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1. Introduction

In this paper, we study the dynamics of an area–preserving diffeomorphism in a
neighbourhood of an elliptic fixed point. It is a classical result by G.D. Birkhoff
that, under certain nondegeneracy conditions on the linearization, there exists a
normal form which is invariant under symplectic coordinate changes. This Birkhoff
normal form describes an integrable map whose asymptotics, as one approaches the
fixed point, coincide with those of the given non–integrable map. The coefficients
of the Taylor polynomial (or series) for the normal form are the so–called Birkhoff
invariants.

The goal of this paper is to construct a new “local” symplectic invariant which
includes the Birkhoff invariants, but, in contrast, reflects part of the dynamical
behaviour near the fixed point. To do so, we introduce a variational principle
analogous to that in Aubry–Mather theory for monotone twist maps; namely, we
minimize the Lagrangian action over all orbits with a given rotation number. This
yields the minimal action, a function canonically associated to the given symplectic
map and invariant under symplectic coordinate changes. The key point is to prove
that this function is real valued, and hence a nontrivial invariant. Then it follows
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from Aubry–Mather theory that the minimal action contains certain information
about the local dynamics near the fixed point. For instance, its differentiability
at a rational rotation number is tantamount to the existence of a periodic invari-
ant circle. We will prove the following result; see Theorem 3.2 for the precise
formulation.

Theorem. Given an area–preserving diffeomorphism φ near an elliptic fixed point,
the minimal action α is a strictly convex, symplectically invariant function. In
addition, one has the following:
1. The Birkhoff invariants are the Taylor coefficients of the convex conjugate α∗.
2. φ possesses an invariant circle of rotation number p/q, consisting of periodic

orbits, if and only if α is differentiable at p/q.
3. If φ has an invariant circle of rotation number ω, its enclosed area is given by

α′(ω).

Moreover, in the integrable case, the minimal action is a complete invariant, a fact
which is not true for the Birkhoff normal form (unless the map is analytic). We
show that the following is true; see Theorem 3.4.

Theorem. Given a symplectic diffeomorphism φ near an elliptic fixed point, let
α denote the associated minimal action. Then the following holds true:
1. If φ is integrable, α determines φ; in fact, α∗ is an integrable Hamiltonian (i.e.,

already in action–angle variables) generating φ.
2. If α is differentiable then φ is C0–integrable.

Symplectic mappings near a fixed point appear often as Poincaré section maps
of a closed trajectory. We explain this for the Reeb flow on a contact manifold,
a particularly interesting example of which is the geodesic flow. It turns out that
the minimal action depends only on the period spectrum of the contact manifold
which, in the case of geodesic flows, is the length spectrum from Riemannian
geometry. Therefore, the minimal action is a new local length spectrum invariant
for compact two–dimensional manifolds, as are all quantities that can be obtained
from it (e.g. the Birkhoff invariants).

Minimal orbits — or measures, respectively — play also an important role
in other contexts. For planar convex domains, the minimal action is a length
spectrum invariant under continuous deformations of the domain [Si3]; this can be
seen as a global version of the results presented here. The minimal action appears
even in Hofer’s geometry of the Hamiltonian diffeomorphism group of cotangent
bundles, where it yields a lower bound for the distance of a convex diffeomorphism
from the identity [Si1, IS]. A comprehensive exposition of the role of the minimal
action in the various contexts is given in [Si4].
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1. An estimate in Aubry–Mather theory

The Principle of Least Action states that, for sufficiently short times, trajectories
of a Lagrangian system minimize the action amongst all paths in configuration
space with the same end points. If the time interval becomes larger, the Euler–
Lagrange equations describe just critical points of the action functional; they may
well be saddle points.

In the eighties, Aubry [Aub] and Mather [Ma1] discovered that monotone twist
maps on an annulus possess orbits which minimize the (discrete) action with fixed
end points on all time intervals. These minimal orbits turned out to be of cru-
cial importance for a deeper understanding of the complicated orbit structure of
monotone twist mappings. In this section, we give a quick review of the relevant
theory and prove a perturbation result for the minimal action that we will need
later.

Let S1 × (a, b) ⊂ S1 × R = T ∗S1 be a plane annulus with S1 = R/Z, where
we allow the cases a = −∞ or b = +∞ (or both). Given a diffeomorphism
φ of S1 × (a, b) we consider a lift φ̃ of φ to the universal cover R × (a, b) of
S1 × (a, b) with coordinates x, y. Since φ is a diffeomorphism so is φ̃, and we have
φ̃(x+ 1, y) = φ̃(x, y) + (1, 0). In this section, we will always work with (fixed) lifts
for which we drop the tilde again and keep the notation φ.

In the case when a or b is finite we assume that φ extends continuously to
R× [a, b] by rotations by some fixed angles:

φ(x, a) = (x+ ω−, a) resp. φ(x, b) = (x+ ω+, b) .

The numbers ω± are unique after we have fixed the lift. For simplicity, we set
ω± = ±∞ if a = −∞ or b =∞.

