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1. Introduction

The universal central extensions (UCE for short) of a simple Lie algebra over
commutative rings were studied in [Gar] and [KL]. To be precise, let g be a
simple finite dimensional Lie algebra over the field of complex numbers C . It is
known that the UCE of the Lie algebra g ⊗ C[t±1] is a one-dimensional central
extension, and this is just an affine Lie algebra [Gar]. More generally, let A be
a commutative algebra over a commutative ring k satisfying 1

2 ∈ k , and let gk

be a simple finite dimensional Lie algebra over k , in the sense of [Che]. Then
the kernel of the UCE of the Lie algebra gk ⊗ A is Ω1

A/k/dA , the A -module of
Kähler differentials over k modulo exact forms, which was obtained by C. Kassel
and J.-L. Loday [KL] (see also [Kas]).

Representation theories of affine Lie superalgebras have been developed recently
e.g. [KW]. Moreover, the Serre relations of affine Lie superalgebras were obtained
by H. Yamane [Ya]. Although it might be known to the experts, it seems that
there is no literature in which an affine Lie superalgebra is realized as the UCE
of the Lie superalgebra g⊗ C[t±1] , where g is the underlying finite dimensional
simple Lie superalgebra. In this paper, we address ourselves to the description of
the UCE of the Lie superalgebra gk ⊗k A in the case when gk is a basic classical
Lie superalgebra, viz. a Lie superalgebra which has a non-degenerate, even, super-
symmetric, invariant bilinear form, classified by Kac [Kac1], [Kac2]. Namely, we
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first construct a Z -basis of g à la Chevalley [Che] (Theorem 3.9), and define the
Lie superalgebra gk . After that, we compute the UCE of the Lie superalgebra
gk ⊗A .

The main result of this paper can be stated as follows (Theorem 4.7): Let k
be a commutative ring satisfying certain conditions, and let A be a commutative
algebra over k . Let g be a basic classical Lie superalgebra. Then the UCE gk(A)
of gk ⊗A is given by

gk(A) '


gk ⊗A⊕ Ω1

A/k/dA if g is not of type A(n, n) ∀n
dk ⊗A⊕ Ω1

A/k/dA if g is of type A(1, 1)
sl(n+ 1, n+ 1)k ⊗A⊕ Ω1

A/k/dA if g is of type A(n, n) ∃n > 1
,

where d is the Lie superalgebra of type “ D(2, 1,−1) ” (see §2.4 ). In particular,
for k := C and A := C[t±1] , if g is not of type A(n, n) for any n , then the
UCE is just the one-dimensional central extension as in the non-super case.

Let us explain our approach to the proof of Theorems 3.9 and 4.7. Basically,
we follow the lines due to [Che] and [Gar]. That is, we first consider the rank
1 super-subalgebras of a basic classical Lie superalgebra, i.e., sl2 , osp(1, 2) and
sl(1, 1) , and then we consider the rank 2 subalgebras. But technical difficulties
arise owing to the following reasons:

1. There exists roots of length 0 .

2. sl(1, 1) is not perfect.

The first difficulty appears, when we define a Lie superalgebra gZ over Z . To de-
fine it, it is necessary to introduce the coroots appropriately. The second difficulty
appears, when we reduce the proof to the rank one case. We will resolve these
problems in §2.5 and §4.3 respectively. Finally we remark that the UCE of gk

is ḡk , i.e., as opposed to the non-super case, the UCE of gk does not necessarily
coincide with itself.

This paper is organized as follows: In Section 2 , we will collect some fundamen-
tal concepts for basic classical Lie superalgebras, e.g. Dynkin diagrams, Cartan
matrices and root systems. Further we will recall the classification theorem due
to V.G.Kac and the realizations of these Lie superalgebras. Since the Killing form
vanishes in some cases, in §2.4 we will describe an even supersymmetric invariant
bilinear forms on basic classical Lie superalgebras. And in §2.5 , we will define
the coroots and study their properties. In Section 3 , we will show the existence
of a Chevalley type base (Theorem 3.9). In Section 4 , will first summarize the
definitions and basic properties of central extensions in §4.1 . In §4.2 , we state
the main result of this paper (Theorem 4.7), and §4.3 is devoted to its proof. In
the appendix, we will list some data for the basic classical Lie superalgebras, for
the sake of readers convenience.
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2. Basic classical Lie superalgebras

In this section, we recall the definition of basic classical Lie superalgebras and
their fundamental properties. Through this section, we will work over the complex
number field C .

2.1. Definitions

We first list some notation for Z2 -graded vector spaces. Let V = V0̄ ⊕ V1̄ be a
Z2 -graded vector space. For σ ∈ Z2 , we say that a vector v ∈ Vσ is homogeneous
of degree σ if v ∈ Vσ . We set

|v| := σ.

Let Cm|n be the (m+ n) -dimensional Z2 -graded vector space such that

(Cm|n)0̄ ' Cm, (Cm|n)1̄ ' Cn.

We note that for Z2 -graded vector spaces V and W , HomC(V,W) is Z2 -graded
via

HomC(V,W)τ :=
⊕
σ∈Z2

HomC(Vσ,Wσ+τ ), τ ∈ Z2.

Let g := g0̄ ⊕ g1̄ be a Lie superalgebra over C , i.e., there exists a bilinear map
[ , ] : g× g→ g such that

1. [gσ, gσ′ ] ⊂ gσ+σ′ ,
2. [a, b] = −(−1)|a||b|[b, a] ,
3. [a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]] ,

where σ, σ′ ∈ Z2 and a, b, c ∈ g are homogeneous elements.
In this paper, we mainly deal with a class of Lie superalgebras called basic

classical Lie superalgebras. To recall the definition, we introduce the following
concepts:

Definition 2.1. For a bilinear form F : g× g→ C , we say that

1. F is even if (gσ, gσ′) = 0 for σ 6= σ′ ,
2. F is supersymmetric if (a, b) = (−1)|a||b|(b, a) ,
3. F is invariant if ([a, b], c) = (a, [b, c]) .
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We define a basic classical Lie superalgebra as follows [Kac2]:

Definiton 2.2. A finite dimensional Lie superalgebra g is called a basic classi-
cal Lie superalgebra if
D1. g is a simple Lie superalgebra i.e. has no non-trivial Z2 -graded ideal,
D2. g0̄ is a reductive Lie algebra,
D3.there exists a non-degenerate even supersymmetric invariant bilinear form on

g .

The classification of the basic classical Lie superalgebras was carried out in
[Kac1]. Let us recall the classification.

Theorem 2.3. The following list exhausts the basic classical Lie superalgebras
over C :
1. simple Lie algebras,
2. simple Lie superalgebras of type

A(m,n) m,n ≥ 0 and m+ n ≥ 1
B(m,n) m ≥ 0 and n ≥ 1

C(n) n ≥ 3
D(m,n) m ≥ 2 and n ≥ 1
D(2, 1; a) a 6= 0,−1

F(4)
G(3)

Realizations of Lie superalgebras of type A(m,n) , B(m,n) , C(n) and D(m,n)
will be described in the following subsections. Here we only make two remarks.

Remark 2.2.4. A(1, 1) ' C(2) and D(2, 1; a) ' D(2, 1; b) if and only if a and
b lie in the same orbit of the group generated by the transformations a 7→ −a− 1
and a 7→ 1/a , which is isomorphic to S3 .

Remark 2.2.5. g is said to be classical if the conditions D1 and D2 hold
[Kac1]. There are two series P(n) ( n ≥ 3 ) and Q(n) ( n ≥ 2 ) of classical
Lie superalgebras, which are not basic classical. Note that Q(n) has an odd
supersymmetric invariant form.

2.2. Examples

In this subsection, we will explicitly realize the Lie superalgebras of type A(m,n) ,
B(m,n) , C(n) and D(m,n) as subalgebras of the general linear Lie superalge-
bras.
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To do this, we first recall the general linear Lie superalgebra gl(m,n) . We put

gl(m,n) := HomC(Cm|n,Cm|n)

and regard it as a Lie superalgebra with the commutator

[a, b] := ab− (−1)|a||b|ba.

In the sequel, we fix a basis {e1, · · · , em, em+1, · · · , em+n} such that

(Cm|n)0̄ =
m⊕
i=1

Cei and (Cm|n)1̄ =
n⊕
i=1

Cem+i.

For an element a ∈ gl(m,n) , let

(
A B
C D

)

be the matrix representation of a with respect to the above basis. We define the
supertrace of a by

str a := tr A− tr D.

Moreover we set

sl(m,n) := {a ∈ gl(m,n)| str a = 0},

and call it a special linear Lie superalgebra. Notice that the identity matrix I2n is
an element of sl(n, n) , moreover CI2n is the center of sl(n, n) .

Example 2.6. The Lie superalgebra of type A(m,n) is defined by

A(m,n) :=
{

sl(m+ 1, n+ 1) if m 6= n
sl(m+ 1, n+ 1)/CI2n+2 if m = n

.

Next we recall the Lie superalgebras of type B(m,n) , C(n) and D(m,n) . For
this purpose, we introduce the ortho-symplectic Lie superalgebra osp(m,n) . We
set
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osp(2m+ 1, 2n) :=


A B u x1 x2
C −tA v y1 y2
−tv −tu 0 z1 z2
ty2

tx2
tz2 D E

−ty1 −tx1 −tz1 F −tD


}m
}m
}1
}n
}n︸ ︷︷ ︸

m

︸ ︷︷ ︸
m

︸︷︷︸
1

︸︷︷︸
n

︸︷︷︸
n

;

B,C are
skew-symmetric

matrices,
E,F are

symmetric matrices


,

osp(2m, 2n) :=


A B x1 x2
C −tA y1 y2
ty2

tx2 D E
−ty1 −tx1 F −tD


}m
}m
}n
}n︸ ︷︷ ︸

m

︸ ︷︷ ︸
m

︸︷︷︸
n

︸︷︷︸
n

;

B,C are
skew-symmetric

matrices,
E,F are

symmetric matrices


.

Example 2.7. The Lie superalgebras of type B(m,n) , C(n) and D(m,n) are
defined by

B(m,n) := osp(2m+ 1, 2n) (m ≥ 0, n ≥ 1),
D(m,n) := osp(2m, 2n) (m ≥ 2, n ≥ 1),

C(n) := osp(2, 2n− 2) (n ≥ 3).

2.3. Contragradient Lie superalgebras

In this subsection, we will define all basic classical Lie superalgebras as contragra-
dient Lie superalgebras.

We start with the definition of contragradient Lie superalgebras. The contra-
gradient Lie superalgebras are defined from the following data:

Let I be the index set {1, 2, · · · , n} , and τ a subset of I . Let A = (ai,j)i,j∈I

be a complex n×n matrix of rank l . Let h̃ be a (2n− l) -dimensional C -vector
space and Q̃ the free abelian group of rank n with basis Π̃ := {α̃i|i ∈ I} ⊂ h̃∗ .
We can choose a subset {h̃i|i ∈ I} of h̃ such that
1. {h̃i|i ∈ I} is linearly independent,
2. α̃i(h̃j) = aj,i for any i , j ∈ I .

Using this data, we define the contragradient Lie superalgebra.
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Definition 2.8. The contragradient Lie superalgebra g̃ is the Lie superal-
gebra which satisfies the following conditions:
C1. g̃ =

⊕
α̃∈Q̃

g̃α̃ : Q̃ -graded.

C2.There exist generators {ẽi, f̃i, h̃|i ∈ I, h ∈ h̃} such that

g̃0 = h̃, g̃α̃i = Cẽi, g̃−α̃i = Cf̃i, |h̃| := 0̄, |ẽi| = |f̃i| =
{

1̄ if i ∈ τ,
0̄ if i 6∈ τ, ,

and satisfy commutation relations

[h̃, h̃′] = 0 (h̃, h̃′ ∈ h̃), [ẽi, f̃j] = δi,j h̃i,

[h̃, ẽi] = α̃i(h̃)ẽi, [h̃, f̃i] = −α̃i(h̃)f̃i.

