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1. Introduction

We start with a finite quiver Q and study degenerations of Q-modules, i.e. of finite
dimensional representations of Q over C, in the sense of orbit closure. (See [9], [3],
[7], [2]; [1], [15] for definitions.) We write U E V to express the fact that U is a
degeneration of V .1

Building on work of Abeasis and Del Fra [1] and Riedtmann [15], Bongartz [4],
[5] has given practicable necessary and sufficient conditions for degeneration when
Q is a tame quiver, i.e., when the underlying undirected graph is an extended
Dynkin diagram. There seems to be little hope for results of a similar quality in
the case of wild quivers (in spite of Zwara’s recent breakthrough [18]).

Let Q be a finite quiver, Q0 its sets of points and Q1 its set of arrows. A Q-
module T is called trivial, when T (l) = 0 for all l ∈ Q1. We call Q-modules U and
V equivalent, when there exist trivial modules S and T such that U ⊕S ' V ⊕T .
The set2 M(Q) of equivalence classes of Q-modules is a commutative semiring
with unit element, where addition and multiplication are induced by direct sum
and tensor product of modules. (The tensor product of U and V is defined by
(U⊗V )(α) := U(α)⊗V (α) for α ∈ Q0 and (U⊗V )(l) := U(l)⊗V (l) for l ∈ Q1.)3

Degeneration of modules induces a partial order in M(Q):

p E q :⇐⇒ ∃U ∈ p, V ∈ q U E V.
This partial order is compatible with addition and multiplication in the sense that
p E q implies p+ r E q+ r and p · r E q · r for any p, q, r ∈M(Q). In short: M(Q)
is an ordered commutative semiring with unit element.4
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A Q-module V is nilpotent, when there exists a positive integer ν such that
V (w) = 0 for all paths w of length at least ν. This is preserved under equivalence.
EveryQ-module is nilpotent unless Q contains directed cycles. The trivial modules
are exactly the semisimple nilpotent modules. Submodules, homomorphic images,
direct sums and tensor products of nilpotent modules are again nilpotent. In fact,
the tensor product of a nilpotent module with an arbitrary Q-module is nilpotent.
Therefore the set N (Q) of equivalence classes of nilpotent Q-modules is an ideal
of the semiring M(Q). In particular N (Q) is an ordered commutative semiring,
possibly lacking a unit element. An important additional property of N (Q) is
0 E q for all q ∈ N (Q).5

First example: Consider the Jordan quiver Q consisting of a single point α to-
gether with a single loop l. A nilpotent Q-module V consists of a finite dimensional
vector space V (α) together with a nilpotent linear endomorphimsm V (l) of V (α).
U is a degeneration of V when the closure of the conjugacy class of V (l) contains
an endomorphism isomorphic to U(l). The semiring N (Q) can be identified with
the semiring of functions f :Z>0 → Z≥0 which have finite support and are convex
in the sense that f(j − 1) + f(j + 1)− 2f(j) ≥ 0 holds for all j > 1. The isomor-
phism is given by [V ] 7→ (j 7→ R(V (l)j)), where [V ] denotes the equivalence class
of V and R denotes the rank function for linear maps between finite dimensional
vector spaces.6 By a result of Gerstenhaber [11] (see also Kraft–Procesi [14]) the
partial order E in N (Q) becomes, under the above identification, the pointwise
order of functions.

Second example: Let Q be the quiver with Q0 := {1, . . . , n} and Q1 := {(i, i+
1) : 1 ≤ i < n}, i.e., the quiver of type An with all arrows pointing in the same
direction. Then N (Q) = M(Q) may be identified with the semiring of interval
functions f : {(i, j) : 1 ≤ i < j ≤ n} → Z≥0, satisfying f(i − 1, j) ≤ f(i, j),
f(i, j+ 1) ≤ f(i, j) and f(i− 1, j) + f(i, j+ 1) ≤ f(i, j) + f(i− 1, j+ 1), whenever
these inequalities are meaningful. The isomorphism is given by [V ] 7→ ((i, j) 7→
R(V (wi,j))), where wi,j denotes the unique directed path from i to j. By a result
of Abeasis and Del Fra [1] the partial order E in N (Q) becomes, under the given
identification, the pointwise order of interval functions.