By definition, a (monotone) twist mapping is a C1–diffeomorphism

φ : R× (a, b)→ R× (a, b)
(x0, y0) 7→ (x1, y1)

satisfying φ(x0 + 1, y0) = φ(x0, y0) + (1, 0) as well as the following conditions:
1. φ preserves orientation and the boundaries of R × (a, b), in the sense that
y1(x0, y0)→ a, b as y0 → a, b;

2. if a or b is finite φ extends to the boundary by a rotation;
3. φ satisfies a monotone twist condition:

∂x1
∂y0

> 0 ;



684 K. F. Siburg CMH

4. φ is exact symplectic; in other words, there is a C2–function h such that

y1 dx1 − y0 dx0 = dh(x0, x1) .

The interval (ω−, ω+) ⊂ R, which can be infinite, is called the twist interval of
φ.

Remark 2.1.
1. The twist condition states that images of verticals are graphs over the x–axis.

This implies that φ can be described in the coordinates x0, x1 rather than
x0, y0.

2. The function h, which is unique up to an additive constant, is called a gene-
rating function for φ and serves as a discrete version of the Lagrangian action.
It is defined on the strip {(ξ, η) ∈ R2 | ω− < η− ξ < ω+} and can be extended
continuously to its closure. Moreover, it satisfies ∂1∂2h < 0 as well as the
periodicity condition h(ξ + 1, η + 1) = h(ξ, η).

Example 2.2. The simplest example is what is called an integrable twist map
which, by definition, preserves the radial coordinate:

φ(x0, y0) = (x0 + f(y0), y0)

with f ′ > 0. Then h = h(x1 − x0), with h′ = f−1, is strictly convex.

Note that an orbit ((xi, yi))i∈Z of a monotone twist map φ is completely deter-
mined by the sequence (xi)i∈Z via the relations

yi = ∂2h(xi−1, xi) = −∂1h(xi, xi+1) .

Similarly, an arbitrary sequence (ξi)i∈Z corresponds to an orbit of φ if and only if

∂2h(ξi−1, ξi) + ∂1h(ξi, ξi+1) = 0 (2.1)

for all i ∈ Z. Thus, on a formal level, orbits may be regarded as “critical points”
of the (discrete) action “functional”

(ξi)i∈Z 7→
∑
i∈Z

h(ξi, ξi+1)

on RZ. From this point of view, the minimal orbits we are looking for will be
“minima” of that “functional”.

To make this precise, we call a sequence (xi)i∈Z minimal if every finite segment
minimizes the action with fixed end points; this means that

l−1∑
i=k

h(xi, xi+1) ≤
l−1∑
i=k

h(ξi, ξi+1)
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for all (ξk, . . . , ξl) ∈ Rl−k+1 with ξk = xk and ξl = xl. By (2.1), each minimal
sequence (xi)i∈Z corresponds to an orbit ((xi, yi))i∈Z; these are called minimal
orbits.

The rotation number of an orbit ((xi, yi))i∈Z of a monotone twist map is
given by

lim
|i|→∞

xi
i

= lim
|i|→∞

xi − x0
i

if this limit exists.
The following theorem is the basic result in Aubry–Mather theory. The reader

may consult [Ban, Gol, KH, MF] for more details.

Theorem 2.3. ([Aub, Ma1]) A monotone twist map possesses minimal orbits for
every rotation number in its twist interval; for rational rotation numbers there are
always periodic minimal orbits. Moreover, every minimal orbit lies on a Lipschitz
graph over the x–axis.

In view of the latter property, minimal orbits resemble invariant circles which,
by a classical theorem of Birkhoff, must be Lipschitz graphs (cf. [Si2] and the
references therein). By an invariant circle we mean an embedded homotopically
nontrivial invariant closed curve in S1 × (a, b), respectively, its lift to R× (a, b).

Remark 2.4.
1. If a monotone twist map possesses an invariant circle of rotation number ω

then every orbit on that circle is minimal [MF, Thm. 17.4].
2. Theorem 2.3 remains true if one considers the more general setting of a mono-

tone twist map on an invariant annulus {(x, y) | u−(x) ≤ y ≤ u+(x)} between
the graphs of two functions u±; see [MF].

By associating to each ω ∈ (ω−, ω+) the average action of some (and hence any)
minimal orbit ((xi, yi))i∈Z having rotation number ω, one defines the minimal
action

α : (ω−, ω+)→ R

ω 7→ lim
N→∞

1
2N

N−1∑
i=−N

h(xi, xi+1)

Proposition 2.5.
1. α is strictly convex; in particular, it is continuous.
2. α is differentiable at all irrational numbers.
3. If ω = p/q is rational, α is differentiable at p/q if and only if there is an

invariant circle of rotation number p/q consisting entirely of periodic minimal
orbits.
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4. If Γω is an invariant circle of rotation number ω then α is differentiable at ω
with α′(ω) =

∫
Γω y dx.

Proof. Everything is well known and can be found in [MF, Ma2], except perhaps
for the precise value of α′(ω) in the last part. This follows from Moser’s observation
that every twist map can be interpolated by a convex Hamiltonian [Mo3], together
with [Si1, Thm. 2.1]. �

We will see now that the minimal action for a perturbation of an integrable
twist map is a perturbation of the minimal action for the integrable map. This is
made precise in the next theorem; compare [Kat, Lemma 6] for a related argument.

Theorem 2.6. Let h, h0 be generating functions for two monotone twist maps
such that h0(s) = c(s−γ)k+O((s−γ)k+1) with c > 0, k ≥ 2 generates an integrable
twist map, and

h(ξ, η) = h0(η − ξ) +O((η − ξ − γ)k+m)

as η − ξ → γ with 2m ∈ N \ {0}. Then the corresponding minimal actions α, α0
satisfy α0(ω) = h0(ω) and

α(ω) = α0(ω) +O((ω − γ)k+m)

as ω → γ.

