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Abstract. A general theory of LS algebras over a multiposet is developed. As a main result, the
existence of a flat deformation to discrete algebras is obtained. This is applied to the multicone
over partial flag varieties for Kac-Moody groups proving a deformation theorem to a union of
toric varieties. In order to achieve the Cohen-Macaulayness of the multicone we show that
Bruhat posets (defined as glueing of minimal representatives modulo parabolic subgroups of a
Weyl group) are lexicographically shellable.
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Introduction

This paper is a continuation of [5]. The main purpose is to set up the combinatorial
and algebraic machinery to treat the multicone over (partial) flag varieties for Kac-
Moody groups. In order to do this some generalizations of LS algebras are needed,
but the general framework remains the same.

First some combinatorics is developed. We begin introducing the notion of
multiposet, a “glueing” of posets, as follows. Suppose we are given n posets
with bonds (S;, <;, f;), and liftings <;; of (S;,<;), (S;,<;) to the disjoint
union S; US;. We define the sets Lg’j as the set of pairs of LS paths (¢,¢) €
L1(S;) x Li(S;) such that maxsupp? <;; minsupp/ . Suppose moreover that
we are given maps ¢;; : Ly’ — L}" (satisfying some mild conditions). We call
the data (S;, <i, fi, <ij, ¢i,;) a multiposet with bonds and we call the maps ¢; ;
the swappings.

Then we see the notions of LS paths, weak standard and standard monomials
for a multiposet. We note here that at this point we allow our posets to be infinite
(this is mandatory since W/Wp , where W is the Weyl group of some Kac-Moody
group G and P is some parabolic subgroup, is in general infinite) but we ask for
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some “lower finiteness condition”. See Section 1.

The algebraic side of the machinery is treated in Section 2 and Section 3. An
LS algebra over a multiposet is defined as an algebra A, over some base ring R,
having as R -basis the set of standard monomials and satisfying the property that
when a monomial is expressed in terms of standard monomials then only standard
monomials satisfying some lexicographic condition do appear. Then, in analogy
with [5], we construct a general theory of flat deformations to discrete algebras
and we give a result about Cohen-Macaulayness.

In Sections 4 and 5 we give our application to the multicone. At this point
our main sources are the plactic algebras (see [19]) and the standard monomial
theory (see [16], [18] and [20]). Notice that these works are slightly extended: some
results about the good string property (see [19] and Definition 5.1) of parabolic
subgroups is generalized to Kac-Moody groups and some relations of the standard
monomial theory for LS paths of different shapes are needed.

Our main results are the following. Let G be a Kac-Moody group and let P
be a parabolic subgroup. Then the flag variety G/P admits a flat deformation
to a union of sections of toric varieties X (Theorem 4.1). If P has the good
string property then X is simply the union of toric varieties (without sections).
A criterion for a parabolic subgroup to have the good string property is also given:
this result is very neat for the finite and affine types. In the good string case we
obtain a new proof of the fundamental result in [12], i.e. the quadratic relations
suffice to generate the relations in @4, . 4,>0H°(G/B, La;x,+-+a,r, ), Where Ly
is the line bundle G xp k_) over G/B. Finally we prove that in the good string
case the multicone is Cohen-Macaulay for G of finite type. To achieve this result
one needs the Cohen-Macaulayness of the involved posets. We devote the last four
sections to this goal; however a more general result is obtained. Let us explain
this in details.

Let (W,S) be a Coxeter group and let I,J be subsets of S. The sets W', W/
of minimal representatives modulo the parabolic subgroups Wi, Wj inherit the
Bruhat order by restriction from W . Consider now the disjoint union W7 =
WU W? . WED) has a Bruhat order extending that of W', W? — Wo9) | We
call this poset structure the Bruhat poset W where Q = (I,J). One may clearly
generalize this contruction to = (Iy,...,1,) considering various parabolic sub-
groups Wy, ,..., Wy, associated to subsets I,...,I, CS.

Assume now that W is finite. In this case the adjacency relation 7 <o in
W for 7 € Wir | ¢ € Wit relative to the order defined above, has a sharp
description: there exists w € W, depending on Ip,Ip41, such that 7 <o if
and only if 7 = ow. This is the key result one needs in order to extend the
lexicographic labeling introduced in [2] to the Bruhat poset W . Our main result
is then: any closed interval [r,0] C W is lexicographically shellable. We apply
this to obtain that k{W*}  the Stanley-Reisner ring of W | is Cohen-Macaulay,
using a well known theorem (see [21]).

These results are mainly a generalization of the method of [2]: the proof of the
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shellablity in W is an adaptation of Bjorner and Wachs’s proof of shellabilty in
W! | taking into account the description of adjacency relation in W* . Shellability
of W® had already been proved in [10] in the following special cases: W of type
Ag, Bg, Cg, Q= (Il,...,Ig) where Ih = S\{Sh}, h = 1,...,€, i.e. the WI;L
are the maximal parabolic subgroups and they are ordered naturally in the same
way as the corresponding omitted roots in the Dynkin diagram are. The proof
of this in [10] is a case by case analysis and heavily depends on combinatorial
descriptions of minimal representatives modulo maximal parabolic subgroups.

Section 6 introduces Coxeter groups, parabolic subgroups and Bruhat order.
The main related results are provided for easier reference. In Section 7 we define
the Bruhat poset as a “glueing” of minimal representative sets. In the case of
finite W we prove a sort of “homogeneity” for the adjacency relation in W< .
The last half of Section 7 is devoted to the proof that any Bruhat poset is graded.
Lexicographic shellable posets are introduced in Section 8. This section is just
a short form of Section 2 in [2]. Finally Section 9 describes our labeling of the
intervals [r,o] C W proving that this is actually an L-labeling.

I would like to express my thanks to Prof. P. Littelmann, Prof. C. De Concini
and Prof. A. Bjorner for many useful conversations. I also wish to thank Prof.
C.S. Sheshadri who suggested me to study the multicone. Finally it is a pleasure
to thank Prof. A. D’Andrea for improvements to the exposition.

1. Multiposet and standard monomials

We begin this section by briefly recalling the definitions of poset with bonds, LS
paths, etc. We refer to [5] for details and proofs.

Let (S, <) be a poset. In this paper poset means partially ordered set with the
following finiteness property: for every a € S theset {b€ S| b < a} is finite. Let
f: S — N be a map on the set S of all adjacent pairs a < b in S, such that
ged{ f(ai,ait1) |i=1,...,s—1} = ged{f(bj,bj+1) | j =1,...,t—1} for any pair
of complete chains a =a1 < ...<as=b, a=by <...<b=> from a to b in
S. We call the data (S, <, f) a poset with bonds. Notice that we can extend the
map f to all pairs a < b setting f(a,b) = ged{f(as,a;41) |i=1,...,8—1} for
a complete chain a =a1 < ...<as=0>b.

Given a poset with bonds we define an LS path of degree r € N as a pair

l=(a1 < <as0=zpg <1 < -<x5=T)

of finite linearly ordered elements of S a7 < --- < as and rational numbers
0=x9<m <+ <axg=r such that z;f(a;,ai+1) €Z forany i=1,...,s—1.
Let L,-(S) be the set of all LS paths of degree r and let L(S) = U, L,(S).

We associate with any LS path £ = (a1 <+ < as;0=2¢0 <z1 < -+ < x5 =T)
amap 7 : S — N defined as v(a) = 0 if a & suppl = {ay,...,as} and
vYe(a;) = Ny, (x; — x;—1) where N, = lem{f(z,y) | z = a or y = a}. Given two
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LS paths ¢, with compatible support, i.e. such that supp¢; Usupp ¥y C C for
some chain C in S, it is easy to see that there exists a unique LS path ¢ such that
Ye = e, +¢, , and we denote it by ¢ 0y . Moreover the support of ¢ = £; 0¥y is
contained in C. If ¢;,¢s are two LS paths whose support is not compatible then
we write ¢1 ofly & L(S). Further we have

Proposition 1.1. If ¢ is an LS path of degree r , then there exist uniquely defined
LS paths of degree one {1, ...,L. such that maxsupp¢; < minsupp¥;y1 for i =
1,....r—1,and L =Ff10---04,.