C3.Every Q̃ -graded ideal r of g̃ such that r ∩ h̃ = {0} is zero.

The matrix A is called the Cartan matrix of g̃ . We set Q̃+ :=
∑
i∈I Z≥0α̃i

and

∆̃ :=
{
α̃ ∈ Q̃ \ {0}|g̃α̃ 6= {0}

}
,

∆̃+ :=
{
α̃ ∈ Q̃+ \ {0}|g̃α̃ 6= {0}

}
,

∆̃+
σ :=

{
α̃ ∈ Q̃+ \ {0}|g̃σ ∩ g̃α̃ 6= {0}

}
.

It is easy to see that g̃ has a triangular decomposition

g̃ = ñ
+ ⊕ h̃⊕ ñ

−

ñ
± :=

⊕
±α̃∈∆̃+

g̃α̃

 ,

and hence ∆̃ = ∆̃+ t (−∆̃+) . Furthermore, by definition, we have ∆̃+ = ∆̃+
0̄ t

∆̃+
1̄ (disjoint union).

On the simplicity of a contragradient Lie superalgebra, we have the following
proposition [Kac1]

Proposition 2.9. Let g̃ be a contragradient Lie superalgebra with the Cartan
matrix A = (ai,j) and let g̃′ be the derived subalgebra [g̃, g̃] of g̃ . We denote
the center of g̃ by C . Then we have
1. C = {

∑
i∈I cihi|ci ∈ C such that

∑
i∈I ai,jci = 0 (∀j ∈ I)} ⊂ g̃′ .

2. g̃′/C is graded simple in the Q̃ -grading if and only if A is indecomposable.

The following theorem due to V.G. Kac tells us which Cartan matrix corre-
sponds to a basic classical Lie superalgebra.

Theorem 2.10. [[Kac1]] The Lie superalgebra g := g̃′/C with a Cartan ma-
trix whose Dynkin diagram is one of those in Appendix A is a basic classical Lie
superalgebra.
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Corollary 2.11. Let A be a Cartan matrix of a basic classical Lie superalgebra.
Then we have

C =

{
C
[∑n

i=1 i(h̃i − h̃2n+2−i)− (n+ 1)h̃n+1

]
if A is of type A(n, n) (∃n)

{0} otherwise
.

In the sequel, we will need the following notation. We denote the canonical
projection g̃′ → g by φ . We set h := φ(g̃′ ∩ h̃) and call it a Cartan subalgebra of
g . Let us denote the image of x̃ ∈ g̃′ under the map φ by x . The dual of the
map φ|

h̃∩g̃′ defines an inclusion ι : h∗↪→(h̃ ∩ g̃′)∗ . Similarly, we define the map
ψ : h̃∗ � (h̃ ∩ g̃′)∗ as the dual of the natural inclusion h̃ ∩ g̃′↪→h̃ . Since α̃|C ≡ 0
for any α̃ ∈ Q̃ , we can regard ψ(Q̃) ⊂ Imι . Therefore, for α̃ ∈ Q̃ , we define
α ∈ h by α := (ι−1 ◦ ψ)(α̃) and set Q := (ι−1 ◦ ψ)(Q̃) . We also define

∆ := (ι−1 ◦ ψ)(∆̃), ∆+ := (ι−1 ◦ ψ)(∆̃+), ∆+
σ := (ι−1 ◦ ψ)(∆̃+

σ ).

We call αi := (ι−1 ◦ψ)(α̃i) (resp. hi := φ(h̃i) ) ( i ∈ I ) the i -th simple root (resp.
simple coroot), and set Π := {αi|i ∈ I} . For α̃ ∈ Q̃ , we also set gα := φ(g̃α̃).

Here we notice that, from Corollary 2.11, in the case of A(n, n) , we have
n∑
i=1

i(αi + α2n+2−i) + (n+ 1)αn+1 = 0. (1)

Let us recall some properties of the root systems of the basic classical Lie
superalgebras. The following proposition is known:

Proposition 2.12. [[Kac1]] If g is a basic classical Lie superalgebra which is not
of type A(1, 1) , then dim gα = 1 for any α ∈ ∆ .

The triangular decomposition of g̃ yields

g = n+ ⊕ h⊕ n−

n± :=
⊕
±α∈∆+

gα

 ,

and hence ∆ = ∆+ t (−∆+) . Furthermore, ∆+ = ∆+
0̄ t ∆+

1̄ holds. Hence, in
the sequel, we denote the parity of gα by |α| .

Remark 2.2.13.
1. For the basic classical Lie superalgebra g of type A(1, 1) , the relations α1 +

2α2+α3 = 0 , and hence α1 +α2 = −α2−α3 , α1 +α2+α3 = −α2 hold. These
roots are distinguished in the corresponding contragradient Lie superalgebra
g̃ . Namely, we have dim g̃α̃ = 1 for any α̃ ∈ ∆̃ .

2. In the case of A(n, n) for n ∈ 2Z>0 , Q ⊂ h∗ itself is not Z2 -graded. Never-
theless, we can define the Z2 -gradation on ∆ .
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2.4. Non-degenerate even supersymmetric bilinear form

In this subsection, we will describe even supersymmetric invariant bilinear forms
on the basic classical Lie superalgebras explicitly.

Let g be one of sl(m,n) and osp(m,n) . We define (·, ·) : g× g→ C by

(a, b) := str(ab) (a, b ∈ g),

where we regard g as a subalgebra of gl(m,n) . By definition, we immediately
see that

Proposition 2.14. (·, ·) is an even supersymmetric invariant bilinear form on
g .

As a corollary, we have

Corollary 2.15. The radical of the form (·, ·) is a Z2 -graded ideal of g .

Therefore, in addition if g is a simple Lie superalgebra, then rad(·, ·) = {0} .
Notice that, in the case where g = sl(n+ 1, n+ 1) , g is not simple. But in this
case we have

Lemma 2.16. Suppose that g = sl(n+1, n+1) . Then we have CI2n+2 ⊂ rad(·, ·) ,
and hence (·, ·) defines an even supersymmetric bilinear form on A(n, n) := sl(n+
1, n+ 1)/CI2n+2 .

Accordingly we have

Proposition 2.17. Let g be a basic classical Lie superalgebra of type A(m,n) ,
B(m,n) , C(m,n) or D(m,n) . The pairing (·, ·) : g×g→ C defined by (a, b) :=
str(ab) gives a non-degenerate even supersymmetric invariant bilinear form on g .

Proof. Since g is simple, it follows from Corollary 2.15 that rad(·, ·) = {0} .
Hence (·, ·) is non-degenerate. �

Hence the supertrace gives a non-degenerate even supersymmetric bilinear form
on g , if g is of type A(m,n), B(m,n), C(m,n) or D(m,n) . Generically, the
Killing form defined below gives such a form on g .

Definition 2.18. Let g be a finite dimensional Lie superalgebra over C . The
bilinear form F : g × g → C such that F(a, b) := str(ad(a) ◦ ad(b)) is called the
Killing form on g .

By definition, the Killing form is an even supersymmetric invariant bilinear
form on g . In the case where g is a basic classical Lie superalgebra, the Killing
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form is non-degenerate if g is not of type A(n, n) , D(n + 1, n) and D(2, 1; a) .
Hence if g is of type F(4) or G(3) , then the Killing form gives an even super-
symmetric bilinear form.

Since non-degenerate even supersymmetric bilinear forms on A(n, n) and D(n+
1, n) are given by the supertrace as above, it is enough to describe it for D(2, 1; a) .

Here let us discuss an even supersymmetric bilinear form on D(2, 1; a) . At
the same time, we consider the case of D(2, 1;−1) , which is not a simple Lie
superalgebra, but D(2, 1;−1) gives the universal central extension of A(1, 1) . To
give an explicit even supersymmetric invariant bilinear form (·, ·) on D(2, 1; a) ,
we fix its root vectors. For the Cartan matrix and the root system of D(2, 1; a) ,
see Appendix A. From now on, let us assume that a 6= 0 . We set

Xα1 := e1, Xα2 := e2, Xα3 := e3,
X−α1 := f1, X−α2 := f2, X−α3 := f3,
Xα1+α2 := [Xα1 , Xα2 ], X−α1−α2 := [X−α2 , X−α1 ],
Xα2+α3 := [Xα3 , Xα2 ], X−α2−α3 := [X−α2 , X−α3 ],
Xα1+α2+α3 := [Xα1 , Xα2+α3 ], X−α1−α2−α3 := [X−α2−α3 , X−α1 ],

X±(α1+2α2+α3) :=

{
± 1
a+1 [X±(α1+α2+α3), X±α2 ] if a 6= −1
±[X±(α1+α2+α3), X±α2 ] if a = −1

.

(2)

The bilinear form (·, ·) on D(2, 1; a) is explicitly given by

(h1, h1) = 2, (h1, h2) = 1, (h1, h3) = 0,
(h2, h2) = 0, (h2, h3) = 1, (h3, h3) = 2

a ,
(Xα1 , X−α1) = 1, (Xα2 , X−α2) = −1, (Xα3 , X−α3) = 1

a ,
(Xα1+α2 , X−α1−α2) = −1, (Xα2+α3 , X−α2−α3) = −1,
(Xα1+α2+α3 , X−α1−α2−α3) = −1,

(Xα1+2α2+α3 , X−α1−2α2−α3) =

{
− 1
a+1 if a 6= −1

0 if a = −1
.

(3)

Notice that if a 6= −1 , then (·, ·) is non-degenerate on D(2, 1; a) .
For later use, we introduce Lie superalgebras d and ḡ . Let d be the Lie

superalgebra of type D(2, 1;−1). From the commutation relations of d , it is easy
to see that the vectors X±(α1+2α2+α3) are central elements of d and further

0 −→
⊕
µ=±1

CXµ(α1+2α2+α3) −→ d −→ sl(2, 2) −→ 0 (4)

is exact. Moreover, for a basic classical Lie superalgebra g , we introduce the Lie
superalgebra ḡ by

ḡ :=


g if g is not of type A(n, n) (∀n)
d if g is of type A(1, 1)
sl(n+ 1, n+ 1) if g is of type A(n, n) (∃n > 1)

,

and denote the canonical projection ḡ −→ g by π . Then we have an exact
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sequence
0 −→ C⊕m −→ ḡ −→ g −→ 0, (5)

where

m :=


0 if g is not of type A(n, n) (∀n)
3 if g is of type A(1, 1)
1 if g is of type A(n, n) (n ≥ 2)

.

By abuse of notation, we will sometimes use the same symbols to denote root
vectors of g and ḡ .

Remark 2.2.19. As was seen in this subsection, ḡ has an even supersymmet-
ric invariant bilinear form (·, ·) , and further by Corollary 2.15 and (3), we have
Rad(·, ·) = kerπ .

2.5. Coroots

In this subsection, we will define the coroot Hα for each α ∈ ∆ , and study their
property.

Let A := (ai,j)i,j∈I be the Cartan matrix of a basic classical Lie superalgebra g

and let D := diag(εi)i∈I and B := (bi,j)i,j∈I be diagonal and symmetric matrices
such that A = DB . We see that

εjai,j = εiaj,i. (6)

In the sequel, we will fix the Dynkin diagrams as in Appendix A. Hence an odd
simple root is unique, and is denoted by αi0 . We set

W := 〈ri|i ∈ I \ {i0}〉,
where ri denotes the i -th simple reflection. Note that W is a subgroup of the
Weyl group W of g , i.e., the Weyl group of g0̄ .

For each α ∈ ∆ , let us define

εα :=


2

(α, α)
if (α, α) 6= 0

εi0 if (α, α) = 0
.

