λ, v)
f∗−−−−→ π1(Λ, v).

We choose Λ with minimal number of vertices. We claim that the action of
Z/qZ = < f > on the set of germs of edges at v is free. This will show q ≤ 2n
since v has valence at most 2n.

Assume the action is not free. Then some fr (1 ≤ r ≤ q − 1) fixes an edge
containing v. Let Λ0 be the component of the fixed point set of fr containing v.
It is a tree since otherwise α would have a nontrivial periodic element of period
≤ r. We may therefore collapse Λ0 to a point, contradicting the choice of Λ. tu
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3. Growth rates

In this section we fix Φ ∈ OutFn, and sometimes also an automorphism α ∈ Φ.
We write |g| for the word length of g ∈ Fn, and |γ| for the length of a conjugacy
class γ (equal to the length of a cyclically reduced word representing γ).

Let M be the transition matrix of a relative train track map representing Φ (see
[1]). The largest positive eigenvalue (spectral radius) of the matrix M is denoted
λ(Φ), or λ(α). It is an algebraic integer of degree bounded by 3n− 3.

For g ∈ Fn, the length of αp(g) is bounded from above by a constant times
‖M‖p |g|. If λ(Φ) = 1, the growth of αp(g) is polynomial and Φ is called polyno-
mially growing. For future reference we note:

Remark 3.1. Given ν > λ(α), there exists C > 0 such that |αp(g)| ≤ Cνp|g| for
all g ∈ Fn and p ≥ 1.

Now let ` : Fn → R+ be the length function of an action of Fn on an R-tree T .
It is bounded from above by a constant times word length. In particular, if T is
an α-invariant R-tree as in Theorem 1.3, we have (up to multiplicative constants)
λp`(g) = `(αp(g)) ≤ |αp(g)| ≤ ‖M‖p|g| and therefore λ ≤ λ(α). Conversely:

Proposition 3.2. There exists an α-invariant R-tree T as in Theorem 1.3 with
λ = λ(α).

Proof. This is proved by the same arguments as in [5, section 2], but instead of
using only the top stratum of the train track (which may lead to λ < λ(α)) we
use the whole relative train track and an eigenvector v of M associated to λ(α).
One shows that the resulting action on an R-tree T is nontrivial and has trivial
arc stabilizers as in [5]. Minimality of the action may be achieved by restricting to
the minimal invariant subtree. It is often more convenient, though, to work with
the metric completion T of T so as to ensure that H has a fixed point Q when
λ(α) > 1. tu

Now let J be a finitely generated malnormal subgroup of Fn (recall that J is
malnormal if gJg−1 ∩ J 6= {1} =⇒ g ∈ J). We say that J is Φ-periodic if there
exist q ≥ 1 and β ∈ Φq with β(J) = J . Note that, by malnormality, the class of β
in OutJ is uniquely determined.

For example, suppose that T is an R-tree as in Theorem 1.3 and J = StabQ for
some branch point Q. Then J is malnormal (because arc stabilizers are trivial).
By Theorem 1.4, it has rank < n. We claim that it is Φ-periodic. Indeed, by
Theorem 1.4 there exist m ∈ Fn and q ≥ 1 such that mHq fixes Q. Denoting
im(g) = mgm−1, the automorphism β = im ◦ αq ∈ Φq maps J to itself.

If J is finitely generated, malnormal, Φ-periodic, we define λJ = λ(β|J )
1
q .
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Proposition 3.3. Let Φ ∈ OutFn.
(1) Each conjugacy class γ in Fn has a growth rate λ(γ) = limp→+∞ |Φp(γ)|1/p.
(2) Given λ ≥ 1, the following are equivalent:

• λ = λ(γ) for some conjugacy class γ.
• λ = λJ for some malnormal Φ-periodic subgroup J ⊂ Fn of rank ≤ n.

The existence of the limit in assertion 1 is folklore (compare [1, Remark 1.8]).
Simple examples show that one cannot restrict to free factors in assertion 2.

Proof. The proof is by induction on n. Let T be an α-invariant R-tree with
λ = λ(Φ) (see Proposition 3.2). We distinguish two cases, by evaluating the
length function on γ.

