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On the first Laplacian eigenvalue and the center of gravity
of compact hypersurfaces

Alain R. Veeravalli

Abstract. For a closed hypersurface in a space form, this work provides some sharp upper
bounds for its first positive Laplacian eigenvalue. These bounds are extrinsic as they rely on the
mean curvatures and center(s) of gravity of the hypersurface.
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1. Notations, introduction and the result

Let (M = Mn+1(κ), g = 〈·, ·〉) be a space form, that is a connected simply con-
nected Riemannian manifold of dimension n + 1 ≥ 2, with constant sectional
curvature κ ∈ R, d its Riemannian distance, dν̃ its volume element, ∇̃ its Levi-
Civita connection, ∇̃2 its Hessian, ∆̃ = −trace ∇̃2 its Laplacian, exp its exponen-
tial map and UpM the unit sphere of the tangent space TpM of M at a point p.
If M is a closed (compact without boundary) connected hypersurface of M, we
endow M with the induced metric, also denoted by 〈·, ·〉. The induced volume
element, connection, Hessian and Laplacian are denoted by dν, ∇, ∇2 and ∆ re-
spectively. We recall that its mean curvatures are the functions (Hi)0≤i≤n defined
by

∏n
i=1(1 + Xki) =

∑n
i=0

(
n
i

)
HiX

i where (ki)1≤i≤n are the principal curvatures
of M . By the generalized Jordan theorem, M is orientable and divides M into two
connected components, one of which, say Ω, is relatively compact and has M as
its oriented boundary. We introduce the function snκ solution of the differential
equation ÿ + κy = 0 with the initial conditions (y(0), ẏ(0)) = (0, 1)) and its prim-
itive hκ which vanishes at 0. A center of gravity of M is a critical point of the
smooth function E : M → R : p 7→ ∫

M
hκ ◦ dp · dν. This definition differs slightly

from the one commonly used. The introduction of hκ has an immediate utility:
the distance function dp may be non smooth at some points but, thanks to hκ, E
is nevertheless smooth on the whole manifold M. Center(s) of gravity has several
applications: for example, we recall that it can be used to prove that any compact
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group of isometries in an Hadamard manifold has a fixed point. In this paper, we
will use center(s) of gravity to provide some sharp upper bounds for the first pos-
itive Laplacian eigenvalue involving the mean curvatures of M . The method used
here is to apply the min-max principle to a collection of appropriate functions and
goes back to Bleecker and Weiner [2]. Their work, with the generalization given
by Reilly [3], dealt with Euclidean submanifolds. The author was naturally led to
expect similar results for space form submanifolds. This attempt has been possible
by the introduction of center(s) of gravity. The proof will show that the function
hκ will make possible the use of generalized Hsiung-Minkowski formulae. For sake
of simplicity, this work concerns only hypersurfaces but for higher codimension,
similar formulae can be derived. Our result is the following one (the case κ = 0 is
the one studied by the authors quoted above):

Theorem. Let M be a closed connected hypersurface of M, λ1 the first positive
eigenvalue of the Laplacian of M and c a center of gravity of M .

i) If κ is non-negative, then we have the following inequalities:

λ1

∫
M

sn2
κ ◦ dc · dν ≤ nVolM (1)

λ1

(∫
M

Hi ˙snκ ◦ dc · dν

)2

≤ nVolM
∫

M

H2
i+1 · dν (2)

λ1(n + 1)2
(∫

Ω
˙snκ ◦ dc · dν̃

)2

≤ nVol 2M (3)

for any i ∈ [[0, n − 1]] where VolM denotes the volume of M . Equality occurs in
one of these three inequalities if and only if M is a geodesic sphere centered at c.
In this case, λ1 = n/sn2

κr, r being the radius of this geodesic sphere.
ii) If κ is negative, then

λ1

∫
M

sn2
κ ◦ dc · dν ≤ nVolM − κ

∫
M

sn2
κ ◦ dc · dν (4)

For negative κ, inequality (4) is non sharp unfortunately (see the final remark)
and this means that the min-max principle has to be applied to “better” functions.
Before going further, the problem of the existence of a center of gravity has to
be studied: while for positive κ, two centers of gravity, at least, exist by the
compactness of M, the question for non-positive κ is solved by the following result:

Proposition 1. The function hκ ◦ dp satisfies:

∇̃2(hκ ◦ dp) = ( ˙snκ ◦ dp) · g

If κ is non-positive, M admits a unique center of gravity.
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2. Proof