By the Weyl group invariance of (·, ·) , we have

εwα = εα,
∀α ∈ ∆, ∀α ∈W. (7)

Now we define the coroots as follows:

Definition 2.20. For α =
∑
i∈I kiαi ∈ ∆ , we set

Hα := εα
∑
i∈I

kiε
−1
i hi, (8)
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where hi is the i -th simple coroot. We call Hα the coroot associated with a
root α .

By definition, we have
H−α = −Hα (9)

and Hαi = hi . Moreover, the following proposition holds:

Proposition 2.21. For any α ∈ ∆ and w ∈W , we have

wHα = Hwα.

Proof. Suppose that αj ∈ ∆+ ∩Π and set α :=
∑
i kiαi . Then, one has

rj(α) =
∑

ki(αi − aj,iαj)

=
∑
i6=j

kiαi −

kj +
∑
i6=j

kiaj,i

αj .

On the other hand, it follows from (6), (7), and the definition of Hα (8) that

rjHα = εα
∑
i

kiε
−1
i (Hαi − ai,jHαj )

= εrjα

∑
i6=j

kiε
−1
i Hαi − ε−1

j (kj +
∑
i6=j

kiaj,i)Hαj

 .

Thus we have rjHα = Hrjα and the proposition is proved for w ∈W . Next let
us prove the proposition for a generator say rβ of W that is not an element of
W . In particular, we can choose the root β as follows:

type of g β
B(m,n) 2δn = 2αn + 2αn+1 + · · ·+ 2αm+n

D(m,n) 2δn = 2αn + 2αn+1 + · · ·+ 2αm+n−2 + αm+n−1 + αm+n

D(2, 1 : a) 2ε2 = α1 + 2α2 + α3

F(4) δ1 = 2α1 + 3α2 + 2α3 + α4

G(3) 2δ1 = 2α1 + 4α2 + 2α3

We remark that the cases A(m,n) and C(n) are excluded, since the group W
coincides with the group W . From the above computation and (7), we have only
to check

εββ(Hαi ) = εiαi(Hβ).

This can be done through case-by-case calculation. �
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Lemma 2.22. For any γ ∈ ∆+ such that (γ, γ) = 0 , we have γ ∈Wαi0 .

Proof. Suppose that γ =
∑
i∈I kiαi ∈ ∆+ such that (γ, γ) = 0 . We set htγ :=∑

i∈I ki . We prove the lemma by induction on htγ . If htγ = 1 , then γ = αi0 .
Hence we may assume that htγ > 1 . Since

rs(γ) = γ − 2(γ, αs)
(αs, αs)

αs,

it suffices to show that there exists s ∈ I \ {i0} such that htγ > ht(rsγ) , i.e.,

2(γ, αs)
(αs, αs)

> 0.

Here let us take εi, δj as in Appendix A. For each γ ∈ ∆+ , we may choose the
simple root αs as follows:

type of g γ ∈ ∆ s.t. (γ, γ) = 0 simple root αs

A(m,n) εi − δj ((i, j) 6= (m+ 1, 1))
{
εi − εi+1 (i 6= m+ 1)
δj−1 − δj (j 6= 1)

B(m,n) δi + εj

{
εj − εj+1 (j 6= m)
εm (j = m)

(m 6= 0) δi − εj ((i, j) 6= (n, 1))
{
δi − δi+1 (i 6= n)
εj−1 − εj (j 6= 1)

C(n) ε1 + δi

{
δi − δi+1 (i 6= n− 1)
2δn−1 (i = n− 1)

ε1 − δi (i 6= 1) δi−1 − δi(i 6= 1)

D(m,n) δi + εj

{
εj − εj+1 (j 6= m)
εm−1 + εm (j = m)

δi − εj ((i, j) 6= (n, 1))
{
δi − δi+1 (i 6= n)
εj−1 − εj (j 6= 1)

D(2, 1; a) ε2 + ε1 ± ε3 2ε1
ε2 − ε1 + ε3 2ε3

F(4) 1
2 (δ1 − ε1 ± ε2 ± ε3) −ε1
1
2 (δ1 + ε1 − ε2 ± ε3) ε1 − ε2
1
2 (δ1 + ε1 + ε2 − ε3) ε2 − ε3

G(3) δ1 − ε1, δ1 + ε2, δ1 − ε3 ε2
δ1 − ε2, δ1 + ε3, ε3 − ε2

Notice that B(0, n) has no root of length zero. Thus we complete the proof. �

Lemma 2.23. For α ∈ ∆ , we have

α(Hα) =

{
2 if (α, α) 6= 0
0 if (α, α) = 0

.
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Proof. By (9), we may assume that α ∈ ∆+ . If α ∈W(∆0̄ ∩Π) , then the lemma
follows from Proposition 2.21. If (α, α) = 0 , then the lemma is a consequence
of Proposition 2.21 and Lemma 2.22. If α ∈ ∆+

1̄ such that 2α ∈ ∆+
0̄ , (i.e.,

(α, α) 6= 0 ), then one can check that 2α ∈ ∆+
0̄ \W(∆0̄ ∩Π) . Hence it is enough

to prove the lemma for α ∈ ∆+
0̄ \W(∆0̄ ∩Π) .

Now let us fix β as in the proof of Proposition 2.21. Then it is easy to see
that α ∈Wβ , and hence the lemma again follows from Proposition 2.21, since in
these cases, one can easily check that β(Hβ) = 2 . �

3. Chevalley basis of basic classical Lie algebras

In this section, we will show the existence of a Chevalley basis of the basic clas-
sical Lie superalgebras g in a way similar to [Che]. (In the case of A(1, 1) , we
once consider the contragradient Lie superalgebra g̃ instead of g and take the
projection of its derived subalgebra.) For later use, we also present a Chevalley
bases of ḡ .

For α =
∑
i∈I kiαi ∈ ∆ , we set

σα :=
{
−1 if α ∈ −∆+

1̄
1 otherwise

, (10)

and by definition we have
σ−α = (−1)|α|σα. (11)

For each α ∈ ∆ , choose a root vector Xα ∈ gα so that they satisfy

[Xα, X−α] = σαHα, (12)

then we have for these root vectors, we define Nα,β ∈ C ( α, β ∈ ∆ ) by

Nα,β :=

{
the coefficient of Xα+β in [Xα, Xβ] if α+ β ∈ ∆
0 if α+ β 6∈ ∆

(13)

By direct calculation, we have

Lemma 3.1. For each α ∈ ∆ , we take a non-zero numbers uα ∈ C and set
X ′α := uαXα . Using {X ′α} , we define the structure constants {N ′α,β} as in
(13). Suppose that [X ′α, X ′−α] = σαHα . Then we have uαu−α = 1 and N ′α,β =
uαuβu

−1
α+βNα,β .

This lemma says that Nα,βN−α,−β does not depend on the choice of the root
vectors that satisfy the condition (12). Thus we first compute Nα,βN−α,−β .

We fix α, β ∈ ∆ . Here we consider the following three cases:
Case 1: α ∈ ∆0̄ .
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Case 2: α ∈ ∆1̄ such that (α, α) 6= 0 .
Case 3: α ∈ ∆1̄ such that (α, α) = 0 .

Let p and q be positive integers such that

β + iα ∈ ∆ t {0} if and only if − p ≤ i ≤ q.

Lemma 3.2. In the above three cases, we have
Case 1: Nα,βN−α,α+β = q(p+ 1) .

Case 2: Nα,βN−α,α+β = σα ×
{
−q if p ≡ 0 (mod 2)
p+ 1 if p ≡ 1 (mod 2) .

Case 3: Nα,βN−α,α+β = σαβ(Hα)δ(2)
p,0 , where

δ
(2)
p,0 =

{
1 if p ≡ 0 (mod 2)
0 if p ≡ 1 (mod 2) .

Proof. By the Jacobi identity

[[Xα, X−α], Xβ] = [Xα, [X−α, Xβ ]] + (−1)|α||β|[[Xα, Xβ], X−α],

we have
σαβ(Hα) = Nα,β−αN−α,β + (−1)|α||β|Nα,βNα+β,−α. (14)

Using (14), we will show the lemma in each case.
For Case 1, (14) can be written as

β(Hα) +Nα,β−αNβ,−α = Nα,βNα+β,−α.

Replacing β to β − iα for 0 ≤ i ≤ p , we consider the following summation:
p∑
i=0

{
(β − iα)(Hα) +Nα,β−(i+1)αNβ−iα,−α

}
=

p∑
i=0

Nα,β−iαNβ−(i−1)α,−α.

By direct computation, we obtain

(p+ 1)β(Hα)− 1
2
p(p+ 1)α(Hα) +Nα,β−(p+1)αNβ−pα,−α = Nα,βNα+β,−α.

Notice that β(Hα) = p− q , and β − (p+ 1)α 6∈ ∆ i.e. Nα,β−(p+1)α := 0 . Hence
the lemma follows from Lemma 2.23 for Case 1 .

For Case 2, (14) can be written as

σαβ(Hα) + (−1)|β|Nα,β−αNβ,−α = (−1)|β|Nα,βNα+β,−α.

Similarly to Case 1, we consider the following summation:
p∑
i=0

(−1)i
{
σα(β − iα)(Hα) + (−1)|β−iα|Nα,β−(i+1)αNβ−iα,−α

}
=

p∑
i=0

(−1)|β−iα|+iNα,β−iαNβ−(i−1)α,−α.
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Then we have

σα

p∑
i=0

(−1)i(β − iα)(Hα) + (−1)|β|Nα,β−(p+1)αNβ−pα,−α = (−1)|β|Nα,βNα+β,−α.

By Lemma 2.23, we obtain
p∑
i=0

(−1)i(β − iα)(Hα) =
{
−q if p ≡ 0 (mod 2)
p+ 1 if p ≡ 1 (mod 2) ,

and hence we have the desired result.
For Case 3, by the same argument as in Case 2, we have

σα

p∑
i=0

(−1)i(β − iα)(Hα) = (−1)|β|Nα,βNα+β,−α.

Thus Lemma 2.23 implies the conclusion for Case 3 and completes the proof. �

Lemma 3.3.

N−α,α+β = (−1)|α|
σα+β

σβ

εα+β

εβ
N−β,−α

Proof. The Jacobi identity

[[X−α, X−β], Xα+β ] = [X−α, [X−β , Xα+β]] + (−1)|β|(|α|+|β|)[[X−α, Xα+β], X−β ]

implies that

N−α,−βσ−α−βH−α−β = N−β,α+βσ−αH−α + (−1)|β|(|α|+|β|)N−α,α+βσβHβ .

Combining (11) and (9), we have

(−1)|β||α|+|β|+|α|N−β,−ασα+βHα+β = −(−1)|α|N−β,α+βσαHα

+(−1)|β|(|α|+|β|)N−α,α+βσβHβ .
(15)

On the other hand, by definition, we have

ε−1
α+βHα+β = ε−1

α Hα + ε−1
β Hβ (16)

for α, β, α+ β ∈ ∆ .
In the case where Hα and Hβ are linearly independent, substituting Hα+β

in (15) by (16) and comparing the coefficients of Hβ , we obtain the conclusion.
In the case where Hα and Hβ are linearly dependent, if α, β, α + β ∈ ∆ ,

then β = − 1
2α , α or −2α . From the facts that 1

4ε 1
2α

= εα = 4ε2α and
1
2H 1

2α
= Hα = 2H2α , the lemma is proved. �

Lemma 3.4. Suppose that α, β ∈ ∆ such that α+ β ∈ ∆ . Then we have
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L1.Case: α ∈ ∆0̄ or β ∈ ∆0̄ ,

Nα,βN−β,−α =
σασβ
σα+β

(p+ 1)2. (17)

L2.Case: α, β ∈ ∆1̄ such that (α, α) 6= 0 or (β, β) 6= 0 ,

Nα,βN−β,−α = −σασβ
σα+β

(p+ 1)2. (18)

L3.Case: α, β ∈ ∆1̄ such that (α, α) = 0 and (β, β) = 0 , we have

Nα,βN−β,−α = −σασβ
σα+β

β(Hα)2. (19)

Proof. If α and β are linearly dependent, then the lemma follows from the proof
of Lemma 3.3. Hence we may assume that α and β are linearly independent.
Since certain combinations of the roots α and β form the root system of a rank
two basic classical Lie superalgebra, we can reduce the proof of these formulas to
the rank two cases. The following lemma completes the proof. �

Lemma 3.5. Let g be a rank two basic classical Lie superalgebra (rank two Lie
algebras A2 , B2 and G2 are included) and ∆ the root system of g . Then for
α, β ∈ ∆ such that α+ β ∈ ∆ , the formulas (17), (18) or (19) hold.

