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c© 2000 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

Gromov hyperbolicity and the Kobayashi metric on
strictly pseudoconvex domains
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Abstract. We give an estimate for the distance function related to the Kobayashi metric on
a bounded strictly pseudoconvex domain with C2-smooth boundary. Our formula relates the
distance function on the domain with the Carnot-Carathéodory metric on the boundary. The
estimate is precise up to a bounded additive term. As a corollary we conclude that the domain
equipped with this distance function is hyperbolic in the sense of Gromov.
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1. Introduction: Notation and statement of results

The Kobayashi metric is an important invariant metric that has been used for
the study of holomorphic maps and function spaces in several complex variables.
In general there is no exact formula for this metric but its boundary behavior
has been extensively studied by several authors. For the latest results for strictly
pseudoconvex domains we refer to [M1], [M2], [M3], [Fu]. A general survey on
biholomorphically invariant metrics can be found in [JP]. These results are quite
complete, however they have a local character as they provide sharp estimates of
the differential metric near the boundary. Much less is known about the boundary
behavior of the distance function—the integrated version of the metric. Partial
results in this sense are included in the works of [Ab], [Al], [FR]. We refer to [K]
for a recent account of the subject. The content of these results are estimates,
given for the distance of two points in certain special situations depending on
the relative position of the points. The lack of global estimates of the distance
function for two arbitrary points lies in the difficulty of determining the ”almost
geodesics” connecting two points in general relative position. In the present paper
we overcome this difficulty by the principles of the theory of Gromov hyperbolic
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spaces. Our results are of global nature: we give a formula that describes the
large scale structure of a strictly pseudoconvex domain equipped with the distance
function related to the Kobayashi metric. As a consequence we obtain that the
domain is hyperbolic in the sense of Gromov.

Let us start by fixing the notation we shall use throughout this paper. Suppose
Ω ⊆ Cn, n ≥ 2, is a bounded, strictly pseudoconvex domain with C2-smooth
boundary ∂Ω. For a point x ∈ Cn let δ(x) = dist(x, ∂Ω) be the Euclidean distance
of the point to the boundary of Ω, and consider the signed distance function
ρ : Cn → R,

ρ(x) =
{ −δ(x) for x ∈ Ω,

δ(x) for x ∈ Cn \ Ω.

Then ρ is C2-smooth in an open neighborhood Nε(∂Ω) := {x ∈ Cn : δ(x) < ε}
of ∂Ω, and we have Ω = {x ∈ Cn : ρ(x) < 0}. The tangent space Tp∂Ω for
p ∈ ∂Ω is given by Tp∂Ω = {Z ∈ Cn : Re

〈
∂̄ρ(p), Z

〉
= 0}, and its maximal

complex or “horizontal” subspace is Hp∂Ω = {Z ∈ Cn :
〈
∂̄ρ(p), Z

〉
= 0}, where

∂̄ρ(p) =
(
∂ρ
∂z1

(p), . . . , ∂ρ∂zn (p)
)
, and

〈
Z,W

〉
=
∑n
ν=1 ZνW ν is the standard Hermi-

tian product of two vectors Z = (Z1, . . . , Zn) and W = (W1, . . . ,Wn) in Cn.
By definition, the strict pseudoconvexity of Ω means that the Levi form Lρ(p; ·)

defined by

Lρ(p;Z) =
n∑

ν,µ=1

∂2ρ

∂zν∂zµ
(p)ZνZµ for Z = (Z1, . . . , Zn) ∈ Cn

is positive definite on Hp∂Ω for p ∈ ∂Ω. In particular, this implies the con-
tact property of the horizontal bundle H∂Ω. Consequently one can define a
metric dH—the horizontal, or Carnot-Carathéodory metric on ∂Ω (cf. [G2]) —
as follows. Call a piecewise C1-smooth curve α : [0, 1] → ∂Ω horizontal, if for
t ∈ [0, 1] for which α̇(t) exists we have α̇(t) ∈ Hα(t)∂Ω. It follows from the
strict pseudoconvexity of Ω that ∂Ω is connected. Moreover, any two points
p, q ∈ ∂Ω can be joined by a horizontal curve α as follows from the contact
property of H∂Ω (see Section 3 for details). Define the Levi length of a curve
by Lρ-length(α) :=

∫ 1
0 Lρ

(
α(t); α̇(t)

)1/2
dt, and for p, q ∈ ∂Ω let

dH(p, q) = inf{Lρ-length(α) : α : [0, 1]→ ∂Ω is a horizontal curve
with α(0) = p, α(1) = q}.

At each point p ∈ ∂Ω we consider the splitting Cn = Hp∂Ω⊕Np∂Ω whereNp∂Ω
is the complex one-dimensional subspace of Cn orthogonal to Hp∂Ω. Accordingly,
a vector Z ∈ Cn can uniquely be written as Z = ZH + ZN , where ZH ∈ Hp∂Ω
and ZN ∈ Np∂Ω. In our notation we suppress the dependence on p.

For a horizontal curve α : [0, 1] → ∂Ω we have that α̇N ≡ 0 (in the points of
differentiability) and so length(α) =

∫ 1
0 |α̇H(t)| dt. The strict pseudoconvexity of
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Ω implies that there exists a constant C ≥ 1 such that

(1/C)|Z| ≤ Lρ(p;Z)1/2 ≤ C|Z| for p ∈ ∂Ω, Z ∈ Hp∂Ω. (1.1)

So if we replace the Levi length of a curve by its Euclidean length in the definition
of the Carnot-Carathéodory metric, then we get a bilipschitzly equivalent metric.

For each x ∈ Ω choose a point π(x) ∈ ∂Ω with |x−π(x)| = δ(x). This gives us
a map π : Ω→ ∂Ω. Since Ω has a C2-smooth boundary, the point π(x) ∈ ∂Ω with
|x− π(x)| = δ(x) is uniquely determined if x is sufficiently close to the boundary.
We introduce the function g : Ω× Ω→ R by

g(x, y) = 2 log
[
dH(π(x), π(y)) + h(x) ∨ h(y)√

h(x)h(y)

]
, (1.2)

where the “height” h is h(x) := δ(x)1/2 for x ∈ Ω, a ∨ b := max{a, b}, and dH is
the Carnot-Carathéodory metric on ∂Ω.

There is a certain ambiguity in the definition of g due to the fact that a map π
with the required properties is not uniquely determined on the whole domain Ω,
but only on a sufficiently small neighborhood of ∂Ω. Different choices of π lead to
functions in (1.2) that agree up to a bounded additive term. This will not affect
the results below.

The formula (1.2) has its origins in the general framework of Gromov hyperbolic
spaces (cf. Section 5). There are various similar expressions that serve the same
purpose as g in Theorem 1.1 below. The expression g has the advantage that it is
a pseudometric on the domain Ω and even a metric if we restrict it to a sufficiently
small neighborhood of ∂Ω.

A Finsler metric on Ω is a continuous map F : Ω ×Cn → R+ := [0,∞) such
that F (x; tZ) = |t|F (x;Z) for all x ∈ Ω, t ∈ C, Z ∈ Cn. The distance function
dF associated with F is defined by

dF (x, y) = inf{F -length(γ) : γ : [0, 1]→ Ω is a piecewise C1-smooth curve
with γ(0) = x, γ(1) = y},

where

F -length(γ) =
∫ 1

0
F
(
γ(t); γ̇(t)

)
dt.

Our main result shows how a certain local estimate for a Finsler metric leads
to global estimates for the associated distance function.

Theorem 1.1. Let Ω ⊆ Cn, n ≥ 2, be a bounded, strictly pseudoconvex domain
with C2-smooth boundary. Suppose F is a Finsler metric on Ω with the following
property. There exist constants ε0 > 0, s > 0, C1 > 0, C2 ≥ 1 such that for all
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x ∈ Nε0(∂Ω) ∩ Ω and all Z ∈ Cn we have

(1− C1δ
s(x))

(
|ZN |2
4δ2(x)

+ (1/C2)
Lρ(π(x);ZH)

δ(x)

)1/2

≤ F (x;Z)

≤ (1 + C1δ
s(x))

(
|ZN |2
4δ2(x)

+ C2
Lρ(π(x);ZH)

δ(x)

)1/2

.

(1.3)

If dF is the distance function associated with F and g is defined as in (1.2), then
there exists a constant C ≥ 0 such that for all x, y ∈ Ω

g(x, y)− C ≤ dF (x, y) ≤ g(x, y) + C.

In (1.3) (and in (1.4) below) the splitting Z = ZN + ZH is understood to be
taken at p = π(x).

Let D be the unit disc in C. If f : D→ Ω is a holomorphic map we denote by
Df(z) its differential mapping at the point z ∈ D. The Kobayashi metric on Ω is
a differential metric defined for x ∈ Ω and Z ∈ Cn by

K(x;Z) = inf{|v| : v ∈ C and there exists a holomorphic map
f : D→ Ω with f(0) = x and Df(0)v = Z}.

The Kobayashi distance dK is the distance function associated with the Kobayashi
metric K.

In order to apply Theorem 1.1 to the Kobayashi metric we need an estimate
as in (1.3). This type of estimate is given in the following proposition. This result
cannot explicitly be found in the literature, but it can be obtained from slightly
modifying the argument of in [M3] (cf. Section 4).

