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Introduction

The cyclic branched coverings of knots and links in the 3-sphere constitute an
important class of 3-manifolds, and the reciprocal determination of knots and links
and their cyclic branched coverings has been a theme of constant interest in low-
dimensional topology. In particular, it has been studied extensively the question
when two different knots can have the same n-fold cyclic branched covering. In the
present paper, we study the following more general problem: given two integers
m and n, how are knots K1 and K2 related such that the m-fold cyclic branched
covering of K1 and the n-fold cyclic branched covering of K2 coincide; or, seen
from the point of view of 3-manifolds: in how many different ways can a given
3-manifold occur as a cyclic branched covering of knots in S3. We solve this
problem, under certain hypotheses, for the basic class of hyperbolic 3-manifolds
and hyperbolic knots. We note that the other basic class is that of Seifert fiber
spaces; here, by results of Meeks and Scott ([MS]), we can assume that the covering
groups are fiber-preserving, so we are dealing with the cases of torus knots and
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Montesinos knots for which the situation is well understood in terms of Seifert
invariants. The general case can then be analyzed using the equivariant sphere
theorem and torus decomposition ([MS]) into Seifert fiber spaces and hyperbolic
manifolds.

The paper is a continuation of work started in [R1] and [Z1] where the case of
homology 3-spheres resp. the case m = n have been studied.

Before stating our results, we describe two basic constructions of examples.

0.1 Standard abelian construction I

Let m and n be positive integers, and let L = X̄ ∪ Ȳ be a 2-component link in
the 3-sphere such that both components X̄ and Ȳ are trivial knots. We suppose
that the linking number of X̄ and Ȳ is relatively prime to both m and n. Then
the n-fold cyclic branched covering of Ȳ (that is of S3 along Ȳ ) is the 3-sphere,
and the preimage X of X̄ is connected and hence a knot. Similarly, we get a knot
Y in S3 as the preimage of Ȳ in the m-fold cyclic branched covering of X̄. Now
the m-fold cyclic branched covering of X and the n-fold cyclic branched covering
of Y is the same 3-manifold M which is the regular branched Zm×Zn-covering of
the link L (i.e. with covering group Zm × Zn).

It has been shown in [Z1] that, in case n = m and if n is not a power of two,
that this is the only way how to construct different hyperbolic knots with the same
n-fold cyclic branched covering. For n = 2 there are other ways of construction
and the situation is more complicated; a solution in this case has been given in
[R2]. In the present paper, we consider the case n 6= m which is more difficult and
requires different methods; nevertheless, under certain hypotheses we will obtain
similar results. Basically, in the case m = n (or if m and n have a common
prime divisor p), the situation is determined by a single Sylow p-subgroup of the
isometry group of the cyclic branched covering (a hyperbolic 3-manifold in this
paper) whereas when m and n are coprime one has to relate Sylow subgroups for
different primes. In any case our methods use in a crucial way results from finite
group theory.

0.2 Standard abelian construction II

Let l, m and n be three different integers which are pairwise coprime. Let L =
X0 ∪ Y0 ∪Z0 be a link of three trivial (unknotted) components such that any two
components of L form a Hopf link (in particular they have linking number one).

The n-fold cyclic branched covering of Z0 is the 3-sphere, and the preimages X1
of X0 and Y1 of Y0 form a link X1∪Y1 of two trivial components of linking number
n. The preimage of X1 in the m-fold cyclic branched covering of Y1 (which is again
the 3-sphere) is a knot X in S3. Finally, the l-fold cyclic branched covering of X is
a 3-manifoldM which, by construction, is also the regular branched (Zl×Zm×Zn)-
covering of the link L (i.e. with covering group Zl × Zm × Zn ∼= Zlmn).
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Now, by cyclically permuting the roles of the components X0, Y0 and Z0 of L,
we get three knots X , Y and Z in S3 such that M is the l-fold cyclic branched
covering of X , the m-fold cyclic branched covering of Y and the n-fold cyclic
branched covering of Z.