Proof. Since in the case of A2 , B2 and G2 , the lemma is proved in [Che], we
may assume that g is not of type A2 , B2 and G2 .

First we notice that in the case of L1 (resp. L2 ), we may assume that
α ∈ ∆0̄ (resp. α ∈ ∆1̄ ) such that (α, α) 6= 0 without loss of generality. Under
this assumption, we will show that

L1.N−α,α+β =
σα+β

σβ
q(p+ 1)−1N−β,−α.

L2.N−α,α+β = (−1)p
σα+β

σβ
q(p+ 1)−1N−β,−α.

L3.N−α,α+β = −σα+β

σβ
β(Hα)−1N−β,−α.

As in [Che], we can reduce to the following cases:

L1.α ∈ Π ∩∆0̄ and β ∈ ∆+ such that α+ β ∈ ∆ .
L2.α ∈ Π ∩∆1̄ such that (α, α) 6= 0 and β ∈ ∆+

1̄ such that α+ β ∈ ∆ .

L3.α ∈ Π ∩∆1̄ and β ∈ ∆+
1̄ such that (α, α) = 0 = (β, β) and α+ β ∈ ∆ .

The following table shows the complete list of such α and β :
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Dynkin {εα|α ∈ ∆+} (α, β)
α1
h

α2⊗
λ εα1 = ±1, εα2 = εα1+α2 = ∓λ. (α1, α2)

α1⊗ α2⊗
λ εα1 = εα2 = ±λ, εα1+α2 = ±1. (α1, α2)

α1
h⇐=

α2⊗
1

εα1 = 2, εα2 = ε2α1+α2 = −1,
εα1+α2 = −2, ε2α1+2α2 = − 1

2

(α1, α2), (α1, α1 + α2),
(α2, 2α1 + α2)

α1
x⇐=

α2⊗
−1

εα1 = −2, εα2 = ε2α1+α2 = −1,
εα1+α2 = 2, ε2α1 = − 1

2
(α1, α2)

α1
h=⇒

α2
x εα1 = εα1+2α2 = 1, εα2 = εα1+α2 = 2,

ε2α2 = ε2α1+2α2 = 1
2

(α1, α2), (α1, α1 + 2α2),
(α1, 2α2), (α2, α1 + α2)

Now the above formula can be shown by case by case checking and the lemma
follows from Lemma 3.2. �

Remark 3.3.6. For each basic classical Lie superalgebra g , λ in the above proof
is given as follows:

type of g λ type of g λ
A(m,n) ±1 D(2, 1; a) −1, a+ 1,−a

C(n) −1, −2 F(4) −1, −2, 3
B(m,n) ±1, 2 G(3) − 1

2 , −
3
2 , 2

D(m,n) ±1, −2

Let θ : g → g be an anti-involution of g such that θ(gα) ⊂ g−α and let cα
( α ∈ ∆ ) be a non-zero constant such that θXα = cαX−α

Lemma 3.7. We have θ|h = idh and cαc−α = 1 for any α ∈ ∆ .

Proof. We first show the first assertion. For H ∈ h , by applying θ to [H,Xβ] =
β(H)Xβ , we obtain

[θXβ , θH] = β(H)θXβ .

Since θXβ ∈ g−β , we conclude that θH = H .
Next we show the second assertion. By applying θ to [Xα, X−α] = σαHα , we

have

[θX−α, θXα] = cαc−α[Xα, X−α] = σαHα.
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Thus we obtain cαc−α = 1 . �

In the sequel, for each α ∈ ∆ let us take a non-zero constant u±α ∈ C as

u2
α =

{
cα if α ∈ ∆0̄

−
√
−1σαcα if α ∈ ∆1̄

, and uαu−α = 1.

Lemma 3.8. If we set X̃α := u−1
α Xα for each α ∈ ∆ , then we have

θX̃α =
{
X̃−α if |α| = 0√
−1σαX̃−α if |α| = 1

. (20)

Proof. For α ∈ ∆0̄ , we have

θX̃α = u−1
α cαX−α = uαX−α = u−1

−αX−α = X̃−α.

For α ∈ ∆1̄ , we have

θX̃α = u−1
α cαX−α =

√
−1σαuαX−α =

√
−1σαu−1

−αX−α =
√
−1σαX̃−α.

Hence we have proved the lemma. �

From Lemma 3.8, we may assume that the root vectors {Xα} satisfy the
formulas (20). Applying θ to the both sides of [Xα, Xβ ] = Nα,βXα+β , we have

σασβ(−1)
1
2 (|α|+|β|)N−β,−αX−α−β = (−1)

1
2 |α+β|Nα,βσα+βX−α−β .

Hence we have

N−β,−α = (−1)
1
2 (|α+β|−|α|−|β|)σα+β

σασβ
Nα,β .

Combining this formula with Lemma 3.4, we obtain the main result of this section,
that can be stated as follows:

Theorem 3.9.
1. Let g be a basic classical Lie superalgebra over C . For each α ∈ ∆ , we define
σα and Hα as in (10) and (8). Then there exist root vectors {Xα ∈ gα|α ∈ ∆}
such that

I) [Xα, X−α] = σαHα ,
II) [Xα, Xβ ] = Nα,βXα+β ,

where the structure constants {Nα,β} satisfy the following conditions:

i) If α ∈ ∆0̄ or β ∈ ∆0̄ (we assume that α ∈ ∆0̄ ) and α+ β ∈ ∆ , then

N2
α,β = (p+ 1)2.

ii) If α, β ∈ ∆1̄ satisfy (α, α) 6= 0 or (β, β) 6= 0 (we assume that (α, α) 6=
0 ) and α+ β ∈ ∆ , then

N2
α,β = (p+ 1)2. (21)
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iii) If α, β ∈ ∆1̄ satisfy (α, α) = 0 and (β, β) = 0 and α+ β ∈ ∆ , then

N2
α,β = β(Hα)2.

Here p := max{i|β − iα ∈ ∆} .

2. Let {X ′α|α ∈ ∆} be another set of root vectors satisfying the above conditions
and {N ′α,β|α, β ∈ ∆} be their structure constant defined as (13). Then there
exist {uα|α ∈ ∆} ⊂ {±1} such that uαu−α = 1 and

N ′α,β = uαuβu
−1
α+βNα,β ,

for any α, β ∈ ∆ .

Proof. The second assertion can be proved by the same argument as in [Che]. �

In the sequel, we call the set {Hα, Xα|α ∈ ∆} a Chevalley basis of g if it
satisfies the conditions in Theorem 3.9.

From the Appendix, we obtain

Corollary 3.10. Let g be a basic classical Lie superalgebra over C . In the case
where g is of type D(2, 1; a) , we assume that a ∈ Z \ {0,−1} . Then there exists
a Z -form gZ of g .

Thus for a basic classical Lie superalgebra g satisfying the conditions in Corol-
lary 3.10, we can define the Lie superalgebra gk over an arbitrary commutative
ring k by

gk := k ⊗Z gZ.

Here we remark on rank two subalgebras of basic classical Lie superalgebras.

Remark 3.3.11. There exist the following isomorphisms of corresponding Lie
superalgebras gZ over Z :

h ⊗
λ

' h ⊗
−λ

' ⊗ ⊗
λ

' ⊗ ⊗
−λ

Finally, we define a Chevalley basis of the Lie superalgebra ḡ , for type A(n, n) .
In the case where ḡ = sl(n + 1, n + 1) for n ≥ 2 , from the proof of Theorem
3.9, there exists a Chevalley basis, i.e., coroots {Hα|α ∈ ∆} and root vectors
{Xα|α ∈ ∆} which satisfy the conditions in Theorem 3.9. As stated before, we
use the same notation to denote a Chevalley basis of g and ḡ . In the case where
ḡ = d , for the basis of d defined as in (2), the structure constants are integers.
Though it does not satisfy the conditions in Theorem 3.9, we also call this basis
the Chevalley basis of d . We have
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Lemma 3.12. Let g be a basic classical Lie superalgebra of type A(n, n) for
some n . Then there exists a Z -form ḡZ of the Lie superalgebra ḡ .

For a commutative ring k , we also define the Lie superalgebra ḡk over k by

ḡk := k ⊗Z ḡZ.

4. Universal central extensions

4.1. General remarks

In the first subsection, we collect definitions and general properties of central
extensions of Lie superalgebras.

Let k be a commutative ring and a a Lie superalgebra over k . From now on,
we assume that 1

2 ∈ k .
To define the universal central extension of a , we recall some definitions. We

say that a Lie superalgebra a is perfect if a = [a, a] . A short exact sequence of
Lie superalgebras

0 −→ c −→ u
α−→ a −→ 0 (22)

is called a central extension of a by c if c is a commutative Lie algebra over k
i.e. c1̄ = {0} and [c, u] = 0 . c is called the kernel of the central extension (22).
We sometimes denote the above central extension by α : u→ a .

Next we introduce an equivalence relation between central extensions. Let V
be a k -module. Two central extensions

0 −→ V −→ a1 −→ a −→ 0,
0 −→ V −→ a2 −→ a −→ 0

are said to be equivalent if there exists a homomorphism of Lie superalgebras from
a1 to a2 such that the diagram

0 // V // a1 //

��

a // 0

0 // V // a2 // a // 0

commutes. The set of equivalence classes of such central extensions are known to
be parameterized by the second cohomology group H2(a,V) . To be precise, we
first introduce Z2(a,V) and B2(a,V) as follows. Set

Z2(a,V) :=

f : a× a→ V

∣∣∣∣∣∣
(i) f(x, y) = −(−1)|x||y|f(y, x)
(ii) f(x, [y, z])− f([x, y], z)

−(−1)|x||y|f(y, [x, z]) = 0
(∀x, y, z ∈ a)


and

B2(a,V) :=
{
f : a× a→ V

∣∣∣∣ f(x, y) = g([x, y])
for some k-linear map g : a→ V

}
.
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Lemma 4.1. Let V be a k -module. The second cohomology group H2(a,V) :=
Z2(a,V)/B2(a,V) are in one-to-one correspondence with the set of the equivalence
classes of the central extensions of a by V .

Proof. First we notice that for each central extension 0→ V→ a1 → a→ 0 , one
may associate a two cocycle F ∈ Z2(a,V) . Indeed, for x, y ∈ a , if we set

F(x, y) := [(x, 0), (y, 0)]− ([x, y], 0) ∈ a1,

then we have F(x, y) ∈ V and F satisfies the 2 -cocycle conditions.
Conversely, for each f ∈ Z2(a,V) , one can define a central extension

0 −→ V −→ af −→ a −→ 0,

by

[(x, v), (y, w)]f := ([x, y], f(x, y)),

where x, y ∈ a and u,w ∈ V .
Let f and g be elements of Z2(a,V) such that f − g ∈ B2(a,V) i.e. (f −

g)(x, y) = h([x, y]) , where h : a → V is some k -linear map. Now we prove that
the extensions defined by f and g are equivalent. Let us define Φ : af → ag by

Φ((x, v)) := (x, v − h(x)).