Unfortunately, such neat descriptions of the ordered semiring N (Q) are rare.
(See Corollary 2.) In the spirit of [17] we therefore introduce asymptotic degener-
ation /∼ : For p, q ∈ N (Q) we set

p /∼ q :⇐⇒ ∃k ∈ N ∀N � 1 pN E NkqN , (1)

where ‘∀N � 1’ is a shorthand for ‘∃N0 ∀N ≥ N0’. It is easy to see that /∼ is
a preorder in N (Q) compatible with multiplication. It is also compatible with
addition, as follows, e.g., from Theorem 1 below. Of course E implies /∼ . In the
two examples above E and /∼ coincide, since here (N (Q),E) is isomorphic to a
semiring of functions with pointwise order.

The following result shows that asymptotic degeneration can be characterized
in a simple way. Recall that R denotes the rank function for linear maps. By a
path in Q we always mean a directed path.
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Theorem 1. Let Q be a quiver, p, q ∈ N (Q) and U ∈ p, V ∈ q. Then p /∼ q if
and only if the following two conditions are satisfied:

1. R(U(w)) ≤ R(V (w)) for any path w of positive length.
2. U(v) = θ · U(w) whenever θ ∈ C and v, w are paths of positive length with

the same starting point and the same end point and such that V (v) = θ · V (w).

Theorem 1 will be proved in Section 3. (The necessity of the conditions is easy
to see.)

Let us call a quiver Q economical (sparsam), if for any α, β ∈ Q0 there is at
most one path from α to β. Such a quiver does not contain directed cycles, hence
N (Q) =M(Q). Take an economical quiver Q. We define asymptotic equivalence
of classes p, q ∈M(Q) by

p ∼ q :⇐⇒ p /∼ q & q /∼ p.

Then ∼ is a congruence relation in M(Q) and therefore M(Q)/∼ is an ordered
commutative semiring with unit element, the order being induced by asymptotic
degeneration. Let ∆(Q) be the (finite) set of paths of Q of positive length and
let F(∆(Q),N) be the semiring of nonnegative integral valued functions on ∆(Q).
We have a map

ϕ:M(Q)/∼ −→ F(∆(Q),N),

which sends the asymptotic equivalence class of [V ] ∈ M(Q) to the function
w 7→ R(V (w)).

Corollary 1. Let Q be economical. Then ϕ is an imbedding of ordered semirings.

Borrowing the language of [17], we may call ∆(Q) an asymptotic spectrum of
M(Q).7

An interesting problem consists in characterizing the image of ϕ in Corollary
1 in a way similar to its characterization in the special case of example 2.

The quiver of example 1 is not economical. Nevertheless, Corollary 1 holds in
this case. This indicates that we have not stated the corollary in its most general
form.

Corollary 2. (Riedtmann [16]) The connected quivers Q for which E and /∼
coincide on N (Q) are the directed paths and the directed cycles.

Proof. The coincidence of E and /∼ for directed paths is the content of the second
example above; the coincidence for directed cycles follows by generalizing the first
example.
Conversely, suppose that E and /∼ coincide for the connected quiver Q. It suffices

to show that Q does not contain a subquiver isomorphic to either
1• −→ 2• ←− 3• or

1• ←− 2• −→ 3• . By contradiction, suppose that
1• ←− 2• −→ 3• is a subquiver of Q.
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Let U1, U2 and V be the indecomposable modules of Q with supports {1, 2}, {2, 3}
and {1, 2, 3}, respectively. Let p and q be the equivalence classes of U := U1 ⊕ U2
and V , respectively. Then p, q ∈ N (Q) and by Theorem 1 we have p /∼ q and
q /∼ p, hence p E q and q E p by assumption, hence p = q, hence U ⊕S ' V ⊕T
for certain trivial modules S, T . This contradicts Krull-Schmidt. �

Another way of phrasing Corollary 2 is that the connected quivers Q, for which
(N (Q),E) is isomorphic to a semiring of functions with pointwise order, are the
directed paths and the directed cycles.

2. A Generalization

The exposition of the proof of Theorem 1 will profit from the following genera-
lization. Let A be a finite dimensional associative C-algebra with a multiplicative
basis. This means that A has a distinguished basis B such that the product of any
two elements of B is either 0 or again an element of B and such that radA = linB1
for some B1 ⊂ B. Note that the unit element of A does not necessarily belong to
B.