Proposition 1.2. Let Ω ⊆ Cn, n ≥ 2, be a bounded, strictly pseudoconvex domain
with C2-smooth boundary. If K is the Kobayashi metric on Ω, then for every ε > 0,
there exists ε0 > 0 and C ≥ 0 such that for all x ∈ Nε0(∂Ω) ∩ Ω and all Z ∈ Cn

we have

(1− Cδ1/2(x))
( |ZN |2

4δ2(x)
+ (1− ε)Lρ(π(x);ZH)

δ(x)

)1/2

≤ K(x;Z)

≤ (1 + Cδ1/2(x))
(
|ZN |2
4δ2(x)

+ (1 + ε)
Lρ(π(x);ZH)

δ(x)

)1/2

.

(1.4)

It is important to notice that the magnitude of the vectors in the (complex)
normal direction is quadratically bigger than the magnitude of horizontal vectors.
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(This is illustrated by the scaling factors 1/δ2 versus 1/δ.) From this respect, it is
essential that (1.4) gives a more precise estimate in the normal direction than in the
horizontal direction. This is the advantage of Proposition 1.2 in comparison to the
results in [M1], [M2], [M3]. Let us also note that due to a different normalization
of the defining function, our Levi form Lρ differs by a factor 2 from the Levi form
used in these papers.

Together with the previous theorem Proposition 1.2 gives the following corol-
lary.

Corollary 1.3. Let Ω ⊆ Cn, n ≥ 2, be a bounded, strictly pseudoconvex domain
with C2-smooth boundary. If dK is the Kobayashi distance on Ω, then there exists
a constant C ≥ 0 such that for all x, y ∈ Ω

g(x, y)− C ≤ dK(x, y) ≤ g(x, y) + C.

The statement and proof of the Theorem 1.1 have been motivated by the theory
of Gromov hyperbolic spaces [BS], [GH], [G1]. In return, Corollary 1.3 implies the
Gromov hyperbolicity of strictly pseudoconvex domains when equipped with the
Kobayashi distance. This is formulated as follows.

Theorem 1.4. Let Ω ⊆ Cn, n ≥ 2, be a bounded, strictly pseudoconvex domain
with C2-smooth boundary. If dK is the Kobayashi distance on Ω, then the met-
ric space (Ω, dK) is hyperbolic in the sense of Gromov. The boundary ∂GΩ of
(Ω, dK) as a Gromov hyperbolic space can be identified with the Euclidean bound-
ary ∂Ω. The Carnot-Carathéodory metric dH on ∂Ω lies in (and thus determines)
the canonical class of snowflake equivalent metrics on ∂GΩ.

In the sequel (Section 5) we shall recall the notions and facts from the theory
of Gromov hyperbolic spaces that are necessary for the proof of this theorem.

Theorem 1.4 implies that one can apply the general facts from the theory of
Gromov hyperbolic spaces to strictly pseudoconvex domains and their maps. It
follows that maps with certain nice properties on the domain can be extended
to the boundary and vice versa. This gives a general framework for the classical
regularity theory (cf. [Fef], [FR]) of extensions for biholomorphisms and proper
holomorphic maps. In this spirit, we can deduce from Corollary 1.3 the well-known
result that a proper holomorphic map between strictly pseudoconvex domains
extends continuously to the closure of the domains. Actually, this map restricted
to the boundaries will be Lipschitz in the Carnot-Carathéodory metrics (cf. Section
6 for precise statements).

The paper is organized as follows. Section 2 contains preparations for the proof
of Theorem 1.1. In Section 3 we will discuss the Carnot-Carathéodory metric and
prove a lemma that shows how to obtain this metric in a limiting sense from
a class of Riemannian metrics. The proof of Theorem 1.1 is given in Section 4
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where we also indicate how to prove Proposition 1.2. In Section 5 we recall some
background on Gromov hyperbolic spaces and give the proof of Theorem 1.4. We
also show here that product-type domains are not Gromov hyperbolic. In the
last section we present applications of Corollary 1.3 and Theorem 1.4 concerning
boundary extension of mappings between strictly pseudoconvex domains. Finally,
we relate our results to previously known estimates and discuss further possible
developments.

The results of this paper for the Kobayashi metric have been announced in a
slightly weaker form in [BB].

2. Preliminaries: Preparations for the proof of Theorem 1.1

Our first statement holds for domains in Rn, n ≥ 2. We denote by B(x, r) the
open Euclidean ball with radius r > 0 centered at x and by B̄(x, r) its closure. We
denote the standard Euclidean scalar product of two vectors a, b ∈ Rn by (a · b).
Moreover, [a, b] will be the closed segment in Rn with endpoints a, b ∈ Rn, and
we will use the obvious notation for the open and half-open segments as well.

Lemma 2.1. Suppose that Ω ⊆ Rn, n ≥ 2, is a bounded domain with C2-smooth
boundary. Let δ(x) = dist(x, ∂Ω) for x ∈ Rn. Then there exists ε0 > 0 such that

(a) for every point x ∈ Nε0(∂Ω) there exists a unique point π(x) ∈ ∂Ω with
|x− π(x)| = δ(x),
(b) the signed distance to the boundary ρ : Rn → R is C2-smooth on Nε0(∂Ω),
(c) for the fibers of the map π : Nε0(∂Ω)→ ∂Ω we have

π−1(p) = Sp := (p− ε0n(p), p+ ε0n(p)),

where n(p) is the outer unit normal vector of ∂Ω at p ∈ ∂Ω,
(d) the gradient of ρ satisfies

gradρ(x) = n(π(x)) for all x ∈ Nε0(∂Ω),

(e) the projection map π : Nε0(∂Ω)→ ∂Ω is C1-smooth.

Proof. (a) The proof of this statement is due to Federer [Fed].
(b) This was proved in [KP]. The proof is based on (a).
(c) Let p ∈ ∂Ω and consider the ball B(x, |x− p|), where x lies on the segment

Sp =
(
p− ε0n(p), p+ ε0n(p)

)
. This ball is tangent to ∂Ω, and it is easy to see that

for x ∈ Sp close to p we have B̄(x, |x−p|)∩∂Ω = {p}. We show that this is true for
all x ∈ Sp. Otherwise, there would be a first x0 ∈ Sp (as we move along Sp in one of
the directions away from p) for which B̄(x0, |x0−p|)∩∂Ω 6= {p}. Then there exists
a point p′ ∈ ∂Ω, p′ 6= p, such that {p, p′} ⊆ B̄(x0, |x0−p|)∩∂Ω ⊆ ∂B(x0, |x0−p|).
In particular, |p − x0| = |p′ − x0| = δ(x0) contradicting (a). This shows that
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Sp ⊆ π−1(p). Conversely, if x ∈ π−1(p), x 6= p, then [x, p] ⊆ π−1(p) and it is easy
to see that x − p is normal to ∂Ω. Since |x − p| < ε0 it follows that x ∈ Sp. In
conclusion we have

Nε0(∂Ω) = π−1(∂Ω) =
⋃
p∈∂Ω

π−1(p) =
⋃
p∈∂Ω

Sp.

(d) Let us first notice that |ρ(x) − ρ(y)| ≤ |x − y| for x, y ∈ Nε0(∂Ω). This
implies that | gradρ(x)| ≤ 1 for x ∈ Nε0(∂Ω).

Choose a point p ∈ ∂Ω and let x = p + t0n(p) for some fixed t0 ∈ (−ε0, ε0).
Consider the points xt = p + (t0 + t)n(p) for t > 0 small enough such that
xt ∈ Nε0(∂Ω). Then xt, x ∈ π−1(p) by (c) and therefore

ρ(xt)− ρ(x) =
∣∣|xt − p| − |x− p|∣∣ = t.

Using Taylor’s expansion we have

t = ρ(xt)− ρ(x) = (gradρ(x) · n(p))t+ o(t).

Since | gradρ(x)| ≤ 1 this implies that gradρ(x) = n(p).
(e) Let x ∈ Nε0(∂Ω), and p = π(x). Then (c) implies that x = p + ρ(x)n(p).

On the other hand, n(p) = gradρ(x) by (d) and thus

π(x) = p = x− ρ(x) gradρ(x). (2.1)

From this expression for π and (b) it follows that π is a C1-map. �

In what follows we shall consider bounded domains Ω ⊆ Cn, n ≥ 2, with
C2-smooth boundary. If we identify Cn with R2n so that (Z1, . . . , Zn) ∈ Cn

corresponds to (ReZ1, ImZ1, . . . ,ReZn, ImZn) ∈ R2n, then we can use the results
of the previous lemma for these domains. Note that under the above identification
n := 2∂ρ corresponds to gradρ. So n(p) is the outer unit normal to ∂Ω for p ∈ ∂Ω.

Recall that for any p ∈ ∂Ω vectors Z ∈ Cn can be written as Z = ZH + ZN
in a unique way such that ZH ∈ Hp∂Ω and ZN ∈ Np∂Ω. In the following lemma
we shall relate curves γ : [0, 1] → Nε0(∂Ω) ∩ Ω and their projections α = π ◦ γ,
where ε0 > 0 is a sufficiently small constant. For the tangent vectors γ̇(t) and α̇(t)
of these curves we will consider the splitting into horizontal and normal parts at
α(t) = π ◦ γ(t) and write this as γ̇(t) = γ̇H(t) + γ̇N (t) and α̇(t) = α̇H(t) + α̇N (t).