We will refer to ¢1 0---0/f,. as the canonical decomposition of £ .
Now we want to consider a more general framework. Suppose we are given n
posets with bonds

(S1, <15 f1), (S2, <2, f2), -+, (Sns <ns fn)

and for each 1 < 4,57 < m a lifting of (S;,<;) and (S;,<;) to a poset (S;U
S;,<i;). Let LY/ denote the subset of L;(S;) x Li(S;) of pairs (£,¢) such
that maxsupp/ <, ; minsupp¢ . Finally suppose that we are given bijections
¢ij - Ly — L' such that ¢y = Idy, (s,)xL.(s;) and @i = ¢;’j1 . We refer to
such maps as swappings. We call the data of the posets with bonds, liftings and
swappings a multiposet with bonds

S = (Si, <4, fi, <ij, ij)-

Now we consider formal monomials of LS paths, i.e. monomials ¢; - -- ¢, with
£; € L1(S) = Ug=1,... nL1(Sk) , and we want to define weak standard and standard
LS monomials for a multiposet.

Let M, be the set of the (formal) LS monomials ¢;---¢,, such that ¢; €
L1(Sk;s <kis fr,) and maxsuppl; <p, r,,, minsuppl;y; for any 1 <i <17, we
call such monomials weak standard. Consider now the group ®, with generators
T,...,Tr—1 and relations 72 = --- = 72| = 1. We define an action of ®, on

L1(S) x -+ x L1(S) (r times) as follows:
Ti(fl,...,&n) = (61,...,fi_1,€;,€;+1,€i+2,...,er)

where £; € Ly (Sk,) and (€5, €,1) = Gkskery (bis Lig1) if (€5, Lip1) € L5"* and
(€, ;1 1) = (li,Liz1) otherwise. We call a monomial ¢y ---£, € M, standard if
every monomial ¢ --- ¢, in the orbit ®,(¢1,...,¥,), is weak standard.

We define the multidegree of a LS monomial ¢y ---¢,. as a= (a1, ,a,) € N*
where a1 is the number of LS paths in Li(S;), az is the number of LS paths
in L;(S2), and so on. Let us set some more notation: we denote the set of all
monomials with multidegree a = (a1, ,a,) by Ma, the set of weak standard
LS monomials by M* and the set of standard LS monomials by M*, we define
also MY = MYNM,, M = M°NM,, and in the same way we define M} and
M2 considering the total degree r=l|a|=a1+ -+ ap.
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We call a multiposet S = (S;, <;, fi, <i,j, ¢i,j) canonical if every weak standard
monomial is standard, i.e. if the two notions of standardness coincide. Obviously
if n =2 (two posets) then S is canonical. The numbering Si,...,S, is clearly
unessential for standard LS monomial but, in general, weak standard monomials
do depend on this numbering.

Notice that if S is canonical then, lifting (Si,<1),...,(Sn, <n) to (S =
StU---US,, <) via <y92,...,<p_1, and extending the bonds fi,...,f, to
f:S— Nby flz,y) =1 if S; > 2 <y € Si11, we have that a standard
monomial is just an LS path in L(S, <, f).

We assume throughout the rest of this paper that any LS monomial ¢y --- /¢,
is such that ¢; € L1(Sg,) with k& <--- <k, .

2. LS algebras over multiposet

Let R be a commutative ring with 1. In this section we define an LS algebra over
a multiposet S = (S;, <;, fi, <ij, ¢i,;) as an algebra having as R -basis the set of
standard LS monomials. Further we ask that in the expressions of a monomial
l1--- 4, in terms of R-linear combination of standard monomials ¢1 ;- -- £, (the
straightening relations), only the standard monomials satisfying a permutation
variant of the lexicographic order appear.

Let us begin defining this order. Let N = lem{f(z,y) | 2,y €S;, x <y, i =
1,...o,n}. fl=(a1 < <as;0 =20 <1 <--- <25 =1) is an LS path
of degree 1, we associate with ¢ a corresponding word w(¢) in the alphabet

Siu---uS,

w(Z) = aiv(xl_xo) “ee aév(zﬁfm‘é;*l)'

Notice that N(x; — x;,-1) € N by definition of N and LS path. We extend the
map w to monomials by w(fy---£4.) = w(fy) - -w(f.) (juxtapposition of words).
We have lenw({---¢,) = Nr, where lenw is the length of the word w. Note
also that w(f) =w(¢') for ¢, ¢’ € Ly(S) implies £ =¢".

As the reader can see this definition is just a simpler version of the notion of
word for LS paths given in [5]. We have restated it here in this form for the sake of
readability since in the application to the multicone in next section, we will need
just this special type of word.

We have a natural action of the symmetric group &,,, on the set of words
W =wp - wy oflength m, namely: ow = wy(1) - We(m) . Suppose we are given
two LS monomials £y ---£,, ¢} ---£, of the same multidegree a = (a1,...,a,),

then we write
Ol < U0

if wlly-4ly) <jex ow(l)---£) for any o € Gng, X -+ X Gng,, C Snp. In the

same way we define {7 - £, <,jex0} - - - €. using reverse lexicographic order.
Another notion we will use in the sequel is the following: an LS monomial

ly -+ ¢, with multidegree (ai,...,a,) admits as a standard form the monomial
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Zl . 'Zr lf g(l) = €a1+~~~+ai,1+1 O+ 0 €a1+~~~+ai S Lai (Sz) and Zl . 'ZT S Mi 5
where €4, ¢...1a, 1410 - 0Lla 1...1q, is the canonical decomposition of £() for
1 =1,...,n. Notice that if a monomial admits a standard form then it admits
a unique standard form. This is just an extension to multiposet of the notion of
canonical decomposition.

Now we are finally ready to define LS algebras over a multiposet. Let R be
a commutative ring with 1, A a commutative R-algebra, j : L1(S) — A an
injection that we extend to monomials by j(¢1---£4,.) = j(¢1)---j(¢;) (note that
the map j can also be extended to L,.(S;) using canonical decomposition to define
Jj0) =j41)---j,) if €4 0---0¥, is the canonical decomposition of ¢). In the
following we consider LS monomials as elements of A via the map j.

Definition 2.1. We say that A is an LS algebra over the multiposet S = (S;,

<i, fi, <ij, 0i;) if the following three conditions hold:

LS1: A is a free R -module isomorphic to @aecnnRM and this decomposition
gives a multigrading for A,

LS2: if 41 ---¢,. is any LS monomial and

Gl = wilyi-leg, ui €R\O

is the straightening relation (S.R.) for ¢1---£, guaranteed by LSI then for
all i we have
O lpy <Ly ly,

LS3: if £1---4,. admits as standard form C1---4, then the monomial 01 ---0,
appears in the straightening relation for £y ---0,. with coefficient u € R*
the group of invertible elements of R .

Further, if all such u equal 1 then we say that A is special.

The simplest straightening relations are those in the following

Definition 2.2. If A is an LS algebra over the multiposet S whose S.R. are

ool = wly -0, if b1 -+ - L, admits the standard form 0y ~Z7«,u e R*
! 710 otherwise

then we say that A is a discrete LS algebra.

Notice that, given a multiposet S, there exists a unigue (up to isomorphisms)
discrete special LS algebra over S. We denote this algebra by A{S} . In particular
if all bonds equal 1, ie. fi(z,y) = 1 for any pair * < y in S; and any
i=1,...,n, then we denote the unique discrete special algebra by R{S}. This is
just the Stanley-Reisner ring of the multiposet (see [21]). Clearly this algebra is
isomorphic to the quotient of the ring R[ts|aes,u-.-.us, by the ideal Ig generated
by all products tq, - --te,, With aj---amym ¢ M® (here we are identifing LS paths
and elements of Sy LI---US,, since every LS path is of the form (a;0 < 1)).
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In analogy with [5], there is another way to look at the order requirement in
the S.R.: the order on monomials defined above is equivalent to the lexicographic
order with respect to any n -tuple of total order refinements of the given partial
orders. Let us explain this in details.

Consider an n -tuple of total orders (<f,..., <!) with <! refining <; on S;,
i=1,...,n. Given a word w = wiws--- with wi,...,we, € S1, Way41,---,
Way+a; € Sz and so on, we denote by [w]<t  <¢y the word obtained by re-
ordering wy -+ wq, by <!, W 41 Wayta, by <b and so on. We define the

multidegree of w as (ai,...,an).
Now let v =vjvg--+, w = wiws--- be two words such that vy, wy, € S;, with
i1 <ig <---. Notice that v and w have the same multidegree (ai, - ,a,).

Proposition 2.1. The following are equivalent:

(1) v <jex ow for any 0 € S,y X -+ X G, ,
(2) v <iex (W<t <ty for any n-tuple of total orders (<f,...,<},) with <}
refining <; on S;,i=1,...,n.

