
Comment. Math. Helv. 76 (2001) 436–466
0010-2571/01/030436-31 $ 1.50+0.20/0
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Abstract. A general theory of LS algebras over a multiposet is developed. As a main result, the
existence of a flat deformation to discrete algebras is obtained. This is applied to the multicone
over partial flag varieties for Kac-Moody groups proving a deformation theorem to a union of
toric varieties. In order to achieve the Cohen-Macaulayness of the multicone we show that
Bruhat posets (defined as glueing of minimal representatives modulo parabolic subgroups of a
Weyl group) are lexicographically shellable.
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Introduction

This paper is a continuation of [5]. The main purpose is to set up the combinatorial
and algebraic machinery to treat the multicone over (partial) flag varieties for Kac-
Moody groups. In order to do this some generalizations of LS algebras are needed,
but the general framework remains the same.

First some combinatorics is developed. We begin introducing the notion of
multiposet, a “glueing” of posets, as follows. Suppose we are given n posets
with bonds (Si,≤i, fi) , and liftings ≤i,j of (Si,≤i) , (Sj ,≤j) to the disjoint
union Si t Sj . We define the sets Li,j2 as the set of pairs of LS paths (`, `′) ∈
L1(Si) × L1(Sj) such that max supp ` ≤i,j min supp `′ . Suppose moreover that
we are given maps φi,j : Li,j2 → Lj,i2 (satisfying some mild conditions). We call
the data (Si,≤i, fi,≤i,j, φi,j) a multiposet with bonds and we call the maps φi,j
the swappings.

Then we see the notions of LS paths, weak standard and standard monomials
for a multiposet. We note here that at this point we allow our posets to be infinite
(this is mandatory since W/WP , where W is the Weyl group of some Kac-Moody
group G and P is some parabolic subgroup, is in general infinite) but we ask for
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some “lower finiteness condition”. See Section 1.
The algebraic side of the machinery is treated in Section 2 and Section 3. An

LS algebra over a multiposet is defined as an algebra A , over some base ring R ,
having as R -basis the set of standard monomials and satisfying the property that
when a monomial is expressed in terms of standard monomials then only standard
monomials satisfying some lexicographic condition do appear. Then, in analogy
with [5], we construct a general theory of flat deformations to discrete algebras
and we give a result about Cohen-Macaulayness.

In Sections 4 and 5 we give our application to the multicone. At this point
our main sources are the plactic algebras (see [19]) and the standard monomial
theory (see [16], [18] and [20]). Notice that these works are slightly extended: some
results about the good string property (see [19] and Definition 5.1) of parabolic
subgroups is generalized to Kac-Moody groups and some relations of the standard
monomial theory for LS paths of different shapes are needed.

Our main results are the following. Let G be a Kac-Moody group and let P
be a parabolic subgroup. Then the flag variety G/P admits a flat deformation
to a union of sections of toric varieties X (Theorem 4.1). If P has the good
string property then X is simply the union of toric varieties (without sections).
A criterion for a parabolic subgroup to have the good string property is also given:
this result is very neat for the finite and affine types. In the good string case we
obtain a new proof of the fundamental result in [12], i.e. the quadratic relations
suffice to generate the relations in ⊕a1,...,an≥0H

0(G/B,La1λ1+···+anλn) , where Lλ
is the line bundle G×B k−λ over G/B . Finally we prove that in the good string
case the multicone is Cohen-Macaulay for G of finite type. To achieve this result
one needs the Cohen-Macaulayness of the involved posets. We devote the last four
sections to this goal; however a more general result is obtained. Let us explain
this in details.

Let (W,S) be a Coxeter group and let I, J be subsets of S . The sets WI , WJ

of minimal representatives modulo the parabolic subgroups WI , WJ inherit the
Bruhat order by restriction from W . Consider now the disjoint union W(I,J) =
WI tWJ . W(I,J) has a Bruhat order extending that of WI , WJ ↪→W(I,J) . We
call this poset structure the Bruhat poset WΩ where Ω = (I, J) . One may clearly
generalize this contruction to Ω = (I1, . . . , In) considering various parabolic sub-
groups WI1 , . . . ,WIn associated to subsets I1, . . . , In ⊂ S .