Note that a similar construction works also for links L with more than three
components (and also for integers which are not coprime) but that one inevitably
ends up with links with more than one component then.

A nice example of a manifold M arising from construction 0.2 is the Poincaré
homology 3-sphere which is the 5-fold cyclic branched covering of the (2, 3)-torus
knot (the trefoil), the 3-fold cyclic branched covering of the (2, 5)-torus knot and
the 2-fold cyclic branched covering of the (3, 5)-torus knot. In this case the 3-
component link L is the (3, 3)-torus link, with branching orders 2, 3 and 5 associ-
ated to its three components; more generally, by associating (coprime) branching
orders l, m and n to its components, one obtaines the Brieskorn homology sphere
of type (l,m, n). The Poincaré homology sphere is spherical. Explicit hyperbolic
examples for construction 0.2 can be obtained as in section 4.1 of [RZ2], see in
particular the proof of Theorem 4; as the construction is quite long we do not
repeat it here.

An interesting example of a manifold arising from construction 0.1 is the hy-
perbolic Matveev-Fomenko-Weeks manifold of smallest known volume which is
obtained by associating branching orders 2 and 3 to the two components of the
(symmetric) link 72

1. This manifold is the 2-fold cyclic branched covering of the
knot 949 and the 3-fold cyclic branched covering of the knot 52 (see [MV]).

A knot or link K in the 3-sphere is hyperbolic if its complement S3−K admits a
complete hyperbolic structure (Riemannian metric of constant negative curvature)
of finite volume. For an integer n ≥ 2, it is 2π/n-hyperbolic if the 3-sphere admits
a hyperbolic metric which becomes singular, with an angle of 2π/n, around the
components of the link. If we denote by On(K) the 3-orbifold whose underlying
topological space is the 3-sphere and whose singular set, of branching index n, is
the knot K, another way of saying this is that On(K) is a hyperbolic 3-orbifold;
equivalently, the n-fold cyclic branched covering of K is a hyperbolic 3-manifold
and the cyclic covering group acts by isometries. It is a consequence of the orbifold
geometrization theorem ([T1], [T2],[BP]) that every hyperbolic knot is also 2π/n-
hyperbolic, for n > 3, and for n = 3 the only exception is the figure-8 knot which
is 2π/3-euclidean (see [Z1] for a discussion of the relation between these classes of
knots).

In the following, M will be always a closed hyperbolic 3-manifold.

Theorem 1. Let M be the n-fold and m-fold cyclic branched covering of in-
equivalent hyperbolic knots K and K ′, respectively. Suppose that m and n have
a common prime divisor p > 2. Then K and K ′ arise from the standard abelian
construction 0.1. Moreover there are at most two such knots.
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We note that K and K ′ are inequivalent if m and n are different. This is
because, for a fixed knot K, the volumes of the hyperbolic 3-orbifolds On(K)
increase monotonously with n (see e.g. [K]), so different cyclic branched coverings
of the same knot K have different volumes.

The basic case of 2-fold branched coverings has been analyzed in [R2] for knots
and in [RZ2] for links, and it turns out that the situation for p = 2 is more
complicated.

In particular, Theorem 1 gives a short proof of the following result from [Z1].

Corollary. Let M be the n-fold cyclic branched covering of inequivalent hyperbolic
knots K and K ′ such that n is not a power of two. Then K and K ′ arise from
the standard abelian construction 0.1. Moreover there are at most two such knots.

A cyclic symmetry of a knot K is a periodic diffeomorphism of (S3,K) with
nonempty fixed point set F disjoint from K (F is an unknotted circle by the
positive solution of the Smith conjecture). The quotient is again the 3-sphere,
and K and F project to a 2-component link K̄ ∪ F̄ . We call a 2-component link
symmetric if there exists an orientation-preserving diffeomorphism of S3 which
exchanges its two components.