2.1. Preliminaries

We first prove proposition 1: the claim is trivial for κ = 0. For non-zero κ, it is well-
known that if we equip the space Rn+2 with the pseudo-metric 〈x, y〉 = εx0y0 +∑n+1

i=1 xiyi where ε = signκ and its associated Levi-Civita pseudo-Riemannian
connection D, then, a model space for M is the sphere Sn+1(1/

√
κ) = {x ∈

Rn+2/〈x, x〉 = 1/κ} for positive κ and the upper hyperboloid Hn+1(−1/
√−κ) =

{x ∈ Rn+2/〈x, x〉 = 1/κ and x0 > 0} for negative κ, with the induced metric,
which is Riemannian. The announced formula follows then from two elementary
facts: the distance of two points x and y of M is d(x, y) = ˙sn−1

κ (κ〈x, y〉) which
implies that hκ ◦dp is the restriction to M of the linear form −〈p, ·〉+1/κ on Rn+2.
On a second hand, (DXY )q = (∇̃XY )q−κ〈X,Y 〉q for any point q ∈ M and vector
fields X,Y on M. We deduce immediatly that if γ is a 1-time speed geodesic of M,
then (E◦γ)”(t) =

∫
M
∇̃2(hκ◦dq)γ(t)〈γ̇(t), γ̇(t)〉·dν(q) =

∫
M

( ˙snκ◦dq)(γ(t))·dν(q) >
0, which shows the strict convexity of E and proves the assertion. ¤

As c is a critical point of E , we note that 0 = 〈∇̃E(c), u〉 =
∫

M
〈∇̃(hκ ◦ dq)(c), u〉 ·

dν(q) for any u ∈ UcM and the key point is the following:

Lemma. Let u and v be unit vectors tangent to M at c and q respectively, q being
arbitrary in M. Then the smooth function Fc,u : M → R : q 7→ 〈∇̃(hκ ◦ dq)(c), u〉
satisfies: ∫

UcM
F 2

c,u(q) · du = ωn+1 · sn2
κ(dc(q)) (5)∫

UcM
〈∇̃Fc,u(q), v〉2 · du = ωn+1

{
1− 〈v, ∇̃dc(q)〉2κ sn2

κ(dc(q))
}

(6)

where du is the canonical measure of UcM and ωn+1 the volume of the unit ball of
Rn+1.

Formula (5) follows from the classical trick on quadratic forms:

Proposition 2. Let B : V ×V → R be a bilinear form on a real (n+1)-dimensional
inner product space V and (S, du) the unit sphere of V endowed with its canonical
measure du. Then ∫

S

B(u, u) · du = ωn+1 · trace B

To prove (6), we introduce for convenience the function µκ(t) = snκt/t and we set
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` = d(c, q). Then we can write Fc,u(q) = −µκ(`)〈exp−1
c q, u〉 and

〈∇̃Fc,u(q), v〉 = −µ̇κ(`)〈∇̃dc(q), v〉〈exp−1
c q, u〉 − µκ(`)〈∇̃J(0), u〉

where J : [0, 1] → TM is the unique Jacobi vector field along the geodesic γ :
[0, 1] → M : t 7→ expc(t exp−1

c q) in M joining c to q with the initial conditions
(J(0), J(1)) = (0, v). Let us write v = vT + v⊥ where vT = 〈v, ∇̃dc(q)〉∇̃dc(q) =
〈v, γ̇(1)〉γ̇(1)/`2 is the tangential component of v relatively to the geodesic speed
vector γ̇(1). Solving the differential equation satisfied by J , one easily obtains that

J(t) =
〈v, ∇̃dc(q)〉

`
tγ̇(t) +

snκ(t`)
snκ`

P⊥(t)

where P⊥ is the unique parallel vector field along γ with P⊥(1) = v⊥. This implies
that

∇̃J(0) =
〈v, ∇̃dc(q)〉

`
γ̇(0) +

1
µκ(`)

P⊥(0)

So,

〈∇̃Fc,u(q), v〉 = −
〈{

µ̇κ(`) +
µκ(`)

`

}
〈v, ∇̃dc(q)〉γ̇(0) + P⊥(0), u

〉

= −
〈

˙snκ`

`
〈v, ∇̃dc(q)〉γ̇(0) + P⊥(0), u

〉

As P⊥ is parallel along the geodesic γ and perpendicular to the geodesic at t =
1, P⊥ is of constant norm |v⊥| and always perpendicular to the geodesic. By
proposition 2 and the straightforward relation ˙sn2