Assume now that W is finite. In this case the adjacency relation τ / σ in
WΩ for τ ∈ WIh , σ ∈ WIh+1 relative to the order defined above, has a sharp
description: there exists w ∈ W , depending on Ih, Ih+1 , such that τ / σ if
and only if τ = σw . This is the key result one needs in order to extend the
lexicographic labeling introduced in [2] to the Bruhat poset WΩ . Our main result
is then: any closed interval [τ, σ] ⊂ WΩ is lexicographically shellable. We apply
this to obtain that k{WΩ} , the Stanley-Reisner ring of WΩ , is Cohen-Macaulay,
using a well known theorem (see [21]).

These results are mainly a generalization of the method of [2]: the proof of the
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shellablity in WΩ is an adaptation of Björner and Wachs’s proof of shellabilty in
WI , taking into account the description of adjacency relation in WΩ . Shellability
of WΩ had already been proved in [10] in the following special cases: W of type
A` , B` , C` , Ω = (I1, . . . , I`) where Ih = S \ {sh} , h = 1, . . . , ` , i.e. the WIh
are the maximal parabolic subgroups and they are ordered naturally in the same
way as the corresponding omitted roots in the Dynkin diagram are. The proof
of this in [10] is a case by case analysis and heavily depends on combinatorial
descriptions of minimal representatives modulo maximal parabolic subgroups.

Section 6 introduces Coxeter groups, parabolic subgroups and Bruhat order.
The main related results are provided for easier reference. In Section 7 we define
the Bruhat poset as a “glueing” of minimal representative sets. In the case of
finite W we prove a sort of “homogeneity” for the adjacency relation in WΩ .
The last half of Section 7 is devoted to the proof that any Bruhat poset is graded.
Lexicographic shellable posets are introduced in Section 8. This section is just
a short form of Section 2 in [2]. Finally Section 9 describes our labeling of the
intervals [τ, σ] ⊂WΩ , proving that this is actually an L-labeling.

I would like to express my thanks to Prof. P. Littelmann, Prof. C. De Concini
and Prof. A. Björner for many useful conversations. I also wish to thank Prof.
C.S. Sheshadri who suggested me to study the multicone. Finally it is a pleasure
to thank Prof. A. D’Andrea for improvements to the exposition.

1. Multiposet and standard monomials

We begin this section by briefly recalling the definitions of poset with bonds, LS
paths, etc. We refer to [5] for details and proofs.

Let (S,≤) be a poset. In this paper poset means partially ordered set with the
following finiteness property: for every a ∈ S the set {b ∈ S | b ≤ a} is finite. Let
f : S̃ −→ N be a map on the set S̃ of all adjacent pairs a < b in S , such that
gcd{f(ai, ai+1) | i = 1, . . . , s−1} = gcd{f(bj, bj+1) | j = 1, . . . , t−1} for any pair
of complete chains a = a1 < . . . < as = b , a = b1 < . . . < bt = b from a to b in
S . We call the data (S,≤, f) a poset with bonds. Notice that we can extend the
map f to all pairs a < b setting f(a, b) = gcd{f(ai, ai+1) | i = 1, . . . , s− 1} for
a complete chain a = a1 < . . . < as = b .

Given a poset with bonds we define an LS path of degree r ∈ N as a pair

` = (a1 < · · · < as; 0 = x0 < x1 < · · · < xs = r)

of finite linearly ordered elements of S a1 < · · · < as and rational numbers
0 = x0 < x1 < · · · < xs = r such that xif(ai, ai+1) ∈ Z for any i = 1, . . . , s− 1 .
Let Lr(S) be the set of all LS paths of degree r and let L(S) = ∪rLr(S) .

We associate with any LS path ` = (a1 < · · · < as; 0 = x0 < x1 < · · · < xs = r)
a map γ` : S −→ N defined as γ`(a) = 0 if a 6∈ supp ` = {a1, . . . , as} and
γ`(ai) = Nai(xi − xi−1) where Na = lcm{f(x, y) | x = a or y = a} . Given two
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LS paths `1, `2 with compatible support, i.e. such that supp `1 ∪ supp `2 ⊂ C for
some chain C in S , it is easy to see that there exists a unique LS path ` such that
γ` = γ`1 +γ`2 , and we denote it by `1 ◦ `2 . Moreover the support of ` = `1 ◦ `2 is
contained in C . If `1, `2 are two LS paths whose support is not compatible then
we write `1 ◦ `2 6∈ L(S) . Further we have

Proposition 1.1. If ` is an LS path of degree r , then there exist uniquely defined
LS paths of degree one `1, . . . , `r such that max supp `i ≤ min supp `i+1 for i =
1, . . . , r − 1 , and ` = `1 ◦ · · · ◦ `r .