If `(γ) > 0, we write |Φp(γ)| ≥ `(Φp(γ)) = λp`(γ) (up to a constant) and we
conclude that γ has growth rate λ(γ) = λ = λ(Φ) (recall that the exponential
growth of Φp(γ) is bounded from above by λ(Φ)). Note that there exist classes
with `(γ) > 0, hence there exist classes with growth rate λ(Φ).

If `(γ) = 0, an element g ∈ Fn representing γ fixes some branch point Q ∈ T ,
and we argue by induction by considering γ as a conjugacy class in J = StabQ.
We have pointed out earlier that J is malnormal, Φ-periodic, of rank < n. If
β = im ◦ αq leaves J invariant, note that, by quasiconvexity of J , the growth rate
of γ under β|J is the same as the growth rate of γ, viewed as a conjugacy class in
Fn, under Φq.

These arguments show that every γ has a growth rate, which is of the form λJ
with J as in the proposition. Conversely, given J , let `J be the length function
of a β|J -invariant tree with λ = λ(β|J). Conjugacy classes with `J(γ) > 0 have
growth rate λJ under Φ. tu

Definition. We call λ(Φ) the top growth rate of Φ. The set of growth rates
Λ(Φ) ⊂ (1,∞) consists of the growth rates λ(γ) which are bigger than 1.

Note that Λ(Φ) consists of algebraic integers of degree ≤ 3n−3, and that λ(Φ)
is the largest element of Λ(Φ) ∪ {1}. See [10] for more results about Λ(Φ).

4. Hölder dynamics

Superattractivity

The discussion in this subsection (including Proposition 4.1) is valid for automor-
phisms of arbitrary (word) hyperbolic groups, but for simplicity we restrict to the
case of Fn (the generalization is almost immediate using [13]).

Fixing a free basis of Fn, we may view ∂Fn as the set of right-infinite reduced
words. Let X ∈ ∂Fn be a fixed point of the homeomorphism ∂α induced by
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α ∈ AutFn on ∂Fn. We say that X is singular if it belongs to the limit set of the
fixed subgroup Fixα, regular otherwise (recall that Fixα has finite rank).

As explained in [5], there is a basic trichotomy: either X is singular, or X is
attracting, or X is repelling (i.e. attracting for α−1). Attractivity has a strong
meaning here (see section 1 of [5]): given A, there exists m such that for Y ∈
Fn ∪ ∂Fn

cXY ≥ m =⇒ cX(∂α(Y ))− cXY > A, (1)

where cXY is the length of the maximal common initial segment between the
reduced words X and Y (i.e. the Gromov scalar product < X,Y > with basepoint
at the identity in the Cayley graph).

In particular, we have limp→+∞ α
p(Y ) = X uniformly on a neighborhood of X

in Fn ∪ ∂Fn if X is attracting (whereas if X is singular there are fixed points of
α in Fn arbitrarily close to X). For the automorphism β studied in Example 1.2,
the (singular) fixed points a±∞ of ∂β are partly repelling and partly attracting:
for any k ∈ Z we have limp→+∞ ∂βp(akbY ) = a∞ if Y is a right-infinite reduced
word not starting with b−1, but limp→+∞ ∂βp(akb−1Y ) = a−∞ if Y does not start
with b.

Also note that an isolated fixed point of ∂α is singular if and only if it belongs to
the limit set of an α-invariant cyclic subgroup (for the “only if” direction, simply
observe that α leaves invariant the stabilizer of X for the action of Fn on ∂Fn).
In particular, the natural action of Fixα on the set of regular fixed points of ∂α
is free. This action has finitely many orbits [2], indeed it follows from [5] that the
number of orbits is at most 4n. It is not clear to us whether there is a bound
depending only on G when G is an arbitrary hyperbolic group.

Now recall that the boundary of Fn (of any hyperbolic group, in fact) has a
canonical Hölder structure (see [3], [7]). It may be viewed as a collection D of
distance functions on ∂Fn that are pairwise bi-Hölder equivalent: Given d, d′ ∈ D,

there exist C > 0 and β ∈ (0, 1] such that
1
C
d

1
β ≤ d′ ≤ Cdβ . This Hölder structure

is preserved by ∂α for every α ∈ AutFn. If J ⊂ Fn has finite rank, the inclusion
∂J ↪→ ∂Fn is bi-Hölder.