It is clear that Φ is bijective. Let us check that Φ is a homomorphism of Lie
superalgebras. We have

[Φ((x, v)),Φ((y, w))]g = [(x, v − h(x)), (y, w − h(y))]g
= ([x, y], g(x, y))
= ([x, y], f(x, y)− h([x, y]))
= Φ (([x, y], f(x, y)))
= Φ([(x, v), (y, w)]f ).

Next we show that for f, g ∈ Z2(a,V) such that the central extensions af → a

and ag → a are equivalent, we have f−g ∈ B2(a,V) . Let Φ be a homomorphism
of Lie superalgebras such that

0 // V // af //

Φ
��

a // 0

0 // V // ag // a // 0

commutes. We can express Φ(x, v) = (x, v − h(x)) for some k -linear map h :
a→ V . Then we have

Φ([(x, v), (y, w)]f ) = Φ(([x, y], f(x, y)))
= ([x, y], f(x, y)− h([x, y])),

[Φ((x, v)),Φ((y, w))]g = [(x, v − h(x)), (y, w − h(y))]g
= ([x, y], g(x, y)),
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and thus (f − g)(x, y) = h([x, y]) , i.e., f − g ∈ B2(a,V) . We have completed the
proof. �

Now we define the universal central extension of a Lie superalgebra a .

Definition 4.2. The central extension (22) of a is called the universal central
extension if the following conditions hold.
1. u is perfect.
2. For any central extension β : b → a , there exists γ : u → b such that the

following diagram commutes:

u
α

//

γ
��
5
5
5
5
5
5
5

a

b

β

DD
	
	
	
	
	
	
	

Remark 4.4.3. From the second condition, a universal central extension is
unique up to isomorphism of Lie superalgebras.

The following proposition for Lie algebras is proved e.g. in [Gar], [MP].

Proposition 4.4. A Lie superalgebra a admits the universal central extension
if and only if a is perfect.

Proof. Suppose that α : u → a is the universal central extension. By definition,
u is perfect, and hence

a = α(u) = α([u, u]) = [α(u), α(u)] = [a, a].

Next let us suppose that a is perfect. We set

W′ :=
2∧

a := (a⊗ a)/〈x⊗ y + (−1)|x||y|y ⊗ x|x, y ∈ a〉k.

We remark that W′ '
∧2

a0̄ ⊕ (a0̄
∧

a1̄)⊕ S2a0̄ as a k -module. Furthermore, we
set

I := B2(a, k)

:=
〈
x ∧ [y, z]− [x, y] ∧ z − (−1)|x||y|y ∧ [x, z]|x, y, z ∈ a

〉
k

and W := W′/I . Let ω : W′ → W be the canonical projection. It is clear that
ω ∈ Z2(a,W) . We consider the central extension

0 −→W −→ aω −→ a −→ 0,

defined by ω . Using this central extension, we construct the universal central
extension of a . Let V be an arbitrary k -module and f ∈ Z2(a,V) . Since
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f(x, y) = −(−1)|x||y|f(y, x) , we have a k -linear map

ψ′ : W −→ V such that ω(x, y) 7→ f(x, y).

Let us define φ′ : aω → af by

φ′((x, u)) := (x, ψ′(u)).

Then it is clear that the diagram

aω
α

//

φ′
��
9
9
9
9
9
9
9

a

af

β

CC
�
�
�
�
�
�
�

commutes. Now, let us set

â := [aω, aω].

Since a is perfect, it follows that â + W = aω . This implies that â is perfect
since

â = [â + W, â + W] = [â, â].

Furthermore, if we set

c := W ∩ â,

then we have a central extension

0 −→ c −→ â −→ a −→ 0

such that â is perfect. Now, if we define φ as the restriction of φ′ to the
subalgebra â , then the following diagram commutes:

â
α|â

//

φ
��
6
6
6
6
6
6
6

a

af

β

CC
�
�
�
�
�
�
�

Therefore, â→ a is the universal central extension and the proof is completed. �

As a corollary, we have the following description of the kernel of the universal
central extension. For a Lie superalgebra over k , let us define

Z2(a, k) :=

{∑
i

xi ∧ yi ∈ Λ2a

∣∣∣∣∣∑
i

[xi, yi] = 0

}
.

In the sequel, we assume that a is k -free. Under this assumption, from the proof
of Proposition 4.4 we obtain

c := W ∩ â =

{∑
i

α(xi, yi)

∣∣∣∣∣∑
i

xi ∧ yi ∈ Z2(a, k)

}/
B2(a, k).
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Thus the following lemma holds.

Corollary 4.5. Suppose that a Lie superalgebra a over k is k -free and perfect.
Let c be the kernel of the universal central extension of a . Then we have

c ' H2(a, k)

where H2(a, k) := Z2(a, k)/B2(a, k) .

Let A be a commutative k -algebra that is a k -free module at the same time.
As we will see in the next subsection, if a = gk ⊗k A ( g is a basic classical Lie
superalgebra), then H2(a, k) is related with the cyclic homology of A . Here we
recall the definition of the cyclic homology.

For n ∈ Z≥0 , we set

Cn(A) :=

 k if n = 0
A if n = 1
A⊗n/In if n > 1

,

where In is the k -submodule of A⊗n generated by

a1 ⊗ a2 ⊗ · · · ⊗ an + (−1)na2 ⊗ · · · ⊗ an ⊗ a1, (ai ∈ A).

Let us define the complex

C∗(A) : · · · −→ Cn(A) d−→ Cn−1(A) −→ · · · −→ C0(A) −→ 0,
d :Cn(A) −→ Cn−1(A)

as follows: For n = 0, 1 , we set d := 0 and for n > 1 ,

d(a1 ⊗ a2 ⊗ · · · ⊗ an) :=
n∑
i=2

(−1)ia1 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ an − a2 ⊗ · · · ⊗ ana1.

Then it turns out that d is well-defined and d2 = 0 . The n -th homology group
of this complex C∗(A) is denoted by HCn(A) and is called the n -th cyclic
homology of A .

The following proposition is well-known (cf. [Lod]):

Proposition 4.6. Suppose that A is commutative. The following isomorphism
exists:

HC2(A) ' Ω1
A/k/dA,

where Ω1
A/k/dA is the module of Kähler differentials of A over k modulo exact

forms.
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4.2. Main result

In this subsection, we will state our main result i.e. the universal central extension
of gk⊗kA . Let us first notice that the Lie superalgebra gk⊗kA over k is perfect
and hence has the universal central extension

0 −→ c −→ gk(A) −→ gk ⊗k A −→ 0.

Our main theorem can be described as follows:

Theorem 4.7. Let k be a commutative ring and let A be a k -free commutative
k -algebra. Let gk be a basic classical Lie superalgebra over k as was defined in
Section 3. Suppose that

1
2 ∈ k if g is of type A(m,n) , C(n) and D(m,n) ,
1
2 ,

1
3 ∈ k if g is of type B(m,n) , F(4) and G(3) ,

1
2 ,

1
a ,

1
a+1 ∈ k , if g is of type D(2, 1; a) .

Now let us define the Lie superalgebra ḡk as follows:

ḡk :=

 gk if g is not of type A(n, n) ∀n
dk if g is of type A(1, 1)

sl(n+ 1, n+ 1)k if g is of type A(n, n) ∃n > 1
.

Then the following hold:
1. gk(A) ' ḡk ⊗k A⊕ Ω1

A/k/dA.
2. The bracket of gk(A) is given by

[X ⊗ a, Y ⊗ b] = [X,Y ]⊗ ab+ (X,Y )bda,

a, b ∈ A, X, Y ∈ ḡk,

where (·, ·) is an even supersymmetric invariant bilinear form on ḡk which
is described in Section 2.4, d : A → Ω1

A/k is the differential and ·̄ : Ω1
A/k →

Ω1
A/k/dA is the projection.

Remark 4.4.8. If g is of type B(m,n) or G(3) , then g has a root α ∈ ∆1̄
such that (α, α) 6= 0 , i.e., g contains osp(1, 2) as a subalgebra. In these cases,
we have to assume that 3 is invertible in k . (See the proof of Lemma 4.13.)

In particular, in the case where k = C and A = C[t, t−1] , we have

Corollary 4.9. Set g̃ := gC(A) .
1. g̃ ' ḡC ⊗C C[t, t−1]⊕ Cc.
2. The bracket of gC(A) is given by

[X ⊗ tr, Y ⊗ ts] = [X,Y ]⊗ tr+s + (X,Y )rδr+s,0c,

r, s ∈ Z, X, Y ∈ ḡC,
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where (·, ·) is an even, supersymmetric invariant bilinear form on ḡC .

Moreover, from Theorem 4.7, we have

Proposition 4.10. Under the assumption of Theorem 4.7, we have

H2(gk ⊗k A, k) '


HC2(A) if g is not of type A(n, n) ∀n
HC2(A) ⊕A⊕3 if g is of type A(1, 1)
HC2(A) ⊕A if g is of type A(n, n) ∃n > 1

.

4.3. Proof

We first show the next proposition.

Proposition 4.11. Suppose that g = sl2 or osp(1, 2) . Let Z be a free k -
module and

0 −→ Z −→ g′k(A) π−→ gk ⊗k A −→ 0

a central extension of gk ⊗k A . Then the bracket of g′k(A) can be described as

[X ⊗ a, Y ⊗ b] = [X,Y ]⊗ ab+ (X,Y ){a, b},
where (·, ·) is a non-degenerate even supersymmetric invariant bilinear form on
gk , {·, ·} : A×A→ Z which satisfies

(i) {u, v} = −{v, u},
(ii) {uv,w}+ {wu, v}+ {vw, u} = 0. (23)

To prove the proposition, we prepare some notation. Let

0 −→ Z −→ u
π−→ a −→ 0,

be a central extension. Notice that, for x, y ∈ a and x′, y′ ∈ u such that π(x′) = x
and π(y′) = y , the commutator [x′, y′] does not depend on the choice of the
inverse images x′ and y′ . Hence, in the sequel, we denote [x′, y′] by [x, y]′ .

We first consider the case of sl2 : Let us fix a basis of sl2 as follows:

gk = kX+ ⊕ kH ⊕ kX− such that [X+, X−] = H, [H,X±] = ±2X±.

A non-degenerate even supersymmetric bilinear form on sl2 is given by

(H,H) = 2, (X+, X−) = 1.

Lemma 4.12. For a ∈ A , if we set

(X± ⊗ a)′ := ±1
2

[H ⊗ 1, X± ⊗ a]′,

(H ⊗ a)′ := [X+ ⊗ 1, X− ⊗ a]′,
(24)
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then there exists a pairing {·, ·} with the condition (23), and the following holds:

[(X ⊗ a)′, (Y ⊗ b)′] = ([X,Y ]⊗ ab)′ + (X,Y ){a, b},
where (·, ·) is the above invariant form of gk , X,Y ∈ gk and a, b ∈ A .

Proof. Since π([(H ⊗ a)′, (H ⊗ b)′]) = [H ⊗ a,H ⊗ b] = 0, we see that [(H ⊗
a)′, (H ⊗ b)′] ≡ 0 (mod Z) . Hence we set

{a, b} :=
1
2

[(H ⊗ a)′, (H ⊗ b)′].

To show this lemma, it suffices to show the following formulas:
F1. [(H ⊗ a)′, (X± ⊗ b)′] = ±2(X± ⊗ ab)′ ,
F2. [(X+ ⊗ a)′, (X− ⊗ b)′] = (H ⊗ ab)′ + {a, b} ,

[(H ⊗ a)′, (H ⊗ b)′] = 2{a, b} ,
F3. [(X± ⊗ a)′, (X± ⊗ b)′] = 0 .