Proof.Let v' = vivg - “Vay v? = Va1 +1Va;+2 * * * Vas+a, ald so on, and let w!,

w? | ...be defined in the same way. Then (1) is equivalent to: there exist h > 1,
01 € Gayyroy0n1 € B, , such that (a) v’ <jex ow® for any o € &,, and
any i = 1,...,h and (b) v = o;w® for i =1,...,h — 1. Hence we can use the
analogous statement for a unique poset proved in [5]. O

Recall that the S.R. for an LS algebra over a unique poset can be derived by
the quadratic S.R. as seen in [5] (proving the equivalence of LS2 and LS2’ there).
Consider now an LS algebra over a multiposet. Using the same proof of [5] it is
easy to show that the S.R. are generated by the quadratic S.R. and by the S.R. for
weak standard monomials which are not standard. But, in general, the quadratic
S.R. do not suffice, as the simple Example 4.2 below shows.

Suppose now that we have a canonical multiposet S. Since every weak standard
monomial is standard, the quadratic S.R. generate all S.R. Moreover the standard
monomials over S can be identified with LS paths in L(S,<, f) (see the last
remark at the end of Section 1). However an LS algebra over S is not an LS
algebra over (S, <, f) since the order requirement for the S.R. over S is weaker
than the requirement over (S, <, f).

3. Deformation to discrete algebras

Now we want to develop a deformation theory for LS algebras over multiposet.
This will be completely analogous to the deformation theory for LS algebras over
a (unique) poset seen in [5]. Given an LS algebra A, we introduce its “indiscrete
part” I(A) and prove that A is a discrete algebra if and only if I(A) is empty.
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Then we prove a property of the “minimal elements” of I(A) and we index I(A)
by choosing minimal elements. Finally we use this indexing in order to construct
a flat family over R[t] whose generic fibre is A and whose special fibre is Ag, a
dicrete algebra. Further if A is special then Ag is special too, i.e. Ag = A{S}.
While in [5] the same deformation was obtained via a step by step procedure, here
we avoid doing so, by using the indexing of I(A) by minimal elements.

If w=wjws-- wy isa word in the alphabet S;LI---US,, and a is an element
of S;U---US,, let us define w(a) as the number of w; that are equal to a.

Definition 3.1. Let A be an LS algebra over the multiposet S. The indiscrete
part of A, I(A) is the set of elements a of S;U---US,, such that there exists a
SR. by Ly = "1ril1;--Lr; and there exists an @ such that w(ly;---4r;)(a) =
wly - £)(a).

Proposition 3.1. The algebra A is discrete if and only if 1(A) is empty.

Proof. Note that if ¢, ---¢, is the standard form of the monomial ¢; ---¢, then
there exists a permutation ¢ € Gy, such that w(fly---4,) = ow(ly---£,).
Now it is clear that if A is a discrete algebra then I(A) = @ . Conversely,
let 414, = 22:1 uil1---Lr; be a straightening relation with ¢ > 1. Since
lenw(ly---4,) =lenw(ly;---4r;) and w(ly---4)(a) < w(li;---4ri)(a) for any
a€SU---US, , using I(A) = &, we have w(l; ---4)(a) =w(l1;---¥r;)(a) for
any a. Hence there exists a 0 € Gy, such that w(ly;---4r;) = ow(ly---£,).
Clearly this implies that ¢;---¢, admits ¢;;---¢,; as its standard form, since
w(l1,;---Lr;) is totally ordered. Then t = 1 since the standard form is unique.
Hence A is discrete. |

Let H be a subset of Sy L---US,,. We say that a € H NSy is a minimal
element of H if HNS, = @ for any £k < h and b € HNS, implies b £ a.
Notice that a non-empty set admits minimal elements (recall our initial finiteness
assumption on posets). Now let £ --- €, = > ulq1;---£r; be a straightening re-
lation in A, fix an index ¢ and suppose that I(A) N (supp ¥y, U---Usupp¥,;) is
not empty. Let a be a minimal element of this set. We have

Proposition 3.2. w(l1---4)(a) <w(li;---4r;)(a).

Proof. Let j be such that a € S; and let k& be such that ¢, ¢ L;(S;), and
L1 € Li(S;) . Then the same is true for ¢, and f41; since A is multigraded
by LS1. Arguing as in the proof of Proposition 3.1 above we have that £y ;.- {5
is the standard form of ¢;---¢; . Hence we can assume j = 1. Clearly only the
LS-paths supported in S; are relevant, so we can also suppose that any LS-path
appearing in the two monomials ¢q---£,, £1;---£;; isin L;(S1). Now we have
reduced ourselves to proving the same statement for an LS algebra over a unique
poset, which is done in [5]. O
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Now let {ao,...,aq} = I(A) be an indexing of the elements of I(A) such that
a; is a minimal element of {a;,...,aq}. Fix an integer T > 1 and define the

following map
q

Li(S) 3 L 7(0) =Y w(l)(a;) T
i=0
and for a monomial ¢ ---¢, set 7(¢1---£.) =7(¢1)+---+ 7(¢.). This map has
the following “nice” property that is the key tool for our deformation theorem.

Proposition 3.3. 7({1---£4,) <7(l1,;---4y;) for any S.R.

41"'&221%51,1‘“'&,1‘

and for any i. Furthermore, if {y---¢, admits as standard form byl then

Tl ly) =71 ---4;) .

Proof. The inequality is a direct consequence of Proposition 3.2. For the second
statement we have noted that w(¢; ---¢,) is a permutation of w(¢y---¢.). O

Now we can define our flat family over R[t] for a new indeterminate t. Con-
sider the following multiplicative filtration by ideals of A

Ih=A>LD>L>---

where I,, is the ideal generated by monomials ¢y - - ¢, such that 7(¢1---£4,.) >n.
By Proposition 3.3 above we have that the ideal I,, has an R -basis given by the
set of standard LS path monomials ¢; --- ¢, such that 7(¢1---£,) > n. Then we
construct the Rees algebra corresponding to this filtration

A= oA DAt Lt ot 2@ -

and, as in [5], we obtain the following theorem

Theorem 3.1. Suppose that R is a field. Then A is a flat deformation whose
general fiber is A and whose special fiber is a discrete algebra Ag . Further if A
is a special algebra then Ao = A{S}.

As a consequence of our deformation theory, we give a result on the Cohen-
Macaulay property for canonical multiposets and special algebras. Let S = (S;,
<i, fi,<ij, ®ij) be a canonical multiposet and let (S, <) be the associated poset
constructed at the end of last section. Suppose that A is a special LS algebra
over S. We have:

Theorem 3.2. A is Cohen-Macaulay if and only if the Stanley-Reisner ring
R{S} is Cohen-Macaualy, i.e. if and only if the poset (S, <) is Cohen-Macaulay.
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Proof. Same proof as Theorem 30 in [5].

4. Application to the multicone

Let X be the weight lattice of a symmetrizable Kac-Moody algebra g and let
X™T be the set of dominant weights. Fix a dominant weight X, let Vy be the
corresponding irreducible complex representation, W, be the stabilizer of A in
the Weyl group W of g and denote by < the Bruhat order on Sy = W/W, .

Recall that the character of V can be combinatorially described by means of
path models (see [18] for details). Denote by II the set of all piecewise linear paths
in X ®zR starting at the origin and ending on an integral weight, and let IIT be
the subset of paths having their image inside the dominant Weyl chamber. Fix a
path 7w € II™ ending in A. The path model B, of V) is the set of paths obtained
from 7 by applying the root operators f,, e, . In particular the path model of
7 : t+— tA is the set of LS paths of shape A. Recall now that (Sy,<) has a set
of bonds given by fi(o,7) = (c(A),3Y) for an adjacent pair o = sg(7) < 7 and
that LS paths of degree 1 over (Sy, <, fi) correspond to LS paths of shape A\ as
seen in [5].

Now let A1, A2 be dominant weights. The posets (Sx,, <), (Sx,,<) can be
lifted to a poset (Sa,,x,, <) by declaring Sy, 3 01 < 02 € S5, whenever there
exist wy, w2 € W such that wy < wy in W, w; = 01 mod Wy, and wy =
o2 mod Wy, (see Section 7). Note that the posets Sy, », and Si, », are different.