Later, we will apply this theorem when γ = ω− is the lower boundary point of
the twist interval.

Proof. Let us first convince ourselves that α0 = h0. All orbits of rotation number
ω lie on the invariant circle S1 × {(h′0)−1(ω)} and have the same average action
h0(ω). Hence the minimal action α0(ω) is indeed h0(ω).

In the following, C always denotes some positive constant that may vary from
time to time. Write h(ξ, η) = h0(η − ξ) + f(ξ, η). Since f vanishes up to second
order at {η − ξ = γ} we know that minimal orbits of rotation numbers ω close
enough to γ are located near {η − ξ = γ} where we have

|f(ξ, η)| ≤ Ch0(η − ξ)1+m
k . (2.2)

Pick a minimal h–sequence (xi)i∈Z of rotation number ω. The idea is to com-
pare the action of a segment

(x−N , x−N+1, . . . , x−1, x0, x1, . . . , xN−1, xN )

to that of the segment

(x−N , x0 + (−N + 1)ω, . . . , x0 − ω, x0, x0 + ω, . . . , x0 + (N − 1)ω, xN )
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with the same end points. Note that, up to the two end points, the second segment
belongs to the minimal h0–sequence (x0 + iω)i∈Z. The minimality of the sequence
(xi)i∈Z implies that

|xi − x0 − iω| ≤ 1 (2.3)

for all i ∈ Z; see [Ban, Cor. 3.16]. Since (xi)−N≤i≤N minimizes the action we can
estimate

N−1∑
i=−N

h(xi, xi+1)

≤ h(x−N , x0 + (−N + 1)ω) +
N−2∑

i=−N+1

h(x0 + iω, x0 + (i+ 1)ω)

+ h(x0 + (N − 1)ω, xN )
≤ (2N − 2)h0(ω) + (2N − 2) max

ξ
|f(ξ, ξ + ω)|

+ 2 min{ max
|η−ξ|≤1+|ω|

|h(ξ, η)|,max
ξ,η
|h(ξ, η)|}

where the second inequality uses h = h0 + f and (2.3). Dividing this inequality
by 2N and taking the limit as N →∞ yields

α(ω) ≤ h0(ω) + max
ξ
|f(ξ, ξ + ω)| ≤ α0(ω) + C|ω − γ|k+m .

For the reversed estimate, we obtain from (2.2) that

N−1∑
i=−N

h(xi, xi+1) ≥
N−1∑
i=−N

[
h0(xi+1 − xi)− Ch0(xi+1 − xi)1+m

k
]
. (2.4)

Now observe that, because of k ≥ 2, the function h0 − Ch
1+m

k

0 is convex near
γ because h0 itself is. This is easily shown by taking the second derivative and
comparing the orders in ω−γ for the three different terms. But a convex function
g satisfies g(s) + g(t) ≥ 2g((s+ t)/2). Applying this to (2.4) we find

N−1∑
i=−N

h(xi, xi+1) ≥ 2N
(
h0 − Ch

1+m
k

0
)(∑N−1

i=−N xi+1 − xi
2N

)
= 2N

(
h0 − Ch

1+m
k

0
)(xN − x−N

2N

)
.

Again, dividing by 2N and taking the limit yields

α(ω) ≥ h0(ω)− Ch0(ω)1+m
k ≥ α0(ω)− C|ω − γ|k+m ,
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and the theorem is proven. �

Since α is a convex function it possesses a convex conjugate (or Fenchel
transform) α∗ defined by

α∗(I) = max
ω

[ωI − α(ω)] . (2.5)

Since α is strictly convex, α∗ is a convex C1–function with

(α∗)′(α′(ω)) = ω

whenever α′(ω) exists [RW, Thm. 11.13]. Flat parts of α∗ correspond to points of
non–differentiability of α.1

3. Elliptic fixed points of area–preserving maps

We consider the germ of a symplectic diffeomorphism at the fixed point 0 ∈ (R2,Ω)
where Ω is some area form on R2. In the following, whenever we pick a represen-
tative φ : U → R2, we assume that U is a simply connected neighbourhood of 0;
this is no loss of generality. Then, by Poincaré’s Lemma, the symplectic form Ω
is exact, i.e., there is a 1–form λ with Ω = dλ.

Suppose there is a point p ∈ U \ {0} whose iterates pi = φi(p) exist for all
i ∈ Z. We want to define the average action and the rotation number of the orbit
(pi)i∈Z. Since φ is symplectic the 1–form φ∗λ− λ on U is closed, hence exact:

φ∗λ− λ = dS .

S is called a generating function for φ, and we make it unique by normalizing
S(0) = 0.2 The average action of the orbit (pi)i∈Z with respect to λ is defined
as

A((pi)) = lim
N→∞

1
2N

N−1∑
i=−N

S(pi)

if this limit exists.
We claim that this definition does not depend on the choice of the 1–form λ.