We will refer to `1 ◦ · · · ◦ `r as the canonical decomposition of ` .
Now we want to consider a more general framework. Suppose we are given n

posets with bonds

(S1,≤1, f1), (S2,≤2, f2), . . . , (Sn,≤n, fn)

and for each 1 ≤ i, j ≤ n a lifting of (Si,≤i) and (Sj ,≤j) to a poset (Si t
Sj ,≤i,j) . Let Li,j2 denote the subset of L1(Si) × L1(Sj) of pairs (`, `′) such
that max supp ` ≤i,j min supp `′ . Finally suppose that we are given bijections
φi,j : Li,j2 −→ Lj,i2 such that φii = IdL1(Si)×L1(Si) and φj,i = φ−1

i,j . We refer to
such maps as swappings. We call the data of the posets with bonds, liftings and
swappings a multiposet with bonds

S = (Si,≤i, fi,≤i,j , φi,j).

Now we consider formal monomials of LS paths, i.e. monomials `1 · · · `r with
`i ∈ L1(S) = tk=1,...,nL1(Sk) , and we want to define weak standard and standard
LS monomials for a multiposet.

Let Mr be the set of the (formal) LS monomials `1 · · · `r , such that `i ∈
L1(Ski ,≤ki , fki) and max supp `i ≤ki,ki+1 min supp `i+1 for any 1 ≤ i < r , we
call such monomials weak standard. Consider now the group Φr with generators
τ1, . . . , τr−1 and relations τ2

1 = · · · = τ2
r−1 = 1 . We define an action of Φr on

L1(S)× · · · × L1(S) ( r times) as follows:

τi(`1, . . . , `r) = (`1, . . . , `i−1, `
′
i, `
′
i+1, `i+2, . . . , `r)

where `i ∈ L1(Ski) and (`′i, `
′
i+1) = φki,ki+1(`i, `i+1) if (`i, `i+1) ∈ Lki,ki+1

2 and
(`′i, `

′
i+1) = (`i, `i+1) otherwise. We call a monomial `1 · · · `r ∈ Mr standard if

every monomial `′1 · · · `′r in the orbit Φr(`1, . . . , `r) , is weak standard.
We define the multidegree of a LS monomial `1 · · · `r as a = (a1, · · · , an) ∈ Nn

where a1 is the number of LS paths in L1(S1) , a2 is the number of LS paths
in L1(S2) , and so on. Let us set some more notation: we denote the set of all
monomials with multidegree a = (a1, · · · , an) by Ma , the set of weak standard
LS monomials by Mw and the set of standard LS monomials by Ms , we define
also Mw

a = Mw ∩Ma , Ms
a = Ms ∩Ma , and in the same way we define Mw

r and
Ms

r considering the total degree r = |a| = a1 + · · ·+ an .
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We call a multiposet S = (Si,≤i, fi,≤i,j , φi,j) canonical if every weak standard
monomial is standard, i.e. if the two notions of standardness coincide. Obviously
if n = 2 (two posets) then S is canonical. The numbering S1, . . . ,Sn is clearly
unessential for standard LS monomial but, in general, weak standard monomials
do depend on this numbering.

Notice that if S is canonical then, lifting (S1,≤1) , . . . , (Sn ≤n) to (S =
S1 t · · · t Sn,≤) via ≤1,2 , . . . ,≤n−1,n and extending the bonds f1, . . . , fn to
f : S −→ N by f(x, y) = 1 if Si 3 x < y ∈ Si+1 , we have that a standard
monomial is just an LS path in L(S,≤, f) .

We assume throughout the rest of this paper that any LS monomial `1 · · · `r
is such that `i ∈ L1(Ski) with k1 ≤ · · · ≤ kr .

2. LS algebras over multiposet

Let R be a commutative ring with 1 . In this section we define an LS algebra over
a multiposet S = (Si,≤i, fi,≤i,j , φi,j) as an algebra having as R -basis the set of
standard LS monomials. Further we ask that in the expressions of a monomial
`1 · · · `r in terms of R -linear combination of standard monomials `1,i · · · `r,i (the
straightening relations), only the standard monomials satisfying a permutation
variant of the lexicographic order appear.

Let us begin defining this order. Let N = lcm{f(x, y) | x, y ∈ Si, x < y, i =
1, . . . , n} . If ` = (a1 < · · · < as; 0 = x0 < x1 < · · · < xs = 1) is an LS path
of degree 1 , we associate with ` a corresponding word ω(`) in the alphabet
S1 t · · · t Sn

ω(`) = a
N(x1−x0)
1 · · ·aN(xs−xs−1)

s .

