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c© 2001 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

On Nehari disks and the inner radius

Leila Miller-Van Wieren

Abstract. Let D be a simply connected plane domain and B the unit disk. The inner radius
of D , σ(D) , is defined by σ(D) = sup

{
a : a ≥ 0,

∣∣∣∣Sf

∣∣∣∣
D
≤ a implies f is univalent in D

}
.

Here Sf is the Schwarzian derivative of f , ρD the hyperbolic density on D and
∣∣∣∣Sf

∣∣∣∣
D

=

supz∈D

∣∣Sf (z)
∣∣ ρ−2

D (z). Domains for which the value of σ(D) is known include disks, angular
sectors and regular polygons, as well as certain classes of rectangles and equiangular hexagons.
All of the mentioned domains except non-convex angular sectors have an interesting property
in common, namely that σ(D) = 2 − ||Sh||B , where h maps B conformally onto D . Because
of the importance of this property for computing σ(D) , we say that D is a Nehari disk if
σ(D) = 2− ||Sh||B holds.

This paper is devoted to the problem of characterizing Nehari disks. We give a necessary
and sufficient condition for a domain to be a Nehari disk provided it is a regulated domain with
convex corners.
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1. Introduction

We use the symbol C to denote the complex plane and C to denote the extended
complex plane. Within C , we use the symbol B to refer to the unit disk ( B =
{z : |z| < 1} ) and U for the upper half-plane ( U = {z : I m (z) > 0} ). The
symbol D will denote a domain in C with at least two points on its boundary.

For z ∈ B , the hyperbolic density of B at z is the quantity ρB(z) given by
ρB(z) = 1/(1 − |z|2) . For a general simply connected domain D , the hyperbolic
density ρD is then defined in terms of ρB and h : B −→ D where h maps B
conformally onto D (see [11, page 5]).

For f holomorphic in D ⊂ C , with f ′(z) 6= 0 for z ∈ D , the Schwarzian
derivative Sf , of f , is defined in D by Sf (z) = (f ′′/f ′)′ (z) − 1

2 (f ′′/f ′)2 (z) .
This definition can easily be extended to include locally univalent meromorphic
functions. A detailed explanation of the extended definition can be found in [11,
page 52]. To make our terminology more concise, locally univalent meromorphic
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functions will be refered to simply as locally univalent functions.
In order to discuss a univalence criterion for f we introduce a norm for Sf . Let

D be a simply connected domain in C . For f locally univalent in D , we define
the hyperbolic norm of Sf with respect to D by ||Sf ||D = supz∈D |Sf (z)| ρ−2

D (z) .
Now suppose D is a simply connected domain in C . We define the inner

radius of D , σ(D) , by σ (D) = sup{a : a ≥ 0, ||Sf ||D ≤ a implies f is univalent
in D} .

All images of D under Möbius transformations have the same inner radius as
D .

Nehari [14] and Hille [8] proved that σ(B) = 2 . Later, Lehtinen showed in [9]
that σ(D) ≤ 2 for all simply connected domains in C with equality occurring
only when D is a disk in C (i.e. an image of B under a Möbius transformation).
The inner radius of a domain has another important meaning that is not apparent
from its definition. Ahlfors and Weill [3] proved that if f is locally univalent on
D (a simply connected domain) with ||Sf ||D < σ(D) , then f is univalent and
can be extended to a quasiconformal mapping of C . Ahlfors [1] and Gehring [5]
proved that when D is a simply connected domain, σ(D) > 0 if and only if D is
a quasidisk.

Next, we list some known values of σ(D) . If S denotes the parallel strip
defined as the image of U under h(z) = log z , then σ(S) = 0 . Lehto and
Lehtinen have calculated the inner radii of angular sectors in [10] and [9]. If Ak =
{z : z ∈ C , 0 < arg z < kπ} , then σ(Ak) = 2k2 for 0 < k < 1 and σ(Ak) = 4k−
2k2 for 1 < k < 2 . Another class of domains for which the inner radii have been
calculated are regular polygons. Calvis [4], proved that σ(Pn) = 2 (n− 2)2 /n2

where Pn is an open regular n -sided polygon.
In [12] we computed the inner radii for some classes of rectangles and equian-

gular hexagons. We proved that if R is a rectangle whose ratio of longer over
shorter side is bounded from above by a specific constant (∼= 1.52346 . . . ), then
σ(R) = 1/2 , and if H is an equiangular hexagon whose sides form the sequence
baabaa with b/a ≤ 1.67117 . . . , then σ(H) = 8/9 . In the proofs of the just men-
tioned results the following simple but insightful lemma (see [13]) played a key
role.

Lemma 1.1. If D is a simply connected domain and if h maps B conformally
onto D , then σ(D) ≥ 2− ||Sh||B .