Indeed, taking another 1–form λ′ with dλ′ = dλ = Ω the closed 1–form λ′ − λ is

1 See [RW] for any question about smooth or non–smooth convex analysis.
2 As an aside, we remark that this normalization is in accordance with setting H(t, 0) = 0

when H is a Hamiltonian whose flow generates φ and leaves 0 fixed; for, then the generating
function

∫
λ−Hdt vanishes at 0.
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exact: λ′ − λ = dF . The new generating function is given by S′ = S + φ∗F − F .3

But the average of φ∗F over an orbit is the same as that of F , proving our claim.
Moreover, the average action is invariant under local symplectic coordinate

changes Φ fixing the origin (which are always exact symplectic). The invariance
follows from the same argument as above because the generating function for
Φ ◦ φ ◦ Φ−1 is given by Φ∗S + F − (Φ ◦ φ ◦ Φ−1)∗F where we assume that the
coordinate change Φ is generated by F .

Next, we want to define the rotation number of an orbit (pi)i∈Z in U \ {0}.
Roughly speaking, this is its average winding number around the origin. More
precisely, we introduce polar coordinates on R2 \{0} = S1× (0,∞), and lift φ : U \
{0} → R2\{0} to a map φ̃ which is then defined on some strip in the universal cover
R × (0,∞) of S1 × (0,∞). Since φ is an orientation–preserving diffeomorphism,
φ̃ is a diffeomorphism of degree 1. Given an orbit (p̃i) of φ̃ projecting onto (pi)
and a natural number N , we choose a curve Γ̃ : [−N,N ] → R × (0,∞) with
Γ̃(i) = p̃i. Call Γ : [−N,N ] → R2 \ {0} the projection of Γ̃, and close it up to
a closed curve ΓN by adding a “short” piece (whose lift upstairs lies inside one
fundamental domain). Then we define the rotation number of (p̃i) to be

ρ((p̃i), φ̃) = lim
N→∞

1
2N

[ΓN ] ∈ H1(R2 \ {0},R)

if this limit exists. Clearly, if we fix the lift φ̃, the class ρ does not depend on the
particular choice of (p̃i) and ΓN . Moreover, choosing a different lift φmeans adding
the class [φ − φ̃] of the deck transformation φ − φ̃. Finally, we have a canonical
identification H1(R2 \ {0},R) = R if we take as generator of H1(R2 \ {0},R) the
class represented by the positively oriented unit circle.

Summarizing, we view the rotation number of an orbit (pi)i∈Z in U \ {0} as
a real number ρ((pi)) = ρ((p̃i), φ̃), well defined up to integer shifts and invariant
under conjugation by homeomorphisms.

Analogous to Aubry–Mather theory, we introduce the following variational
principle for the symplectic map φ : U \ {0} → R2 \ {0}. Having fixed some
lift φ̃ of φ, we denote by α(ω) the infimum of average actions of orbits in U \ {0}
with rotation number ω where, as usual, the infimum over the empty set is ∞.
This defines the minimal action

α : R→ (−∞,∞]
ω 7→ inf{A((pi)) | ρ((pi)) = ω} (3.1)

as a symplectic invariant of the given symplectic germ. Of course, it may be always
infinite since it is not clear whether there are any orbits in U \{0} at all. Therefore,
we have to find situations where the minimal action is a nontrivial invariant.

3 Note that S′ satisfies our normalization condition S′(0) = 0.
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We make the following assumptions on φ:
I. φ is a symplectic C∞–diffeomorphism defined on a simply connected open

neighbourhood U of 0 ∈ (R2,Ω) with φ(0) = 0;
II. 0 is an elliptic fixed point of φ, i.e., the eigenvalues λ, λ of Dφ(0) lie in

S1 \ {±1};
III. λ satisfies the nonresonance condition λk 6= 1 for 1 ≤ k ≤ 4.

In order to remove the ambiguity in the rotation number, we write λ = e2πia

with 0 ≤ a < 1 and fix the lift φ̃ in such a way that φ̃(θ, r)→ (θ + a, r) as r → 0.
This means that we associate to the fixed point the rotation number a (and not
some integer shift of it).

Then, under the assumptions I.–III., there is an analytic symplectic change of
coordinates fixing 0 and transforming φ into a certain normal form in the standard
symplectic space (R2,Ω0 = dx ∧ dy). In these new coordinates the map φ takes
the form (

x
y

)
7→
(

cos 2πΘ − sin 2πΘ
sin 2πΘ cos 2πΘ

)(
x
y

)
+O((x2 + y2)2)

Θ = a+ b(x2 + y2) (3.2)

as x2 + y2 → 0. This result goes back to G.D. Birkhoff; a proof can be found in
[Mo1]. The leading term, the so–called Birkhoff normal form, is a rotation by
an angle Θ that depends on the radius as long as b 6= 0. The numbers a and b are
symplectic invariants and called Birkhoff invariants.

Our last assumption is a nonlinearity condition on the Birkhoff normal form:
IV. b 6= 0, respectively, b > 0.

If all four conditions I.–IV. are fulfilled we call 0 a general elliptic fixed point
of φ.

Remark 3.1.
1. Without loss of generality we assume b > 0; the case where b < 0 can be

reduced to that by considering φ−1 instead of φ.
2. The notion of a general elliptic fixed point is intrinsic, i.e., the above conditions

are invariant under smooth symplectic coordinate transformations.

Let us call the half–sided germ of a function at a point x ∈ R the equivalence
class of functions defined on intervals [x, z), where two such functions are equivalent
if they agree on some (maybe smaller) interval [x, y). Finally, from now on, the
term invariant circle always means an invariant circle that goes around the fixed
point.