Now consider the graph G(m) associated to a path 7 whose set of vertices is
B, , with an arrow n — 1’ coloured by a simple root « if fo(n) =7n'. Recall
(see [18],[19]) that the map my, * 7y, > T, * Ty, extends to an isomorphism of
graphs ¢y, x, : G(ma, *7Ty,) — G(ma, * 7y, ) . Also note that Br, .r,, is exactly
the set of pairs of LS paths (n,1) such that maxsuppn < minsuppn’ in Si, ,
(see Theorem10.1 [19]).

Example 4.1. Let us see a simple instance of this graph isomorphism. Take G
to be the simple group SLs and let w;, we be the two fundamental weights.
Consider the two paths m,, :t— tw; and m,, : t — tws. The coloured graph
obtained starting with the path 7, *m,, (resp. m,, * Ty, ) is the one showed in
Figure 1 (resp. Figure 2). The isomorphism can be traced after the corresponding
arrows in the following two graphs.

There is, however, a general pattern here. Suppose that G is of type A . Then
the isomorphism of graphs ¢, ., , where w; and w; are fundamental weights, can
be computed using the jeu de taquin and the tableau representation for paths (see
[17] for generalities on jeu de taquin and in particular [4] for this computation).

Let us see a slightly more complicated example. Let us keep G = SL3, and
compute the isomorphism ¢, , where A = w; + w2 as above. The graph corre-
sponding to m,, *my and to my*7,, areshowed in Figures 3 and 4 below. To the
best of our knowledge there is no simple combinatorial technique, like tableaux
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and jeu de taquin, to fully understand this computation.

a2 @
TTwy * M) —wy €———— Twy * MTwyg —————> Mwy—wy * MTwy
lal loq
Two—wi * MTwy —wa T—wy * Twy

3!
Mg —wy ¥ Twy ————> Mgy ¥ Ty <——— T—wwn * Ty —wo

Figure 1. The graph G(mw, * Tws,)

az o1
T —wo ¥ My < Mg * Tw] ———— > Moy —wy * Twg—w
lal laz
Ty * Twy Twy—wg * Twy—wy

az 3!
Ty * Twg—wy —— T—wy ¥ My <——— Mg —wo * T—wy

Figure 2. The graph G(mw, * Tw; )

Let us return to the general construction. Now we have all we need to de-
fine a multiposet. Let A1, A2,..., A\, be dominant weights. We have the posets
with bonds (Sy,;, <, fx,) and for i # j we can define <;; using the lifting of
(Sai»<) and (Sy;,<) to (Sx;z,,<). We also have the swappings ¢y, x; from
L;’j = Bry,ems, tO Léz = B, «m, » hence we can define a multiposet with bonds
(Sx;5 a3 @a;z,) that we denote by S(Aq,...,An). We note here that a monomial
71 -+ -7, of LS-paths of shape A1,...,\, is standard (in the sense of definition
in Section 1) if and only if 71 *---%m, € G(m, *---*my,) (see again Theorem
10.1 [19)).

Now let R = k be an algebraically closed field and let G be the simply
connected semisimple group corresponding to g and let B C G be a Borel
subgroup corresponding to the dominant weights X+ . Given an LS path 7= of
shape A we can associate with it a section p, € H°(G/B,L,) of the line bun-
dle £y = G xp k_x (see [20],[16]). Consider now the algebra A(A1,...,\,) =
Bacnn H'(G/B, Lo, n,++anr,) - We have the following



Vol. 76 (2001) Deformation and Cohen-Macaulayness of the multicone 447

Ty * TN % Two—wp * TN % Twy—wy * Tag
g a2 a2

Twy * Tay Towy #m —— 2L Sy % Tay
aq a2 @2

Twy—wy * Tay T—wy * Moy T—wy * T—Las * Ty oz

ay aq @2

Tug—wy ¥ T 1o, ¥ T4, 2 Mwy KT_1,, *T Lo, T—wy * T—agy
aq (e 1

ag @2

Mwg—wy ¥M—qy —————————————> My ¥ My ———————————> T—wy ¥ T_)\

Figure 3. The graph G(mw, *my) .

TN * TTwy % Tag * Twq % Tag * MTwg—wy
g a2 a2
Ty * Ty 71'7%042*71'1042*71'“;1$7‘(‘7%a2*7‘(‘%a2*ﬂ'W2_w1
ay ag @2
T lag *Tlay *Twy T—ag * Twy T—ag * Twy—w;
ay aq @2
My %My —— 2 o Ty % Ty T * Ty
aq aq (23}
T—aq * Twg—wy Oé% T\ * Twgy—wq Oé% T\ *T—wy

Figure 4. The graph G(my * mw,) .

Proposition 4.1. A(A1,...,\,) is a special LS algebra over the multiposet
S(A1,...,An) . It admits a flat deformation to the special discrete algebra

A{S(A1,..., )}

Proof. The second statement is a consequence of the first and of Theorem 3.1.
The map 7 +— p, gives an injection of Li(S(A1,...,An)) in A(A1,...,\,). We
claim that with respect to this injection A(Aq,...,A,) verifies LS1, LS2 and LS3
for an LS algebra over a multiposet.
Let A= M +---+XM+--+Ay+---+ Ny, where ay,...,a, are non neg-
—_——— —_———

al QAn
ative integers. Then the set of standard monomials py, -- Pray " Pray i pan
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forms a basis of Vi ~ H°(G/B,L,) ([20], Theorem 4). This proves LS1 for
A(A1,...,\,) since any Fk-linear relation among monomials must be homoge-
neous in A(Ag,..., \n).

We know that the relations for A(A1,...,\,) are generated by the relations of
degree 2 (see [12]). Now, it is clear that if the quadratic relations fulfil LS2 then
any relation fulfils LS2. So we can suppose n = 2.

Proposition 7.3 of [16] can be generalized verbatim to LS paths of different
shapes. Then the inequality obtained there can be read as our lexicographic re-
quirement in LS2 as in [5]. Moreover, A(A,...,\,) is special using Corollary 7.4
of [16] for different shapes. O

Now let F = G/P be the flag variety corresponding to the parabolic subgroup
P and let wi,...,w, be the fundamental weights of G corresponding to P. We
call any intersection of a toric variety with a projective subspace a linear section
of the toric variety. Then we have

Theorem 4.1. The multicone over the flag variety F admits a flat deformation
to a union of linear sections of toric varieties.

Proof. First we note that the S.R. for A(wi,...,we) are defining relations for
the multicone over F . Then applying the previous proposition to A(ws,...,ws)
we obtain a discrete algebra Ay = A{S(wi,...,we)}. It is clear that Ay is
the coordinate ring of a union of linear sections of toric varieties, where linear
sections come from the equations /7 - - - £, = 0 for the weak standard, non standard
monomials 41 ---/4, . O

Example 4.2. In the proof of the previous Proposition 4.1 we used [12] to derive
the S.R. for the algebra A(A1,...,A,) from the quadratic S.R. Note that the
property of being generatated by quadratic S.R. is no longer true in the deformed
algebra A{S(A1,...,A\,)} if weak-standard is different from standard. Also for
G = SL4 : consider the fundamental weights with indexing ws, ws,w; ; the tableau
(24,134,2) is not standard but it is weak-standard, so there is no way to derive
p2ap13ap2 = 0 in A{S(w2,ws3,w1)} from the set of quadratic S.R.: pi,.....pj,...;, =
0 where (i1---4s,j1--j¢) is a non standard tableau.

5. The good string case

In most cases we can obtain a more precise version of Theorem 4.1. Suppose
G is a simple Kac-Moody group, let D be the Dynkin diagram of G and let
B C P =NaeppPa be a parabolic subgroup, where P, is the maximal parabolic
subgroup corresponding to a simple root @ and Dp C D is some subset. Now fix
an indexing of Dp , say Dp = {a1,...,an}, and, for h=1,...,n—1 let D; be
the connected component of D \ ;41 containing «; .
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Definition 5.1. We say that P has the good string property (g.s.p.) if for some
indexing o, ...,on of Dp we have a5 € D; forall 1 <i<j<n.

This definition of good string is equivalent to the one given in [19]. Notice
that Section 1 of [19] can be easily generalized to Kac-Moody algebra using min-
imal representatives instead of maximal representatives for elements of Coxeter
group/parabolic subgroup in Lemma 11.1, Corollary 2 and Lemma 11.3 there.
Therefore we have

Lemma 5.1. [see [19], Lemma 11.3] If P has the g.s.p. then the multiposet
S(wi,...,wn) is canonical, i.e. all weak standard monomials are standard.