Proof. Suppose f is locally univalent on D with ||Sf ||D ≤ 2 − ||Sh||B . Then,
f ◦h is locally univalent on B and ||Sf◦h||B = ||Sf − Sh−1 ||D ≤ ||Sf ||D + ||Sh−1 ||D =
||Sf ||D + ||Sh||B ≤ 2 (see [11]). This implies that f ◦h is univalent on B and hence
f is univalent on D . Thus σ(D) ≥ 2− ||Sh||B . ¤

It turns out that the lower bound 2 − ||Sh||B is equal to σ(D) in the case of
many domains for which σ(D) is known—disks, parallel strips, convex angular
sectors and regular polygons, as well as the mentioned classes of rectangles and
equiangular hexagons (see [13] and [12]). Moreover, this yields a good method for
computing σ(D) for many domains. As will be seen later, computing σ(D) for
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some domains can be based on merely understanding the behavior of the Riemann
mapping h . This prompted us to introduce a special name for these domains (we
first introduced it in [12]). A simply connected domain D in C is called a Nehari
disk if

σ(D) = 2− ||Sh||B ,

where h maps B conformally onto D . Nehari disks are essentially domains for
which the application of the Nehari univalence criterion to ||Sf◦h||B = ||Sf − Sh−1 ||D
gives the best possible result (and hence the name Nehari). Disks, parallel strips,
convex angular sectors, regular polygons and the mentioned rectangles and equian-
gular hexagons are all Nehari disks. Of course, there exist many simply connected
domains which are not Nehari disks. From the calculations in Lehto [10] and
Lehtinen [9], one can easily see that the angular sectors Ak with 1 < k < 2 are
not Nehari disks. Also, from the presentation in Lehto [11, pages 60–61] we can
conclude that there are many domains D for which ||Sh||B > 2 , where h : B −→ D
is the Riemann mapping. No such domain can be a Nehari disk.

In [13], it is demonstrated that some results previously known to hold for B
are valid for all Nehari disks. We mention one of these generalizations here, as we
will use it later on.
Theorem 1.2. Suppose D is a Nehari disk. If f is a locally univalent function
on D and if ||Sf ||D ≤ σ(D) , then f(D) is a Jordan domain or the image of the
parallel strip S under a Möbius transformation.

This is a generalization of the analogous theorem of Gehring and Pommerenke [7]
for the unit disk. We recall another result from [7].
Theorem 1.3 (Gehring-Pommerenke). Suppose f : B −→ C is locally uni-
valent on B and lim sup|z|→1 |Sf (z)| (1−|z|2)2 < 2 . If f(B) is a Jordan domain,
then f(B) is a quasidisk.

In this paper we establish a necessary and sufficient condition for a domain to
be a Nehari disk, provided it belongs to a large and well known class of domains.
Before introducing our result, we note a useful fact about how σ(D) is affected by
standard convergence of domains. In [12], the following relation between the inner
radii of Dn and D when {Dn} converges to D in the sense of Carathéodory
kernel convergence is demonstrated (for the definition of this convergence see [16,
page 13]).
Theorem 1.4. If Dn and D are simply connected domains and if Dn −→ D
with respect to w0 , then σ(D) ≥ lim supn→∞ σ(Dn) .

2. Main result

In the introduction we saw that the definition of Nehari disks springs naturally
from the problem of calculating σ(D) for domains D . That computation could
be done using just the Riemann mapping, provided we knew that the domain
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was a Nehari disk. So, the question that comes to mind is: “Can Nehari disks
be characterized in some interesting way?” Many domains in the applications
of conformal mapping are bounded by finitely many smooth arcs that may form
corners or may go to infinity. By restricting attention to a class of domains known
as regulated domains, subject to the added constraint of having all convex corners,
a class wide enough to include all the domains described earlier, we are able to
obtain a necessary and sufficient condition for a domain to be a Nehari disk.

We begin with some definitions (see [16, pages 59–64]). A real-valued function
β on an interval I in R is said to be regulated if the one-sided limits β(t−) =
limτ→t− β(τ) and β(t+) = limτ→t+ β(τ) exist for t ∈ I (in case t is an endpoint
of I only one of the above limits applies). Here and in what follows, we will assume
that D is a Jordan domain and that h maps B conformally onto D . Then h can
be extended as a homeomorphism of B onto D , for which we retain the notation
h . We shall use the parametrization of ∂D given by h(eit) , for 0 ≤ t ≤ 2π and
periodically extended for t ∈ R . We present three slightly modified definitions
from [16], as we are concerned with Jordan domains only. We say that ∂D has a
corner of opening απ , (0 ≤ α ≤ 2) at h(eiξ) 6= ∞ , (ξ ∈ [0, 2π]) if

arg
[
h(eit)− h(eiξ)

] −→ {
β as t → ξ+,
β + απ as t → ξ−.

(It is assumed that arg z takes on values in [0, 2π) .) We also say that ∂D has a
forward half-tangent of direction angle β and a backward half-tangent of direction
angle β +απ in this case. A corner and half-tangents at ∞ are defined by means
of a preliminary inversion.

A Jordan domain D in C is said to be a regulated domain if

β(t) =
{

limτ→t+ arg
[
h(eiτ )− h(eit)

]
for h(eit) 6= ∞,

limτ→t+ arg
(
h(eiτ )

)
+ π for h(eit) = ∞

exists for all t and defines a regulated function.
As discussed in [16], β(t) is equal to β(t+) and represents the direction angle

of the forward half-tangent of ∂D at h(eit) ; the limit β(t−) represents the
direction angle of the backward half-tangent at h(eit) . In addition, it is shown
that β(t+) = β(t−) for all but at most countably many t . We note the following
useful proposition (see [16, page 60]).

Proposition 2.1. Suppose D is a regulated domain and 0 < ε < π . If |β(t)− γ|
< ε and h(eit) 6= ∞ for t ∈ I where I is some interval in R , then∣∣arg[h(eiτ )− h(eit)]− γ

∣∣ < ε whenever t, τ ∈ I and t < τ .