The following is the main result in this section. Recall that λ = e2πia with
0 ≤ a < 1.

Theorem 3.2. Given the germ of a symplectic diffeomorphism φ at a general
elliptic fixed point, the half–sided germ of the minimal action α at the point a is a
nontrivial symplectic invariant. In addition, one has the following:
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1. The Birkhoff invariants are the Taylor coefficients of the convex conjugate α∗

at 0.
2. φ possesses an invariant circle of rotation number p/q, consisting of periodic

orbits, if and only if α is differentiable at p/q.
3. If φ has an invariant circle of rotation number ω, its enclosed area is given by

α′(ω).

Proof. Let α : R → (−∞,∞] be the minimal action for φ. We may assume that
φ is already given in the form (3.2); since α is symplectically invariant this does
not change anything. To prove that α is nontrivial (i.e. not identically ∞) we
introduce symplectic polar coordinates (θ, r) ∈ S1 × (0,∞) on R2 \ {0} by{

x =
√

2r cos 2πθ
y =
√

2r sin 2πθ

It is a straightforward calculation to show that

1
2

(xdy − y dx) = 2πr dθ

so that the map

(R2 \ {0}, dx ∧ dy)→ (S1 × (0,∞), 2πdr ∧ dθ)
(x, y) 7→ (θ, r)

is exact symplectic with respect to the 1–forms 1/2 (xdy − y dx) and 2πr dθ, res-
pectively. Hence the average action of corresponding orbits stays the same if we
pass to (θ, r)–coordinates. The map φ has the form

φ : (θ0, r0) 7→ (θ1, r1) = (θ0 + a+ 2br0, r0) +O(r3/2
0 ) (3.3)

as r0 → 0. For small enough r0 > 0, φ satisfies the monotone twist condition
∂θ1/∂r0 = 2b+O(r1/2

0 ) > 0.
Since φ is smooth, KAM–theory applies and yields the existence of invariant

circles accumulating at the fixed point, respectively the boundary circle S1 × {0};
see [Laz, Mo2]. On each of these circles Γω the map φ is conjugated to the rotation
by some Diophantine number ω near a; since the twist constant b is positive we
have ω > a.

Therefore, perhaps after restriction to a smaller domain, φ is defined on an
invariant annulus in S1× (0,∞) with lower boundary S1×{0}. This annulus itself
is divided into a sequence of invariant annuli Ak, approaching S1 ×{0} as k →∞
and being bounded by KAM–circles Γω±

k
with rotation numbers ω+

k > ω−k > a.
According to (3.3), the map φ on each Ak∪Ak+1 is a smooth monotone twist map
whose generating function with r1 dθ1 − r0 dθ0 = dh is given by

h(ξ, η) =
1
4b

(η − ξ − a)2 +O((η − ξ − a)5/2) (3.4)
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as η − ξ → a. The function

h0(s) =
1
4b

(s− a)2

describes the integrable twist map φ0(θ0, r0) = (θ0 + a+ 2br0, r0) approximating
φ. Notice that h is normalized according to our convention; namely, h(ξ, η) → 0
as η − ξ → a which means that the (hypothetical) value of h at the fixed point is
0.

Now we apply Aubry–Mather theory for φ on each “double” annulus Ak∪Ak+1.
In view of Theorem 2.3 and Remark 2.4, there are minimal orbits for every rotation
number ω ∈ (ω−k , ω

+
k+1). This allows us to define the minimal action α in the sense

of Section 2, which is a strictly convex function on the interval (ω−k , ω
+
k+1).

We claim that this α is the minimal action as defined in (3.1). First of all, the
notions of average action and rotation number agree. Therefore, the only thing to
check is that the set of orbits over which we minimize is the same in both settings.
This follows from the fact that all orbits of rotation numbers ω ∈ (ω−k , ω

+
k+1) lie

in the annulus Ak ∪Ak+1. Indeed, suppose that a monotone twist map possesses
two invariant circles Γω± of rotation numbers ω− < ω+. Then, if an orbit lies
outside the annulus formed by Γω− and Γω+ , its rotation number must lie outside
(ω−, ω+); this is a simple consequence of the twist property.

Thus, the minimal action α is a real valued, strictly convex function on each
interval (ω−k , ω

+
k+1). Note that the annuli Ak ∪ Ak+1 overlap so each rotation

number ω±k is an interior point at some stage, and the different pieces of α really
fit together. Moreover, as k → ∞, the rotation numbers ω±k tend to a and the
average actions to zero, so that the minimal action extends to a strictly convex
function α : [a, a+ δ)→ R with α(a) = 0.

This proves the first part of the theorem. The assertion that the minimal action
determines the existence of periodic invariant circles as well as the enclosed areas
of invariant circles follows immediately from Proposition 2.5. It remains to prove
that the minimal action encodes the Birkhoff invariants. For this, we consider the
convex conjugate α∗(I) = maxω[ωI−α(ω)] which is a strictly convex C1–function
defined on some interval [0, δ∗). Applying Theorem 2.6, we conclude from (3.4)
that

α(ω) = h0(ω) +O((ω − a)5/2) =
1
4b

(ω − a)2 +O((ω − a)5/2) (3.5)

as ω → a which implies an analogous formula for α∗(I) as I → 0 [RW, Ex. 8.8]:

α∗(I) = h∗0(I) +O(I5/2) = aI + bI2 +O(I5/2) . (3.6)

Hence the Taylor coefficients of α∗ at 0 are indeed the Birkhoff invariants a and
b, and the theorem is completely proven. �
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Remark 3.3.
1. Theorem 3.2 shows that the minimal action is a local invariant in the sense

that it contains information not just about the asymptotic behaviour of φ at
the fixed point, but also about the dynamics away from it.