Lemma 2.2. Let Ω ⊆ Cn, n ≥ 2, be a bounded domain with C2-smooth boundary.
Then there exist constants ε0 > 0 and C > 0 with the following property. If
γ : [0, 1]→ Nε0(∂Ω) ∩ Ω is a C1-smooth curve and α = π ◦ γ its projection to the
boundary, then the following estimates hold for t ∈ [0, 1]

(2.2) |γ̇H(t)− α̇H(t)| ≤ Cδ(γ(t))|γ̇(t)|,
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(2.3) |γ̇H(t)− α̇H(t)| ≤ Cδ(γ(t))|α̇(t)|,
(2.4) |α̇N (t)| ≤ |γ̇N (t)|+ Cδ(γ(t))|γ̇(t)|,
(2.5) |γ̇N (t)| ≤ |α̇N (t)|+ Cδ0|α̇(t)| if δ(γ(t)) ≡ δ0.

Proof. Choose ε0 > 0 sufficiently small so that we can apply the statements
in Lemma 2.1. In addition, we may assume that all derivatives of the defining
function ρ up to second order are uniformly bounded on Nε0(∂Ω). By Lemma 2.1
(e), the curve α is C1-smooth, and so α̇ is defined. From (2.1) we get the following
relation

α(t)− γ(t) = −ρ(γ(t))n(γ(t)) = −ρ(γ(t))n(α(t)), (2.6)

where n(x) = 2∂ρ(x). Note that n(x) = n(π(x)) and n(x)H = 0 at π(x) for
x ∈ Nε0(∂Ω) (cf. Lemma 2.1 (c) and (d)).

Differentiating the equalities in (2.6) we obtain

α̇(t)− γ̇(t) = ρ(γ(t))
[
M1(t)γ̇(t) +M2(t)γ̇(t)

]
+ Re

〈
a(t), γ̇(t)

〉
n(γ(t)), (2.7)

and

α̇(t)− γ̇(t) = ρ(γ(t))
[
M3(t)α̇(t) +M4(t)α̇(t)

]
+ Re

〈
a(t), γ̇(t)

〉
n(α(t)), (2.8)

where M1, . . . ,M4 : [0, 1]→Mn(C) are complex (n× n)-matrix valued functions,
and a : [0, 1]→ Cn is a complex vector valued function. The components of these
functions can be expressed by the first and second derivatives of ρ evaluated at
points in Nε0(∂Ω). Thus these components are uniformly bounded independently
of γ. Taking the projection onto the horizontal subspace (at α(t)) in (2.7), relation
(2.2) follows. Similarly, (2.3) follows from (2.8). To prove (2.4) observe first that
α(t) ⊆ ∂Ω for t ∈ [0, 1] gives Re

〈
α̇(t), n(α(t))

〉
= 0. Thus

|α̇N (t)| =
∣∣Im〈α̇(t), n(α(t))

〉∣∣. (2.9)

Taking the hermitian product with n(γ(t)) in (2.7) and using (2.9), we get (2.4).
To show (2.5) we differentiate (2.6) under the condition ρ(γ(t)) = −δ0. This gives

α̇(t)− γ̇(t) ≡ −δ0
[
M3(t)α̇(t) +M4(t)α̇(t)

]
,

which implies (2.5) by taking again the normal projection. �

Let us mention that if δ(γ(t)) ≡ δ0 and α is a horizontal curve, i.e., α̇N ≡ 0,
then (2.5) takes the form

|γ̇N (t)| ≤ Cδ0|α̇(t)|. (2.10)

An essential ingredient in the proof of Theorem 1.1 is that the Carnot-Cara
théodory metric on ∂Ω can be approximated by a class of Riemannian metrics.
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This is stated as the Approximation Lemma (Lemma 3.2) in the next section. The
following lemma will facilitate the use of the Approximation Lemma in the proof
of Theorem 1.1.

Lemma 2.3. Let Ω ⊆ Cn, n ≥ 2, be a bounded strictly pseudoconvex domain
with C2-smooth boundary. Then there exists ε0 > 0 and C > 0 with the following
property. If γ : [0, 1]→ Nε0(∂Ω)∩Ω is C1-smooth and α = π◦γ, then for t ∈ [0, 1]
we have

Lρ
(
π(γ(t)); γ̇H(t)

)
δ(γ(t))

+
|γ̇N (t)|2
4δ(γ(t))2 ≥ C

[
Lρ
(
α(t); α̇H(t)

)
δ(γ(t))

+
|α̇N (t)|2
δ(γ(t))2

]
. (2.11)

Proof. In the course of the proof we will see how to choose the number ε0 > 0,
but we may assume that it is small enough so that we can use lemmas 2.1 and 2.2.
From |Z|2 ≥ 1

2 |W |2− |Z −W |2 for Z,W ∈ Cn and inequalities (2.2) and (2.4) we
obtain

|γ̇H(t)|2 ≥ 1
2 |α̇H(t)|2 − C1δ(γ(t))2|γ̇(t)|2, (2.12)

and
|γ̇N (t)|2 ≥ 1

2 |α̇N (t)|2 − C2δ(γ(t))2|γ̇(t)|2. (2.13)

Here and in the following C1, C2, . . . are positive constants independent of γ and
t. Let us denote the left hand side of (2.11) by A. Then the relations (1.1), (2.12),
and (2.13) imply

A/2 ≥ C3

(
|α̇H(t)|2
δ(γ(t))

+
|α̇N (t)|2
δ(γ(t))2

)
− C4|γ̇(t)|2.

If ε0 > 0 is small enough we will always have A/2 ≥ C4|γ̇(t)|2 by (1.1). Thus

A ≥ C3

(
|α̇H(t)|2
δ(γ(t))

+
|α̇N (t)|2
δ(γ(t))2

)
≥ C5

(
Lρ
(
α(t); α̇H(t)

)
δ(γ(t))

+
|α̇N (t)|2
δ(γ(t))2

)
. �

3. The Carnot-Carathéodory metric

In this section we shall deal with the horizontal or Carnot-Carathéodory metric
dH on ∂Ω defined in the introduction. A recent account on the subject can be
found in [Be] and [G2].
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In the present setting of strictly pseudoconvex boundaries the definition of this
metric requires additional explanation. Let us briefly indicate why two points
can be connected by a horizontal curve. We notice first that ∂Ω is connected.
Indeed, the strict pseudoconvexity of Ω implies that Hn−1

c (Ω) = {0} which in
turn implies that ∂Ω is connected if n ≥ 2. Furthermore, it also follows from the
strict pseudoconvexity of Ω that H∂Ω is a contact bundle. Therefore, vector fields
in H∂Ω generate the whole tangent bundle T∂Ω. A theorem due to Chow (cf.
[Be, p. 15]) shows that any two points in ∂Ω can be connected by a C1-smooth
horizontal curve. Thus dH is well-defined and bounded. In our setting the size of
balls can be described quite explicitly by the following proposition.

Proposition 3.1. (Box-Ball estimate) Suppose Ω ⊆ Cn, n ≥ 2, is a bounded
strictly pseudoconvex domain with C2-smooth boundary. Then there exists ε0 > 0
and C ≥ 1 such that for all 0 < ε ≤ ε0 and p ∈ ∂Ω

Box(p, ε/C) ⊆ BH(p, ε) ⊆ Box(p, Cε),

where BH(p, ε) = {q ∈ ∂Ω : dH(p, q) < ε} and Box(p, ε) = {p + Z ∈ ∂Ω : |ZH | <
ε, |ZN | < ε2}. Here the decomposition Z = ZH + ZN is taken at p.

We will not give the proof of this proposition, because its content is well-
known. Indeed, much more general statements are true (cf. [NSW], [Be], [G2]).
For the case of the Heisenberg group a more direct proof is given in Sect. 3 and
Sect. 4 of [Ko]. Since boundaries of strictly pseudoconvex domains can be locally
approximated by the Heisenberg group in a quantitative sense (Sect. 14 of [FS]),
our present statement can be derived from this.

It follows from Proposition 3.1 that there exist constants C1, C2 > 0 such that

C1|p− q| ≤ dH(p, q) ≤ C2|p− q|1/2 for p, q ∈ ∂Ω. (3.1)

In particular, the topology on ∂Ω induced by the Carnot-Carathéodory metric
agrees with the topology induced by the Euclidean metric.

The essential ingredient used in the proof of Theorem 1.1 is that the Carnot-
Carathéodory metric can be approximated by a class of Riemannian metrics Gκ
on ∂Ω. To be specific, fix κ > 0, and for p ∈ ∂Ω, Z ∈ Tp∂Ω let

G2
κ(p;Z) = Lρ(p;ZH) + κ2|ZN |2.

The distance function dκ associated with this Riemannian metric approximates
the Carnot-Carathéodory metric dH in the following quantitative sense.