We represent the Hölder structure by the visual metrics dε(X,Y ) = exp(−εcXY ).
Let X ∈ ∂Fn be a fixed point of ∂α, and d = dε a visual metric. If X is regular,

attracting, it follows from (1) that

lim
Y→X

d(∂α(Y ), X)
d(Y,X)

= 0. (2)

If X is repelling or singular, however, the above quotient is bounded away from 0
on a neighborhood of X (if X is singular, cX(∂α(Y )) − cXY is bounded near X
because Fixα is quasiconvex and α is a quasi-isometry).

Thus (2) is a metric characterization of attracting regular fixed points, similar
to the characterization of a superattracting fixed point c of a holomorphic map
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f : C → C by f ′(c) = 0. For this reason, we call an attracting regular point
superattracting (and a repelling regular point superrepelling).

Of course the map ∂α is a homeomorphism, and superattracting fixed points
may exist only because ∂α is bi-Hölder but in general not bi-Lipschitz. For in-
stance, if t is any lift to the Poincaré disc of a pseudo-Anosov diffeomorphism of a
closed hyperbolic surface, then the homeomorphism induced by t on the circle at
infinity is never bi-Lipschitz (see Remark (22.14) in [12]).

Characterization (2) above does not depend on the chosen visual metric d, but
it is not valid for arbitrary metrics in D. The following characterization will apply
to every d ∈ D.

Proposition 4.1. Let α ∈ AutFn. A fixed point X of ∂α is superattracting if
and only if

lim
p→+∞

1
p

log d(∂αp(Y ), X) = −∞

for Y ∈ ∂Fn close to X, where d is any metric on ∂Fn defining the Hölder struc-
ture.

This equation means that ∂αp(Y ) converges to X super-exponentially as p→
∞. Unlike (2), it is true for every metric in D if it is true for one.

Proof. We may assume that d is a visual metric. Suppose X is superattracting.
We have to prove limp→∞

1
pcX(∂αp(Y )) = +∞ for Y close to X . Given A > 0, let

m be as in (1). If limp→∞ ∂αp(Y ) = X , there exists n0 such that cX(∂αp(Y )) ≥ m
for p ≥ n0. For p large, we then have

cX(∂αp(Y )) ≥ A(p− n0) +m,

and the result follows.
Conversely, if X is singular, then cX(∂α(Z))− cXZ is bounded in a neighbor-

hood of X , and therefore 1
p log d(∂αp(Y ), X) is bounded from below as p → ∞.

tu

Speed of convergence

We consider α ∈ AutFn, and the associated Φ ∈ OutFn. Recall that Λ(Φ) ⊂
(1,∞) is the set of nontrivial growth rates. It may also be viewed as a set of λJ
(see Proposition 3.3).

Theorem 4.2. Let α ∈ AutFn. Let X ∈ ∂Fn be a superattracting fixed point of
∂α. There exists λ = λ(α,X) ∈ Λ(Φ) ∪ {1} such that

lim
p→+∞

1
p

log
(
− log d(∂αp(Y ), X)

)
= logλ (3)
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for Y ∈ ∂Fn close to X (and any metric d on ∂Fn defining the Hölder structure).
Conversely, given µ ∈ Λ(Φ), there exist q ≥ 1, an automorphism β ∈ Φq, and

a superattracting fixed point X of ∂β with λ(β,X) = µq.

It follows that the set Λh(Φ) of Hölder exponents defined in the introduction
equals Λ(Φ). Note that replacing d by a metric bi-Hölder equivalent to d does not
affect the validity of (3).

Proof of Theorem 4.2. We fix a basis of Fn and we consider the corresponding
Cayley tree Γ.

Let X be a superattracting fixed point of ∂α. We need to prove

lim
p→+∞

1
p

log cX(∂αp(Y )) = logλ.

We will bound the left-hand side, first from above and then from below.

Lemma 4.3. Suppose X ∈ ∂J , with J ⊂ Fn a finitely generated α-invariant
malnormal subgroup. Then

lim sup
p→+∞

1
p

log cX(∂αp(Y )) ≤ logλJ

for all Y ∈ ∂Fn.

Recall that λJ is the top growth rate of α|J .