We prove F1. By definition we have

[(H ⊗ a)′, (X± ⊗ b)′]

=± 1
2

[(H ⊗ a)′, [(H ⊗ 1)′, (X± ⊗ b)′]]

=± 1
2
{[[(H ⊗ a)′, (H ⊗ 1)′], (X± ⊗ b)′] + [(H ⊗ 1)′, [(H ⊗ a)′, (X± ⊗ b)′]]}

Since

[(H ⊗ a)′, (H ⊗ 1)′] ≡ 0 (mod Z)
[(H ⊗ a)′, (X± ⊗ b)′] = [H ⊗ a,X± ⊗ b]′ ≡ ±2(X± ⊗ ab)′ (mod Z),

we have F1.
The second formula in F2 is nothing but the definition of {·, ·} . By F1, we

have

[(X+ ⊗ a)′, (X− ⊗ b)′]

=
1
2

[[(H ⊗ a)′, (X+ ⊗ 1)′], (X− ⊗ b)′]

=
1
2
{[[(H ⊗ a)′, (X− ⊗ b)′], (X+ ⊗ 1)′] + [(H ⊗ a)′, [(X+ ⊗ 1)′, (X− ⊗ b)′]]}

Since by the definition of (H ⊗ b)′ and F1

[(H ⊗ a)′, (X− ⊗ b)′] = −2(X− ⊗ ab)′,
[(X+ ⊗ 1)′, (X− ⊗ b)′] = (H ⊗ b)′,

the first formula in F2 is proved.
We prove F3. Since [(X± ⊗ a)′, (X± ⊗ b)′] ≡ 0 (mod Z) , we have

0 =[(H ⊗ 1)′, [(X± ⊗ a)′, (X± ⊗ b)′]]
=[[(H ⊗ 1)′, (X± ⊗ a)′], (X± ⊗ b)′] + [(X± ⊗ a)′, [(H ⊗ 1)′, (X± ⊗ b)′]]
=± 4[(X± ⊗ a)′, (X± ⊗ b)′].
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Since 1
2 ∈ k , we obtain F3.

Finally let us check (23). (i) is clear from the definition of {·, ·} . We prove
(ii). By F1 and F2 , we have

[(H ⊗ a)′, [(X+ ⊗ b)′, (X− ⊗ c)′]] = 2{a, bc},

and

[(H ⊗ a)′, [(X+ ⊗ b)′, (X− ⊗ c)′]]
= [[(H ⊗ a)′, (X+ ⊗ b)′], (X− ⊗ c)′] + [(X+ ⊗ b)′, [(H ⊗ a)′, (X− ⊗ c)′]]
= 2{ab, c}+ 2{b, ac}.

Since 1
2 ∈ k , using (i) we obtain (ii). �

Next we consider the case of osp(1, 2) : Let us fix a basis of osp(1, 2) as follows:

gk = osp(1, 2) = kX+ ⊕ kx+ ⊕ kH ⊕ kx− ⊕ kX−,

such that

[H,X±] = ±4X±, [X+, X−] =
1
2
H, X± = ±1

4
[x±, x±],

[H,x±] = ±2x±, [x+, x−] = H, [X±, x∓] = −x±.

We remark that this gives the Chevalley basis for osp(1, 2) . A non-degenerate
even supersymmetric bilinear form on osp(1, 2) is given as follows:

(H,H) = 2, (x+, x−) = 1, (X+, X−) =
1
4
.

Lemma 4.13. For a ∈ A , if we set

(X± ⊗ a)′ := ±1
4

[H ⊗ 1, X± ⊗ a]′,

(x± ⊗ a)′ := ±1
2

[H ⊗ 1, x± ⊗ a]′,
(H ⊗ a)′ := [x+ ⊗ 1, x− ⊗ a]′,

(25)

then there exists a pairing {·, ·} such that

[(X ⊗ a)′, (Y ⊗ b)′] = ([X,Y ]⊗ ab)′ + (X,Y ){a, b},

where (·, ·) is the above invariant form of gk , X,Y ∈ gk and a, b ∈ A .

Proof. Similarly to sl2 case, we see that [(H ⊗ a)′, (H ⊗ b)′] ≡ 0 (mod Z). Hence
we set

{a, b} :=
1
2

[(H ⊗ a)′, (H ⊗ b)′].

To show this lemma, it suffices to show the following formulas:
F1’. [(H ⊗ a)′, (Y ⊗ b)′] = β(H)(Y ⊗ ab)′ , where Y ∈ gβ .
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F2’. [(x+ ⊗ a)′, (x− ⊗ b)′] = (H ⊗ ab)′ + {a, b} ,
[(H ⊗ a)′, (H ⊗ b)′] = 2{a, b} .

F3’. [(x± ⊗ a)′, (x± ⊗ b)′] = ±4(X± ⊗ ab)′ .
F4’. [(X± ⊗ a)′, (x∓ ⊗ b)′] = −(x± ⊗ ab)′ .
F5’. [(X+ ⊗ a)′, (X− ⊗ b)′] =

1
2

(H ⊗ ab)′ + 1
4
{a, b} .

F6’. [(X± ⊗ a)′, (x± ⊗ b)′] = 0 ,
[(X± ⊗ a)′, (X± ⊗ b)′] = 0 .
The proofs of F1’ and F2’ are similar to those of F1 and F2 in the sl2 -case

respectively.
We prove F3’. Notice that [(x± ⊗ a)′, (x± ⊗ b)′] ≡ ±4(X± ⊗ ab)′ (mod Z).

Hence we have

[(H ⊗ 1)′, [(x± ⊗ a)′, (x± ⊗ b)′]] = ±4[(H ⊗ 1)′, (X± ⊗ ab)′] = 16(X± ⊗ ab)′.
On the other hand, by the Jacobi identity,

[(H ⊗ 1)′, [(x± ⊗ a)′, (x± ⊗ b)′]]
=[[(H ⊗ 1)′, (x± ⊗ a)′], (x± ⊗ b)′] + [(x± ⊗ a)′, [(H ⊗ 1)′, (x± ⊗ b)′]]
=± 4[(x± ⊗ a)′, (x± ⊗ b)′].

Hence the condition 1
2 ∈ k ensures F3’.

The proof of F4’ is similar to that of F3’.
We prove F5’. By F2’, F3’ and F4’, we have

[(X+ ⊗ a)′, (X− ⊗ b)′]

=
1
4

[[(x+ ⊗ 1)′, (x+ ⊗ a)′], (X− ⊗ b)′]

=
1
4
{[[(x+ ⊗ 1)′, (X− ⊗ b)′], (x+ ⊗ a)′] + [(x+ ⊗ 1)′, [(x+ ⊗ a)′, (X− ⊗ b)′]]}.

Since

[(x+ ⊗ 1)′, (X− ⊗ b)′] = (x− ⊗ b)′,
[(x+ ⊗ a)′, (X− ⊗ b)′] = (x− ⊗ ab)′,

by F4’, we obtain

[(X+ ⊗ a)′, (X− ⊗ b)′]

=
1
4
{[(x− ⊗ b)′, (x+ ⊗ a)′] + [(x+ ⊗ 1)′, (x− ⊗ ab)′]}

=
1
4
{(H ⊗ ab)′ + {a, b}+ (H ⊗ ab)′ + {1, ab}} .

Here we notice that if we take u = ab, v = w = 1 in (23), then {1, ab} = 0 .
Hence we have the conclusion.

By using the condition 1
2 ,

1
3 ∈ k , we can prove F6′ in a way similar to F3 in

the sl2 -case. �
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To show Theorem 4.7, we need the following preliminary lemma.

Lemma 4.14. Let ∆ be the root system of a basic classical Lie superalgebra g .
1. If α ∈ ∆+

1̄ such that (α, α) = 0 , then there exists γ ∈ ∆ such that α(Hγ) =
1 .

2. If α, β ∈ ∆ and α+β 6= 0 , then there exists δ ∈ ∆ such that (α+β)(Hδ)−1 ∈
k , where we exclude the case α̃+β̃ = ±(α̃1+2α̃2+α̃3) for A(1, 1) (see Remark
2.13 in §2.3 ).

Proof of 1. By Lemma 2.22, we may assume that α = αi0 . We see that if
the Dynkin diagram contains the following type subdiagrams

αj
h

αi0⊗
λ ,

then we may choose γ := −αj . Note that if the Dynkin diagram of g does not
contain the above type subdiagrams, then g is of type B(0, n) or B(1, 1) , and
further B(0, n) does not have a root of length 0 . In the case of B(1, 1) , we can
easily check the lemma.

Proof of 2. We first consider the case where α and β are linearly dependent.
In this case, we distinguish the following cases:

Case1 . (α, α) 6= 0 .
Case2 . (α, α) = 0 .

For Case 1, β = ±2α, α,± 1
2α , Lemma 2.23 says that if we choose δ := α , then

(α+β)(Hδ)−1 ∈ k . For Case2 , the first assertion implies that there exists γ ∈ ∆
such that α(Hγ) = 1 . Since β = α , we may choose δ := γ .

Next we consider the case where α and β are linearly independent. Let us
put ∆̄ := ∆ ∩ (Zα ⊕ Zβ) . In this case, we distinguish the following subcases:

Case1 . ∆̄ : a rank two system,
Case2 . ∆̄ : the disjoint union of two rank one systems.
In Case1 , we can choose the simple roots of ∆̄ such that α is one of the

simple roots and β become a positive root. Then ∆̄ is of type A2 , B2 , G2 or
one of the rank two root systems listed in the proof of Lemma 3.5. For each case,
the value of λ is given as in Remark 3.6. Now the lemma follows from case by
case checking.

In Case2 , we also consider the following subcases:
Case2.1 . (α, α) 6= 0 or (β, β) 6= 0 .
Case2.2 . (α, α) = 0 and (β, β) = 0 .
In Case2.1 , we may assume that (α, α) 6= 0 without loss of generality. Since

(α, β) = 0 in this case, by Lemma 2.23, if we take δ := α , then the lemma holds.
Finally we prove the lemma in Case2.2 . By Lemma 2.22, we may assume that

α = αi0 . Note that (β, αi0) = 0 in this case. Since β ∈ ∆1̄ satisfies (β, β) = 0 ,
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kαi0 6= kβ and (β, αi0) = 0 , from the data of the root systems in Appendix
A, the cases where g is of type A(m, 0) , A(0, n) , B(0.n) , B(1, n) , B(m, 1) ,
C(n) , D(m, 1) , D(2, 1; a) , F(4) and G(3) are excluded. Hence we have to
check the cases where g is of type A(m,n) (m,n ≥ 1 ) and B(m,n) , D(m,n)
(m,n ≥ 2 ). In these cases, if there exists j ∈ {i0 ± 1} such that β(Hαj ) = 0 ,
then (αi0 + β)(Hαj ) ∈ {±1} and thus we may choose δ := αj . For the rest of
the case, i.e., the case when β(Hαi0±1) 6= 0 are given by the following table:

type of g αi0 β δ
A(1, 1) α2 ε1 − δ2 ×

A(m,n)

{
(m,n ≥ 1)
(m+ n ≥ 3)

αm+1 εm − δ2

{
αm−1 (m ≥ 2)
αm+3 (n ≥ 2){

εm+1 − δ2
εm − δ1

αm+1{
B(m,n)
D(m,n)

(m,n ≥ 2) αn δn−1 − ε2 αn+2

δn−1 + ε2 αn+1{
δn ± ε2
δn−1 ± ε1

αn

The first case is excluded in this lemma, and for the other cases, we may choose
δ as in the table. �

Remark 2.19 implies that a non-degenerate even supersymmetric invariant bi-
linear form of gk is induced from an invariant form of ḡk . Hence to prove our
main theorem (Theorem 4.7), we show the following proposition:

Proposition 4.15. Suppose that g is a basic classical Lie superalgebras which
is not of type A(1, 1) . Let Z be a free k -module and

0 −→ Z −→ g′k(A) π−→ gk ⊗k A −→ 0

be a central extension of gk ⊗k A . Then the bracket of g′k(A) can be described as

[(X ⊗ a)′, (Y ⊗ b)′] = ([X,Y ]⊗ ab)′ + (X,Y ){a, b},
where (·, ·) is a non-degenerate even supersymmetric invariant bilinear form on
gk , and {·, ·} : A×A→ Z satisfies the condition (23).