2. The assumption that φ is smooth is not really necessary; in fact, Theorem 3.2
is true for C5–diffeomorphisms [Mo2]. For the sake of simplicity, however, we
restrict ourselves to the smooth case.

3. If the Birkhoff normal form approximates the given map φ up to order (x2 +
y2)k with k ≥ 2, then the Taylor coefficients of α∗ exist up to order k and
Theorem 2.6 implies that they are precisely the k Birkhoff invariants of φ.

4. The fact that the Birkhoff invariants are determined by the actions of perio-
dic orbits (via the labelled length spectrum) was first formulated by Colin de
Verdiere [CdV2]. The minimal action, respectively its convex conjugate, can
be viewed as an extension of the labelled length spectrum from the rational
numbers to the reals.

5. The minimal action α may be interpreted as a “partial integral” for the map
φ. This goes as follows. Consider the setM⊂ U \{0} of minimal orbits. Then
the function p 7→ α(ρ(φi(p))) from M to R is constant along orbits but not
constant everywhere.

In general, the “partial integral” mentioned in the last remark is neither defined
in a whole neighbourhood of 0, nor is it differentiable. In the special situation
when φ possesses a genuine integral, however, the minimal action turns out to be
an integral. In this context, recall that a smooth area–preserving map φ defined
near the elliptic fixed point 0 is called integrable if, perhaps after restricting φ
to some smaller neighbourhood U of 0, there is a smooth fibration of U \ {0} by
invariant circles. φ is called C0–integrable if there is a C0–fibration by invariant
circles.

Theorem 3.4. Given a symplectic diffeomorphism φ near a general elliptic fixed
point, let α denote the associated minimal action. Then the following holds true:
1. If φ is integrable, α∗ is an integrable Hamiltonian generating φ.
2. If α is differentiable then φ is C0–integrable.

Proof. In order to prove the first assertion, we pass to angle–action coordinates
(θ0, I0) ∈ S1 × (0, ε) in which we have φ : (θ0, I0) 7→ (θ1, I1) = (θ0 + H ′(I0), I0)
with a smooth strictly convex Hamiltonian H. Moreover, I1 dθ1 − I0 dθ0 = dS∗

with S(θ0, I1) = θ0I1 +H(I1), which means that S∗ = H∗ is a generating function
for the integrable twist map φ. Hence H = α∗ is an autonomous integrable
Hamiltonian generating φ.

We show the second assertion. According to Proposition 2.5, the minimal
action is differentiable at irrational numbers, and it is differentiable at rationals
if and only if there is an invariant circle consisting of (periodic) minimal orbits
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of the corresponding rotation number. Therefore, if α is differentiable we obtain
invariant circles for all rotation numbers by taking limits of rational ones, so φ is
C0–integrable. �

Remark 3.5.
1. We see that, in the integrable case, the dynamics of φ are completely determined

by the symplectic invariant α. This is not true for the Birkhoff normal form
unless φ is analytic; see [Ito].

2. As a strictly convex function, α is differentiable if and only if it is C1 [RW,
Thm. 11.13].

Finally, we just mention that there are higher order Birkhoff normal forms
near an elliptic fixed point if the eigenvalue λ = e2πia at the fixed point satisfies
nonresonance conditions of higher order. For instance, if λ is not a root of unity
the Birkhoff normal form is a formal power series. In general, the coordinate
transformation bringing φ to that normal form will be a divergent power series.
We refer to [SM] for proofs and more details. Everything in this section can also
be formulated in this more general context but we forgo such extensions.

4. Contact flows near an elliptic closed characteristic

We consider a smooth compact manifold M of odd dimension 2n+1 ≥ 3 equipped
with a contact form β. By definition, a contact form is a 1–form on M such that
β ∧ (dβ)n is a volume form. This means that the kernel of β defines a maximally
non–integrable hyperplane field in TM . The so–called Reeb vector field X is
defined by the equations

iXdβ = 0 and iXβ = 1 . (4.1)

Periodic trajectories of the Reeb flow are also called closed characteristics.

Example 4.1. If N is a Riemannian manifold then the unit cotangent bundle T ∗1N
is a contact manifold with contact form β = λ|T∗1N where λ is the Liouville form
on T ∗N . The Reeb vector field is the Hamiltonian vector field corresponding to
the geodesic flow on T1N .

Assume γ is a periodic trajectory of (prime) period T of the Reeb flow, and
consider a transverse local sectionW at some point p ∈ γ. This is a 2n–dimensional
manifold, and we equip it with the symplectic form ω = i∗dβ where i : W ↪→ M
is the inclusion. We denote by φ the Poincaré return map, defined on a small
neighbourhood around p which we identify with a small neighbourhood U of 0 ∈
R2n; call S : U → R the first return time. Then φ(0) = 0 and S(0) = T .

It is well known that φ is symplectic—this is just a reformulation of the fact
that time and energy are conjugate variables in Hamiltonian mechanics. In fact, φ
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is even exact symplectic as the following observation shows; compare, for instance,
[FG, Prop. 2.1].