As a regulated function on [0, 2π] , β can be written as β = βc +βj where βc
is continuous on [0, 2π] and βj is constant on [0, 2π] except for at most countably
many jumps. The jumps clearly correspond to corners of ∂D .

Regulated domains admit a simple representation formula for the conformal
mapping h , h(B) = D . The following formula, due to Paatero [15], can also be
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found in [16]. If h maps B conformally onto a regulated domain D , then

log h′(z) = log |h′(0)|+ i

2π

∫ 2π

0

eit + z

eit − z

(
β(t)− t− π

2

)
dt (2.1)

for z ∈ B . From (2.1), we obtain

Sh(z) =
2i

π

∫ 2π

0

eit

(eit − z)3
(
β(t)− t− π

2

)
dt

+
1

2π2

(∫ 2π

0

eit

(eit − z)2
(
β(t)− t− π

2

)
dt

)2

(2.2)

for z ∈ B , whenever D is regulated and h , h : B −→ D , is conformal.
Now we are ready to state our result.

Theorem 2.2. Suppose that D is a regulated domain with convex corners and
that h maps B conformally onto D . Then, D is a Nehari disk if and only if

lim sup
|z|→1

|Sh(z)|
(
1− |z|2

)2

= ||Sh||B .

Since the proofs of the two directions are different, we will address them in
separate sections restating the above result as two separate theorems.

3. The sufficient condition

We begin by proving two lemmas that describe the behavior of the Schwarzian
derivative of the mapping h near ∂B .

Lemma 3.1. Suppose that D is a regulated domain, that h maps B conformally
onto D and β is as defined earlier. If ζ ∈ [0, 2π] and if β is continuous at ζ ,

then lim
z→eiζ

|Sh(z)|
(
1− |z|2

)2

= 0 .

Proof. By applying a preliminary rotation we may assume that ζ ∈ (0, 2π) . In
view of (2.2), we begin by showing that

lim
z→eiζ

∫ 2π

0

eit
(
1− |z|2

)2

(eit − z)3
(
β(t)− t− π

2

)
dt = 0.

Let c = β(ζ) . First we will verify that lim
z→eiζ

∫ 2π

0

eit
(
1− |z|2

)2

(eit − z)3
(β(t)− c) dt = 0 .

Fix ε > 0 . Since β is continuous at ζ , we can choose δ > 0 so that ζ − δ < t <
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ζ + δ −→ |β(t)− c| < ε
8π . Next

∣∣∣∣∣∣∣
∫ ζ+δ

ζ−δ

eit
(
1− |z|2

)2

(eit − z)3
(β(t)− c) dt

∣∣∣∣∣∣∣ ≤
∫ ζ+δ

ζ−δ

(
1− |z|2

)
|eit − z|2

(
1− |z|2

)
|eit − z| |β(t)− c| dt

≤ 2 · ε

8π

∫ ζ+δ

ζ−δ

(
1− |z|2

)
|eit − z|2 dt <

ε

4π
· 2π <

ε

2
(3.1)

(using the Poisson representation formula [2, page 167]) for z ∈ B . Let Aδ =
[0, ζ − δ]

⋃
[ζ + δ, 2π] . Then, for t ∈ Aδ and z ∈ B ,

∣∣z − eiζ
∣∣ <

∣∣∣ei(ζ+ δ
2 ) − eiζ

∣∣∣ :

lim
z→eiζ

eit
(
1− |z|2

)2

(eit − z)3
(β(t)− c) = 0 and

∣∣∣∣∣∣∣
eit

(
1− |z|2

)2

(eit − z)3
(β(t)− c)

∣∣∣∣∣∣∣ is uniformly bounded.

From the Dominated Convergence Theorem (see [17]),

lim
z→eiζ

∫
Aδ

eit
(
1− |z|2

)2

(eit − z)3
(β(t)− c) dt = 0. Hence, we can fix δ′ > 0 so that for

z ∈ B and
∣∣z − eiζ

∣∣ < δ′ ,

∣∣∣∣∣∣∣
∫

Aδ

eit
(
1− |z|2

)2

(eit − z)3
(β(t)− c) dt

∣∣∣∣∣∣∣ <
ε

2
. (3.2)

Now, from (3.1), (3.2) and the triangle inequality,∣∣∣∣∣∣∣
∫ 2π

0

eit
(
1− |z|2

)2

(eit − z)3
(β(t)− c) dt

∣∣∣∣∣∣∣ < ε for z ∈ B ,
∣∣z − eiζ

∣∣ < δ′ . Since ε > 0 was

arbitrary, we have shown that

lim
z→eiζ

∫ 2π

0

eit
(
1− |z|2

)2

(eit − z)3
(β(t)− c) dt = 0. (3.3)



Vol. 76 (2001) On Nehari disks and the inner radius 189

Now using integration by parts we get

∣∣∣∣∣∣∣
∫ 2π

0

eit
(
1− |z|2

)2

(eit − z)3
(
c− t− π

2

)
dt

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣−iπ

(
1− |z|2

)2

(1− z)2
+ i

∫ 2π

0

(
1− |z|2

)2

2(eit − z)2
dt

∣∣∣∣∣∣∣
≤ π

(
1− |z|2

)2

|1− z|2 +
∫ 2π

0

(
1− |z|2

)2

2 |eit − z|2 dt

for z ∈ B . Again, from the Poisson representation formula, it is clear that

lim
z→eiζ

∫ 2π

0

eit
(
1− |z|2

)2

(eit − z)3
(
c− t− π

2

)
dt = 0. (3.4)

Thus from (3.3) and (3.4), lim
z→eiζ

∫ 2π

0

eit
(
1− |z|2

)2

(eit − z)3
(
β(t)− t− π

2

)
dt = 0. In a

completely analogous fashion, it can be verified that

lim
z→eiζ

∫ 2π

0

eit
(
1− |z|2

)
(eit − z)2

(
β(t)− t− π

2

)
dt = 0. Thus from (2.2),

lim
z→eiζ

|Sh(z)|
(
1− |z|2

)2

= 0 . ¤
Next, we show a general lemma describing the behavior of the Schwarzian

derivative of the mapping h near ∂B .