Notice that N(xi − xi−1) ∈ N by definition of N and LS path. We extend the
map ω to monomials by ω(`1 · · · `r) = ω(`1) · · ·ω(`r) (juxtapposition of words).
We have lenω(`1 · · · `r) = Nr , where lenω is the length of the word ω . Note
also that ω(`) = ω(`′) for ` , `′ ∈ L1(S) implies ` = `′ .

As the reader can see this definition is just a simpler version of the notion of
word for LS paths given in [5]. We have restated it here in this form for the sake of
readability since in the application to the multicone in next section, we will need
just this special type of word.

We have a natural action of the symmetric group Sm , on the set of words
ω = ω1 · · ·ωm of length m , namely: σω = ωσ(1) · · ·ωσ(m) . Suppose we are given
two LS monomials `1 · · · `r , `′1 · · · `′r of the same multidegree a = (a1, . . . , an) ,
then we write

`1 · · · `r ≤ `′1 · · · `′r
if ω(`1 · · · `r) ≤lex σω(`′1 · · · `′r) for any σ ∈ SNa1 × · · · ×SNan ⊂ SNr . In the
same way we define `1 · · · `r≤rlex`

′
1 · · · `′r using reverse lexicographic order.

Another notion we will use in the sequel is the following: an LS monomial
`1 · · · `r with multidegree (a1, . . . , an) admits as a standard form the monomial
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`1 · · · `r if `(i) = `a1+···+ai−1+1 ◦ · · · ◦ `a1+···+ai ∈ Lai(Si) and `1 · · · `r ∈ Ms
r ,

where `a1+···+ai−1+1 ◦ · · · ◦ `a1+···+ai is the canonical decomposition of `(i) for
i = 1, . . . , n . Notice that if a monomial admits a standard form then it admits
a unique standard form. This is just an extension to multiposet of the notion of
canonical decomposition.

Now we are finally ready to define LS algebras over a multiposet. Let R be
a commutative ring with 1 , A a commutative R -algebra, j : L1(S) ↪→ A an
injection that we extend to monomials by j(`1 · · · `r) = j(`1) · · · j(`r) (note that
the map j can also be extended to Lr(Si) using canonical decomposition to define
j(`) = j(`1) · · · j(`r) if `1 ◦ · · · ◦ `r is the canonical decomposition of ` ). In the
following we consider LS monomials as elements of A via the map j .

Definition 2.1. We say that A is an LS algebra over the multiposet S = (Si,
≤i, fi,≤i,j, φi,j) if the following three conditions hold:
LS1: A is a free R -module isomorphic to ⊕a∈NnR Ms

a and this decomposition
gives a multigrading for A ,

LS2: if `1 · · · `r is any LS monomial and

`1 · · · `r =
∑

ui`1,i · · · `r,i, ui ∈ R \ 0

is the straightening relation (S.R.) for `1 · · · `r guaranteed by LS1 then for
all i we have

`1,i · · · `r,i ≤ `1 · · · `r,
LS3: if `1 · · · `r admits as standard form `1 · · · `r then the monomial `1 · · · `r

appears in the straightening relation for `1 · · · `r with coefficient u ∈ R× ,
the group of invertible elements of R .

Further, if all such u equal 1 then we say that A is special.

The simplest straightening relations are those in the following

Definition 2.2. If A is an LS algebra over the multiposet S whose S.R. are

`1 · · · `r =
{
u`1 · · · `r if `1 · · · `r admits the standard form `1 · · · `r, u ∈ R×

0 otherwise

then we say that A is a discrete LS algebra.

Notice that, given a multiposet S , there exists a unique (up to isomorphisms)
discrete special LS algebra over S . We denote this algebra by A{S} . In particular
if all bonds equal 1 , i.e. fi(x, y) = 1 for any pair x < y in Si and any
i = 1, . . . , n , then we denote the unique discrete special algebra by R{S} . This is
just the Stanley-Reisner ring of the multiposet (see [21]). Clearly this algebra is
isomorphic to the quotient of the ring R[ta]a∈S1t···tSn by the ideal IS generated
by all products ta1 · · · tam with a1 · · ·am 6∈ Ms (here we are identifing LS paths
and elements of S1 t · · · t Sn since every LS path is of the form (a; 0 < 1) ).
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In analogy with [5], there is another way to look at the order requirement in
the S.R.: the order on monomials defined above is equivalent to the lexicographic
order with respect to any n -tuple of total order refinements of the given partial
orders. Let us explain this in details.