Theorem 2. Let M be the n-fold and m-fold cyclic branched covering of inequiv-
alent hyperbolic knots K and K ′, respectively, such that m and n are not powers
of two. Suppose that

i) K is not strongly invertible;
ii) K has no cyclic symmetry of order n such that the associated quotient link

K̄ ∪ F̄ is symmetric.
Then K and K ′ arise from the standard abelian construction 0.1.

Theorem 3. Under the hypotheses of Theorem 2, there are at most three inequiv-
alent hyperbolic knots in S3 having M as a cyclic branched covering of branching
orders which are not powers of two. If there are three different such knots then
they arise from the standard abelian construction 0.2.

In [RZ1] sets of four different π-hyperbolic knots have been constructed with
the same 2-fold cyclic branched covering. It is shown in [R2] that there are at
most nine such knots, but for the moment four is the maximal number known for
such an example.

If n is a power of a prime p then the n-fold cyclic branched covering of K is
a Zp-homology sphere (see e.g. [G]). Hence if M is not a Z2-homology sphere
Theorem 3 is best possible.

Basically the proof of Theorem 2 works also if n or m is a power of two, but
in these cases there are various other standard constructions and the situation be-
comes more technical. For n = 2, the simplest situation after the standard abelian
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construction is a standard dihedral construction where the covering involution of
K acts as a strong inversion on the fixed point set of the covering group of K ′ (so
K ′ is strongly invertible); examples can be constructed by equivariant surgery on
suitable knots with dihedral symmetry. If n or m is a power of two there are still
other standard situations. All these various constellations can be summarized alge-
braically in a standard solvable situation saying that a Sylow p-subgroup Sp of the
orientation-preserving isometry group G of M normalizes some Sylow q-subgroup
Sq of G (see the proof of Theorem 2); here p and q are different prime numbers
such that p divides n but not m, and viceversa. Note that, by a Sylow theorem,
up to conjugation we can assume that the corresponding Sylow subgroups of the
cyclic covering groups of K and K ′ are subgroups of Sp and Sq, respectively, so Sp
and Sq determine completely the geometry of the situation. For odd primes p, we
will show in Lemma 1 that the Sylow p-subgroups of the isometry group G of M
are abelian of rank one or two. Under the hypotheses i) and ii) of Theorem 2, this
remains true also for p = 2; in general, the Sylow 2-subgroup of a 2-fold branched
covering contains such an abelian group of rank ≤ 2 as a subgroup of index ≤ 4,
see [R2].

So Theorem 2 can be generalized for branching orders which are powers of two.
On the other hand, it seems that the condition of non-invertibility of K is essential
for Theorem 2. In this regard we note that our results remain true for cyclic
branched coverings of knots in arbitrary homology 3-spheres; in this more general
case, as the Smith conjecture is no longer true, there may occur a new abelian
situation where the two covering groups have the same fixed point set. Examples
of hyperbolic homology 3-spheres admitting actions of the dodecahedral group
A5 ∼= PSL(2, 5) with two global fixed points are easily constructed (for example
by equivariant surgery on a link in S3 with A5-symmetry, taking one component of
the link for each edge of the dodecahedron and a ”Borromean type” constellation
at each vertex in order to have trivial linking numbers). The quotients of such a
homology 3-sphere by the elements of orders 2, 3 and 5 of A5 are again homology 3-
spheres, and the branch sets are knots. It is clear then that, for branching orders 3
and 5, we are not in a standard abelian or solvable situation (the branching order 2,
in combination with 3 or 5, gives an example of a standard dihedral construction).
In particular, Theorem 2 does not remain true for cyclic branched coverings of
invertible knots in arbitrary homology 3-spheres, but at moment we do not have
such examples for the 3-sphere itself.

We note that a knot which does not satisfy condition ii) is very special, so this
is not really a strong restriction.

For our next results we adopt a group theoretical point of view. For the case
of solvable groups we have the following complete solution.

Theorem 4. Let M be the n-fold and m-fold cyclic branched covering of inequiv-
alent hyperbolic knots K and K ′, respectively, such that m and n are not powers
of two. Suppose that the isometry group of M is solvable. Then K and K ′ arise
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from the standard abelian construction 0.1.