Lemma 3.2. Suppose h maps B conformally onto a regulated domain D where
β = βc + βj (as defined earlier) and βj has jumps σkπ at tk ∈ [0, 2π] for
k = 1, 2 . . . (there are at most countably many jumps). Then

lim sup
|z|→1

|Sh(z)| (1− |z|2)2 = sup
k

∣∣4σk − 2σ2
k

∣∣ = sup
k

∣∣2− 2α2
k

∣∣

where αk = 1− σk for all k .

Proof. Suppose k is arbitrarily fixed. We will calculate lim sup
z→eitk

|Sh(z)|
(
1− |z|2

)2

.

By applying a preliminary rotation we may assume that tk ∈ (0, 2π) . Let
βk(t) = β(t) for t ∈ [0, tk) , βk(t) = β(t) − σkπ for t ∈ [tk, 2π) . Since β is
regulated on [0, 2π] and β(tk) = β(tk+) , we deduce that βk is regulated on
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[0, 2π] and is continuous at tk . Let βσk
= β − βk on [0, 2π] . If

I(z) =
∫ 2π

0

eit

(eit − z)3
(
βk(t)− t− π

2

)
dt +

∫ 2π

0

eit

(eit − z)3
βσk

(t)dt

=
∫ 2π

0

eit

(eit − z)3
(
βk(t)− t− π

2

)
dt +

σkπi

2

(
eitk − 1

) (
eitk + 1− 2z

)
(1− z)2 (eitk − z)2

and J(z) =
∫ 2π

0

eit

(eit − z)2
(
βk(t)− t− π

2

)
dt +

∫ 2π

0

eit

(eit − z)2
βσk

(t)dt

=
∫ 2π

0

eit

(eit − z)2
(
βk(t)− t− π

2

)
dt + σkπi

eitk − 1
(1− z) (eitk − z)

,

then from (2.2) we obtain Sh(z)(1− |z|2)2 =
[
2i

π
I(z) +

1
2π2

(J(z))2
] (

1− |z|2
)2

for z ∈ B . Thus

Sh(z)(1− |z|2)2

=

[
2i

π

∫ 2π

0

eit

(eit − z)3
(
βk(t)− t− π

2

)
dt (3.5)

+
1

2π2

(∫ 2π

0

eit

(eit − z)2
(
βk(t)− t− π

2

)
dt

)2
] (

1− |z|2
)2

+
[
σk

eitk + 1− 2z

1− z
− 1

2
σ2

k

1− eitk

1− z

] [
1− eitk

1− z

] [
1− |z|2
eitk − z

]2

+
σki

π

[∫ 2π

0

eit(1− |z|2)
(eit − z)2

(
βk(t)− t− π

2

)
dt

] [
eitk − 1

(1− z)(eitk − z)

]
(1− |z|2).

From the proof of Lemma 3.1, it is apparent that

lim
z→eitk

[
2i

π

∫ 2π

0

eit

(eit − z)3
(
βk(t)− t− π

2

)
dt

+
1

2π2

(∫ 2π

0

eit

(eit − z)2
(
βk(t)− t− π

2

)
dt

)2 ]
(1− |z|2)2 = 0

and that

lim
z→eitk

σki

π

[∫ 2π

0

eit(1− |z|2)
(eit − z)2

(
βk(t)− t− π

2

)
dt

]

·
[

eitk − 1
(1− z)(eitk − z)

]
(1− |z|2) = 0.
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From (3.5) and the above equations we get

lim sup
z→eitk

|Sh(z)| (1− |z|2)2

= lim sup
z→eitk

[
σk

eitk + 1− 2z

1− z
− 1

2
σ2

k

1− eitk

1− z

] [
1− eitk

1− z

][
1− |z|2
eitk − z

]2

=
∣∣4σk − 2σ2

k

∣∣ .

Since k was arbitrary, from Lemma 3.1 we deduce that

lim sup
|z|→1

|Sh(z)|
(
1− |z|2

)2

= sup
k

∣∣4σk − 2σ2
k

∣∣ = sup
k

∣∣2− 2α2
k

∣∣ ,

where αk = 1− σk . ¤
In view of Lemma 3.2, if we know that lim sup

|z|→1

|Sh(z)|
(
1− |z|2

)2

= ||Sh||B ,

then ||Sh||B can be explicitly calculated for regulated D . Consequently, we would
know the value of 2− ||Sh||B —a lower bound for σ(D) . This becomes significant
when combined with the next lemma which shows that the inner radius of a domain
with a corner on the boundary is bounded from above by the inner radius of the
angular sector corresponding to it.
Lemma 3.3. Suppose that D is a Jordan domain, that h maps B onto D
conformally and that ∂D has a corner of opening απ for some α , 0 < α < 2 .
Then

σ(D) ≤
{

2α2 if 0 < α ≤ 1,
4α− 2α2 if 1 ≤ α < 2.