By an A-module we mean a finite dimensional complex vector space together
with a multiplicative linear map A → EndC V , a 7→ aV . We do not assume
1V = idV , i.e. we allow nonunital modules. Clearly 1V is a projection and a
module endomorphism and therefore produces a direct decomposition of V into
the unital submodule Vu := im(1V ) and the submodule V0 := ker(1V ), which is
annihilated by A. This decomposition is functorial.

We may and will identify an A-module structure on the vector space V with its
restriction to the basis B. Then such a structure is given by a map B → EndC V ,
b 7→ bV such that bV cV = (b · c)V whenever b · c ∈ B, and bV cV = 0 otherwise.
This map will be called the representation map of the module.

Besides the direct sum of two modules U and V we have their tensor product
U ⊗V , defined by the representation map b 7→ bU ⊗ bV .8 Note that 1 ∈ A need not
be represented by 1U ⊗ 1V . Thus the tensor product of two unital modules may
be nonunital.9 A module V is called semisimple when the unital submodule Vu is
semisimple in the usual sense. This is the case if and only if the representation
map of V vanishes on B1. We call A-modules U and V equivalent, when there
exist semisimple modules S and T such that U ⊕ S ' V ⊕ T . The set M(A)
of equivalence classes of A-modules is a commutative semiring (possibly without
unit element), where addition and multiplication are induced by direct sum and
tensor product, respectively.

Degeneration of modules is defined using the closure of the conjugacy class of
the representation map (see [12] II.3, [5], [6]). We write U E V to indicate that U
is a degeneration of V . For p, q ∈ M(A) we define

p E q :⇐⇒ ∃U ∈ p, V ∈ q U E V.
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Then E is a partial order10 inM(A) compatible with addition and multiplication
and such that 0 E p for all p ∈M(A) 11.

Asymptotic degeneration is defined by

p /∼ q :⇐⇒ ∃k ∈ N ∀N � 1 pN E NkqN . (2)

It is easy to see that /∼ is a preorder in M(A) compatible with multiplication. It
is also compatible with addition, as follows from Theorem 2 below.

We are going to characterize /∼ in a simple and effective way. Before doing
this we consider yet another order: Let U, V be A-modules. We say that U is a
restriction of V , and write U ≤ V , when U is a quotient of a submodule of V . We
define restriction and asymptotic restriction in M(A) by

p ≤ q :⇐⇒ ∃U ∈ p, V ∈ q U ≤ V

and
p <∼ q :⇐⇒ ∃k ∈ N ∀N � 1 pN ≤ NkqN , (3)

respectively. It is easy to see that ≤ is a preorder in M(A), compatible with
addition and multiplication, and that ≤ implies E 12 . Hence ≤ is a partial order.
It follows that <∼ is a preorder in M(A) compatible with multiplication (and by
Theorem 2 also with addition), and that <∼ implies /∼.

Theorem 2. Let A ba a finite dimensional C-algebra with a multiplicative basis
B such that rad A = lin B1, where B1 ⊂ B. Take p, q ∈ M(A) and U ∈ p, V ∈ q.
The following three conditions are equivalent:

p <∼ q, (4)

p /∼ q, (5)

∀b ∈ B1 R(bU ) ≤ R(bV )
∀b, c ∈ B1, θ ∈ C bV = θcV =⇒ bU = θcU .

}
(6)

Theorem 2 will be proved in Section 3. We remark that the theorem also holds
when the right hand sides of (2) and (3) are replaced by the apparently weaker
conditions

∀ε > 0 ∀N � 1 pN E 2bεNcqN

and
∀ε > 0 ∀N � 1 pN ≤ 2bεNcqN ,

respectively. (This will follow from the proof of Theorem 2.) Hence these re-
laxations have no effect on the resulting notions of asymptotic degeneration and
asymptotic restriction.
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3. Proofs

For p, q ∈M(A) and U ∈ p, V ∈ q we have

p /∼ q ⇐⇒ ∃k ∀N � 1 ∃S, T S ⊕ U⊗N E T ⊕
Nk⊕
1

V ⊗N , (7)

and

p <∼ q ⇐⇒ ∃k ∀N � 1 ∃T U⊗N ≤ T ⊕
Nk⊕
1

V ⊗N , (8)

where it is understood that k,N are positive integers and S, T semisimple modules.
First we prove three lemmas.