Lemma 4.2. φ is exact symplectic with generating function S, i.e., φ∗β−β = dS.

Proof. We denote the flow of X by ψt and consider the family of mappings ft(z) =
ψtS(z)(z). Then f1 = φ and ḟt(z) = S(z)X(ft(z)). Therefore

φ∗β − β =
∫ 1

0

d

dt
f∗t β dt =

∫ 1

0
f∗t (iḟtdβ + diḟtβ) dt = dS

in view of (4.1). �

The general question is how much information about the geometry of the con-
tact manifold M is encoded in the closed characteristics. In the following, let
us consider a continuous deformation βs, s ∈ [0, 1], of contact forms on M such
that each (M,βs) has the same period spectrum, i.e. the same set of periods
of closed characteristics. Françoise and Guillemin [FG] conjectured that such a
deformation must be trivial, if it also fixes the set of (symplectic conjugacy classes
of) linearized Poincaré maps. They proved that, if γs is a nondegenerate elliptic
closed characteristic without resonances, the Birkhoff invariants of γs stay fixed
during the deformation. This was generalized by Popov [Pop] who showed that
the Birkhoff invariants as well as the Liouville classes of invariant tori stay fixed,
even allowing resonances and dropping the condition that the deformation pre-
serves the linearized Poincaré maps. What we will do is to show that, for the
three–dimensional case, there is a stronger invariant than just the Birkhoff normal
form, namely the minimal action.

For this, we consider a three–dimensional contact manifold M with a closed
characteristic γ such that the corresponding Poincaré map φ has 0 as a general
elliptic fixed point (in the terminology of Section 3). This is independent of the
choices of the point on γ and the transverse section because two Poincaré maps
are symplectically conjugated and the conditions I.–IV. stated at the beginning
of Section 3 are invariant under such conjugations. We describe this situation by
saying that γ is a general elliptic closed characteristic. The eigenvalues of
Dφ(0) are called the Floquet multipliers of γ. Then, applying the theory from
Section 3, we can associate to γ the half–sided germ of the minimal action α.4

Note that this is independent of the choices of the point on γ and the transverse
section.

Now let βs, s ∈ [0, 1], be a continuous family of contact forms on M , all having
the same period spectrum, such that there is a continuous family of general ellip-

4 To be really consistent with our notation from the previous section where we assumed that
generating functions satisfy S(0) = 0, we replace the first return time S(·) by S(·)− T .
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tic closed characteristics γs. The next proposition states that the corresponding
minimal actions αs do not depend on s.

Proposition 4.3. Suppose βs, s ∈ [0, 1], is a continuous deformation of contact
forms preserving the period spectrum, with a continuous family of general elliptic
closed characteristics γs. Then, as germs, αs = α0 for all s ∈ [0, 1].

Proof. Associated to each closed characteristic γs, we have the germ of the minimal
action αs for the corresponding Poincaré return map. Being continuous, each αs is
uniquely defined by its values on Q. We will show below that, for a fixed rational
rotation number p/q, the values αs(p/q) vary continuously with s. Postponing the
proof, we claim that these values must be constant. Indeed, the period spectrum
— which is independent of s by assumption — has Lebesgue measure 0 in R. This
follows from Sard’s Theorem since closed characteristics correspond to critical
points of a smooth function; see, for instance, [Pop, Prop. 3.2]. Therefore the
values αs(p/q) vary continuously in a set of measure zero, so they must stay fixed.

It remains to prove that αs(p/q) is continuous in s. For this, we recall from
Theorem 2.3 that for rational rotation numbers there is always a periodic minimal
orbit. Besides being periodic, these so–called Birkhoff orbits have the additional
property that they are ordered as if they were orbits of a rigid rotation, and they
can be found by minimizing the (discrete) action on the compact space of ordered
periodic sequences [KH, Thm. 9.3.7]. As minima, the corresponding minimal va-
lues αs(p/q) are indeed continuous in s. �

In fact, one can even eliminate the assumption that we are given a family
of general elliptic closed characteristics; its existence follows already from the
preservation of the period spectrum. Compare [Pop, Lemma 3.5] for a similar
argument.

Proposition 4.4. Suppose βs, s ∈ [0, 1], is a continuous deformation of contact
forms preserving the period spectrum, such that β0 admits a general elliptic closed
characteristic γ0.

Then there is a continuous family of general elliptic closed characteristics γs for
each βs, s ∈ [0, 1]; moreover, their periods and Floquet multipliers do not depend
on s.

Proof. First of all, the condition that γ0 is general guarantees that 1 is not a
Floquet multiplier of γ0. This implies that one can continue the fixed point of
the Poincaré map, corresponding to γ0, uniquely as a fixed point for small s > 0,
corresponding to a periodic trajectory γs. Moreover, because everything changes
continuously with s, the new closed characteristics γs are general elliptic provided
s is small enough, say, for s ∈ [0, δ). In addition, since the period spectrum has
Lebesgue measure 0, the periods of γs are all the same.
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To each γs we associate the germ of the minimal action αs. Proposition 4.3 im-
plies αs = α0. It follows that the Birkhoff invariants of the Poincaré map — which
are the Taylor coefficients of α∗s (Theorem 3.2) — do not change along the defor-
mation. In particular, the Floquet multipliers stay fixed during the deformation.
This proves the assertion for s ∈ [0, δ).