Proof. Since h is sense-preserving, D remains on the left side of ∂D as this curve
is traced out by h(eit) as t increases. Let ξ ∈ [0, 2π] be the point for which ∂D
has a corner of opening απ at h(eiξ) . By applying a suitable Möbius transforma-
tion we may assume without loss of generality that h(eiξ) = 0 and that the back-
ward and forward half-tangents at h(eiξ) coincide with p =

{
z = reiαπ : r > 0

}
and q = {z = r : r > 0} , respectively. In other words, the corner formed by
the two half-tangents at h(eiξ) is Aα . Now for X ⊆ C , c ∈ R we define
cX = {cz : z ∈ X} .

We will show that nD −→ Aα with respect to w0 , for some w0 ∈ Aα . The
proof is based on the following well-known fact.

If 0 < ε < απ/2 , then there exists rε > 0 such that the triangular sector

Tε =
{
z = reiθ : ε < θ < απ − ε, 0 < r < rε

}
is contained in D .

We can choose w0 ∈ Tαπ
4

. Then w0 ∈ Tαπ
4

⊆ nTαπ
4

⊆ nD for n ∈ N ,
so there is a neighborhood of w0 contained in nD for n ∈ N .
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Given any w ∈ Aα , we can choose ε , 0 < ε < απ/4 and n0 , n0 ∈ N such
that w/n0 ∈ Tε . Then w ∈ n0Tε ⊆ nTε ⊆ nD for n ∈ N , n ≥ n0 .

Finally, we check the boundary condition of kernel convergence. Suppose w ∈
∂Aα is arbitrarily fixed. We need to show that dist (w, ∂ (nD)) −→ 0 . Suppose
this was not true. Without loss of generality we can assume that w ∈ p . For
ε > 0 let

Sε = {z : ||z| − |w|| < ε, |arg z − απ| < ε} .

By our assumption, there exists ε > 0 and an increasing sequence {ni} , ni ∈ N
for i ∈ N such that Sε

⋂
∂ (niD) = ∅ for i ∈ N . Consequently 1

ni
Sε

⋂
∂D = ∅

for i ∈ N —this contradicts the fact that p is the backward half-tangent of ∂D
at h(eiξ) . Thus dist (w, ∂ (nD)) −→ 0 for w ∈ ∂Aα .

This completes the proof that nD −→ Aα with respect to w0 . Since σ(nD) =
σ(D) for n ∈ N , if we consider the known values of σ(Aα) and Theorem 1.4,
the statement of the lemma follows. ¤

We are now prepared to present the sufficiency portion of the main result.

Theorem 3.4. Suppose that D is a regulated domain with convex corners and

that h maps B conformally onto D . If lim sup
|z|−→1

|Sh(z)|
(
1− |z|2

)2

= ||Sh||B , then

D is a Nehari disk.

Proof. Suppose β = βc + βj and σkπ , k = 1, 2 . . . are as in Lemma 3.2.
Each jump σkπ corresponds to a corner αkπ , where αk = 1 − σk if the corner
is at a finite point on ∂D and αk = σk − 1 if the corner is at infinity. Also
0 < αk < 1 for each k . Lemma 3.3 implies that σ(D) ≤ 2α2

k for each k and
hence σ(D) ≤ inf

k
2α2

k. On the other hand, Lemma 3.2 and the assumption of the

theorem imply that ||Sh||B = sup
k

(
2− 2α2

k

)
. From the above and Lemma 1.1, we

get σ(D) ≥ 2− sup
k

(
2− 2α2

k

) ≥ inf
k

2α2
k. Hence, it follows that σ(D) = infk 2α2

k

and that D is a Nehari disk. ¤
In the proof of the above theorem we have also verified the following corollary.

Corollary 3.5. Suppose D satisfies the assumptions of Theorem 3.4. If ∂D has
corners αkπ , k = 1, 2 . . . , then σ(D) = infk 2α2

k .

4. The necessary condition

Before moving on to the necessary condition, we establish some preliminary facts.

Lemma 4.1. Suppose D is a regulated quasidisk and {λn} is a sequence of
similarity transformations such that there are points z1 , z2 outside of all λn(D)
and λn(D) −→ D0 with respect to some z0 ∈ D0 , where D0 is some domain.

Then, D0 is Möbius equivalent to D , or D0 is a half-plane, or D0 is Möbius
equivalent to Aα , where απ is a corner of ∂D .
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Proof. Let h : B −→ D denote a fixed conformal mapping with h(B) = D .
During the course of the proof, we will replace {λn} by a subsequence and relabel
it several times—a process that does not affect the assumptions of the lemma.
Since {λn} is a normal family in D , after passing to a subsequence and relabeling,
we can assume that either λn −→ λ locally uniformly in C , where λ is a
similarity transformation, or λn −→ c locally uniformly in D , where c is a
constant in C .

In the first case, it is easy to verify that D0 = λ(D) so D0 is Möbius equivalent
to D , proving the lemma.

Suppose λn −→ c locally uniformly in D . For n ∈ N , λn(z) = anz + bn for
some complex an , bn ; an 6= 0 . By passing to a subsequence and relabeling, we
may assume that arg an −→ θπ for some θ ∈ [0, 2] .

After passing to a further subsequence, we may assume that h−1 ◦λ−1
n −→ w0

locally uniformly in D0 , for some w0 ∈ ∂B . Since D is a quasidisk, we can
assume that h is a homeomorphism of B onto D .