Lemma 1. Let A be a finite dimensional C-algebra and let U ,V be A-modules.
Then the following conditions are equivalent:

∃r ∈ N, T semisimple U ≤ T ⊕
r⊕
1

V, (9)

annV ∩ radA ⊂ annU. (10)

When the conditions are satisfied one may choose r ≤ dimU · dimA.

The estimate of r is easily improved, but we will not need this.13

Proof. Suppose that (9) holds. Since radA ⊂ annT and since the annihilator
increases when a module is being replaced by a submodule or a quotient we have

annV ∩ radA = ann(T ⊕
r⊕
1

V ) ∩ radA ⊂ annU ∩ radA ⊂ annU.

Conversely, suppose that (10) holds. Take a basis (x1, . . . , xm) of U and elements
y1, . . . , yn of V such that annV =

⋂n
i=1 ann(yi) and n ≤ dimA. This is possible

since we may choose the yj inductively with strictly decreasing dim
⋂j
i=1 ann(yi).

Define

y := y1 ⊕ . . .⊕ yn ∈
n⊕
1

V.

Then
annV = ann(y),
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and therefore

U ≤
m⊕
1

Axi dquotientc

'
m⊕
1

A/ ann(xi)

≤
m⊕
1

A/ annU dquotientc

≤
m⊕
1

A/(annV ∩ radA) dquotient, by (10)c

≤
m⊕
1

(A/ annV ⊕A/ radA) dsubmodulec

'
m⊕
1

A/ ann(y)⊕
m⊕
1

A/ radA

'
m⊕
1

Ay ⊕
m⊕
1

A/ radA

≤
m⊕
1

n⊕
1

V ⊕
m⊕
1

A/ radA dsubmodulec .

Since
⊕m

1 A/ radA is semisimple, this implies (9) with r = m ·n ≤ dimU · dimA.
�

The next lemma is well known.

Lemma 2. Suppose that E is a finite dimensional complex vector space and
that z1, . . . , zq ∈ E are pairwise linearly independent nonzero vectors. Then for
sufficiently large M the vectors z⊗M1 , . . . , z⊗Mq ∈ E⊗M are linearly independent.

Proof. By symmetry it suffices to show that for sufficiently large M there is a
linear form f ∈ (E⊗M )∗ such that

f(z⊗M1 ) 6= 0, ∀i > 1 f(z⊗Mi ) = 0.

Polarization implies that this is equivalent to the existence of a homogeneous
polynomial function F on E of degree M with the property

F (z1) 6= 0, ∀i > 1 F (zi) = 0.

The existence of such a form follows from the fact that {[z2], . . . , [zq]} is a Zariski
closed subset of the projective space P(E) not containing [z1]. �
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Lemma 3. Let A be a finite dimensional C-algebra with a multiplicative basis B,
where radA = linB1, and let V be an A-module. For sufficiently large M ∈ N the
following is true: If N is a positive integer and W is isomorphic to a submodule of
V ⊗N then ann(V ⊗M ⊗W ) ∩ radA is linearly generated by ann(W ) ∩B1 together
with all b− θM+N c such that b, c ∈ B1 and b− θc ∈ annV .

Proof. Clearly ann(W ) ∩ B1 ⊂ ann(V ⊗M ⊗ W ) ∩ radA. Since V ⊗M ⊗ W is
isomorphic to a submodule of V ⊗(M+N), the elements b− θM+Nc with b, c ∈ B1
and b−θc ∈ annV also belong to ann(V ⊗M⊗W )∩radA. d(b−θM+Nc)V ⊗(M+N) =
bV ⊗(M+N) − θM+NcV ⊗(M+N) = (bV )⊗(M+N) − (θcV )⊗(M+N) = 0.c This holds for
arbitrary M .

Now take M so large as to ensure the conclusion of Lemma 2 for E = EndV
and for every list z1, . . . , zq of pairwise linearly independent elements from {bV :
b ∈ B1}. Let L denote the linear hull of ann(W )∩B1 together with all b− θM+Nc
such that b, c ∈ B1 and b− θc ∈ annV . We have just seen that

L ⊂ ann(V ⊗M ⊗W ) ∩ radA

and we have to prove equality. By way of contradiction let
∑s
i=1 αibi ∈ ann(V ⊗M⊗

W )∩radA,
∑s
i=1 αibi /∈ L be a counterexample of minimal length s (where αi ∈ C

and bi ∈ B1). Clearly s > 0, and by the minimality of s we have αi 6= 0 and
bi 6∈ annW . Moreover, the (bi)V are pairwise linearly independent: Otherwise
(b1)V = θ(b2)V , say, so that b1 − θb2 ∈ annV and therefore b1 − θM+Nb2 ∈ L.
But then α1b1 + α2b2 may be replaced by α1b1 + α2b2 − α1(b1 − θM+N b2) =
(α1θ

M+N +α2)b2, contradicting the minimality of s. Thus by the choice of M the
endomorphisms (bi)V ⊗M = ((bi)V )⊗M are linearly independent.