Theorem 5.1. If the parabolic subgroup P has the good-string property then the
multicone over the flag variety F = G/P admits a deformation to a union of
toric varieties. Moreover the multicone over F is Cohen-Macaulay, hence normal,
whenever G is of finite type.

Proof. As in the proof of Theorem 4.1, A(ws,...,w;) admits a flat deformation to
A{S(w1,...,we)}. Since S(wi,...,we) is canonical when P has the good string
property, we can improve the result of Theorem 4.1 obtaining that F can be flat
deformed to a union of toric varieties. Further A(ws,...,wy) is Cohen-Macaulay
if and only if S(w1,...,wy) is Cohen-Macauly by Theorem 3.2. But S(ws,...,ws)
is a Bruhat poset and, if we assume that G is of finite type, S(w1,...,wy) is lexi-
cographically shellable, as we will prove in Section 9, and hence Cohen-Macaulay.
Finally the normality of the multicone follows from non singularity of the flag
variety. O

In order to characterize parabolic subgroups with the g.s.p. we give the follow-
ing simple criterion that covers finite and affine types.

Proposition 5.1. (1) Let G be a simple Kac-Moody group whose Dynkin dia-
gram D has no loop. A parabolic subgroup P = NaeppPo has the g.s.p. if
and only if there exists a subset P of D containing Dp and isomorphic, as
a graph, to a (connected) segment.

(2) Let G be of type Aﬁl) . A parabolic subgroup P =Py, N--- NPy, has the
g.s.p. if and only if n <2.

Proof. Let P be a segment containing Dp , say P = {aq,...,am}. We choose
the indexing of Dp as a subset of P, say Dp = {ap,,...,an,} for some 1 <
hi < -+ < hy, < m. We claim that Dp has the g.s.p. with respect to this
indexing. Indeed if ap; € D; for some j > ¢ then D must contain two different
segments joining «ap, and ap; . But then D should contain a loop. This also
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proves (2). Now suppose that P has the g.s.p. and let Dp = {ay,...,a,} be
an indexing such that «; ¢ D; for all 1 <4 < j < n. We use induction on n.
If n = 2 then the claim is clear since for every pair of vertices of a connected
graph there exists a segment containing them. So we can suppose n > 2. Note

that {aq,...,ap—1} is an indexing of Dp \ o, with the g.s.p. and hence we
can suppose that there exists a segment P’ containing {aq,...,a,—1}. Now let
P" ={Bo = an_1,61,---,3s = an} be a segment joining «,_; and a,. Let

Bie PPNP”". If i >0 then {8, Bit+1,---,8s} C Dn—1 and this is impossible
since Dp has the g.s.p. So P"NP" = {a,—1} and hence P = P'UP" is a
segment containing {aq,...,an}. O

Example 5.1. If G is of type Ay, By, Cyo, Fy, Go, Agl) ,Cgl) , Gél) , Ffll) ,
Aéz) , Agi) , Dg-)1 , Eéz) ,Df) (see [11]) then any parabolic subgroup has the g.s.p.
In particular, the full flag variety G/B admits a deformation to a union of toric
varieties.

Using the last remark of Section 2 we have a new proof of the following result
(see [12]) in the g.s.p. case:

Proposition 5.2. If Aq,..., \, are dominant weights such that the positive lattice
(Ay. .o  An)N is stabilized by some parabolic subgroups P of G having the g.s.p.
then A(A1,...,An) is isomorphic to a polynomial ring modulo an ideal generated
by quadratic relations.

6. Coxeter groups and Bruhat order

In the following four sections we turn to pure combinatorial methods of Coxeter
groups. In this section we briefly recall the fundamental properties of Bruhat order
on Coxeter groups and parabolic subgroups. Everything is well-known: proofs and
further details can be found, for example, in [3], [6], [9], [8], [24] and [25].

Definition 6.1. A Coxeter group is a pair (W,S) such that W is a group and
S is a distinguished set of generators of W such that
(1) s>=e, forall s€S,
(2) (si5)Pi) = e, pij > 2, for all s; # s; in S such that s;s; is of finite
order,
is a presentation of W .

In the sequel (W,S) is a fixed Coxeter group. If w =s152---54 € W, s, €8S
is an expression of w in terms of the generators, we call the word s;sg---s, in
the alphabet S an expression for w. The length len(w) of w € W is the least
integer ¢ for which an expression w = s152---5, exists. Such an expression
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w = $182 -+ - 54 of minimal length is called reduced.
One of the main tools for performing computations with reduced expressions
is the following property, called the exchange condition.

Theorem 6.1. Let w = s1---s,. with s; € S, not necessarily a reduced expres-
sion. Suppose s € S satisfies len(ws) < len(w) . Then there exist an index i for
which ws = s1---§;---8, (omitting s; ). If the expression for w is reduced, then
1 1S unique.

Now we recall the definition of Bruhat order on a Coxeter group (W, S) . This s
the most useful way to order a Coxeter group compatibly with the length function.
Let T be the set of conjugates of S in W, i.e., T = {wsw!|lw € W,s € S}, the
elements of T are usually called reflections.

Definition 6.2. For two elements w,w’ of W write w' «— w if w' = wt for
some t € T with len(w') < len(w). Then define w' < w if there is a sequence
w = wy +— wy «— -+ — wy, = w. The resulting relation w' < w gives a partial
ordering of W having e as the unique minimal element, and is called the Bruhat
order.

A first remark on this definition. When w’ <« w the length difference is not
specified and it can be more than 1. However, what is true is that <-adjacent
elements differ in length by exactly 1. Notice that the definition has a one-sided
appearance, since we have written the ¢ € T on the right in the arrow definition.
But is not hard to show that the left sided version is equivalent to the one given
above. The following important characterization is very useful. Furthermore it
explains the left-right symmetry of the definition.

Lemma 6.1. Let w = s152---5; be a fived reduced expression for w. Then
w < w if and only if there exists a reduced expression w' = s;,8;, -+ S;, wWith
1<idy <ig <+ <ip <q. In other words w' can be written as a sub expression
of any reduced expression for w .

Let JC S and let Wj be the subgroup generated by J in W . Subgroups of
the form Wj are called parabolic. This kind of subgroups of W are, in general,

far from being normal. There is however a good way to represent cosets modulo
Wjs.

Lemma 6.2. Let J C S and let Wy be the corresponding parabolic subgroup.
Then the set

W! = {w e W|ws > w for all s € J}

satisfies:
(1) each element w € W can be factored in a unique way as w = uv with
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ueW? and ve Wy,

(2) if w=wuv asin (1) then len(w) = len(u) + len(v)

(3) each element uw € W7 is the unique minimal element of the coset uWj and
in particular is the unique element of minimal length of such coset.

We call WY the set of minimal representatives of W modulo Wy . In view of
this lemma, it is not surprising that the partial order on WY’ = W/Wj induced
by the Bruhat order on W is significant. In what follows, we shall denote the
induced order on W7 also by <.

Notice that a parabolic subgroup Wi is itself the Coxeter group (Wy,I). We
have defined the Bruhat order on Wy as a restriction of the Bruhat order of W .
We can also consider the Bruhat order of W; as the Coxeter group (Wy,I). We
have

Lemma 6.3. If I C S, the Bruhat order of the Cozeter group (W1,1) agrees with
the restriction on Wi of the Bruhat order of W .

Now we collect some results, to be used in the sequel, whose proofs are standard.

Lemma 6.4. Let ue€ W), v e Wy. If u=51---8,, v = sy sy are reduced
expressions for u and v then si---sps) - sﬁl is a reduced expression for uv .
Lemma 6.5. Assume that u € W? , w € W, w > u and len(w) = len(u) + 1.
Then either w € W? or w = us for some s € J.

Lemma 6.6. Let w < w' in W and s € S. Then either ws < w' or else

ws < w's, or both.

As a final remark notice that if the Coxeter group (W, S) is finite then there
exists a unique longest element wy in W that is also a unique maximal element
for the Bruhat order on W . Furthermore if W is finite, the parabolic subgroup
Wi, I CS, is finite and hence it admits a longest element wg ;. By Lemma 6.3
we can consider w1 either as the longest element of the Coxeter group (Wr,I)
or as the unique maximal element of Wy as subset of W'.

We end this section by setting some notation. If w is an element of W,
then we denote by [w]' the minimal representative of w modulo the parabolic
subgroup W;j. Further, we denote by w} the longest element of W! in case W
is finite.