Now, for n ∈ N , we can find a conformal mapping gn : B −→ λn(D) (con-
tinuously extended to the boundary) with gn(B) = λn(D) , such that:

(a) gn(0) = z0 ; (b) gn(w0) = λn(h(w0)) .
Modulo extraction of another subsequence, we may assume that gn −→ g locally
uniformly in B , where g is conformal and g(B) = D0 . Also, since all λn(D)
are K -quasidisks for some fixed K , we may extend each gn by reflection to a
K2 -quasiconformal mapping of C , and retaining the name gn for the extension,
assume that gn −→ g locally uniformly in C , where g is a K2 -quasiconformal
extension of the original mapping g .

Let µn = h−1 ◦ λ−1
n ◦ gn . In B , µn is the restriction of a Möbius transfor-

mation, and (from (a) and (b)) limn→∞ µn(0) = w0 , µn(w0) = w0 , µn(B) = B .
Consequently, after additional ”pruning” and relabeling, we may assume that
µn(z) −→ w0 for all but possibly one z ∈ B . Let t0 ∈ [0, 2π) be the point
for which eit0 = w0 . Without loss of generality, we may assume that t0 6= 0 . We
have µn(z) −→ eit0 for all but possibly one z ∈ ∂B and µn(eit0) = eit0 for each
n .

Let ξ0 = sup
{
ξ : ξ ∈ [t0, t0 + 2π) such that arg(µnk

(eiξ)) → t0+ , for some
{nk}

}
. From the definition of ξ0 and the fact that µn are all sense-preserving

we conclude that:
(i)For any t0 < t < τ < ξ0 , there exists a sequence {nk} such that

t0 ≤ arg(µnk
(eit)) ≤ arg(µnk

(eiτ )) and limk→∞ arg(µnk
(eiτ )) = t0+ ;

(ii)For ξ0 < t < t0 + 2π , limn→∞ arg(µn(eit)) = t0− .
( In case ξ0 = t0 or ξ0 = t0 + 2π only (ii) or (i) applies.)

Since D is regulated, from Proposition 2.1 we know that

lim
0<t<τ<t0,t→t0−

arg
[
h(eiτ )− h(eit)

]
= β(t0−) = γπ

lim
t0<t<τ<2π,τ→t0+

arg
[
h(eiτ )− h(eit)

]
= β(t0+) = βπ
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for some γ, β in [0, 2) . Thus, for t0 < t < τ < ξ0 , there exists {nk} such that

arg
[
g(eiτ )− g(eit)

]
= lim

k→∞
arg

[
gnk

(eiτ )− gnk
(eit)

]
= lim

k→∞
arg

[
ank

(
h(µnk

(eiτ ))− h(µnk
(eit))

)]
and consequently, since arg ank

−→ θπ , arg
[
g(eiτ ) − g(eit)

]
= βπ + θπ (or

βπ + θπ − 2π ). Analogously, for ξ0 < t < τ < t0 + 2π , arg
[
g(eiτ )− g(eit)

]
=

γπ+θπ (or γπ + θπ − 2π ) . Since ∂D0 = ∂g(B) is a Jordan curve, we conclude
that D0 is a half-plane when γ = β , while D0 is the image of Aα under a
similarity transformation when γ 6= β , where α = 1 − (β − γ) . As ∂D has a
corner of opening απ in the second case, the proof is complete. ¤

In the lemma that follows, we will demonstrate that (roughly speaking) a se-
quence of Kn -quasidisks with Kn −→∞ can, after passage to a subsequence, be
”arranged” so that it converges to a non-Jordan domain. We will express this fact
in terms of the three-point property (see [6]). First we introduce some notation.
For x, y ∈ C , let (x, y) ( [x, y] ) denote the open (closed) line segment with end-
points x and y (note that (x, y) = (y, x) in this notation). For a quasidisk D

in C , set d(D) = inf
{ |x− y|
|x− z| : x, y, z satisfy (?)

}
, where:

(?) — x, y, z are distinct points on ∂D \ {∞} and z is in the component of
∂D \ {x, y} with minimal diameter.
Lemma 4.2. Suppose {Dn} is a sequence of quasidisks such that d(Dn) −→
0 . There exists a sequence of natural numbers {nk} , a sequence of Möbius
transformations {µnk

} and a domain N containing (0, 1) , such that:
(i) N ⊆ µnk

(Dnk
) and 0, 1,∞ ∈ ∂µnk

(Dnk
) for all k ;

(ii) µnk
(Dnk

) −→ D′ (with respect to any point in N ), where D′ is a non-
Jordan domain containing N .

Proof. Without loss of generality, we may assume that ∞ ∈ ∂Dn for n ∈ N .
Let dn = d(Dn) for n ∈ N . Also, we may assume that dn < 1 for n ∈ N .
Now for n ∈ N we pick xn, yn, zn and εn > 0 so that:
(i) xn, yn, zn satisfy (?) applied to Dn and zn is such that |xn − zn| is maximal;
(ii) dn ≤ |xn − yn| / |xn − zn| ≤ dn(1 + εn) ;
(iii) εn −→ 0 .

Without loss of generality we can assume that, for each n , either (xn, yn) ⊆ Dn

or (xn, yn) ⊆ C \ Dn . (If not, replace xn, yn with x′n, y′n , where x′n, y′n are
picked from the intersections of the components of ∂Dn \ {zn,∞} , that contain

xn, yn respectively, with B
(

(xn + yn)
2

,
|xn − yn|

2

)
, so that |x′n − y′n| is minimal,

then replace zn with z′n so that (i) holds for x′n , y′n , z′n . It is easy to find εn > 0
so that (ii) and (iii) hold.)