Since bi 6∈ annW , there is a linear form y ∈ (End(W ))∗ such that βi :=
y((bi)W ) 6= 0 for all i. Now

∑s
i=1 αibi ∈ ann(V ⊗M ⊗ W ), which means that∑s

i=1 αi · (bi)V ⊗M ⊗ (bi)W = 0. Applying idV ⊗M ⊗y to this equation we get∑s
i=1 αiβi(bi)V ⊗M = 0. But the (bi)V ⊗M are linearly independent, hence all αiβi =

0. This is a contradiction, since s > 0, αi 6= 0 and βi 6= 0. �

Proof of Theorem 2. (4)⇒(5): This has already been observed just before of the
statement of Theorem 2.

(5)⇒(6): In view of (7) we have for some k ∈ N and for N � 1

R(bU)N = R(bU⊗N ) ≤ NkR(bV ⊗N ) = NkR(bV )N ,

since the rank decreases under degeneration and b annihilates T . Taking N -th
roots and letting N grow to infinity we obtain R(bU) ≤ R(bV ). We also have for
N � 1

bV = θcV =⇒ bV ⊗N = θNcV ⊗N =⇒ bU⊗N = θN cU⊗N =⇒ (bU )⊗N = θN (cU )⊗N ,
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since the annihilator of modules increases under degeneration and b and c annihi-
late S. We assume without loss of generality bU 6= 0 and cU 6= 0 (hence θ 6= 0) and
choose y ∈ (EndC U)∗ such that y(bU) = β 6= 0, y(cU ) = γ 6= 0. Applying y⊗N to
(bU )⊗N = θN (cU )⊗N and y⊗N ⊗ idEndC U to (bU )⊗(N+1) = θN+1(cU )⊗(N+1) we
obtain βN = θNγN and βN bU = θN+1γNcU . This implies bU = θcU .

(6)⇒(4): Set m := dimU and n := dimV . For the moment we view V simply
as a vector space (rather than an A-module) and use some classical information on
the decomposition of V ⊗N into simple GL(V )-modules, due to Frobenius, Young,
Schur and Weyl (see Fulton-Harris [8], Theorem 6.3 and (4.11)):

V ⊗N '
⊕

λ∈Pn(N)

fλ⊕
1

Sλ(V ), (11)

where Pn(N) is the set of partitions of N into at most n parts, Sλ(V ) denotes a
simpleGL(V )-module with highest weight λ = (λ1 . . . , λn) and fλ is the dimension
of the simple SN -module corresponding to λ. We have

dim Sλ(V ) =
∏

1≤i<j≤n

li − lj
j − i , (12)

where li := λi + n− i, and

fλ =
N !
∏
i<j(li − lj)

l1! · . . . · ln!
.

The dimension of Sλ(V ) as well as the size of Pn(N) are polynomially bounded in
N :

|Pn(N)| ≤ Nn, dimSλ(V ) ≤ Nn2
. (13)

In contrast, fλ is typically of exponential size inN . We will not use this observation
explicitly, but it is helpful for an understanding of the proof.

How does (11) relate to the A-module structure of V ⊗N? Any g ∈ GL(V )
acts on V ⊗N as the tensor power g⊗N . By definition, GL(V )-submodules of V ⊗N

are therefore stabilized by such g⊗N . Since GL(V ) is dense in End(V ), a con-
tinuity argument shows that GL(V )-submodules of V ⊗N are also stabilized by
tensor powers of arbitrary linear endomorphisms of V . In particular this is true
for bV ⊗N = (bV )⊗N , where b ∈ B. Hence GL(V )-submodules of V ⊗N are auto-
matically A-submodules. A similar continuity argument yields that isomorphic
GL(V )-submodules of V ⊗N are also isomorphic as A-modules. By transport of
structure the right hand side of (11) is an A-module and (11) is an isomorphism
of A-modules. By what we have just seen the direct sum on the right hand side
of (11) is a decomposition into A-submodules. (The newborn A-modules Sλ(V )
need not be simple or indecomposable.)
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Now fix M such that the conclusion of Lemma 3 holds. In view of (8) it suffices
to show