Lemma 3.2. (Approximation Lemma) There is a constant C > 0 such that for
all κ > 0 the following holds. If p, q ∈ ∂Ω satisfy dH(p, q) ≥ 1/κ, then

1
C
dκ(p, q) ≤ dH(p, q) ≤ Cdκ(p, q).
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Similar statements can be found in [G2]. However, we will give a complete
proof based on Proposition 3.1, since the Approximation Lemma is crucial in the
proof of Theorem 1.1.

Proof. Let κ > 0 be given and consider the Riemannian metricGκ as defined above.
Let p, q ∈ ∂Ω. For any piecewise C1-smooth horizontal curve α in ∂Ω connecting
p and q we have α̇N ≡ 0 a.e. and therefore Gκ

(
α(t); α̇(t)

)2 = Lρ
(
α(t); α̇(t)

)
for

a.e. t. It follows that Gκ-length(α) = Lρ-length(α) for horizontal curves α. For
the value of dκ(p, q) we minimize the Gκ-length over all, not just the horizontal
curves joining p and q. Hence

dκ(p, q) ≤ dH(p, q). (3.2)

In order to obtain a lower bound for dκ(p, q) we will prove that there exist constants
κ0 > 0 and C > 0 such that we have the implication

dH(a, b) ≥ 1/κ⇒ dκ(a, b) ≥ C/κ whenever a, b ∈ ∂Ω, κ ≥ κ0. (3.3)

Let us suppose that (3.3) holds and let p, q ∈ ∂Ω with dH(p, q) ≥ 1/κ be given.
If κ ≥ κ0, let α : [0, 1] → ∂Ω be a piecewise C1-smooth curve with α(0) = p

and α(1) = q. There exist N ∈ N and 0 = t0 < t1 < · · · < tN = 1 such that for
xj = α(tj) ∈ ∂Ω we have

1/κ ≤ dH(xj−1, xj) ≤ 2/κ, j = 1, . . . , N.

Then (3.3) applied to xj−1 and xj leads to

Gκ-length(α) =
N∑
j=1

Gκ-length(α|[tj−1, tj ]) ≥
N∑
j=1

dκ(xj−1, xj)

≥ CN/κ ≥ C

2

N∑
j=1

dH(xj−1, xj) ≥
C

2
dH(p, q).

Taking the infimum over all admissible curves α we obtain

dκ(p, q) ≥ C

2
dH(p, q). (3.4a)

If 0 < κ < κ0, let κ1 := dH -diam(∂Ω)−1 > 0. Note that 1/κ ≤ dH(p, q) ≤
dH -diam(∂Ω) = 1/κ1 and so κ ≥ κ1. Since Gκ ≥ (κ/κ0)2Gκ0 we have dκ ≥
(κ/κ0)dκ0 . Hence (3.3) and the definition of κ1 give

dκ(p, q) ≥ (κ1/κ0)dκ0(p, q) ≥ C(κ1/κ
2
0) ≥ C(κ1/κ0)2dH(p, q). (3.4b)
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The inequalities (3.4a) and (3.4b) are the lower estimates we want.
It remains to prove implication (3.3). In the following C1, C2, . . . will be con-

stants only depending on Ω, but not on κ in particular. By the strict pseudocon-
vexity of Ω (cf. (1.1)) there exists constants C1, C2 > 0 such that

C1|Z|2 ≤ Lρ(p;Z) ≤ C2|Z|2 for p ∈ ∂Ω, Z ∈ Hp∂Ω.

Let κ0 = max{
√

2C1, 1/ε0} where ε0 is the constant in Proposition 3.1.
Suppose κ ≥ κ0 and let a, b ∈ ∂Ω with dH(a, b) ≥ 1/κ be given. Since 1/κ ≤

ε0, Proposition 3.1 implies that for some 0 < C3 ≤ 1 we have Box(a,C3/κ) ⊆
BH(a, 1/κ), and so

b 6∈ Box(a,C3/κ). (3.5)

Since ∂Ω is C2-smooth, the normal vector n = 2∂̄ρ is C1-smooth, and hence
Lipschitz on ∂Ω, i.e., there exists C4 > 0 such that

|n(x) − n(y)| ≤ C4|x− y| for x, y ∈ ∂Ω. (3.6)

Now let α : [0, 1]→ ∂Ω be any piecewise C1-smooth curve connecting a and b, and
let A = length(α). Since α̇(t) ∈ Tα(t)∂Ω we have Re

〈
α̇(t), n(α(t))

〉
= 0 for a.e.

t ∈ [0, 1]. Therefore, (3.6) implies∣∣Re
〈
α̇(t), n(a)

〉∣∣ ≤ C4A|α̇(t)|, for a.e. t ∈ [0, 1]. (3.7)

Integrating (3.7) we obtain ∣∣Re
〈
b− a, n(a)

〉∣∣ ≤ C4A
2. (3.8)

Furthermore, using |Z|2 ≥ 1
2 |W |2 − |Z −W |2 for Z,W ∈ C and (3.6) we get

|α̇N (t)|2 =
∣∣〈α̇(t), n(α(t))

〉∣∣2 =
∣∣ Im 〈α̇(t), n(α(t))

〉∣∣2
≥ 1

2
∣∣ Im 〈α̇(t), n(a)

〉∣∣2 − C2
4A

2|α̇(t)|2 for a.e. t ∈ [0, 1].
(3.9)

Now we consider two cases according to whether A ≥ C5/κ or not, where C5 =

min{
√

2C1
C4

, C3
2
√
C4
, C3}.

Recall that κ ≥ κ0 ≥
√

2C1. If A ≥ C5/κ, then

Gκ-length(α) =
∫ 1

0

(
Lρ
(
α(t); α̇H(t)

)
+ κ2∣∣α̇N (t)

∣∣2)1/2 dt
≥
∫ 1

0

(
C1
∣∣α̇H(t)

∣∣2 + κ2∣∣α̇N (t)
∣∣2)1/2 dt

≥
√
C1 length(α) =

√
C1A ≥ (

√
C1C5)/κ.

(3.10)
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If A < C5/κ, then because of C5 ≤
√

2C1/C4 we have that C1 − κ2

2 C
2
4A

2 ≥ 0,
and so by (3.9)

Gκ-length(α) ≥
∫ 1

0

(
C1
∣∣α̇H(t)

∣∣2 + κ2∣∣α̇N (t)
∣∣2)1/2 dt

≥
∫ 1

0

(
C1
∣∣α̇(t)

∣∣2 +
κ2

2

∣∣α̇N (t)
∣∣2)1/2 dt

≥ κ

2

∫ 1

0

∣∣ Im 〈α̇(t), n(a)
〉∣∣ dt ≥ κ

2

∣∣ Im 〈b− a, n(a)
〉∣∣.

(3.11)

Using (3.8) and C5 ≤ C3
2
√
C4

we get

∣∣ Im 〈b− a, n(a)
〉∣∣ ≥ ∣∣〈b− a, n(a)

〉∣∣− ∣∣Re
〈
b− a, n(a)

〉∣∣
≥ |(b− a)N | − C4A

2 ≥ |(b− a)N | −
C2

3
4κ2 ,

(3.12)

where (b− a)N is taken at a, i.e., stands for the projection of (b− a) onto Na∂Ω.
Relations (3.11) and (3.12) give

Gκ-length(α) ≥ κ

2
|(b− a)N | −

C2
3

8κ
. (3.13)

On the other hand, C5 ≤ C3 implies

|b− a| ≤ length(α) = A < C3/κ.

In view of (3.5) this shows that we must have |(b− a)N | ≥ C2
3/κ

2. Consequently,
by (3.13)

Gκ-length(α) ≥ 3C2
3

8κ
. (3.14)

Relations (3.10) and (3.14) show that Gκ-length(α) ≥ C/κ for a uniform C > 0.
Taking the infimum over α we get (3.3). �

4. Proof of Theorem 1.1 and Proposition 1.2

Let us fix a small constant ε0 > 0. Define K = {x ∈ Ω : δ(x) ≥ ε0} and
N = {x ∈ Ω : δ(x) < ε0} = Nε0(∂Ω) ∩ Ω. Then K is compact, N is open,
N ∩K = ∅, and N ∪K = Ω. We assume that ε0 is so small that N ∩ Ω lies in a
sufficiently small neighborhood of the boundary for which we can use the results
of lemmas 2.1–2.3. Moreover, we assume that for x ∈ N ∩Ω and Z ∈ Cn our given
differential metric F satisfies (1.3) for some constants s > 0, C1 > 0 and C2 ≥ 1
and that 1− C1δ

s(x) ≥ 1/2.
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Recall that dH is the horizontal metric on ∂Ω, h(x) = δ(x)1/2 is the height of
a point x ∈ Ω, and for p ∈ ∂Ω the vector n(p) = 2∂̄ρ(p) is the outer normal to ∂Ω
at p. In what follows we will denote by C positive constants only depending on
ε0 and the various other constants that are associated with Ω and F . The actual
value of C does not matter and may change even within the same line. Given our
assumptions and our notation, we prove a lemma that we will use repeatedly in
the following.