By passing to a subsequence and relabeling, we can assume that either (xn, yn)
⊆ Dn for all n , or (xn, yn) ⊆ C \ Dn for all n . We give the proof for the first
case only, as a modification of the same argument works in the second case.
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So assume that (xn, yn) ⊆ Dn for all n . For each n , choose a similarity
transformation µn such that µn([xn, yn]) = [0, 1] , and let z′n = µn(zn) . From
(ii) it follows that:

dn ≤ 1
|z′n|

=
|0− 1|
|0− z′n|

≤ dn(1 + εn)

and that z′n is in the bounded component of ∂µn(Dn)\{0, 1} . It is easy to verify
that for each z ∈ (0, 1) , we can fix δz > 0 so that B(z, δz) ⊆ µn(Dn) for all n .
We introduce some notation. Let N =

⋃
z∈(0,1)

B(z, δz), V =
⋃

z∈(0,1)

(B(z, δz)
⋂

U) ,

W =
⋃

z∈(0,1)

(B(z, δz)
⋂

L) (where L denotes the lower half-plane). Thus N =

V
⋃

(0, 1)
⋃

W . Let Vn denote the component of µn(Dn) \ (0, 1) containing V ,
Wn the component of µn(Dn) \ (0, 1) containing W . Also, let An and Bn

denote the components of ∂µn(Dn) \ {z′n,∞} containing 0 and 1 respectively.
Two observations will be useful.
Observation 1 If un ∈ An , vn ∈ Bn , with |un| ≤ k |z′n| , |vn| ≤

k |z′n| for some 0 < k < 1 , then |un − vn| ≥ 1− k

1 + εn
.

Indeed, since z′n is in the bounded component of ∂µn(Dn) \ {0, 1} , from the
definition of dn it follows that

|un − vn| ≥ dn |un − z′n| ≥ dn(1− k) |z′n| ≥ dn(1− k)
1

dn(1 + εn)
=

1− k

1 + εn
.

Since all domains concerned omit 0 , 1 and ∞ , we may pass to a subsequence and
assume that Vn −→ V′ , Wn −→ W′ and µn(Dn) −→ D′ (with respect to any
point in V , W , N respectively), where V′ , W′ and D′ are domains containing
V , W and N respectively. It is easy to verify that D′ = V′

⋃
(0, 1)

⋃
W′ .

Moreover, since Vn

⋂
Wn = ∅ for all n , it easily follows that V′

⋂
W′ = ∅ .

Observation 2 V′ is non-Jordan or unbounded, and W′ is non-
Jordan or unbounded.

We verify the assertion for V′ . Suppose, to the contrary that V′ is a bounded
Jordan domain. Consider ∂V′ \ (0, 1) . For each v ∈ ∂V′ \ (0, 1) there exists a
sequence {vn} , vn ∈ ∂Vn \ (0, 1) , such that v = limn→∞ vn . Let

A =
{

v ∈ ∂V′ \ (0, 1) : v = lim
n→∞ vn with vn ∈ An for infinitely many n

}
,

B =
{

v ∈ ∂V′ \ (0, 1) : v = lim
n→∞ vn with vn ∈ Bn for large enough n

}
.

Then 0 ∈ A , 1 ∈ B , so A and B are nonempty sets with A
⋃

B = ∂V′ \ (0, 1)
(since z′n −→∞ ). Since V′ is Jordan and (0, 1) ⊆ ∂V′ it follows that ∂V′\(0, 1)
is connected. Thus, there exist u ∈ A and v ∈ B with |u− v| < 1/3 . From this
and the definition of A and B we conclude that there exists an increasing sequence
of natural numbers {nk} and unk

∈ Ank
, vnk

∈ Bnk
such that limk→∞ unk

= u ,
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limk→∞ vnk
= v and |unk

− vnk
| < 1/3 for each k . Since V′ is bounded and

limn→∞ z′n = ∞ it follows that |unk
| ≤ 1

2

∣∣z′nk

∣∣ and |vnk
| ≤ 1

2

∣∣z′nk

∣∣ for large

enough k . Thus, by Observation 1 , |unk
− vnk

| ≥ 1
2(1 + εnk

)
for large enough

k . We have arrived at a contradiction. Hence, the observation is true.
We know that (0, 1) ⊆ D′ , 0, 1 ∈ ∂D′ . It is not hard to see that the compo-

nents of D′ \ (0, 1) are V′ and W′ . From Observation 2 it follows that D′ is
non-Jordan, proving the lemma. ¤

We need the following definition. Suppose D is a simply connected domain.
We say that a conformal mapping g : D −→ C is an extremal mapping for D if

(i) ||Sg||D = σ(D) ;
(ii) g cannot be extended to a quasiconformal mapping of C .
When D = U , g(z) = log z is an extremal mapping for D . Extremal mappings
can also be easily demonstrated for angular sectors. It is not known whether every
domain has an extremal mapping.
Lemma 4.3. Suppose D is a regulated quasidisk. Then there exists an extremal
mapping for D or σ(D) = σ(Aα) , where απ ∈ (0, 2π) is such that ∂D has a
corner of opening απ .
Proof. Without loss of generality we may assume that D is bounded. Suppose
that no extremal mapping for D exists. We can find a sequence of conformal
mappings gn , gn : D −→ C such that:

(i) ||Sgn
||D −→ σ(D) ; (ii) For each n , Dn = gn(D) is a quasidisk and

d(Dn) −→ 0 .
By Lemma 4.2 we may assume the existence of a sequence {µn} of Möbius trans-
formations such that 0, 1,∞ ∈ ∂µn(Dn) and B(1/2, ε) ⊆ µn(Dn) for each n ,
for some ε > 0 ; and µn(Dn) −→ D′ with respect to 1/2 where D′ is some
non-Jordan domain.