7. Bruhat posets

In this section we introduce the main objects of our interest and we prove some
related properties. Let (I,J) be a pair of subsets of S, and consider the associated
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sets of minimal representatives W', WY . These are posets, i.e. partially ordered
sets with respect to the Bruhat order as seen in Section 6. Now consider the
disjoint union W&7) = WILIW? . We want to define an order on the set obtained
by “glueing” the two posets W', WY . For details see [13],[14], [15] and [7].

Definition 7.1. Let I; =1, I, =J and let 7,0 € WY | Set 7 <0 if
(1) Te W | 0 € Wi with h <k and
(2) there exist 7',0’" € W such that 7 < ¢’ and 7 = TmodWy, , o =
omod Wy, .

The following simple lemma shows that the definition really extends the Bruhat
order on W! and on W .

Lemma 7.1. Let 7,0 € W'. There exist 7,0’ € W such that 7" < o' and
7 =7mod Wi, ¢ =ocmod W if and only if 7 <o .

Proof. Let u,v € W be such that 7 = Tu, ¢’ = ov. First of all notice that
7<7u=7 <0 by Lemma 6.4 and so we can suppose u = ¢, i.e. 7 =7. Now
let 0 =s182--+8, and v = s]sh---s; bereduced expressions for o and v. From

7 < ov we have T=811812"'Sz‘p8918;2"'89q forsome 1 <y <ig <--- <ip <1,
1 <j1 <je2<---jg <t. But then 7= 855,58, modW; and since 7 e W!
we have 7 =55, 8;, -5, < 0. O

The relation = is a partial order, as seen easily from Lemma 7.1 to show an-
tisymmetry. We call the poset (W(I’J), <) the glueing of W' and WY . Notice
that, by definition, although W) and WD agree as sets, they differ as par-
tially ordered sets. In view of last lemma we will freely write 7 <o or 7 < ¢ if
7,0 € W! or 7,0 € WY . Further, note that using Lemma 7.1 it is easy to prove
that (2) in Definition 7.1 is equivalent to:

(2') there exist 7,5 € Wh™M2 such that 7 < & and 7 = Tmod Wy, , & =

ocmod Wy, .
Indeed, clearly (2') = (2) since Wh™M2 ¢ W. Conversely, let 7 = [r/|h™M2 | & =
[0/]1i™M2 . Then 7 < & by Lemma 7.1 and [l = [[7]h"2)h = 7 [F]"2 =

[[0/]11012]12 —0.

Example 7.1. Let W = G3, the group of permutations on three letters. It is
a Coxeter group with respect to generators S = {s; = (12),s2 = (23)}. Let
I={s1}, J={s2}. Then the posets W) = WU-D are the ones depicted in
Figure 5.

Now we want to study some aspects of the adjacency relation in W7 in
the case of a finite W. So we assume through the rest of this paper that
W is a finite Coxeter group unless otherwise specified. The next part of
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Figure 5. The posets WI, W woJ) WD

this section is devoted to the proof of a certain “homogeneity” in the adjacency
relation between W' < W7 and W7 — WoJ)

Definition 7.2. We write T<0 if 7 € W', 0 € W, 7 < o and they are
adjacent, i.e. there does not exist 7 € W such that 7 < 7" < o and there does

not exist o’ € W? such that 71 <o’ < o.

Let us introduce some sets related to the adjacency relation «.

W, = {r € W] there exists 0 € W’, such that 7 <o}
W) = {0 € W/ | there exists 7 € W, such that 7 <o}
Further, throughout this section w will be the element w = [wp ]!, i.e. the

minimal representative of wyg_ j , the longest element of W, modulo the parabolic
subgroup W;. We fix once and for all reduced expressions

Wop,J = S182°:-Sp
w = S5i;Siy " Sq,

where 1 < i <iy < -+ <i; <r. Notice that w € WINnWj.
The following lemma is a key result for our purpose.
Lemma 7.2. If 0 € W) then ow € W!.

Proof. Suppose that cw does not belong to W'. Then there exists s € I such
that ows < ow. This yields ¢/ = [ows]’ < o, using Lemma 7.1 and the fact
that w € Wy . But we have

ows = [ow]' mod W',
ows o’ mod WY,
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which implies [ow]' < ¢’ < o. Hence o/ =0, since 0 € W’ .
Now fix a reduced expression o = s} --- s;. Then a reduced expression for
ows can be obtained by omitting a simple reflection in

! 1
ow = 81'~'Sp81‘181'2 c Sy

by the exchange condition in Theorem 6.1. Now we consider the two possi-
ble cases. If ows = s} -- 5,8, ---8; --s;, , for some 1 < k <t we deduce
ws = 8;, -+ 8;, -+ 5;, and this is impossible, since w € W, s € Wy. In the other

case ows = sy -8, ---s,w, for some 1 < k < p, and since s € Wy, we find
[ =[s} -8 ---s/]7 and this is impossible too as 0 € W7 . [

o=o0' = [ows Sy

The next step is the proof of the following.
Lemma 7.3. If W 7490 € W) then 7 =0ow.

Proof. We know that ocw € W' by previous lemma. Let us show that ocw < o.
Indeed let € = owyp,y, then we have

e = omodW;
= ocwmod Wy

and so cw < o.
Suppose now that 7/ € W! is such that 7/ < o . Then there exist 7, 7€ W
such that

7 = 7'mod Wy,

o = omodWjy,

T < oTin W.
We have o = ov for some v € Wy, hence ov < owp,j. So T < owp,j and using
Lemma 7.1 we find 7/ < ow. |

Let us denote by p,, : W — W the map given by right multiplication by w,
i.e. the map W 2 v— vw € W. Obviously p, is a bijection, W being a group.
In the following theorem we see that this map describes the new adjacency relation
in W7 obtained by glueing.

Theorem 7.1. The map p, : W) — Wﬁr is a poset isomorphism. Moreover
WL = (W) n W and W2 =W n (W),

Proof. Let o € WY . Then there exists 7 € Wﬂ_ such that 7<o, and by theorem
above T = ow = py (o). Hence the map p,, is well defined. On the other hand if
TE WL then there exists o € WY such that 7<o. Hence ¢ € W and 7 = ow,
SO py IS surjective. p,, is also clearly injective.

Now let o1 < 09 in WY, ie. o1 < 0o. Fix a reduced expression oo

;‘1"'53‘4 for some indexes 1 < ji < jo < -+ <jg <

s’1~-~s;,thenwehave 0L =S58
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p by Lemma 6.1. Then oawo j = 8] -+ 8,515, and ojwo,; = 33‘1 s; 818y
are reduced expressions, hence ojwp j < oowp,j in W . This last inequality shows
o1w < oow in W' using Lemma 7.1, since [O'lU)(),J]I =oyw and [O'Q’U)QJ]I =ow.

On the other hand, suppose o1w < gow in W', ie. ojw < gow, and choose
reduced expressions o1 = s ---s;, gg = s} ---s;,. Recall that w € Wj, hence
orw = s+ sgsilsiz --8;, and oow = §f--- s;silsiz -+.s; are reduced expres-
sions. So o1 = s -+ s is a subword of s} ---s, =02

As for the last statement of the theorem, notice that Wﬁr c Wuwn W by
Lemma 7.3. Now let 7 € WwnW!, ie. 7 =0cw e W! with ¢ € WJ. We
have 7 < o . Suppose 7 € WL , o/ € W are such that 7 < 7/ <0’ < o. Then
7' =¢'w and we have 7 =ow < d’w=17". But 0,0’ € W and w € Wy, hence
as above, 0 < o’. So o/ =0, 7 =7 € W, . Now the assertion for W follows
from the first part of the theorem. O

t

Now we give a characterization of WL that will be useful in Section 9.

Lemma 7.4. Wﬂ_ is the set of all elements T of W' which admit a reduced
expression of the form T = sysy - 5,8i,5i, 5, , for some s1,...,8), €S

Proof. Clearly every element of Wﬁr admits such an expression by Theorem 7.1.
Conversely, use induction on p. If p =0 then 7 =w € WBF . Suppose p > 0.
Let 7/ = s+ 8),8i,8iy "+ Si, -

First of all we show 7/ € W!. Let s € I. From 7 € W! we have that 7s =
81+ 8,5 is a reduced expression, hence 7's = s5---5,s is a reduced expression
and so 7/ = sh--- s, < sh---s)s=7's. This proves 7/ € W'.