Proof. Let xtp be the projection of ∂αp(Y ) onto the geodesic from 1 ∈ Fn to X in
Γ. By quasiconvexity of J , we can find jp ∈ J within a fixed distance of xtp . We

need to prove lim sup
p→+∞

1
p

log |jp| ≤ logλJ . We will work with word length |jp|J in

J , which is comparable to |jp|.
Define wp ∈ J by jp = α(jp−1)wp. Since α is a quasi-isometry, there is a

uniform bound for |wp|, hence also for |wp|J because J is quasiconvex. Now write

jp = αp(j0)αp−1(w1) · · ·α(wp−1)wp.

For ν > λJ we have

|jp|J ≤ Cνp|j0|J + Cνp−1|w1|J + · · ·+ Cν|wp−1|J + |wp|J ,

with C given by Remark 3.1. Thus |jp|J = O(νp) for all ν > λJ , and the lemma
is proved. tu

Corollary 4.4. Theorem 4.2 holds if α is polynomially growing (i.e. λ(α) = 1),
with λ(α,X) = 1. tu
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Fix a subgroup J as in Lemma 4.3, and consider an R-tree T with an action of
J satisfying the conditions of Theorem 1.3 with respect to α|J . Using Proposition
3.2, we assume that the stretching factor of the homothety H equals λJ . Suppose
furthermore λJ > 1.

Lemma 4.5. Suppose X = j(ρ), where ρ is an eigenray of H : T → T (in
particular, X ∈ ∂J). Then

lim inf
p→+∞

1
p

log cX(∂αp(Y )) ≥ logλJ

for Y ∈ ∂Fn close enough to X.

Proof. With the notations of Section 1, let Q ∈ T be the fixed point of H (i.e. the
origin of ρ). Choose jp as in the proof of Lemma 4.3 and define dp as d(Q, jpQ)
(where d denotes the distance in T ). Note that

d(Q,α(jp)Q) = d(Q,α(jp)HQ) = d(Q,HjpQ) = λJd(Q, jpQ).

On the other hand, recall that the distance in J from α(jp) to jp+1 is bounded
independently of p (and of Y ). Thus we obtain an inequality of the form

dp+1 ≥ λJdp −A,

with A independent of p and Y .
If Y is close enough to X in ∂Fn, then j0 is close to X in J ∪∂J , and therefore

d0 is large (by bounded backtracking, see section 3 of [5]). This implies

lim inf
p→+∞

1
p

log dp ≥ logλJ .

Finally, we observe that dp = d(Q, jpQ) is bounded above by a constant times
|jp|J , hence by a constant times |jp|. tu

Now we complete the proof of Theorem 4.2. If λ(α) = 1, then we are done by
Corollary 4.4. Assume λ(α) > 1, and consider a tree T as in Proposition 3.2, with
stretching factor λ(α). If X = j(ρ) as in Lemma 4.5, we are done, with λ = λ(α).
If not, then by Proposition 4.3 of [5] we have X ∈ ∂StabQ, where Q ∈ T is the
fixed point of H (recall that points of T \ T have trivial stabilizer).

The subgroup StabQ is α-invariant, malnormal, and has rank < n (see section
3). Repeat the argument, working with α|StabQ. After a finite number of steps we
find that X ∈ ∂J (with J invariant, malnormal, of rank < n), and either λJ = 1
or X = j(ρ). It follows from Lemmas 4.3 and 4.5 that Theorem 4.2 holds, with
λ(α,X) = λJ .
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Conversely, consider µ ∈ Λ(Φ). First suppose µ = λ(α). Consider an R-tree
T as in Theorem 1.3, with λ = λ(α). By Theorem 1.4 and Proposition 1.5, there
exist m ∈ Fn and q ≥ 1 such that mHq has an eigenray ρ. Let β = im ◦ αq, with
im(g) = mgm−1. Then X = j(ρ) is a fixed point of ∂β, and λ(β,X) = λ(β) = µq.

For arbitrary µ = λJ ∈ Λ(Φ), let α′ ∈ Φr leave J invariant. The previous
argument yields β ∈ Φrq and a fixed pointX of ∂β in ∂J such that λ(β|J , X) = µrq.
Since the inclusion ∂J ↪→ ∂Fn is bi-Hölder, λ(β,X) = λ(β|J , X) has the required
form. tu
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[17] J. R. Stallings, Finiteness properties of matrix representations, Ann. Math. 124 (1986),
337–346.
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