Let rn denote the distance of g−1
n ◦µ−1

n (1/2) from ∂D and let zn ∈ ∂D be a
point for which

∣∣zn − g−1
n ◦ µ−1

n (1/2)
∣∣ = rn . Choose a similarity transformation

λn that maps B(g−1
n ◦ µ−1

n (1/2), rn) onto B with λn(g−1
n ◦ µ−1

n (1/2)) = 0 and
λn(zn) = 1 . Since the domains λn(D) all contain B and omit 1 and ∞ we
may assume, by extracting a subsequence, that λn(D) −→ D0 with respect to 0 ,
where D0 is some domain containing B .

By Lemma 4.1, D0 is Möbius equivalent to D or to U or to Aα , an angular
sector associated with some corner of ∂D . In any case, σ(D0) ≥ σ(D) (see
Lemma 3.3). Now let fn = µn ◦ gn ◦ λ−1

n in λn(D) . (For any z ∈ D0 , fn(z) is
defined for large enough n .) Since 0, 1,∞ 6∈ fn(λn(D)) = µn(Dn) by assumption,
the family {fn} is normal in D0 . We may therefore suppose that fn −→ f locally
uniformly on D0 , where f : D0 −→ C . Since

fn(0) = µn ◦ gn ◦ λ−1
n (0) = µn ◦ gn

(
g−1

n ◦ µ−1
n

(
1
2

))
=

1
2
,
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B(1/2, ε) ⊆ fn(λn(D)) = µn(Dn) for all n and µn(Dn) −→ D′ with respect to
1/2 , we conclude that f maps D0 conformally onto D′ . Since D′ is non-Jordan,
||Sf ||D0

≥ σ(D0) ≥ σ(D) . On the other hand, we have

||Sf ||D0
≤ lim inf

n→∞ ||Sfn
||λn(D)

= lim inf
n→∞

∣∣∣∣∣∣Sµn◦gn◦λ−1
n

∣∣∣∣∣∣
λn(D)

= lim inf
n→∞ ||Sgn

||D = σ(D).

Thus, ||Sf ||D0
= σ(D) = σ(D0) . Since f(D0) = D′ and D′ is non-Jordan,

we conclude that there exists an extremal mapping for D0 . Thus, there exists
an extremal mapping for D (if D0 is Möbius equivalent to D or if D0 and
consequently D is a half-plane) or σ(D) = σ(Aα) for some angular sector Aα

associated with a corner of ∂D (if D0 is Möbius equivalent to Aα ). The lemma
is proved. ¤

If σ(D) = σ(Aα) for some corner of opening απ of ∂D with 0 < α ≤ 1 , then
απ is the smallest corner of ∂D . Now we turn to the necessary condition portion
of the main result.

Theorem 4.4. Suppose that D is a regulated domain with convex corners and
that h maps B conformally onto D . If D is a Nehari disk, then
lim sup
|z|→1

|Sh(z)| (1− |z|2)2 = ||Sh||B .

Proof. Suppose D is a Nehari disk i.e., σ(D) = 2 − ||Sh||B . According to
Lemma 4.3, there are two cases. Consider the first case i.e., assume that there
exists a conformal mapping g : D −→ C with ||Sg||D = σ(D) which has no
quasiconformal extension to C . Since D is a Nehari disk, from Theorem 1.2
it follows that g(D) is either a Jordan domain but not a quasidisk or is Möbius
equivalent to a parallel strip. Accordingly, g ◦ h(B) = g(D) fits one of these two
descriptions. From Theorem 1.3 we conclude that lim sup

|z|→1

|Sg◦h(z)| (1− |z|2)2 ≥ 2 ,

so

2 ≤ lim sup
w→∂D

|Sg(w)| ρ−2
D (w) + lim sup

|z|→1

|Sh(z)| (1− |z|2)2

≤ ||Sg||D + lim sup
|z|→1

|Sh(z)| (1− |z|2)2.

Therefore, ||Sh||B = 2− σ(D) = 2− ||Sg||D ≤ lim sup
|z|→1

|Sh(z)| (1− |z|2)2 so we con-

clude that lim sup
|z|→1

|Sh(z)| (1− |z|2)2 = ||Sh||B , which proves the theorem in this

case.
Now suppose that σ(D) = σ(Aα) for some corner of opening απ of ∂D .

Since D has convex corners only, from Lemma 3.3 we have σ(D) = mink 2α2
k =

2−maxk(2− 2α2
k) (where αkπ are the corners of ∂D ). Because D is a Nehari

disk, ||Sh||B = maxk(2 − 2α2
k) . Now, since D is regulated from Lemma 3.2 we
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conclude that lim sup
|z|→1

|Sh(z)| (1− |z|2)2 = ||Sh||B . This completes the proof of the

theorem. ¤
We remark that, as a consequence of Theorem 4.4, domains with smooth bound-

aries, other than disks in C , cannot be Nehari disks.
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