Lemma 4.1. Suppose γ : [0, 1] → N ∩ Ω is a piecewise C1-smooth curve with
endpoints u = γ(0) and v = γ(1). Then

F - length(γ) ≥
∣∣∣∣log

(
h(v)
h(u)

)∣∣∣∣− C.
If γ : [0, 1]→ N ∩ Ω, t 7→ u+ t(v − u), is a straight line segment contained in

some fiber π−1(p), p ∈ ∂Ω, then

F - length(γ) =
∣∣∣∣log

(
h(v)
h(u)

)∣∣∣∣± C.
Here and in the following we write A = B ± C if |A−B| ≤ C.

Proof. By Lemma 2.1 we have for those t0 ∈ [0, 1] for which γ̇(t0) exists∣∣∣∣ ddth(γ(t))
∣∣∣∣
t=t0

=
1

2h(γ(t0))

∣∣∣∣ ddtδ(γ(t))
∣∣∣∣
t=t0

=

∣∣Re
〈
∂̄δ(γ(t0)), γ̇(t0)

〉∣∣
h(γ(t0))

=

∣∣Re
〈
n(π(γ(t0))), γ̇(t0)

〉∣∣
2h(γ(t0))

≤ |γ̇N (t0)|
2h(γ(t0))

.

By (1.3) this implies that

F -length(γ) ≥
∫ 1

0
(1− C1h(γ(t))2s)

|γ̇N (t)|
2h2(γ(t))

dt

≥
∫ 1

0

∣∣d( log(h(γ(t))− C1
2s h(γ(t))2s)∣∣

≥
∣∣∣∣[log(h(γ(t))− C1

2s h(γ(t))2s
]1

0

∣∣∣∣
≥
∣∣∣∣log

(
h(v)
h(u)

)∣∣∣∣− C.
If γ ⊆ N ∩π−1(p) is a straight line segment, it follows from Lemma 2.1 that γ̇(t) ≡
±|u− v|n(p) and n(π(γ(t))) = n(p) for t ∈ [0, 1]. Moreover, |γ̇N (t)| = |u− v|, and
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γ̇H(t) ≡ 0. Using this and the upper estimate for F we obtain by a computation
similar to the previous one

F - length(γ) ≤
∣∣∣∣log

(
h(v)
h(u)

)∣∣∣∣+ C.

�

Proof of Theorem 1.1. We need to show that there exists a constant C > 0 such
that

g(x, y)− C ≤ dF (x, y) ≤ g(x, y) + C for x, y ∈ Ω. (4.1)

In order to prove (4.1) we shall consider various cases depending on the relative
position of x and y. Some of the cases lead to well-known estimates (see e.g.
Chapter X of [JP]); the estimate that comes closest to our result is Proposition
2.5 in [FR]. We shall nevertheless go through the proof in the easier cases as well,
since we need the intermediate steps to handle the more difficult ones. For the
upper bounds we need to guess the curves that are “almost geodesic”, i.e., give
the value of the distance function up to additive constants, and integrate along
such curves. Lower bounds are harder to obtain—we have to show that the curves
guessed before are really the ones essentially minimizing the length in our metric.

Now let x, y ∈ Ω be given. Denote by p = π(x) and q = π(y) the projections
of these points to the boundary.

Case 1: x, y ∈ K.
In this case 0 ≤ dF (x, y) ≤ C and 0 ≤ g(x, y) ≤ C, so (4.1) is trivially true.

Case 2: x ∈ N , y ∈ K, or x ∈ K, y ∈ N .
We may assume x ∈ N , y ∈ K. In this case h(x) ∨ h(y) = h(y) ≥ √ε0. Hence

g(x, y) = log(1/h(x))± C. (4.2)

To get an upper bound for dF (x, y) let x′ = p − ε0n(p). By Lemma 2.1, we
have x′ ∈ K, π(x′) = p and x ∈ (x′, p). Consider the segment γ(t) = x+ t(x′−x),
t ∈ [0, 1]. Then Lemma 4.1 shows that

dF (x, x′) = log(1/h(x))± C.

Since dF (x, y) ≤ dF (x, x′) + dF (x′, y), and as x′, y ∈ K we have dF (x′, y) ≤ C,
this gives

dF (x, y) ≤ log(1/h(x)) + C.

Together with (4.2) we get the right half of (4.1).
To obtain a lower bound for dF (x, y) let γ be an arbitrary piecewise C1-smooth

curve in Ω joining x and y. As we travel along γ starting at x, there is a first point
y′ on the curve with y′ ∈ K. Then h(y′) =

√
ε0. Let β be the subcurve of γ with

endpoints x and y′. Then β ⊆ N and Lemma 4.1 shows

F -length(γ) ≥ F -length(β) ≥ log (1/h(x))− C.
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Taking the infimum over all possible curves γ in this inequality, we see that

dF (x, y) ≥ log(1/h(x))− C.

By (4.2) the left half of (4.1) follows.

Case 3: x, y ∈ N , h(x) ∨ h(y) ≥ dH(p, q).
We may assume h(y) ≥ h(x). Then

g(x, y) = log
(
h(y)
h(x)

)
± C. (4.3)

As in the second part of the previous case Lemma 4.1 shows that

dF (x, y) ≥ log
(
h(y)
h(x)

)
− C.

To get an upper bound for dF (x, y) let x′ be the unique point in π−1(p)∩N with
the same height as y, i.e., x′ = p − δ(y)n(p). Applying Lemma 4.1 to the line
segment [x, x′] it follows that

dF (x, x′) ≤ log
(
h(x′)
h(x)

)
+ C = log

(
h(y)
h(x)

)
+ C. (4.4)

It remains to find an upper bound for dF (x′, y). By definition of dH(p, q) there
exists a piecewise C1-smooth horizontal curve α : [0, 1] → ∂Ω with α(0) = p,
α(1) = q, and Lρ-length(α) ≤ 2dH(p, q). Let us “lift” α to level δ(y) by defining
γ : [0, 1]→ Ω to be

γ(t) = α(t) − δ(y)n(α(t)), t ∈ [0, 1].

Note that γ is piecewise C1-smooth, γ(0) = x′, γ(1) = y, and δ(γ(t)) = δ(y) for
t ∈ [0, 1]. Using (1.1) and (1.3) we can estimate for a.e. t ∈ [0, 1]

F
(
γ(t); γ̇(t)

)2 ≤ C( |γ̇H(t)|2
δ(y)

+
|γ̇N (t)|2
4δ(y)2

)
.

Next we apply the result of Lemma 2.2. Namely, we use (1.1), (2.3), (2.10), and
the fact that α is a horizontal curve to obtain for a.e. t

F
(
γ(t); γ̇(t)

)2 ≤ C |α̇(t)|2
δ(y)

= C
|α̇H(t)|2
δ(y)

≤ CLρ(α(t); α̇H(t))
δ(y)

.

By integration this gives

dF (x′, y) ≤ F -length(γ) ≤ C

h(y)
Lρ-length(α) ≤ CdH(p, q)

h(y)
.
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Recall that dH(p, q) ≤ h(y), and so dF (x′, y) ≤ C follows. Using (4.4) we obtain

dF (x, y) ≤ dF (x, x′) + dF (x′, y) ≤ log
(
h(y)
h(x)

)
+ C

concluding the proof in this case.

Case 4: x, y ∈ N , h(x) ∨ h(y) < dH(p, q).
We have

g(x, y) = 2 log
(

dH(p, q)√
h(x)h(y)

)
± C. (4.5)

Introduce h0 :=
√
ε0 ∧ dH(p, q) where a ∧ b = min{a, b}, and let x′ = p− h2

0n(p),
y′ = q − h2

0n(q). Note that CdH(p, q) ≤ h0 ≤ dH(p, q). As in Case 2 and Case 3
it follows that

dF (x, x′) ≤ log
(
h(x′)
h(x)

)
+ C = log

(
h0
h(x)

)
+ C,

dF (y, y′) ≤ log
(
h(y′)
h(y)

)
+ C = log

(
h0
h(y)

)
+ C.

Furthermore, as in Case 3 it can be seen that dF (x′, y′) ≤ C. Therefore,

dF (x, y) ≤ 2 log
(

h0√
h(x)h(y)

)
+ C.

From h0 ≤ dH(p, q) and (4.5) the second inequality in (4.1) follows.
Before we go any further let us mention that we have in fact guessed an “almost”

geodesic connecting x and y. This is constructed as the union γx,x′ ∪ γx′,y′ ∪ γy′,y.
Here γx,x′ is a “vertical” segment going up from x to x′, i.e., to height level h0 which
is determined by dH(p, q). Similarly, the curve γy′,y is a vertical segment joining y
and y′. The curve γx′,y′ is a “lift” to level h0 of a horizontal curve which is almost a
geodesic. The more difficult task is to get a lower bound for dF (x, y) in the present
case. This amounts to showing that our guess above is indeed correct. We have
to consider an arbitrary piecewise C1-smooth curve γ : [0, 1] → Ω with γ(0) = x,
γ(1) = y and prove the right lower bound for its F -length. Given such a curve γ
defineH := maxz∈γ h(z). There exists t0 ∈ [0, 1] such thatH = h(γ(t0)). Consider
the two subcurves γ1 = γ|[0, t0] and γ2 = γ|[t0, 1]. There are two possibilities.