∃k ∀N � 1 ∃T U⊗(M+N) ≤ T ⊕
Nk⊕
1

V ⊗(M+N), (14)

where T is understood to be a semisimple A-module. Besides (11) and (13) we
will need the isomorphism

U⊗(M+N) '
⊕

µ∈Pm(M+N)

fµ⊕
1

Sµ(U) (15)

analogous to (11) and the estimates

|Pm(M +N)| ≤ (M +N)m, dimSµ(U) ≤ (M +N)m
2

(16)

analogous to (13). In view of the A-module isomorphisms (11) and (15) we may
reformulate (14) as

∃k ∀N � 1 ∃T
⊕

µ∈Pm(M+N)

fµ⊕
1

Sµ(U) ≤ T⊕
Nk⊕
1

V ⊗M ⊗ ⊕
λ∈Pn(N)

fλ⊕
1

Sλ(V )

 .

By (16) this is a consequence of

∃k ∀N � 1 ∀µ ∈ Pm(M +N) ∃T
fµ⊕
1

Sµ(U)

≤ T ⊕
Nk⊕
1

V ⊗M ⊗ ⊕
λ∈Pn(N)

fλ⊕
1

Sλ(V )


with the same stipulation for T . This in turn is implied by

∃k, l ∀N � 1 ∀µ ∈ Pm(M+N) ∃T Sµ(U) ≤ T⊕
Nk⊕
1

V ⊗M ⊗ ⊕
λ∈Pn(N)
Nlfλ≥fµ

Sλ(V )

 .

dUse
⊕

λ∈Pn(N), N lfλ≥fµ
⊕fµ

1 Sλ(V ) ≤
⊕N l

1
⊕

λ∈Pn(N)
⊕fλ

1 Sλ(V ).c Setting

W = Wl,N,µ :=
⊕

λ∈Pn(N)
Nlfλ≥fµ

Sλ(V ),
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it suffices to show

∃l ∀N � 1 ∀µ ∈ Pm(M +N) ann(V ⊗M ⊗W ) ∩ radA ⊂ ann Sµ(U). (17)

dLemma 1 then yields

∃r, T Sµ(U) ≤ T ⊕
r⊕
1

(V ⊗M ⊗W )

with
r ≤ dimSµ(U) · dimA ≤ (M +N)m

2
dimA

by (16).c We check the inclusion in (17) on the set of linear generators of the left
hand side as given by Lemma 3 (which is applicable by our choice of M).

First consider a generator of the form b − θM+N c, where b, c ∈ B1 and b −
θc ∈ annV . By (6) we have b − θc ∈ annU , hence b − θM+N c ∈ annU⊗(M+N)

and therefore b − θM+N c ∈ annSµ(U). Next consider a generator of the form
b ∈ ann(W ) ∩B1. For any µ we have

V ⊗N '
⊕

λ∈Pn(N)

fλ⊕
1

Sλ(V ) = X ⊕ Y,

where

X :=
⊕

λ∈Pn(N)
Nlfλ≥fµ

fλ⊕
1

Sλ(V ), Y :=
⊕

λ∈Pn(N)
Nlfλ<fµ

fλ⊕
1

Sλ(V ).

Since b annihilates W and since X and W are composed of the same A-modules
Sλ(V ) (with possibly different positive multiplicities), b also annihilates X and we
conclude from (13) and the definition of Y

R(bV )N = R(b⊗NV ) = R(bV ⊗N ) ≤ dimY ≤ N−lfµNn2+n. (18)

If (arguing by contradiction) b 6∈ annSµ(U) for some µ, we may estimate

R(bU)M+N = R(bU⊗(M+N)) ≥ R(b⊕fµ

1
Sµ(U)) ≥ fµ. (19)

By assumption (6) we have R(bU) ≤ R(bV ). Together with (18) and (19) this gives

fµ ≤ (N−lfµNn2+n)1+M/N .