κt + κ sn2
κt = 1, one obtains that

1
ωn+1

∫
UcM

〈∇̃Fc,u(q), v〉2 · du = |vT |2 ˙sn2
κ` + |v⊥|2 = 1− |vT |2κ sn2

κ` ¤

2.2. Proof of the theorem

Let η be the outward smooth unit vector field normal to M , that is the one pointing
in the opposite direction to D. The previous lemma, the Green formula which by
proposition 1 is:

∫
M
〈∇̃(hκ ◦dc), η〉 ·dν =

∫
Ω ∆̃(hκ ◦dc) ·dν̃ = (n+1)

∫
Ω ˙snκ ◦dc ·dν̃

and the generalized Hsiung-Minkowski formulae [1]:
∫

M
{Hi ˙snκ ◦dc +Hi+1〈∇̃(hκ ◦

dc), η〉}·dν = 0 for any i ∈ [[0, n−1]] show formulae (2) and (3) as easy consequences
of (1). Formulae (5) et (6) prove (1): indeed, if we denote by fc,u the restriction
of Fc,u to M , then |∇fc,u|2 = |∇̃Fc,u|2 − 〈∇̃Fc,u, η〉2 and we deduce immediatly
from (6) that

1
ωn+1

∫
UcM

|∇fc,u|2 · du = n−
(
1− 〈η, ∇̃dc〉2

)
κ sn2

κ ◦ dc (7)
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The definition of c imply that the integrals of the functions (fc,u)u∈UcM on M all
vanish. By the Rayleigh min-max principle, the first positive Laplacian eigenvalue
of M satisfy λ1

∫
M

f2
c,u·dν ≤ ∫

M
|∇fc,u|2·dν for any vector u ∈ UcM and equality is

achieved if and only if fc,u is an eigenfunction, that is ∆fc,u = λ1fc,u. Integrating
this last inequality on UcM, using Fubini theorem, (5) and (7), we obtain

λ1

∫
M

sn2
κ ◦ dc · dν ≤

∫
M

{
n−

(
1− 〈η, ∇̃dc〉2

)
κ sn2

κ ◦ dc

}
· dν

If κ is negative, inequality (4) is immediate. For non-negative κ, the right term is
bounded from above by nVolM and we arrive to the announced inequality (1).

If κ is zero and equality holds, then ∆fc,u = λ1fc,u for any vector u. In order to
be self-contained, we recall the classical argument [4] which concludes the proof:
it is an easy result that ∆fc,u = nH1〈η, u〉 where H1 is the 1-mean curvature of
M . This implies that nH1η = −λ1∇̃(hκ ◦ dc). We choose a local orthonormal
basis (Xi)1≤i≤n of principal vectors in TM associated to the principal curvatures
(ki)1≤i≤n and we differentiate this last equation by Xi. Using Weingarten equation
and proposition 1, we obtain n(XiH1)η − nH1kiXi = −λ1Xi. Taking its scalar
product with Xi and summing the relations obtained for all i, we deduce that
λ1 = nH2

1 . This shows that M is of constant 1-mean curvature and by this way,
included in a geodesic sphere centered at c with radius

√
n/λ1. As this geodesic

sphere is also n-dimensional and connected, we deduce by the compactness of M
that M coincides with this geodesic sphere.

If κ is positive and equality holds, this means that η = ±∇̃dc. Therefore, the gradi-
ent of (hκ◦dc)|M satisfy 〈∇((hκ◦dc)|M ), ξ〉 = 〈∇̃(hκ◦dc), ξ〉 = (snκ◦dc)〈∇̃dc, ξ〉 = 0
for any vector field ξ on M . As M is connected, the function hκ ◦ dc is then con-
stant on M , i.e. M is included in a geodesic sphere centered at c. As this geodesic
sphere is also n-dimensional and connected, we deduce by the compactness of M
that M coincides with this geodesic sphere.

For negative κ, we note at last that equality cannot hold in (4): indeed, equality
would imply that 〈η, ∇̃dc〉 = 0 on M and this is in contradiction with the first gen-
eralized Hsiung-Minkowski formulae which says that 0 =

∫
M
{ ˙snκ ◦dc +H1〈∇̃(hκ ◦

dc), η〉} · dν =
∫

M
{ ˙snκ ◦ dc + H1 · snκ ◦ dc 〈∇̃dc, η〉} · dν. ¤
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