If n is even we can reduce the situation to the solvable case and thus to the
standard abelian situation; note that the condition of non-invertibility is no longer
needed here.

Theorem 5. Let n be an even integer greater or equal to six. Let M be the n-fold
cyclic branched covering of a hyperbolic knot K such that condition ii) of Theorem
2 holds. Then the isometry group of M is solvable.

We note that Theorem 5 remains valid also for n = 2 and n = 4 if K satisfies
both conditions i) and ii) of Theorem 2 (in fact the proof of Theorem 2 applies for
p = 2 showing that G is a semidirect product S2U where S2 is a Sylow 2-subgroup
of G and the normal subgroup U has odd order and is thus solvable).

By Theorems 2 and 4 we are left with the basic case in which the isometry group
G of M is non-solvable and the knot K is invertible; in particular, G contains an
involution with connected fixed point set (a lift of a strong inversion). It can be
shown that in this case the isometry group of M is of a very restricted type. In
contrast to the previous theorems, the methods from finite group theory which we
have to use here are quite involved so we do not follow this line here.

1. Proof of Theorem 1

Since K and K ′ are hyperbolic, they are also 2π/n- and 2π/m-hyperbolic because
n and m are greater than two (here we exclude branching order three for the
figure-8 knot; in fact the 3-fold cyclic branched covering of the figure-8 knot is the
euclidean Hantzsche-Wendt manifold which does not occur, however, as a cyclic
branched covering of any other knot, see [Z2]). So in the rest of the paper we will
always assume that the covering manifold M is hyperbolic and that the covering
groups act by isometries.

We need the following

Lemma 1. Let M be a hyperbolic 3-manifold which is the n-fold cyclic branched
covering of a hyperbolic knot K, and let p be an odd prime dividing n. Then a
Sylow p-subgroup of the orientation-preserving isometry group of M is either cyclic
or a direct product of two cyclic groups. Moreover there are exactly one or two
simple closed curves in M which are fixed by some nontrivial element in Sp with
connected fixed point set (and consequently each of these curves is invariant under
the action of Sp).

Proof of Lemma 1. Let G denote the finite orientation-preserving isometry group
of the hyperbolic 3-manifold M , Sp a Sylow p-subgroup of G, H ⊂ G the cyclic
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covering group of K and Hp the Sylow p-subgroup of H. Up to conjugation, we
can assume that Hp is a subgroup of Sp.

The fixed point set of the groups Hp ⊂ H is the preimage K̃ of K in M . Let
A := NSpHp be the normalizer of Hp in Sp. Then A maps the fixed point set K̃
of Hp to itself; because p > 2, A acts as group of rotations around and along K̃
(but not as reflections). It follows that A is cyclic or a direct product of two cyclic
groups.

Suppose that A is cyclic. Then, if an element of Sp normalizes A, it normalizes
also Hp, hence NSpA = A. Now the normalizer of a proper subgroup of a finite
p-group is strictly larger than the subgroup ([Su1, p.88, Theorem 1.6]). Thus
A = Sp. Moreover K̃ is the only simple closed curve fixed pointwise by some
nontrivial element of Sp (because this is the case for Hp).

Now suppose that A is a direct product of two cyclic groups. Note that A
commutes with H (because it maps the fixed point set K̃ of H to itself), and
hence also H maps the fixed point set of each element of A to itself. Moreover A
projects to (S3,K). By the positive solution of the Smith conjecture ([MB]), the
projection Ā of A is cyclic (acting as rotations along K), and either Ā acts freely
or there is exactly one simple closed curve in S3 occuring as the fixed point set of
elements of Ā. It follows that besides K̃ there is at most one other simple closed
curve in M which is fixed by some nontrivial element of A with connected fixed
point set (such a curve is invariant under the covering group H, so different curves
project to different curves in (S3,K)).

It follows that each element in the normalizer NSpA maps K̃ to itself (because
p is odd) and hence normalizes Hp. Thus again NSpA = A and consequently
A = Sp.