Taking limits of the closed characteristics γs as s→ δ, we find a closed charac-
teristic for s = δ. Moreover, the Poincaré maps of γs converge in the C∞–topology
to the Poincaré map of γδ. Our assumption that the period spectrum remains un-
changed implies that γδ satisfies the conditions I.–III. from Section 3. On the
other hand, we know that the Birkhoff invariants of γδ are the same as those of
γ0. Thus, γδ is again a general elliptic closed characteristic.

This proves that the set of parameters s, for which there is a continuous family
of general elliptic closed characteristics, beginning with γ0, is open and closed in
[0, 1]. This finishes the proof of the proposition. �

Now we can translate our results for fixed points of symplectic mappings into
the language of contact geometry. The key point is that the minimal action is a
period spectrum invariant under continuous deformations of the contact form.

Theorem 4.5. Suppose βs, s ∈ [0, 1], is a continuous family of contact forms
on a three–dimensional manifold that preserves the period spectrum, such that β0
admits a general elliptic closed characteristic γ0.

Then there is a continuous family of general elliptic closed characteristics γs
whose half–sided germs of minimal actions do not depend on s. In particular, this
implies the following:
1. The Birkhoff invariants of γ0 and γ1 are the same.
2. The Poincaré map φ1 possesses an invariant circle of rotation number p/q,

consisting of periodic orbits, if and only if φ0 does.
3. If φ0 and φ1 each have an invariant circle of rotation number ω, their enclosed

areas agree.
4. If φ0 is integrable then φ1 is C0–integrable.

Proof. Proposition 4.4 implies that we have a family of minimal actions αs which,
by Proposition 4.3, are all equal. Thus, the (half–sided germ of the) minimal
action α = α0 is a period spectrum invariant.

We prove the four implications. Since the Birkhoff invariants are the Taylor
coefficients of α∗ (Theorem 3.2), they are invariant too. Moreover, φ1 possesses a
periodic invariant circle of rotation number p/q if and only if α is differentiable at
p/q; since α is invariant, the same holds true for φ0. A similar argument proves the
third statement because the area enclosed by an invariant circle is given by α′(ω).
Finally, if φ0 is integrable then α∗ is an integrable Hamiltonian (Theorem 3.4); in
particular, α is smooth, which implies the C0–integrability of φ1. �
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5. Geodesic flows near an elliptic closed geodesic

The geodesic flow on the unit tangent bundle of a smooth compact Riemannian
manifold N , respectively its conjugate Hamiltonian flow on T ∗1N , is a particular
example of a Reeb flow (Example 4.1). Therefore, all statements from the previous
section apply to geodesic flows on surfaces, where the period spectrum becomes
the classical length spectrum of N , i.e. the set of lengths of closed geodesics.

More precisely, let gs, s ∈ [0, 1], be a continuous family of Riemannian metrics
on a surface preserving the length spectrum. Assume that g0 possesses a general
elliptic closed geodesic γ0. Then, according to Proposition 4.4, we have a family
of general elliptic closed geodesics γs for gs, and, associated to it, the half–sided
germs of their minimal actions αs.

The next result is the analogue of Proposition 4.3.

Proposition 5.1. Under the above assumptions, one has α0 = α1, i.e., the
minimal action is a length spectrum invariant under continuous deformations of
the metric.

We may formulate a more pointed version of this as

“Invariance Principle”. Every quantity, geometric or not, that can be expressed
in terms of α is a length spectrum invariant under continuous deformations of the
metric.

Now, for geodesic flows, Theorem 4.5 translates as follows.

Theorem 5.2. Suppose gs, s ∈ [0, 1], is a continuous deformation of Riemannian
metrics on a two–dimensional manifold that preserves the length spectrum, such
that g0 admits a general elliptic closed geodesic γ0.

Then there is a continuous family of general elliptic closed geodesics γs whose
half–sided germs of minimal actions do not depend on s. In particular, this implies
the following:
1. The Birkhoff invariants of γ0 and γ1 are the same.
2. The Poincaré map φ1 possesses an invariant circle of rotation number p/q,

consisting of periodic orbits, if and only if φ0 does.
3. If φ0 and φ1 each have an invariant circle of rotation number ω, their enclosed

areas agree.
4. If φ0 is integrable then φ1 is C0–integrable.5

5 Steve Zelditch informed me that Giovanni Forni and he had proven the following stronger
version independently; see the announcement in [Zel1]. Suppose you are given an analytic,
rotationally symmetric metric g on S2 with certain nondegeneracy conditions; in this case, the
geodesic flow of g is completely integrable. Then, if h is another metric with the same Laplace
spectrum as g, the geodesic flow of h is completely C0–integrable.
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The problem to decide whether the length, respectively Laplace, spectrum
characterizes a manifold up to isometries (and in which class of metrics) is central
in Riemannian geometry. For instance, Kac’ famous question “Can one hear the
shape of a drum?” asked whether there are non–isometric domains in the plane
that have the same Laplace spectrum; it is well known that the answer is yes.
The Laplace spectrum is related to the length spectrum via trace formulae and
Poisson relations; we refer to [CdV1, GM, Zel1] for details and more references.
Zelditch [Zel2] showed that a special class of real analytic surfaces of revolution is
completely determined by the Laplace spectrum. The Birkhoff normal form is still
an essential ingredient for the proof but does not suffice to obtain the full result.
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