If H ≥ h0 we obtain from Lemma 4.1 as in Case 2 that

F -length(γ1) ≥ log
(
h0
h(x)

)
− C,

and

F -length(γ2) ≥ log
(
h0
h(y)

)
− C.
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Consequently, since h0 ≥ CdH(p, q),

F -length(γ) ≥ 2 log
(

dH(p, q)√
h(x)h(y)

)
− C. (4.6)

The other possibility is when H < h0. We then have γ1 ∪ γ2 = γ ⊆ N . Let
α = π ◦ γ be the projection of γ to the boundary. Since h(x) ≤ H, there exists
k ∈ N, k ≥ 1, such that 2−kH < h(x) ≤ 2−(k−1)H. Consider the curve γ1 and
define 0 = s0 ≤ s1 < · · · < sk ≤ t0 as follows. Let s0 = 0 and sj = min{s ∈
[0, t0] : h(γ(s)) = 2−(k−j)H} for j = 1, . . . , k. Put xj = γ(sj) and pj = π(xj) for
j = 0, . . . , k. Note that 1 ≤ h(xj)/h(xj−1) ≤ 2 for j = 1, . . . , k.

We shall consider two alternatives. In the first case we assume that there exists
an index l ∈ {1, . . . , k} such that

dH(pl−1, pl) > 1
82−(k−l)dH(p, q).

Define the constant κ > 0 such that

κ−1 = 1
8
[
2−(k−l)dH(p, q)

]
< dH(pl−1, pl).

Then for t ∈ [sl−1, sl] we have

h(γ(t)) ≤ 2−(k−l)H ≤ 2−(k−l)dH(p, q) ≤ 8/κ.

Since 1− C1δ(x)s ≥ 1/2 for x ∈ N , we obtain from (1.3) and Lemma 2.3

F -length(γ|[sl−1, sl]) ≥ C
∫ sl

sl−1

1
h(γ(t))

[
Lρ
(
α(t); α̇H(t)

)
+
|α̇N (t)|2
h(γ(t))2

]1/2
dt

≥ C 2k−l

H

∫ sl

sl−1

(
Lρ(α(t); α̇H(t)) + κ2|α̇N (t)|2

)1/2
dt

≥ C 2k−l

H
dκ(pl−1, pl).

Here dκ is the metric from the Approximation Lemma. An application of this
lemma gives

F -length(γ|[sl−1, sl]) ≥ C
dH(p, q)
H

. (4.7)

Let t1 := sk ≤ t0. As a consequence of Lemma 4.1 and (4.7) we have

F -length(γ|[0, t1]) = F -length(γ|[0, sl−1]) + F -length(γ|[sl−1, sl])
+ F -length(γ|[sl, sk])

≥ log
(
h(xl−1)
h(x0)

)
+C

dH(p, q)
H

+ log
(
h(xk)
h(xl)

)
−C

= log
(
h(xk)
h(x0)

)
+C

dH(p, q)
H

− C

= log
(

H

h(x)

)
+ C

dH(p, q)
H

− C.
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The second alternative is that

dH(pj−1, pj) ≤ 1
82−(k−j)dH(p, q)

for all j = 1, . . . , k. This implies

dH(p, π(γ(t1))) ≤
k∑
j=1

dH(pj−1, pj) ≤ 1
4dH(p, q).

On the other hand, by Lemma 4.1 again we get as before that

F -length(γ|[0, t1]) ≥ log
(

H

h(x)

)
− C.

Summarizing this discussion we obtain the following two possibilities

F -length(γ|[0, t1]) ≥ log
(

H

h(x)

)
+ C

dH(p, q)
H

− C, (A1)

or

F -length(γ|[0, t1]) ≥ log
(

H

h(x)

)
− C, and dH(p, π(γ(t1))) ≤ 1

4dH(p, q), (A2)

where t1 ∈ [0, t0].
Applying similar considerations to the curve γ2 instead of γ1 we find t2 ∈ [t0, 1]

such that one of the following alternatives holds

F -length(γ|[t2, 1]) ≥ log
(

H

h(y)

)
+ C

dH(p, q)
H

− C, (B1)

or

F -length(γ|[t2, 1]) ≥ log
(

H

h(y)

)
− C, and dH(q, π(γ(t2))) ≤ 1

4dH(p, q). (B2)

Let us suppose that (A2) and (B2) hold simultaneously. Then

dH(π(γ(t1)), π(γ(t2))) ≥ dH(p, q)− dH(p, π(γ(t1)))− dH(q, π(γ(t2))) ≥ 1
2dH(p, q).

Again we can apply the Approximation Lemma (analogous to the case l = k above)
to conclude that

F -length(γ|[t1, t2]) ≥ CdH(p, q)
H

.
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Consequently,

F -length(γ) = F -length(γ|[0, t1]) + F -length(γ|[t1, t2]) + F -length(γ|[t2, 1])

≥ 2 log
(

H√
h(x)h(y)

)
+ C

dH(p, q)
H

− C.

(4.8)
This inequality (with an appropriate change of the constants C if necessary) is also
true if (A1) and (B1) or (A1) and (B2), or (A2) and (B1) hold simultaneously. In
other words, (4.8) is true in any case. Elementary calculus shows that the right
hand side expression of (4.8) considered as a function of H has a minimum if H
is equal to CdH(p, q). This gives the lower bound

F -length(γ) ≥ 2 log
(

dH(p, q)√
h(x)h(y)

)
− C. (4.9)

If we take the infimum over all admissible curves γ, then (4.6), (4.9) and (4.5)
show that dF (x, y) ≥ g(x, y)− C.

We have exhausted all the possibilities for x and y, so (4.1) holds and the proof
is complete. �

As we pointed out in the introduction, Proposition 1.2 can be obtained by a
slight modification of the argument in [M3]. Therefore, we will note repeat all the
details, but just indicate the necessary adjustments.

Sketch of the proof of Proposition 1.2. We start from the following localization
statement that relates the Kobayashi metric KΩ on Ω with the Kobayashi metric
KΩ∩B(π(x),r) on the intersection of Ω with a ball centered at a boundary point:
There exist constants ε1 > 0, r > 0, and C > 0 such that for all x ∈ Ω with
δ(x) < ε1 and all Z ∈ Cn we have

e−Cδ(x)KΩ∩B(π(x),r)(x,Z) ≤ KΩ(x,Z) ≤ KΩ∩B(π(x),r)(x,Z). (4.10)

This follows from [FR] as indicated on p. 333 of [M3]. By (4.10) it is enough to
estimate the Kobayashi metric of the local domain Ω ∩ B(π(x), r). To do this
we apply a biholomorphism Ψ: Ω ∩ B(π(x), r) → Cn with Ψ(x) = 0 as given by
formula (2.10) on p. 334 of [M3]. The next essential step in the argument of [M3]
is to show that the image Ψ(Ω ∩B(π(x), r)) is trapped between the two balls

B(0, e−Cδ
1/2(x)) ⊆ Ψ(Ω ∩B(π(x), r)) ⊆ B(0, eCδ

1/2(x)), (4.11)

for some uniform constant C = C(Ω). The proof of (4.11) uses that the boundary
is C3-smooth and there seems to be no way to get this estimate with just the
C2-smooth boundary assumption. The appropriate modification is to show that



524 Z. M. Balogh and M. Bonk CMH

the image Ψ(Ω ∩ B(π(x), r)) is squeezed between two complex ellipsoids. More
precisely let us assume that Hπ(x)∂Ω = {0}×Cn−1. Assuming the C2-smoothness
of ∂Ω one can show that

E− ⊆ Ψ(Ω ∩B(π(x), r)) ⊆ E+, (4.12)

where E± are two complex ellipsoids given by

E+ = {y ∈ Cn : e−Cδ
1/2(x)|y1|2 + e−ε(|y2|2 + . . .+ |yn|2) < 1}

and
E− = {y ∈ Cn : eCδ

1/2(x)|y1|2 + eε(|y2|2 + . . .+ |yn|2) < 1}.

The estimate (1.4) now follows from (4.12) by similar arguments as on pp. 335–336
of [M3]. �

5. Gromov hyperbolicity

In this section we will discuss some background on Gromov hyperbolic spaces (cf.
[BS], [GH], [G1]) and prove Theorem 1.4. Most of the results we need are discussed
in [BS].

A metric space X is called geodesic if any two points x, y ∈ X can be joined
by a geodesic segment. Any such geodesic segment, i.e., the image of a compact
interval I ⊆ R under an isometry into X will be denoted by [x, y]. The geodesic
space is called δ-hyperbolic if every geodesic triangle is δ-thin, i.e., for any geodesic
triangle [x, y] ∪ [y, z] ∪ [x, z] in X and any point w ∈ [x, y] we have

dist(w, [y, z] ∪ [x, z]) ≤ δ.

A definition which works in general metric spaces is as follows. For a metric
space X denote the distance between two points u and v in X by |u − v|, and
define the Gromov product of two points x, y ∈ X with respect to the basepoint
w ∈ X as (x, y)w = 1

2{|x− w|+ |y − w| − |x− y|}. Then X is called δ-hyperbolic
for δ ≥ 0 if

(x, y)w ≥ (x, z)w ∧ (z, y)w − δ for all x, y, z, w ∈ X. (5.1)

For geodesic metric spacesX the definitions are quantitatively equivalent, i.e., if X
is δ-hyperbolic according to the first definition, then X is δ′-hyperbolic according
to the second definition with δ′ = δ′(δ), and vice versa. We refer to Chapter 2 of
[GH] for a detailed discussion of this equivalence.