This finishes the proof of Lemma 1.

Remark. In the proof of Lemma 1, the solution of the Smith conjecture can be
avoided using instead (the elementary) Lemma 3 in [RZ2] wich states that a group
Zp × Zp of diffeomorphisms of S3 (or of any homology 3-sphere) has exactly two
different subgroups Zp with nonempty (connected) fixed point set.

Proof of Theorem 1. As before, let Sp be the Sylow p-subgroup of the orientation-
preserving isometry group G of M , H and H ′ the covering groups of K and K ′,
and Hp and H ′p the Sylow p-subgroups of H and H ′. Up to conjugation, we can
assume that Hp and H ′p are subgroups of Sp. By Lemma 1, Sp is cyclic or a direct
product of two cyclic groups.

If Sp is cyclic then there is a unique simple closed curve which is fixed by
nontrivial elements of Sp. Thus the preimages K̃ and K̃ ′ of K and K ′ coincide,
hence H and H ′ commute (having common fixed point set K̃ = K̃ ′) and project
to (S3,K ′) and (S3,K), respectively. By the solution of the Smith conjecture,
this can happen only if H = H ′. Then K = K ′ that is K and K ′ are equivalent.

Now suppose that Sp is a direct product of two cyclic groups and that K and
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K ′ are not equivalent. As before, the Smith conjecture implies that K̃ and K̃ ′ are
distinct. As Hp and H ′p commute, also H and H ′p commute (mapping the fixed
point set K̃ of H to itself), and finally also H and H ′ commute (mapping the fixed
point set K̃ ′ of H ′ to itself). Thus we are in the standard situation 0.1. By Lemma
1, there are exactly two simple closed curves fixed by some nontrivial element of
Sp (which are K̃ and K̃ ′). This implies that there are only two inequivalent knots
having M as a cyclic branched covering with branching orders divided by p.

This finishes the proof of Theorem 1.

The proof implies the following lemma which will be used later.

Lemma 2. In the situation of Theorem 1, the Sylow p-subgroup Sp of G is a direct
product of two cyclic groups, and K̃ and K̃ ′ are the only simple closed curves which
are fixed by some nontrivial element of Sp.

2. Proof of Theorem 2

Crucial for the proof is the following theorem of Burnside, see [Su2, p.143, Theorem
2.10].

Proposition 1. Let G be a finite group and Sp a Sylow p-subgroup of G, for a
prime p. Then if Sp lies in the center of its normalizer NGSp in G (in particular
Sp is abelian), G splits as a semidirect product USp of Sp and a characteristic
subgroup U of G.

Proof of Theorem 2. If there is an odd prime dividing m and n then Theorem
1 applies, therefore we can assume that there are distinct odd primes p and q
dividing n and m, respectively. We use the notation at the begining of the proof
of Lemma 1. Also, H ′ ⊂ G denotes the cyclic covering group of K ′, Sq a Sylow
q-subgroup of G and H ′q a Sylow q-subgroup of H ′. We can assume that Hp ⊂ Sp
and H ′q ⊂ Sq.

In order to apply Proposition 1, we will show first that Sp lies in the center
of its normalizer NGSp in G, in both cases of Lemma 1. By Lemma 1, there are
exactly one or two simple closed curves in M which are fixed by some nontrivial
element of Sp with connected fixed point set. Because p is odd, each of these
curves is invariant under Sp.

If there is exactly one such curve then this is K̃ and consequently each g ∈ NGSp
maps K̃ to itself and normalizes Hp. Then g normalizes also H and thus projects
to (S3,K). Now g can act as a rotation around or along K̃ or as a reflection on
K̃. In the first case g commutes with Sp. In the second case g has order two, the
fixed point set of g meets K̃ in exactly two points, and consequently g projects to
a strong inversion of K which was excluded by condition i). Thus Sp lies in the
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center of its normalizer in G and Proposition 1 applies.
Now suppose that there is exactly one other simple closed curve F̃ in M fixed

pointwise by some nontrivial element of Sp with connected fixed point set. Each
g ∈ NGSp maps K̃ ∪ F̃ to itself. Suppose that g maps K̃ to itself. As in the
first case, g cannot act as a reflection on K̃; thus it acts as a rotation and hence
commutes with every element of Sp. If g exchanges K̃ and F̃ then gHg−1 fixes F̃
pointwise, commutes with H and projects to a cyclic symmetry of order n of K.
Now we are exactly in the situation which was excluded by condition ii). Thus
again Sp lies in the center of its normalizer.