Further sj---s)s;,8i, - si, is areduced expression and so, by induction 7’ €
WL ie o' =sh---s, € WL, Let 0 =s|---s). Notice that this is a reduced
expression, hence ¢’ < o . Now we can use Lemma 6.5 to conclude either o € W/
or 0 =0's, for some s€J.

Notice that if ¢ € W’ then 7 = ow € WL by Theorem 7.1, so we can
suppose 0 = o's, s € J. From this we have [}’ = [0]’ = ¢/ and hence
W!s 7 < ¢’ € W. But this is impossible since 7’/ <o’ and 7 < 7 < o’ . O

Our next aim is to prove that the poset obtained by glueing minimal represen-
tatives are graded posets. For this we start with some preliminary lemmas.

Lemma 7.5. Let 0 € W2 . Then there exists o/ € WL such that o' < o are
adjacent in W’ .

/

Proof. Let o = s}s4--- s, be areduced expression for o and define o’ = 55 --- s, .

We want to prove that this ¢’ has the desired property.
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As in the proof of the previous lemma we have o/ € W'. Now we want
to show ¢/ € W) . From ¢ € W’ we have ow € W!. Note that ow =
81" 8,8i,8iy -+ Si, is a reduced expression since o € WY we Wy (recall w =
SiySiy -8, ). Let s €. From ow € W! we have ows > ow . Note that cws =
81" 8,SiySiy -+ - 8i, 5 is areduced expression. Hence also s5 - - - 5),5i, 84, - -+ 5i,5 isa

: ! ! ! ! 3
reduced expression and s - -+ )8, Si, "+ * 8, § > Sy 8,8, iy ++ Si, . This proves
o'w € W! and so o/ € W by Theorem 7.1. Now the lemma is clear since o’ < o
and they are adjacent in W . g

From Lemma 7.5 we derive that WL and WY contain “enough” saturated chains.

Corollary 7.1. Given o € W’ there exists a chain
C:0=090>01>:">0p=¢€
in W2 that is saturated in WY . Furthermore
¢ = pu(c) i ow =ocow > crw > > opw=w
s a chain in WL saturated in W' .
/

Proof. The existence of ¢ follows by Lemma 7.5. Clearly ¢’ is contained in Wﬂ_
and is saturated by construction of c. O

Now we introduce a more general kind of object. Let Q = (I,---,I,) be a
n -tuple of subsets of S. We can glue together the various posets (Wy, , <), where
< is the Bruhat order, in a unique poset W = Wl J...UW! . The construction
is a step by step extension of the case of two subsets I, J seen above:

let 7€ W, ¢ € Wi with A < k, then define ¢ < 7 if and only if either
h =k and 7 <o or there exists a chain 7 =€, < €41 <X+ = € = 0 such that
e € Wl for i =h,...,k and ¢ < €41 in the poset Wilit1) Tt is clear that
this is a partial order on W .

Remark 7.1. This definition is not equivalent to the more global following one:
let 7€ W, 0 € Wi with h <k then one defines 7 < ¢ if and only if there
exist 7,0/ € W such that 7 < ¢’ in W and [7']'* = 7, [0/]" = 0. Indeed
this is not a partial order: as an example consider W =Sy, Iy = {s1,s3}, Io =
{s9,83}, I3 = {51,852} and o = 52515352 € W | 7 =5551 € W2, e=c € W,
Then o <7 <€ for both definitions, whereas o £ e for the second one.

We call such a glueing of minimal representatives modulo parabolic subgroups
of some Coxeter group, a Bruhat poset.

We recall that a finite poset (P,<) is said to be graded if it is bounded —
i.e. it admits a unique maximal element and a unique minimal element — and all
maximal chains in P have the same length, where the length len(c) of a chain
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c is the number of elements in ¢ minus one. This common value for the length
of chains is called the dimension (or the length) of the poset. It is well-known
that the posets (Wp, <) are graded. In general we can now state the following
theorem.

Theorem 7.2. (W%, <) is a graded poset.

Proof. For the sake of simplicity we see the proof only for the case Q = (I,J), the
general case presenting just a more confusing notation but no real difficulty.

Clearly e €¢ W' ¢ W) s the unique minimal element of W7 and wj €
W? ¢ WEI) s the unique maximal element.

Take a maximal chain ¢ from wj to e. Then there exist 7€ WL |, 0 € W
in ¢ with 7<o0. Break ¢ up in two subchains: c¢; from 7 to e and c; from
w) to o. By Corollary 7.1 there exists a chain from o to e € W’ contained in
WY and saturated in W’ | say ¢, . Moreover ¢} = p,(c}) is a chain from 7 to
w in Wﬂ_ and saturated in W' . Finally choose saturated chains ¢/ from w to

e in W! and ¢ from w] to e in W’ (see Figure 6). Then we have

o

Figure 6. The various chains of the proof.

len(c) = len(c1) + 1+ len(co)
= len(c}) +len(c)) + 1+ len(cy) — len(c))
= len(cy)+ 1+ len(ch)
where we have used len(c}) = len(ch) by construction, len(c;) = len(c})+len(cY)
since W! is graded and len(cy) = len(c}) + len(cz) since W7 is graded.
Hence the length of ¢ is independent of c. O
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Given 7,0 € W% we denote by [r,0] the closed interval [r,0] = {e €
W | 7 <€ <0} in W . This is a poset with order < induced from we
It is clear that

Corollary 7.2. Let 7,0 € W . Then [r,0] is a graded poset.

8. Lexicographic shellable posets

In this section we introduce the notion of lexicographic shellability for a poset.
Definitions are taken from [1].

Let (P, <) be a finite graded poset with unique maximal element 1 € P and
unique minimal element 0 € P of dimension r. Denote by C(P) the set of
maximal chains

c:l=xg>z1>-->2,=0
from 1 to 0 in P. We say that a map
A C(P) - N
c  — Ac)=(\(c),..., A (c))
is a labeling of maximal chains of P. We think of the integer A;(c) as being

associated with the edge (adjacency relation) x;—1 > z; in c: we are labeling ¢
edgewise from top to bottom with integers.

Example 8.1. Figure 7 shows a simple example of a labeling for the two maximal
chains in the poset W) where W =S5, S = {s1,52}, [ = {51} and J = {s5}.

Figure 7. A labeling of W& as in Example 8.1.

Our first requirement for a labeling is the following.

Definition 8.1. (L1) If two mazimal chains ¢, ¢ in P coincide along their
first d edges, 1 < d <r, then \i(c)=X(c) for i=1,2,...,d.
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By a rooted interval ([z,y],c) we mean a pair where [z,y] is an interval
in Padc:1=u2x > - >z, =y is a saturated chain from 1 to y
in P. Notice that if A\ is a labeling satisfying (L1) and ([z,y],c) is a rooted
interval, then all maximal chains of [x,y] receive an induced labeling as fol-
lows. Let d : y = 29 > 21 > --- > 2z, = = be a maximal chain in [z,y],
choose an arbitrary saturated chain e from x to 0 and consider the maxi-
mal chain ¢’ = cxd e € C(P), where * means composition of chains. Let
M) = (M(c), ..., A (') and define X (d) = (Ap+1(c'), Apt2(c), ..., Aptr(c)) .
By abuse of notation we denote this by A(d) dropping the “prime”. Notice that
the induced labeling still satisfies (L1).

Now we focus on labelings that verify the following property.

Definition 8.2. Let \: C — N" be a labeling of the mazimal chains of P which
obeys (L1). Then we say that A is an L-labeling, and that (P, <) is lexicograph-
ically shellable, if \ wverifies

(L2): For every rooted interval ([x,y],c) in P there is a unique mazimal chain
do in [z,y] whose label is increasing: A1(dg) < Aa(do) < -+ < Ap(do) . Furter
if d is any other mazimal chain in [z,y] then A(do) <iex A(d), where <jex is
the lexicographic order on N” .

The importance of this definition comes from the following theorem (see [23],
[1] and [2]).

Theorem 8.1. If (P, <) is lexicographically shellable then Ap , the complex of
chains of (P,<), is shellable and thus Cohen-Macaulay.

9. Lexicographic labeling

Now we describe a labeling of maximal chains in a closed interval of a Bruhat
poset. This labeling turns out to be an L-labeling. The procedure described below
is a generalization of the one provided by Bjorner and Wachs in [2] for minimal
representatives modulo a parabolic subgroup. Indeed our labeling reduces to theirs
in the case of a single parabolic subgroup.