Proof. Let {Xα,Hα|α ∈ ∆} be a Chevalley basis as in Section 3. For α ∈ ∆+
0̄

such that 1
2α 6∈ ∆ , we set

(Xβ ⊗ a)′ :=
1

β(Hα)
[Hα ⊗ 1, Xβ ⊗ a]′,

(Hβ ⊗ a)′ := σβ [Xβ ⊗ 1, X−β ⊗ a]′,



142 K. Iohara and Y. Koga CMH

(β = ±α) and

g̃(α) := {kXα ⊕ kHα ⊕ kX−α} ⊗k A,

g̃′(α) := π−1(g̃(α)).

For α ∈ ∆+
1̄ such that 2α ∈ ∆ , we set

(Xβ ⊗ a)′ :=
1

β(Hα)
[Hα ⊗ 1, Xβ ⊗ a]′,

(Hβ ⊗ a)′ := σβ [Xβ ⊗ 1, X−β ⊗ a]′,

(β = ±α,±2α) and

g̃(α) := {kX2α ⊕ kXα ⊕ kHα ⊕ kX−α ⊕ kX−2α} ⊗k A,

g̃′(α) := π−1(g̃(α)).

Notice that from Proposition 4.11, we see that, for α ∈ ∆ such that (α, α) 6= 0 ,
there exists {·, ·}α : A×A→ Z such that

[(X ⊗ a)′, (Y ⊗ b)′] = ([X,Y ]⊗ ab)′ + (X,Y ){a, b}α
holds for any (X ⊗ a)′ and (Y ⊗ b)′ ∈ g̃′(α) .

For each α ∈ ∆1̄ such that 2α 6∈ ∆ i.e. (α, α) = 0 , we fix γ ∈ ∆ as in
Lemma 4.14, and set

(Xβ ⊗ a)′ :=
1

β(Hγ)
[Hγ ⊗ 1, Xβ ⊗ a]′,

(Hβ ⊗ a)′ := σβ [Xβ ⊗ 1, X−β ⊗ a]′

( β := ±α ).
For simplicity, we introduce the following notation:

γ(α) :=
{
α if (α, α) 6= 0
γ if (α, α) = 0 ,

where γ is taken as above. From now on, we will divided the proof of Proposition
4.15 to several steps (Lemma 4.16 – 4.21).

Lemma 4.16. For α, β ∈ ∆ , we have

[(Hα ⊗ a)′, (Xβ ⊗ b)′] = β(Hα)(Xβ ⊗ ab)′.

Proof. We can prove this lemma in a way similar to F1 in Lemma 4.12. �

Lemma 4.17. For each α ∈ ∆ , we set γ := γ(α) and

{a, b}α := [(Hγ ⊗ a)′, (Hα ⊗ b)′], {a, b} :=
σα

(Xα, X−α)
{a, b}α,
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where σα is defined as in (11). Then {·, ·} is independent of the choice of α and

[(Xα ⊗ a)′, (X−α ⊗ b)′] = σα(Hα ⊗ ab)′ + (Xα, X−α){a, b},
[(Hα ⊗ a)′, (Hβ ⊗ b)′] = (Hα,Hβ){a, b}.

Proof. By Lemma 4.16 we have

[(Xα ⊗ a)′, (X−α ⊗ b)′]
= [[(Hγ ⊗ a)′, (Xα ⊗ 1)′], (X−α ⊗ b)′]
= [(Hγ ⊗ a)′, [(Xα ⊗ 1)′, (X−α ⊗ b)′]]− [(Xα ⊗ 1)′, [(Hγ ⊗ a)′, (X−α ⊗ b)′]]
= σα[(Hγ ⊗ a)′, (Hα ⊗ b)′] + [(Xα ⊗ 1)′, (X−α ⊗ ab)′]
= σα(Hα ⊗ ab)′ + σα{a, b}α.

On the other hand,

[(Hα ⊗ a)′, (Hβ ⊗ b)′]
= σβ [(Hα ⊗ a)′, [(Xβ ⊗ 1)′, (X−β ⊗ b)′]]
= σβ{[[(Hα ⊗ a)′, (Xβ ⊗ 1)′], (X−β ⊗ b)′] + [(Xβ ⊗ 1)′, [(Hα ⊗ a)′, (X−β ⊗ b)′]}
= β(Hα){(Hβ ⊗ ab)′ + {a, b}β − (Hβ ⊗ ab)′ − {1, ab}β}
= β(Hα){a, b}β.

Similarly, we obtain

[(Hα ⊗ a)′, (Hβ ⊗ b)′]
= [[(Xα ⊗ 1)′, (X−α ⊗ a)′], (Hβ ⊗ b)′]
= α(Hβ){a, b}α.

Hence

β(Hα){a, b}β = α(Hβ){a, b}α.

Since

(Hα,Hβ) = σβ(Hα, [Xβ, X−β ]) = σββ(Hα)(Xβ , X−β) = σαα(Hβ)(Xα, X−α),

we see that

{a, b} :=
σα

(Xα, X−α)
{a, b}α

is independent of the choice of α . Moreover, we have

[(Hα ⊗ a)′, (Hβ ⊗ b)′] = (Hα,Hβ){a, b}

and

[(Xα ⊗ a)′, (X−α ⊗ b)′] = σα(Hα ⊗ ab)′ + (Xα, X−α){a, b}.
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Now we complete the proof. �

Lemma 4.18. α, β ∈ ∆ such that α+ β 6= 0 .

[(Xα ⊗ a)′, (Xβ ⊗ b)′] = Nα,β(Xα+β ⊗ ab)′,

where Nα,β are defined as in (13).

Proof. For α, β ∈ ∆ , we take δ ∈ ∆ as in Lemma 4.14. Notice that

[(Xα ⊗ a)′, (Xβ ⊗ b)′] ≡ Nα,β(Xα+β ⊗ ab)′ (mod Z).

Thus we have

[(Hδ ⊗ 1)′, [(Xα ⊗ a)′, (Xβ ⊗ b)′]] = Nα,β(α+ β)(Hδ)(Xα+β ⊗ ab)′,

and

[(Hδ ⊗ 1)′, [(Xα ⊗ a)′, (Xβ ⊗ b)′]]
= [[(Hδ ⊗ 1)′, (Xα ⊗ a)′], (Xβ ⊗ b)′] + [(Xα ⊗ a)′, [(Hδ ⊗ 1)′, (Xβ ⊗ b)′]]
= (α+ β)(Hδ)[(Xα ⊗ a)′, (Xβ ⊗ b)′].

Since {(α+ β)(Hδ)}−1 ∈ k , we obtain the conclusion. �

Lemma 4.19. For α ∈ ∆ ,

(H−α ⊗ a)′ = −(Hα ⊗ a)′.

Proof. We may assume that α ∈ ∆+ . By Lemma 4.17, we have

(H−α ⊗ a)′ = σ−α[(X−α ⊗ 1)′, (Xα ⊗ a)′]

= −(−1)|α|σ−α[(Xα ⊗ a)′, (X−α ⊗ 1)′]
= −{(Hα ⊗ a)′ + {a, 1}α}
= −(Hα ⊗ a)′.

�

Lemma 4.20. For α, β ∈ ∆ such that α+ β ∈ ∆ , we have

(Hα+β ⊗ a)′ =
εα+β

εα
(Hα ⊗ a)′ +

εα+β

εβ
(Hβ ⊗ a)′.
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Proof. By Lemma 4.18, we have

N−α,−βσ−α−β(H−α−β ⊗ a)′

= [[(X−α ⊗ 1)′, (X−β ⊗ 1)′], (Xα+β ⊗ a)′]
= [(X−α ⊗ 1)′, [(X−β ⊗ 1)′, (Xα+β ⊗ a)′]]

+ (−1)|β||α+β|[[(X−α ⊗ 1)′, (Xα+β ⊗ a)′], (X−β ⊗ 1)′]

= N−β,α+βσ−α(H−α ⊗ a)′ + (−1)|β||α+β|N−α,α+βσβ(Hβ ⊗ a)′.

Here we notice that, from Theorem 3.9 and the data of the root systems in Ap-
pendix A, we see that N−1

α,β ∈ k for any α, β ∈ ∆ . Hence by using (11), the
definition of Nα,β in (13), Lemma 3.3 and Lemma 4.19, the lemma is proved. �

Lemma 4.21. {·, ·} : A×A→ Z satisfies

(i) {u, v} = −{v, u} ,
(ii) {uv,w}+ {wu, v}+ {vw, u} = 0 .

Proof. We show the first assertion. For α ∈ ∆ such that (Hα,Hα) 6= 0 , we have

[(Hα ⊗ a)′, (Hα ⊗ b)′] = (Hα,Hα){a, b}.

Hence we have proved (i).
We prove (ii). For α ∈ ∆ such that α(Hα) 6= 0 , by Lemma 4.16 – 4.20, we

have

[(Hα ⊗ a)′, [(Xα ⊗ b)′, (X−α ⊗ c)′]] = σα(Hα,Hα){a, bc},

and

[(Hα ⊗ a)′, [(Xα ⊗ b)′, (X−α ⊗ c)′]]
= [[(Hα ⊗ a)′, (Xα ⊗ b)′], (X−α ⊗ c)′] + [(Xα ⊗ b)′, [(Hα ⊗ a)′, (X−α ⊗ c)′]]
= α(Hα)(Xα, X−α){ab, c}+ (−α)(Hα)(Xα, X−α){b, ac}.

Since

σα(Hα,Hα) = (Hα, [Xα, X−α]) = ([Hα, Xα], X−α) = α(Hα)(Xα, X−α),

using (i) we obtain (ii). �

Remark 4.4.22. In the case where g is of type A(1, 1) , Lemma 4.16, 4.17, 4.19
and 4.21 can be proved by the same argument as above. For Lemma 4.18, it
holds except for the case of α, β ∈ ∆ such that α̃ + β̃ = ±(α̃1 + 2α̃2 + α̃3) ,
since this cases are excluded in Lemma 4.14. Moreover, Lemma 4.20 holds, since
±(α̃1 + 2α̃2 + α̃3) 6∈ ∆̃ . In the case of A(1, 1) , the following holds:
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Lemma 4.23. For a, b, c, d ∈ A such that ab = cd , we have

[(X±(α1+α2) ⊗ a)′, (X±(α2+α3) ⊗ b)′]
= −[(X±α2 ⊗ c)′, (X±(α1+α2+α3) ⊗ d)′].

Proof. By using Lemma 4.18 for A(1, 1) , we have

[(X±(α1+α2) ⊗ a)′, (X±(α2+α3) ⊗ b)′]
= ±[[(X±α1 ⊗ a)′, (X±α2 ⊗ 1)′], (X±(α2+α3) ⊗ b)′]
= ∓[[(X±α1 ⊗ a)′, (X±(α2+α3) ⊗ b)′], (X±α2 ⊗ 1)′]
= −[(X±(α1+α2+α3) ⊗ ab)′, (X±α2 ⊗ 1)′].

On the other hand, from Lemma 4.16 we have

[(X±α2 ⊗ c)′, (X±(α1+α2+α3) ⊗ d)′]
= ∓[[(H1 ⊗ c)′, (X±α2 ⊗ 1)′], (X±(α1+α2+α3) ⊗ d)′]
= ±[(X±α2 ⊗ 1)′, [(H1 × c)′, (X±(α1+α2+α3) ⊗ d)′]]
= [(X±(α1+α2+α3) ⊗ cd)′, (X±α2 ⊗ 1)′].

Hence we have proved the lemma. �

Before proving the main theorem, we consider the case where A = k .

Proposition 4.24. The Lie superalgebra ḡk is the universal central extension
of gk .