By Proposition 1, there exists a normal subgroup U of G such that G splits as a
semidirect product G = SpU . As p 6= q, any Sylow q-subgroup of G, in particular
Sq, lies in U . The group Sp acts by conjugation on the set of Sylow q-subgroups
of U ; by one of the Sylow theorems, the number of elements of this set divides the
order of U . The number of elements of each orbit of this action is a power pα of p,
where α ≥ 0 (the stabilizer or normalizer of an element of an orbit is a subgroup
of Sp). As p does not divide the order of U , it follows that some orbit has only one
element. Thus Sp normalizes a Sylow q-subgroup of U . As all Sylow q-subgroups
are conjugate in U we can assume that Sp normalizes Sq, and we have a semidirect
product SpSq as a subgroup of G.

Now Lemma 1 applies also to the Sylow q-subgroup Sq of G. As p is odd and Sp
normalizes Sq it follows that the preimage K̃ ′ of K ′ is invariant under Sp. Both Sp
and Sq act as rotations around and along K̃ ′ and hence commute elementwise (in
particular, the above semidirect product of Sp and Sq is really a direct product).
Moreover Hp (in fact Sp) commutes also with H ′ which implies that K̃ is invariant
under H ′ and, finally, that H and H ′ commute. Note that K̃ ′ is different from
K̃, by the positive solution of the Smith conjecture, in particular H and H ′ have
trivial intersection. Thus we have a subgroup H ×H ′ of G. This is the covering
group of a 2-component link in S3, and hence we are in the standard situation 0.1.

This finishes the proof of Theorem 2.

The proof gives also the following result which will be needed later.

Lemma 3. Let p and q be different odd prime numbers such that p divides n but
not m, and q divides m but not n. Then, under the hypotheses of Theorem 2,
the Sylow subgroups Sp and Sq of G are cyclic and commute. Moreover, also K ′

satisfies conditions i) and ii) of Theorem 2.

Proof. By the proof of Theorem 2, Sp and Sq commute and K̃ ′ is invariant under
Sp. By Lemma 1, Sp is cyclic or a direct product of two cyclic groups. If Sp is a
direct product of two cyclic groups then K̃ ′ is fixed pointwise by some nontrivial
element g of Sp. Now g commutes also with the covering groupH ′ of K ′ and hence
projects to a nontrivial periodic diffeomorphism of S3, contradicting the solution
of the Smith conjecture. So this case does not occur and Sp is cyclic.
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Finally, K̃ ′ is not strongly invertible because a strong inversion of K̃ ′ would
be also a strong inversion of K̃, and K and K ′ do not have cyclic symmetries of
orders p and q, respectively.

3. Proof of Theorem 3

Suppose that M is the ni-fold cyclic branched covering of inequivalent hyperbolic,
so 2π/ni-hyperbolic, knots Ki, i = 0, . . . , r, where K = K0, n = n0 and the ni
are not powers of two.

Suppose there is an odd prime p dividing n = n0 and some ni, i > 0. By
the last part of Theorem 1, p does not divide any other ni. By Lemma 2, Sp is a
product of two cyclic groups. Thus the situation of Lemma 3 does not occur which
implies that there are only two different knots, i.e. r = 1 (because by hypothesis
no ni is a power of two).