Fix a finite Coxeter group (W,S), subsets Ij,...,I, of S and consider the
Bruhat poset W for Q = (Iy,...,1,) as defined above. Let [r,0] be a closed
interval in W . First of all notice that no generality is lost if we suppose T €
Li, 0 €1,. Nowlet wy = [wor,]",...,wn = [woy,]'"~1 where wqy, is the
longest element of the parabolic subgroup Wiy, , h =1,...,n. Choose reduced
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expressions
o — S1--- ST‘l
Wn,

ST‘1+2 "'87-2

W2 = Sp, 142" Sp,
Now take a maximal chain in [7, 0]
CIO=T0>F1 > > Ty DTy gl > > Ty DLpgy1 >0 > T =T

where we have stressed the <-adjacency relations, i.e. we are supposing

Wl
Toy.--y Ty —1 € )
wlr
Ty, € oo VVI"’
In—
Ty41 € Verz e VVIW,—l,
Wln—
Tt 425+, Tty—1 € T
Ln— )
Tty c “]_ 1 C VVIn—l

and so on. Consider the word o = s1--- s, Usp 428,008y, 425,
in the alphabet S U {0}, where O is a new symbol. Now, using the exchange
condition, we know that there exists a uniquely determined 4; such that z; =
S1+--8i - Sy, . Repeating this we find uniquely determined indices i1, ...,
such that

Lty = 851852 " Sy 1y

where {j1 < -+ < jm—t;} ={L,..., 71\ {i1,...,%, } . So far, we have defined the
integers 41, ...,%, that correspond both to the generators removed from s; - -- s,
and to the positions deleted in the word «.

Now we use Theorem 7.1 to deduce ¢, +1 = x¢,w, . We set iy 41 =11+ 1,
corresponding to deleting the box in position 71 + 1 in the word «, and we start
the same process with the reduced expression

Lt1+1 = S5y * " Sjpy —¢y Sra4+2 7" Sra-

So we can go on till x4,_;. Then again we set i;,4+1 = 72 + 1 deleting the box
in position 79 + 1 .... Finally we reach 7 having obtained the label A(c) =
(il,.. .,it) .
In short we keep track of removed generators in «, considering the boxes as
generators when we move from the poset W' to the poset Win-1, h=n,... 2.
Let us see an example of this process.

Example 9.1. Let W = W) be as in the previous examples and consider the
whole W = [e, wo,j] . Start with the word a = s2s510s2. Now take the maximal
chain

C1 : 8281 > 81 >eb>sy >e.
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Then the label is A(c1) = (1,2,3,4) and the deletion process produces the follow-
ing subwords and corresponding elements of W7

S9 81 O s9 +— 8981 € WJ,
s1 O s9 — s € WJ,
O s — ec€ WJ,
S9g > S € WI,
g — eecWL

Now take the other maximal chain
Co ! 8251 > S1D>S1S2 > S9 > €.

Then the label is A(c2) = (1,3,2,4) and corresponds to

So 8§11 [ 83 +— S981 € WJ,
s1 O s +— s1€ WJ,
s1 Sg +— 8159 € WL

S9g > S € WI,
g — eeWL

Notice that our labeling assigns a unique label to an edge W 3 a<g € W1 :
the position of the (n —h+ 1)-th boxes in «, that does not depend on the chain
considered. It follows that, in the minuscule case (see [22] for definition), the
Bruhat posets are still lattices and they are shellable with respect to some edge-
labeling, i.e. a labeling of maximal chains induced by a labeling of the edges.

Now we state the main result of this second half of the paper. Its proof is
almost an adaptation of the proof of Theorem 4.2 in [2] but care must be taken
when, following a maximal chain, we move from W'» to Wi-1  h=mn, ... 2.

Theorem 9.1. Let (W,S) be a Cozxeter group, 1j,...,1, be subsets of S and
let Q= (I,...,1,). Then any closed interval [r,0] C W s lezicographically
shellable.

Proof. We show that the labeling described above is an L-labeling; so our previous
notations will be in force throughout the proof.

(L1) is easily verified since at ecach step the element we remove from « is
uniquely determined.

It suffices to verify (L2) only for the entire interval [r, 0] . Indeed let ([u,v], o =
Yo > y1 > -+ >y, = v) be a rooted interval in [r,0] and suppose u € W'
v e W | h<k. Following yo > y1 > --- > ¥, we produce a uniquely determined
reduced expression v = sjs5---s,. The labeling of [u,v] as a rooted interval
of [r,o0] is then equivalent to the labeling of [u,v] directly obtained starting
with the reduced expression v = s}s5---s,, i.e. considering the word o' =
3,13,2 T SlpDSTﬂ,+1—h+2 T sTn+2—h,|:|sTn+2—h,+2 .

Now we prove that at most one maximal chain in [r,o] has increasing label.
Use induction on ¢ = length of the maximal chains of [7,0]. If ¢t =1 our claim



Vol. 76 (2001) Deformation and Cohen-Macaulayness of the multicone 463

is clear. If Q = (I;), i.e. n =1, then our labeling reduces to the one in [2] and
hence, being an L-labeling, it verifies (L2). So suppose ¢t > 1, n > 1 and let

C:0=T9g>T1 > " >T;, DT 41 > " DT, DTyl > - > T =T
/. — ! / P / / P / / P —
C:0=xy>T > >:1ct,1>:10t,1+1> >xt,21>xt,2+1> > Ty =T

be two maximal chains with increasing labels, say A(c) = (i1,...,it), A(c') =
(j1,-.-,j¢) . By construction of the labeling this means

T:31"'5i1"'3i2"'3it"'5r"
T:sl...sjl...sz...sjt...srn

We want to show i; = j,. Suppose j; > i;. From 7 € Wi — W we have
jt > 1y > rn_1 +1 = the position of the last box in «. Consider now u =
SrySry—1°"" 85,4155, Sj,+1 """ Sr,—15r, € T, then

/ f— , P . ... . DY . :':A‘ DY
Ty = LU= 51784 Siy Siy 53¢ Srn,

and so len(x}_;) < len(z}) — 1. But this is impossible since «}_; > x}. Hence
Ji < and, by symmetry, i; = j;. So x;_; = z;—1 and we can use induction on
[xt—1,0] to derive c =c'.

Now let

CQ:0 =290 >TL> " >Ty; DTpyp1 > > =T

be the chain such that A(cp) = (A1,..., ) is minimum in the lexicographic order.
We claim that A(cp) is increasing. Suppose otherwise and let 1 < i <t —1 be
the least integer such that A\; > A\j41 .

Notice that if x;41,2;,-1 are contained in Wy, — W for some h then, reducing
to the case W = (I;) we can use the result of Bjérner and Wachs to obtain a
contradiction.

Suppose ;41 € W1 2, 1 € W' for some h. No generality is lost if we
suppose h = n, indeed if h < n we can consider the interval [o,7] where T
is maximal such that 7 € ¢ N W . Now if z; € WI* then Tiy1 < x; , hence
Ait1 =71+ 1 > \;. A contradiction with the assumption that A; > Aj4+1. So
x; € Wh-1 and Ti1bx;, \i=711+1.

Notice that A\; < 7 + 1 for any j < 7, hence we have the following reduced
expressions:

5 5 3 I,

Ti—1 = 31...8>\1...s)\2...s)\i71...sr1 c W_
A A A In—1

Z; = 31"'5>\1"'3>\2"'3>\i,1"'3r13r1+2"'5r2 = Wi‘r
Titl = S1 - Spuy SpsSuyt SriSri4+2° " Sry c Win—1

where {p1 < pa < -+ < i} = {A1,A2,..., A1, Nir1} . Note that p; < r;
since A1 < A; =11 + 1. Then by Lemma 7.4 we have z;y; € Wi’_l and so
ZTit1 = T;w, where

~ ~ PN 1
xi:sl'.'SHI'.'SHQ'.'SHi.'.STl EW:L
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This suffices to costruct the chain (see Figure 8)
ClL:0=X29> " >Ti—1 >TiDTjp1 > """>Ty =0

with label )\(Cl) = ()\1, ey )\i—la )‘i+17 r + 1= /\i, )\H_Q, ey )\t) that is lexico-
graphically strictly less than A(cp). This contradicts the choice of cg, so A(co)
must be increasing.

Figure 8. The chains in the proof of Theorem 9.1.

We must still check the case z;_; € W+t | 2, € Wir | 2;,; € W1 | But
this is ruled out by our assumption that A\; > A;;1 as in this case we have
)\i =Tn—h < Tn—h+1 = )\i+1 g
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