Consider an n -tuple of total orders (≤t1, . . . ,≤tn) with ≤ti refining ≤i on Si ,
i = 1, . . . , n . Given a word w = w1w2 · · · with w1, . . . , wa1 ∈ S1 , wa1+1, . . . ,
wa1+a2 ∈ S2 and so on, we denote by [w](≤t1,...,≤tn) the word obtained by re-
ordering w1 · · ·wa1 by ≤t1 , wa1+1 · · ·wa1+a2 by ≤t2 and so on. We define the
multidegree of w as (a1, . . . , an) .

Now let v = v1v2 · · · , w = w1w2 · · · be two words such that vh, wh ∈ Sih with
i1 ≤ i2 ≤ · · · . Notice that v and w have the same multidegree (a1, · · · , an) .

Proposition 2.1. The following are equivalent:

(1) v ≤lex σw for any σ ∈ Sa1 × · · · ×San ,
(2) v ≤lex [w](≤t1,...,≤tn) for any n -tuple of total orders (≤t1, . . . ,≤tn) with ≤ti

refining ≤i on Si , i = 1, . . . , n .

Proof.Let v1 = v1v2 · · · va1 , v2 = va1+1va1+2 · · · va1+a2 and so on, and let w1 ,
w2 , . . . be defined in the same way. Then (1) is equivalent to: there exist h ≥ 1 ,
σ1 ∈ Sa1 , . . . , σh−1 ∈ Sah−1 such that (a) vi ≤lex σwi for any σ ∈ Sai and
any i = 1, . . . , h and (b) vi = σiw

i for i = 1, . . . , h− 1 . Hence we can use the
analogous statement for a unique poset proved in [5]. �

Recall that the S.R. for an LS algebra over a unique poset can be derived by
the quadratic S.R. as seen in [5] (proving the equivalence of LS2 and LS2’ there).
Consider now an LS algebra over a multiposet. Using the same proof of [5] it is
easy to show that the S.R. are generated by the quadratic S.R. and by the S.R. for
weak standard monomials which are not standard. But, in general, the quadratic
S.R. do not suffice, as the simple Example 4.2 below shows.

Suppose now that we have a canonical multiposet S . Since every weak standard
monomial is standard, the quadratic S.R. generate all S.R. Moreover the standard
monomials over S can be identified with LS paths in L(S,≤, f) (see the last
remark at the end of Section 1). However an LS algebra over S is not an LS
algebra over (S,≤, f) since the order requirement for the S.R. over S is weaker
than the requirement over (S,≤, f) .

3. Deformation to discrete algebras

Now we want to develop a deformation theory for LS algebras over multiposet.
This will be completely analogous to the deformation theory for LS algebras over
a (unique) poset seen in [5]. Given an LS algebra A , we introduce its “indiscrete
part” I(A) and prove that A is a discrete algebra if and only if I(A) is empty.
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Then we prove a property of the “minimal elements” of I(A) and we index I(A)
by choosing minimal elements. Finally we use this indexing in order to construct
a flat family over R[t] whose generic fibre is A and whose special fibre is A0 , a
dicrete algebra. Further if A is special then A0 is special too, i.e. A0 = A{S} .
While in [5] the same deformation was obtained via a step by step procedure, here
we avoid doing so, by using the indexing of I(A) by minimal elements.

If ω = ω1ω2 · · ·ωm is a word in the alphabet S1t· · ·tSn and a is an element
of S1 t · · · t Sn , let us define ω(a) as the number of ωi that are equal to a .

Definition 3.1. Let A be an LS algebra over the multiposet S . The indiscrete
part of A , I(A) is the set of elements a of S1 t · · · t Sn such that there exists a
S.R. `1 · · · `r =

∑
ri`1,i · · · `r,i and there exists an i such that ω(`1,i · · · `r,i)(a) 	

ω(`1 · · · `r)(a) .

Proposition 3.1. The algebra A is discrete if and only if I(A) is empty.