Proof. Let 0 → Z → ak→gk → 0 be the universal central extension of gk .
First we consider the case where g is not of type A(n, n) . By setting A := k
and a, b := 1 in Proposition 4.15, we have ak ' gk . Hence we have proved the
proposition in this case.

Next we consider the case where g is of type A(n, n) for some n ≥ 2 . In this
case, we have to check whether ak inherits the additional relation

n∑
i=1

i(hi − h2n+2−i)− (n+ 1)hn+1 = 0,

viz., we have to check two possibilities ak ' gk or ak ' ḡk ' sl(n + 1|n + 1) .
Since the short exact sequence (5) does not split, we conclude that ak ' ḡk .

Finally, we consider the case where gk is of type A(1, 1) . Similarly to the
above case, from Remark 4.22 and Lemma 4.23, we see that one of the Lie super-
algebras gk , sl(2, 2) and d gives the universal central extension of gk . Since the
sequence (4) and (5) do not split, we obtain the conclusion. �

Let us prove our main theorem (Theorem 4.7) by using Proposition 4.15. First
we assume that g is not of type A(n, n) for any n . Let φ be the map A×A→
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HC2(A) defined by (a, b) 7→ a⊗b . Since the Lie superalgebra gk⊗kA is perfect, it
has a universal central extension by Proposition 4.1. By the definition of HC2(A)
and Proposition 4.15, for any central extension

0 −→ Z −→ g
′
k(A) −→ gk ⊗k A −→ 0

there exists ψ : HC2(A)→ Z such that the following diagram commutes

A×A
{·,·}

//

φ
##
F
F
F
F
F
F
F
F
F

Z

HC2(A)
ψ

??
~
~
~
~
~
~
~
~

Hence the central extension

0 −→ HC2(A) −→ gk(A) −→ gk ⊗k A −→ 0

satisfies the property of Definition 4.2, 2. Since φ is surjective, gk(A) is perfect.
Hence the above central extension is a universal central extension.

Next we consider the case of A(n, n) . In this case, the above argument is
insufficient, since there is a degeneration in h as well as in h∗ , i.e.,

n∑
i=1

i {hi − h2n+2−i} − (n+ 1)hn+1 = 0,

n∑
i=1

i(αi + α2n+2−i) + (n+ 1)αn+1 = 0

hold in gk . To determine gk(A) , we consider the following commutative diagram:

0

��

0

��

0 //

��

A⊕mn //

��

A⊕mn //

��

0

0 // HC2(A) //

��

ḡk(A) π̄
//

φ′

��

ḡk ⊗k A //

φ

��

0

0 // HC2(A) //

��

gk(A)A πA
//

��

gk ⊗k A //

��

0

0 0 0

(26)
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where the mn are defined by

mn :=

{
3 if n = 1
1 if n > 1

.

Note that each short sequence is exact. From this diagram, we obtain

0 −→ HC2(A)⊕A⊕mn −→ ḡk(A) −→ gk ⊗k A −→ 0.

Moreover, the sequence of the second row in (26) does not split, because if there
exists ι′ : ḡk(A) → gk(A)A such that φ̃′ ◦ ι′ = id , then ι : gk ⊗k A → ḡk ⊗k A
defined by ι(x) := π̄ ◦ ι′ ◦ π−1

A (x) ( x ∈ gk ⊗k A ) is well-defined and satisfies
φ ◦ ι = id . From the Lie superalgebra structures of ḡk and gk , we see that the
sequence of the third row in (26) does not split. This is a contradiction and thus
gk(A)A is not the universal central extension.

On the other hand, it is easy to see that ḡk(A) is perfect and further it enjoys
universality by Proposition 4.15. Now we can conclude that

ḡk(A) ' ḡk ⊗k A⊕HC2(A) (as a k-module)

gives the universal central extension of gk ⊗k A . �

A. Data of basic classical Lie superalgebras

In this appendix, we will collect some data (e.g. Dynkin diagrams, Cartan matrix
and root systems) of the basic classical Lie superalgebras.

Before giving these data, we explain how to recover the Cartan matrix from
a given Dynkin diagram. Let us take one of the Dynkin diagrams listed below.
We define the Cartan matrix A := (ai,j) associated with the diagram as follows:
The set I is given by the index set of all vertices and τ is given by the subset
corresponding to the vertices of type xand ×�������� . The matrix elements ai,j are
given by

ai,i :=
{

0 if αi corresponds to ×��������
2 if αi corresponds to �������� or x

,

and for i 6= j ,

ai,j := 0

if the vertices corresponding to αi and αj are not connected, and

aj,i :=
{
λ if αj corresponds to ×��������
−1 if αj corresponds to �������� or x

,

ai,j :=
{
λ if αi corresponds to ×��������
−k if αi corresponds to �������� or x
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for i , j such that

αj

•�������� λ

k-fold
+3
αi
•�������� ,

where •�������� denotes �������� , xor ×�������� .
The following list contains a Dynkin diagram, a Cartan matrix, the set of the

positive even or odd roots and simple roots. We remark that for a basic classical
Lie superalgebra, the Dynkin diagram is not determined uniquely, if it contains a
vertex of type ×�������� . The Dynkin diagrams given here correspond to the choice of
simple roots in the same list.
1. A(m,n) case:

α1 αm+1 αm+n+1

�������� ��������
1
×�������� −1

�������� ��������

2 −1
−1

−1
−1 2 −1

1 0 −1
−1 2 −1
−1

−1
−1 2





=

1

1
−1

−1

−1





2 −1
−1

−1
−1 2 −1
−1 0 1

1 −2 1
1

1
1−2




∆+

0̄ = {εi − εj , δk − δl|1 ≤ i < j ≤ m+ 1, 1 ≤ k < l ≤ n+ 1}.

∆+
1̄ = {εi − δj |1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1}.

Π = {ε1 − ε2, · · · , εm − εm+1, εm+1 − δ1, δ1 − δ2, · · · , δn − δn+1},

where {εi, δj|1 ≤ i ≤ m + 1, 1 ≤ j ≤ n + 1} is an orthogonal basis such that
(εi, εi) = 1 and (δj , δj) = −1 .

2. B(m,n) (m 6= 0) case:

α1 αn αm+n

�������� ��������
−1
×��������

1
�������� �������� +3 ��������
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2 −1
−1

−1
−1 2 −1
−1 0 1
−1 2 −1
−1

−1
−1 2 −1
−2 2





=

1

1

1

−1

−1

−2





2 −1
−1

−1
−1 2 −1
−1 0 1

1−2 1
1

1
1−2 1

1−1




∆+

0̄ = {εi ± εj , εi′ , δk ± δl, 2δk′ |1 ≤ i < j ≤ m, 1 ≤ i′ ≤ m,
1 ≤ k < l ≤ n, 1 ≤ k′ ≤ n}.

∆+
1̄ = {δi, δk ± εl, |1 ≤ i, k ≤ n, 1 ≤ l ≤ m}.

Π = {δ1 − δ2, · · · , δn−1 − δn, δn − ε1, ε1 − ε2, · · · , εm−1 − εm, εm},

where {εi, δj|1 ≤ i ≤ m, 1 ≤ j ≤ n} is an orthogonal basis such that (m 6= 0) ,
(εi, εi) = −1 and (δj , δj) = 1 .

3. B(0, n) case:

α1

h h · · · h h=⇒

αn

x

2 −1
−1

−1
−1 2 −1
−2 2




=

1

1
2





2 −1
−1

−1
−1 2 −1
−1 1
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∆+
0̄ = {δi ± δj , 2δi′ |1 ≤ i < j ≤ n, 1 ≤ i′ ≤ n}.

∆+
1̄ = {δi|1 ≤ i ≤ n}.

Π = {δ1 − δ2, · · · , δn−1 − δn, δn},

where {δi|1 ≤ i ≤ n} is an orthogonal basis such that (δj , δj) = 1 .

4. C(n) case:

α1 αn

×��������
1

�������� �������� �������� ks ��������

0 1
−1 2 −1
−1

−1
−1 2 −2
−1 2




=

−1
1

1
1
2





0 −1
−1 2 −1
−1

−1
−1 2 −2
−2 4





∆+
0̄ = {δi ± δj , 2δi′ |1 ≤ i < j ≤ n− 1, 1 ≤ i′ ≤ n− 1}.

∆+
1̄ = {ε1 ± δi|1 ≤ i ≤ n− 1}.

Π = {ε1 − δ1, δ1 − δ2, · · · , δn−2 − δn−1, 2δn−1},

where {ε1, δi|1 ≤ i ≤ n − 1} is an orthogonal basis such that (ε1, ε1) = −1
and (δj , δj) = 1 .

5. D(m,n) case:

�������� αm+n−1

α1 αn

�������� ��������
1
×�������� −1

�������� ��������

�
�
�
�

@
@
@

�������� αm+n



152 K. Iohara and Y. Koga CMH

2 −1
−1

−1
−1 2 −1

1 0 −1
−1 2 −1
−1

−1
−1 2 −1−1
−1 2
−1 2





=

1

1
−1
−1

−1
−1
−1





2 −1
−1

−1
−1 2 −1
−1 0 1

1−2 1
1

1
1−2 1 1

1−2
1 −2




∆+

0̄ = {εi ± εj, δk ± δl, 2δk′ |1 ≤ i < j ≤ m, 1 ≤ k < l ≤ n, 1 ≤ k′ ≤ n}.

∆+
1̄ = {δi ± εj , |1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Π = {δ1 − δ2, · · · , δn−1 − δn, δn − ε1, ε1 − ε2, · · · , εm−1 − εm, εm−1 + εm},

where {εi, δj|1 ≤ i ≤ m, 1 ≤ j ≤ n} is an orthogonal basis such that (εi, εi) =
−1 and (δj , δj) = 1 .

6. D(2, 1; a) case: α1 α2 α3

��������
1
×�������� a ��������

2 −1

1 0 a

−1 2


=

1
−1

1
a




2 −1
−1 0 −a
−a 2a
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∆+
0̄ = {2ε1, 2ε2, 2ε3}.

∆+
1̄ = {ε2 ± ε1 ± ε3}.

Π = {2ε1, ε2 − ε1 − ε3, 2ε3},

where {ε1, ε2, ε3} is an orthogonal basis such that (ε1, ε1) = 1
2 , (ε2, ε2) =

− 1
2a−

1
2 and (ε3, ε3) = 1

2a .
7. F(4) case: α1 α2 α3 α4

×��������
1

�������� ks �������� ��������

0 1
−1 2 −2
−1 2 −1

−1 2




=

−1
1

1
2

1
2





0 −1
−1 2 −2

−2 4 −2

−2 4




∆+

0̄ = {δ1,−εi,−εk ± εl|1 ≤ i ≤ 3, 1 ≤ k < l ≤ 3}.

∆+
1̄ = { 1

2 (δ1 ± ε1 ± ε2 ± ε3)}.

Π = { 1
2 (δ1 + ε1 + ε2 + ε3),−ε1, ε1 − ε2, ε2 − ε3},

where {δ1, ε1, ε2, ε3} is an orthogonal basis such that (εi, εi) = 2 and (δ1, δ1) =
−6

8. G(3) case: α1 α2 α3

×��������
1
2

�������� _jt ��������

0 1
2

−1 2 −3

−1 2


=

− 1
2

1
1
3




0 −1

−1 2 −3

−3 6




∆+
0̄ = {2δ1,−ε1, ε2, ε3, εi − εj |1 ≤ i < j ≤ 3}.

∆+
1̄ = {δ1, δ1 ± εi|1 ≤ i ≤ 3}.

Π = {δ1 + ε1, ε2,−ε2 + ε3},

where {δ1, ε1, ε2, ε3} are elements of (
⊕

i Cεi⊕Cδ1)/C(ε1 + ε2 + ε3) , such that
(εi, εi) = 2 , (εi, εj) = −1 (i 6= j) , (εi, δ1) = 0 and (δ1, δ1) = −2 .
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