Thus we can assume that any two different ni have no common prime divisor
different from two. Let pi be distinct odd primes dividing ni. Let Spi be a Sylow
pi-subgroup of G. We may assume that the Sylow pi-subgroup Hpi of the covering
group Hi of Ki is a subgroup of Spi . By the solution of the Smith conjecture,
the fixed point sets K̃i of the Hi are all distinct. By Lemma 3, all Spi are cyclic
and commute. Then also all Hi commute, and we have a subgroup H0 × . . .×Hr

of G. In particular, each K̃i is invariant under each Hj . The projection of the
cyclic group Sp1 × . . . × Spr to (S3,K0) is a cyclic group A of diffeomorphisms
of S3 whose fixed point set consists of at least r simple closed curves occuring as
fixed point sets of nontrivial elements of A; these are the projections K̄1, . . . , K̄r

of K̃1, . . . , K̃r.
By the solution of the Smith conjecture, K̄1 is unknotted. The complement of

the interior of a regular neighbourhood of K̄1 is a solid torus on which the cyclic
group A acts by restriction. Such an action is known to be a standard rotation
(using e.g. the equivariant Dehn Lemma) and has at most one component of fixed
point sets (the central curve), because A does not have order two. It follows that
r is at most two.

If r = 2 we have a subgroup H0 ×H1 ×H2 of G which is the covering group
of a 3-component link L in S3. The components of L are trivial by the Smith
conjecture, and the induced branched covering of each two of them is the 3-sphere.
By [Sa], the Hopf link is the only link in S3, other than the trivial knot, which
has the 3-sphere as an abelian branched covering. Thus each two components of
L form a Hopf link and we are in the situation of the standard construction 0.2.

4. Proof of Theorem 4

By Theorem 1, we can assume that there exist distinct odd prime divisors p and q
of n and m, respectively. As before, we denote by Sp and Sq a Sylow p-subgroup
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resp. a Sylow q-subgroup of G, of orders pa resp. qb. By the generalization of
the Sylow theorems for solvable groups ([Su2, p.104, Theorem 5.6]), there exists
a subgroup G0 of order paqb of G, and we can assume, up to conjugation, that
Sp and Sq are subgroups of G0. By Lemma 1, each of Sp and Sq is cyclic or a
direct product of two cyclic groups, and in particular abelian. As G0 does not
contain elements of even order, the second part of Lemma 1 implies that Sp lies
in the center of its normalizer in G0. By Proposition 1, G0 splits as a semidirect
product USp, for a normal subgroup U of G0. By conjugation, we can assume
that U = Sq. Thus Sp normalizes Sq. As in the proof of Theorem 1, this implies
that Sp and Sq commute elementwise (hence U = Sp ⊕ Sq). Thus we are in the
standard situation 0.1 and the Theorem is proved.

5. Proof of Theorem 5

Crucial for the proof is the following theorem of Glauberman, see [Su2, p.315,
Theorem 2.14].

Z∗-Theorem. Let h be an involution in a finite group G and S2 a Sylow 2-
subgroup of G containing h. Denote by O(G) the maximal normal subgroup of odd
order of G. Then the following are equivalent:

i) h is not conjugate in G to an element in S2 different from h;
ii) the image of h is central in the quotient group G/O(G).

We also need to describe the local action of a group of diffeomorphisms in the
neighboorhood of a simple closed curve. More precisely, let G be a finite group
of orientation-preserving diffeomorphisms of a closed orientable 3-manifold and
suppose that G contains an element, say h, with nonempty connected fixed point
set K̃. Any element g of G which commutes with h maps the fixed point set K̃
of h to itself. Therefore g induces a reflection (strong inversion) or a rotation on
K̃: we shall call such elements h-reflections, respectively h-rotations (a nontrivial
element which acts trivially on K̃ will also be a h-rotation).

So the centralizer CGh of h in G is the set of h-rotations and h-reflections: the
subgroup of h-rotations is a normal subgroup of CGh of index one or two. We
have

Proposition 2. Let G be a finite group of orientation-preserving diffeomorphisms
of a closed orientable 3-manifold; suppose that G contains an element h with
nonempty connected fixed point set. Then the centralizer CGh of h in G is iso-
morphic to a subgroup of a semidirect product Z2(Za × Zb), for some nonnegative
integers a and b, where Z2 operates on the normal subgroup Za×Zb (the subgroup
of h-rotations) by sending each element to its inverse.
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Proof of Theorem 5. Since n is even, the covering group H of K contains an
involution h. Let S2 be a Sylow 2-subgroup of G containing h. In order to apply
the Z∗-Theorem, we will prove the following

Claim. h is not conjugate in G to any element in S2 different from h.