In view of the trivial estimate fµ ≤ dimU⊗(M+N) ≤ mM+N this is impossible for
l > n2 + n and large N . This proves (17) and the theorem. �
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Proof of Theorem 1. Both U and V are ν-nilpotent for some positive integer ν
in the sense that U(w) = V (w) = 0 for all paths w of length ≥ ν. Without loss
of generality the semiring N (Q) in the statement of the theorem may therefore
be replaced by the subsemiring Nν(Q) of all ν-nilpotent equivalence classes of
Q-modules. A well known equivalence of categories ([2], Theorem 1.5) induces
an isomorphism of semirings Nν(Q) → M(A), where A is the path algebra of
Q divided by the ideal spanned by all paths of length at least ν, and with the
set of residue classes of all paths of length at most ν − 1 as a multiplicative
basis. (The radical of A is spanned by the residue classes of paths of positive
length. Tensor products of ν-nilpotent Q-modules and of A-modules correspond
up to equivalence.) This isomorphism respects degeneration (Bongartz [4]) and
therefore asymptotic degeneration. Now Theorem 1 follows from Theorem 2. �
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I thank K. Bongartz, H. Kraft and M. Nüsken for having called my attention to
some relevant literature, and Matthias Franz and the referee for carefully reading
the manuscript.

Annotations

1. Bongartz [6] uses a kind of inverse notation, that does not suit the purposes of
the present paper.

2. Code equivalence classes by suitable representatives.
3. This is similar to the definition of the tensor product for representations of

finite groups.
4. A warning: By an example of J. Carlson (Riedtmann [15], p. 282) there are
p, q ∈ M(Q) and U ∈ p, V ∈ q such that p E q, U and V have the same
dimension vector, but U is not a degeneration of V .

5. Degenerate V ∈ q along a Jordan-Hölder-series to a semisimple module p (see
[13], Proposition 4.3) and observe that p is nilpotent, since q is. Hence p is
trivial.
The property 0 E V is actually characteristic for nilpotent modules: Sup-
pose 0 E V . By the Hilbert Criterion (see Kraft [13], III,2) V degenerates
to zero along a one parameter subgroup of the ‘group of coordinate changes’∏
α∈Q0

GLnα , where we assume V (α) = Cnα . Without loss of generality (re-
place V by an isomorphic copy) the one parameter subgroup is diagonal in
every GLnα . Then V (l) is strictly upper triangular for any closed (directed)
path l. This implies that V is nilpotent.

6. This follows from three observations: 1. An equivalence class is specified by a
numerical partition, interpreted as the sequence of sizes of nontrivial nilpotent
Jordan blocks arranged in nonincreasing order. 2. A single nilpotent Jordan
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block of size m ≥ 2 is mapped to the function fm: j 7→ min {m− j, 0}. 3. Any
convex function f :Z>0 → Z≥0 with finite support is a unique linear combina-
tion of such fm with nonnegative integral coefficients.

7. Note that the image of ϕ separates points.
8. The tensor product depends on the multiplicative basis chosen, as one sees

for example by looking at group algebras of cyclic groups, which have two
distinguished multiplicative bases, related by the Fourier Transform.

9. This is the reason for allowing nonunital modules.
10. Antisymmetry: As has first been observed by Gabriel [10] (see also Kraft [12],

II,4), the Jordan-Hölder multiplicities of modules are preserved under degener-
ation. This holds in the non-unital case as well. Now assume p E q and q E p
and choose U ∈ p and V ∈ q. Then U ⊕ S E V ⊕ T and V ⊕ T ′ E U ⊕ S′
for certain semisimple modules S, S′, T, T ′. Without loss of generality S = S′.
Then V ⊕ T and V ⊕ T ′ have the same Jordan-Hölder multiplicities, hence
T = T ′, hence U ⊕ S ' V ⊕ T .

11. Degenerate U ∈ p along a Jordan–Hölder series as in Kraft [12], II,4.
12. If U ∈ p, V ∈ q, W ∈ r and if 0→ U → V → W → 0 is exact, then p+ r E q

and therefore p E q and r E q.
13. The lemma implies that for p, q ∈ M(A) the following conditions are equivalent:

(i) ∃r ∈ N p ≤ r · q
(ii) ∃r ∈ N p E r · q
(iii) annV ∩ radA ⊂ annU for some (and hence for all) U ∈ p, V ∈ q.
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