The first definition is perhaps more frequently used in the literature, however
we shall work with the second definition as it is better suited for our purposes.
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The concept of Gromov hyperbolicity can now be formulated. A metric space X
is called Gromov hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

A set A in a metric space X is called k-cobounded for k ≥ 0 if every point
x ∈ X has distance at most k from A. If A is k-cobounded for some k ≥ 0, then
we say that is cobounded. Similarly, we will suppress mentioning the parameters
of the notions defined below if the values of the parameters do not matter.

Definition 5.1. Let f : X → Y be a map (not necessarily continuous) between
metric spaces X and Y and let k ≥ 0, λ ≥ 1 be constants. Suppose that f(X) is
k-cobounded in Y . If in addition for all x, y ∈ X

|x− y| − k ≤ |f(x)− f(y)| ≤ |x− y|+ k, (5.2)

then f is a k-rough isometry; if

λ|x− y| − k ≤ |f(x)− f(y)| ≤ λ|x− y|+ k,

then f is a (λ, k)-rough similarity; if

(1/λ)|x− y| − k ≤ |f(x)− f(y)| ≤ λ|x− y|+ k,

then f is a (λ, k)-rough quasiisometry.

Definition 5.2. Let f : X → Y be a bijection between metric spaces, and λ ≥ 1,
α > 0 be constants. If for all x, y ∈ X

(1/λ)|x− y| ≤ |f(x)− f(y)| ≤ λ|x− y|,

then f is λ-bilipschitz; if

(1/λ)|x− y|α ≤ |f(x)− f(y)| ≤ λ|x− y|α,

then f is an (α, λ)-snowflake map.
If for all distinct points x, y, z ∈ X

|f(x)− f(z)|
|f(x)− f(y)| ≤ ηα,λ

(
|x− z|
|x− y|

)
,

then f is an (α, λ)-power quasisymmetry. Here we have used the notation

ηα,λ(t) =

{
λt1/α for 0 < t < 1,
λtα for t ≥ 1.

For a Gromov hyperbolic spaceX one can define a boundary set ∂GX as follows.
Fix a basepoint w ∈ X . A sequence (xi) in X is said to converge at infinity if
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limi,j→∞(xi, xj)w = ∞. Two sequences (xi) and (yi) converging at infinity are
called equivalent if limi→∞(xi, yi)w = ∞. These notions do not depend on the
choice of the basepoint. The boundary ∂GX is now defined as the set of equivalence
classes of sequences converging at infinity. For a, b ∈ ∂GX and w ∈ X we define

(a, b)w = sup lim inf
i→∞

(xi, yi)w ∈ (0,∞],

where the supremum is taken over all sequences (xi) and (yi) representing the
boundary points a and b, respectively. The boundary ∂GX carries a canonical
class of metrics. For any metric d in this class there exists ε > 0 and w ∈ X such
that

d(a, b) � exp(−ε(a, b)w) for a, b ∈ ∂GX. (5.3)

Here we write f � g for two functions if there exists a constant C ≥ 1 such that
(1/C)f ≤ g ≤ Cf . Any two metrics d1 and d2 in the canonical class are snowflake
equivalent, i.e., the identity map id : (∂GX, d1) → (∂GX, d2) is a snowflake map.
One can define a topology on X∪∂GX that defines a compactification of the space
X . This topology restricted to ∂GX agrees with the topology defined by the class
of canonical metrics on the boundary.

The relevance of the maps defined in Definitions 5.1 and 5.2 in the context of
Gromov hyperbolic spaces is due to the following proposition (cf. [BS], Sec. 6).

Proposition 5.3. Suppose f : X → Y is a rough quasiisometry between Gromov
hyperbolic spaces X and Y . Then f induces a power quasisymmetry f̃ : ∂GX →
∂GY . If f is a rough similarity, then f̃ is a snowflake map. If f is a rough
isometry and the boundaries ∂GX and ∂GY are equipped with metrics satisfying
an inequality as in (5.3) with the same number ε > 0, then f̃ is bilipschitz.

Note that for the validity of the first two statements it does not matter which
metrics on ∂XG and ∂GY we choose as long as they belong to the canonical class
of metrics on the boundary. The induced map f̃ is defined by assigning to each
sequence (xi) in X converging at infinity the image sequence (f(xi)). It can be
shown that f̃ is well-defined as a map from ∂GX to ∂GY .

The content of Proposition 5.3 can be summarized saying that a map f : X →
Y between Gromov hyperbolic spaces induces a map f̃ : ∂GX → ∂GY on their
boundaries so that we have the following correspondence of maps:

rough isometry −→ bilipschitz map
rough similarity −→ snowflake map

rough quasiisometry −→ power quasisymmetry

The construction of the boundary can be reversed in the following way. Suppose
(Z, d) is a bounded metric space containing more that one point, and let D(Z) > 0
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be the diameter of Z. Define Con(Z) = Z × (0, D(Z)], and for (x, s), (y, t) ∈
Con(Z) let

r((x, s), (y, t)) = 2 log
[
d(x, y) + s ∨ t√

st

]
. (5.4)

Then it can be shown (cf. [BS], Sec. 7) that r is a metric on Con(Z) such that
(Con(Z), r) is Gromov hyperbolic. If Z is complete, then the boundary ∂G Con(Z)
can be identified with Z such that the metric d is in the canonical class of snowflake
equivalent metrics on ∂G Con(Z). The expression in (5.4) has motivated our for-
mula (1.2) of g.

We can now turn to the

Proof of Theorem 1.4. The proof that (Ω, dK) is Gromov hyperbolic is very similar
to the proof of Theorem 7.2 in [BS]. For the convenience of the reader we repeat
the details.

Suppose we are given numbers rij ≥ 0 such that rij = rji and rij ≤ rik + rkj
for i, j, k ∈ {1, 2, 3, 4}. Then r12r34 ≤ 4(

¯
(r13r24) ∨ (r14r23))

¯
. To see this, we may

assume that r13 is the smallest of the quantities rij appearing on the right hand
side of this inequality. Then r12 ≤ r13 + r32 ≤ 2r23 and r34 ≤ r31 + r14 ≤ 2r14.
The inequality follows.

Now let xi, i ∈ {1, 2, 3, 4}, be four arbitrary points in Ω, and denote by pi =
π(xi) their projections to the boundary and by hi = δ(xi)1/2 their heights. Set
dij = dH(pi, pj) and rij = dij + hi ∨ hj . Then

(d1,2 + h1 ∨ h2)(d3,4 + h3 ∨ h4)
≤ 4
(
(d1,3 + h1 ∨ h3)(d2,4 + h2 ∨ h4)

)
∨
(
(d1,4 + h1 ∨ h4)(d2,3 + h2 ∨ h3)

)
.

By Corollary 1.3 this translates to

dK(x1, x2)+dK(x3, x4) ≤
(
dK(x1, x3)+dK(x2, x4)

)
∨
(
dK(x1, x4)+dK(x2, x3)

)
+C,

where C is a constant independent of the points. This inequality is equivalent to
the Gromov hyperbolicity of the space (Ω, dK).

It follows from the definition and Corollary 1.3 that a sequence (xi) in (Ω, dK)
converges at infinity if and only if the sequence (π(xi)) converges and h(xi) →
0 as i → ∞. This happens if and only if (xi) converges with respect to the
Euclidean metric to a point in ∂Ω. Moreover, two sequences converging at infinity
are equivalent if and only if their limit points on ∂Ω are the same. Each point in
∂Ω arises as a limit point of a sequence converging at infinity.

Assigning to each equivalence class of sequences in Ω converging at infinity
the unique limit point of each sequence in the class, we can identify the Gromov
boundary ∂Ω with the Euclidean boundary as sets.

Some straightforward calculation based on the definition of the Gromov product
for boundary points and Corollary 1.3 shows that for any choice of a basepoint
w ∈ Ω we have

dH(a, b) � exp(−(a, b)w) for a, b ∈ ∂Ω. (5.5)
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This shows that the Carnot-Carathéodory metric dH is in the canonical class of
snowflake equivalent metrics on ∂GΩ = ∂Ω. �

We give an example for a class of pseudoconvex domains that are not Gromov
hyperbolic with the Kobayashi metric. Our examples are of product-type Ω =
Ω1 × Ω2 ⊆ Cn1 ×Cn2 .

Proposition 5.6. Let Ω1 ⊆ Cn1, Ω2 ⊆ Cn2 , n1, n2 ≥ 2, be bounded strictly
pseudoconvex domains with C2-smooth boundary. Then the product domain Ω :=
Ω1×Ω2 ⊆ Cn1+n2 equipped with the Kobayashi distance is not Gromov hyperbolic.