Assuming the Claim for the moment, we will show now that G is solvable. The
Z∗-Theorem implies that the image h̄ of h is central in G/O(G). By a Sylow
theorem, all involutions in the group generated by h and the normal subgroup of
odd orderO(G) are conjugate to h, by an element ofO(G) as we may assume. This
implies easily, using that each element of G/O(G) commutes with h̄, that G/O(G)
is the surjective image of the centralizer CGh of h in G. It follows from Proposition
2 that CGh is solvable, therefore also G/O(G) is solvable. Since also the group
O(G), of odd order, is solvable by the Feit-Thompson Theorem, it follows that G
is solvable and Theorem 5 is proved.

Proof of the Claim. It is enough to prove that h is not conjugate in G to an
element of CS2h different from h. Then, if S2 coincides with CS2h, this gives the
Claim. Suppose that CS2h is a proper subgroup of S2. By [Su1, p.88, Theorem
1.6] the normalizer of any proper subgroup of a nilpotent group is strictly larger
than the subgroup. Let g be an element in S2 which normalizes CS2h but is not in
CS2h. Then g does not commute with h and conjugates h to an element of CS2h
different from h. This is a contradiction, so this case does not occur.

So it remains to show that h is not conjugate in G to an element of CS2h
different from h. Suppose, by contradiction, that there exists a conjugate ghg−1

different from h in CS2h, for some g ∈ G. The fixed point set of h and H is the
preimage K̃ of K in M . As h and ghg−1 commute, h maps the fixed point set
g(K̃) of ghg−1 and of gHg−1 to itself and acts either as a rotation or as a reflection
on g(K̃). We will show that both cases do not occur. Note that g(K̃) is different
from K̃ (because ghg−1 is different from h).

If h acts as a reflection on g(K̃) then K̃ and g(K̃) intersect in exactly two
points. Each of these intersection points is fixed by the distinct cyclic groups H
and gHg−1, of order n, which are thus contained in the isotropy group of the
point. This isotropy group is a finite subgroup of the orthogonal group SO(3). By
hypothesis, n ≥ 6, and there are no such finite subgroups of SO(3) (the only finite
subgroups of SO(3) containing elements of order greater or equal to six are cyclic
or dihedral). So this case does not occur.

Suppose now that h acts as a rotation on g(K̃). Then the fixed point sets K̃
and g(K̃) are disjoint, and the groups H and gHg−1 commute generating a group
H⊕gHg−1 whose elements act as rotations on both K̃ and g(K̃). We note that K̃
and g(K̃) are exactly the two simple closed curves in M which are fixed by some
nontrivial element of H ⊕ gHg−1 (the projection of H ⊕ gHg−1 to S3 = M/H is
cyclic and has the projection of g(K̃) as fixed point set; by classical Smith fixed
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point theory, there can occur no other components of fixed points for nontrivial
elements).

Also the group gHg−1⊕ g2Hg−2 acts by rotations on g(K̃) which implies that
g2Hg−2 is a subgroup of H ⊕ gHg−1 (because the latter group contains already
all rotations of order n of g(K̃)). Then the fixed point set g2(K̃) of g2Hg−2 has
to be equal to K̃, so g2(K̃) = K̃ and g2Hg−2 = H. It follows that g normalizes
H ⊕ gHg−1 and thus projects to the quotient M/(H ⊕ gHg−1). But this gives
exactly the situation ii) in Theorem 2 which is excluded in Theorem 5 (with F̄ as
the projection of g(K̃)). So also the second case does not occur.

This finishes the proof of the Claim and of Theorem 5.
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