Proof. Denote by d, d1 and d2 the Kobayashi distance on Ω, Ω1 and Ω2, respec-
tively. The proof is based on the following product formula (cf. [JP], p. 107)

d((x1, y1), (x2, y2)) = max{d1(x1, x2), d2(y1, y2)}. (5.6)

Let us assume that (Ω, d) is a Gromov hyperbolic space. In particular (5.1)
holds for some δ > 0. Let us introduce k := 3 + 2δ and choose two points
x1, x2 ∈ Ω1 such that d1(x1, x2) = 2k. Select a third point x3 ∈ Ω1 such that

k ≤ d1(x1, x3) ≤ d1(x3, x2) ≤ k + 1. (5.7)

Fix y1 ∈ Ω2, and consider the three points x = (x1, y1), y = (x2, y1), w =
(x3, y1) ∈ Ω. Using (5.6) and (5.7) we can see that the Gromov product (x, y)w
satisfies (x, y)w ≤ 1. Choose a fourth point z ∈ Ω of the form z = (x3, y2), where
y2 ∈ Ω2 is such that d2(y1, y2) = 2k. Using (5.6) again we see that

d(z, w) = d(z, x) = d(z, y) = 2k.

Hence for the corresponding Gromov products we obtain that

(z, x)w =
1
2
d(x,w) ≥ k

2
and (z, y)w =

1
2
d(y, w) ≥ k

2
. (5.8)

By the definition of k and since (x, y)w ≤ 1, relations (5.8) are in contradiction to
(5.1) proving the proposition. �

6. Applications and final remarks

As we pointed out in the introduction, the theory of Gromov hyperbolic spaces
gives a general framework for the theory of boundary extensions for biholomor-
phisms and proper holomorphic maps. We have seen in Proposition 5.3 that isome-
tries between Gromov hyperbolic spaces, and more general, rough quasiisometries
induce homeomorphisms on the boundaries of these spaces.
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According to Theorem 1.4 we can apply these general facts to the situation
when our metric spaces are strictly pseodoconvex domains equipped with the
Kobayashi distance. Hence we get the following result.

Corollary 6.1. Let Ω1,Ω2 ⊆ Cn, n ≥ 2, be bounded strictly pseudoconvex do-
mains with C2-smooth boundary. Let f : Ω1 → Ω2 be a continuous mapping that
is a rough quasiisometry with respect to the Kobayashi distances on the domains.
Then f has a continuous extension f̄ : Ω1 → Ω2 such that the induced boundary
map f̃ := f̄ |∂Ω1 : ∂Ω1 → ∂Ω2 is a power quasisymmetry with respect to the Carnot-
Carathéodory metrics. Moreover, if f is a rough similarity, then f̃ is a snowflake
map; if f is a rough isometry, then f̃ is bilipschitz.

In order to get the last statement one has to observe that by (5.5) a formula
of type (5.3) is valid for the Carnot-Carathéodory metrics on the boundary of the
regions with the same ε, namely ε = 1.

Since biholomorphisms are isometries of the Kobayashi metric, they induce
maps on the boundary that are bilipschitz maps in the Carnot-Carathéodory met-
rics. Corollary 6.1 is therefore a version of the celebrated boundary extension
phenomenon of biholomorphisms [Fef] in the sense of coarse geometry. For the
case of proper mappings we have the following statement.

Corollary 6.2. Let Ω1,Ω2 ⊆ Cn, n ≥ 2, be bounded strictly pseudoconvex do-
mains with C2-smooth boundary, and let f : Ω1 → Ω2 be a proper holomorphic
map. Then f extends continuously to a map f̄ : Ω1 → Ω2 with f(∂Ω1) ⊆ ∂Ω2.
The induced map f̃ := f̄ |∂Ω1 : ∂Ω1 → ∂Ω2 is a Lipschitz map if we equip the
boundaries of the domains with the Carnot-Carathéodory metrics.

It is well-known that the extension f̄ : Ω1 → Ω2 is Hölder continuous with
exponent 1/2. This follows easily from Corollary 6.2 and the relation (3.1) between
the Carnot-Carathéodory and Euclidean metric on ∂Ω. Various other regularity
results can be found in literature (cf. [Co], [Kh], [ Le], [Pi], [PK]), however it seems
not to have been observed before that f : ∂Ω1 → ∂Ω2 is Lipschitz if the boundaries
carry the Carnot-Carathéodory metrics.

Proof. Let f : Ω1 → Ω2 be a proper holomorphic mapping. For i ∈ {1, 2} let
δi(x) = dist(x, ∂Ωi), x ∈ Cn, let Ki be the Kobayashi metric on Ωi and di the
distance function associated with Ki, and let diH be the Carnot-Carathéodory
metric on ∂Ωi. Then we have for all x ∈ Ω1 and Z ∈ Cn

K2(f(x);Df(x)Z) ≤ K1(x;Z).

Here Df(x) is the tangential map of f at x. This implies that for all x, y ∈ Ω1 we
have

d2(f(x), f(y)) ≤ d1(x, y). (6.1)
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Since f is proper there exists a constant C1 ≥ 1 such that for all x ∈ Ω1 we
have

(1/C1)δ1(x) ≤ δ2(f(x)) ≤ C1δ1(x). (6.2)

From Corollary 1.3, and inequalities (6.1) and (6.2) we conclude that there exists
a constant C2 > 0 such that for all x, y ∈ Ω1

d2
H(π(f(x)), π(f(y))) ≤ C2(d1

H(π(x), π(y)) + δ1(x)1/2 ∨ δ1(y)1/2). (6.3)

From (6.2) and (6.3) it follows that whenever a sequence in Ω1 converges to some
point in ∂Ω1, then the image sequence under f converges to a point ∂Ω2. Moreover,
the image sequences of two sequences in Ω1 converging to the same boundary point
in ∂Ω1 converge to the same boundary point in ∂Ω2. It follows that f has a unique
extension (also called f) to Ω1 which is continuous which respect to the Euclidean
metric. Moreover, f(∂Ω1) ⊆ ∂Ω2 and from (6.3) we get for a, b ∈ ∂Ω1

d2
H(f(a), f(b)) ≤ C2d

1
H(a, b).

This shows that the boundary map is Lipschitz if the boundaries of the domains
are equipped with the Carnot-Carathéodory metrics. �

Let us mention that Corollary 6.2 would also follow from the stronger results
as announced in [Kh]. Nevertheless, our proof is rather elementary and illustrates
well the efficiency of Corollary 1.3. Even though we do not get the best regularity
possible in the immediate applications, our approach has the advantage that it
works for much more general mappings (cf. Corollary 6.1).

Remarks: 1. Results as in Corollary 1.3 and Theorem 1.4 hold for the (inner-)
Carathéodory distance and the Bergman distance as well, at least if we have some
higher regularity of the boundary (this was announced in [BB]). In order to apply
Theorem 1.1 we need analogs of Proposition 1.2 for the Carathéodory metric and
the Bergman metric. If the boundary is sufficiently smooth, estimates like this
occur explicitly in the literature (cf. [Ca], [Di1], [Di2], [Fu], [M1]). In the case of
a C2-smooth boundary the estimates corresponding to (1.4) are likely to be true,
but it is not so straightforward to adapt arguments given in the literature. We
hope to come back to this issue in a later paper. In [BB] we contended ourselves
with a result slightly weaker than Corollary 1.3.

2. We would like to point out briefly how earlier estimates for the Kobayashi
distance (cf. [Ab], [FR], [JP], [K]) follow as special cases of our Corollary 1.3.

When x belongs to some fixed compact set K ⊆ Ω, then

dK(x, y) =
1
2

log
1
δ(y)

± C(K).

In the case when x, y ∈ Ω are sufficiently close to two distinct points on ∂Ω,
then our formula (1.2) yields

dK(x, y) =
1
2

log
1

δ(x)
+

1
2

log
1
δ(y)

± C,
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which is another well-known result.
Let us also recall from [FR] an upper estimate for the Kobayashi distance of

two point sufficiently close to a given boundary point

dK(x, y) ≤ 1
2

log
(

1 +
|x− y|
δ(x)

)
+

1
2

log
(

1 +
|x− y|
δ(y)

)
+ C, (6.4)

which also follows from (1.2) taking into account the upper bound for the Carnot-
Carathéodory metric in (3.1).

In fact (6.4) is the result that comes closest to ours but it is just an upper
estimate. Our point is that the use of the Carnot-Carathéodory metric leads to
precise two-sided estimates.

3. Naturally, one could wonder about possible extensions of our results. We
think that the failure of Gromov hyperbolicity in Proposition 5.4 is due to the
loss of strict pseudoconvexity rather than the loss of smoothness of the boundary.
It seems likely that a smoothing procedure of the boundary of certain product
domains should lead to pseudoconvex domains with smooth boundary that are
not Gromov hyperbolic. In the positive direction, we think that to some extent we
can give up strict pseudoconvexity as we conjecture that some of our results carry
over to the class of domains of finite type, although possibly with considerable
technical complications. In particular, it is likely that one has to use the full
power of [NSW] to study the horizontal metric in this case (cf. Section 3). The
recent results of [BSY], [KY], [Ca], [DO], [DH] encourage the investigation in this
direction. It should also be possible to relax the smoothness condition. This is
indicated by the fact that there is a large class of domains in Rn with non-smooth
boundary that are Gromov hyperbolic with the quasihyperbolic metric (cf. [BHK]).
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