Proof. Note that if `1 · · · `r is the standard form of the monomial `1 · · · `r then
there exists a permutation σ ∈ SNr such that ω(`1 · · · `r) = σω(`1 · · · `r) .
Now it is clear that if A is a discrete algebra then I(A) = ∅ . Conversely,
let `1 · · · `r =

∑t
i=1 ui`1,i · · · `r,i be a straightening relation with t ≥ 1 . Since

lenω(`1 · · · `r) = lenω(`1,i · · · `r,i) and ω(`1 · · · `r)(a) ≤ ω(`1,i · · · `r,i)(a) for any
a ∈ S1 ∪ · · · ∪ Sn , using I(A) = ∅ , we have ω(`1 · · · `r)(a) = ω(`1,i · · · `r,i)(a) for
any a . Hence there exists a σ ∈ SNr such that ω(`1,i · · · `r,i) = σω(`1 · · · `r) .
Clearly this implies that `1 · · · `r admits `1,i · · · `r,i as its standard form, since
ω(`1,i · · · `r,i) is totally ordered. Then t = 1 since the standard form is unique.
Hence A is discrete. �

Let H be a subset of S1 t · · · t Sn . We say that a ∈ H ∩ Sh is a minimal
element of H if H ∩ Sk = ∅ for any k < h and b ∈ H ∩ Sh implies b 6< a .
Notice that a non-empty set admits minimal elements (recall our initial finiteness
assumption on posets). Now let `1 · · · `r =

∑
ui`1,i · · · `r,i be a straightening re-

lation in A , fix an index i and suppose that I(A)∩ (supp `1,i ∪ · · · ∪ supp `r,i) is
not empty. Let a be a minimal element of this set. We have

Proposition 3.2. ω(`1 · · · `r)(a) ≤ ω(`1,i · · · `r,i)(a) .

Proof. Let j be such that a ∈ Sj and let k be such that `k 6∈ L1(Sj) , and
`k+1 ∈ L1(Sj) . Then the same is true for `k,i and `k+1,i since A is multigraded
by LS1. Arguing as in the proof of Proposition 3.1 above we have that `1,i · · · `k,i
is the standard form of `1 · · · `k . Hence we can assume j = 1 . Clearly only the
LS-paths supported in S1 are relevant, so we can also suppose that any LS-path
appearing in the two monomials `1 · · · `r , `1,i · · · `r,i is in L1(S1) . Now we have
reduced ourselves to proving the same statement for an LS algebra over a unique
poset, which is done in [5]. �



444 R. Chiriv̀ı CMH

Now let {a0, . . . , aq} = I(A) be an indexing of the elements of I(A) such that
ai is a minimal element of {ai, . . . , aq} . Fix an integer T � 1 and define the
following map

L1(S) 3 ` 7→ τ(`) =
q∑
i=0

ω(`)(ai)Tq−i

and for a monomial `1 · · · `r set τ(`1 · · · `r) = τ(`1) + · · ·+ τ(`r) . This map has
the following “nice” property that is the key tool for our deformation theorem.

Proposition 3.3. τ(`1 · · · `r) ≤ τ(`1,i · · · `r,i) for any S.R.

`1 · · · `r =
∑

ui`1,i · · · `r,i

and for any i . Furthermore, if `1 · · · `r admits as standard form `1 · · · `r then
τ(`1 · · · `r) = τ(`1 · · · `r) .

Proof. The inequality is a direct consequence of Proposition 3.2. For the second
statement we have noted that ω(`1 · · · `r) is a permutation of ω(`1 · · · `r) . �

Now we can define our flat family over R[t] for a new indeterminate t . Con-
sider the following multiplicative filtration by ideals of A

I0 = A ⊃ I1 ⊃ I2 ⊃ · · ·

where In is the ideal generated by monomials `1 · · · `r such that τ(`1 · · · `r) ≥ n .
By Proposition 3.3 above we have that the ideal In has an R -basis given by the
set of standard LS path monomials `1 · · · `r such that τ(`1 · · · `r) ≥ n . Then we
construct the Rees algebra corresponding to this filtration

A = · · · ⊕At2 ⊕At⊕ I1t
−1 ⊕ I2t

−2 ⊕ · · ·

and, as in [5], we obtain the following theorem

Theorem 3.1. Suppose that R is a field. Then A is a flat deformation whose
general fiber is A and whose special fiber is a discrete algebra A0 . Further if A
is a special algebra then A0 = A{S} .

As a consequence of our deformation theory, we give a result on the Cohen-
Macaulay property for canonical multiposets and special algebras. Let S = (Si,
≤i, fi,≤i,j, φi,j) be a canonical multiposet and let (S,≤) be the associated poset
constructed at the end of last section. Suppose that A is a special LS algebra
over S. We have:

Theorem 3.2. A is Cohen-Macaulay if and only if the Stanley-Reisner ring
R{S} is Cohen-Macaualy, i.e. if and only if the poset (S,≤) is Cohen-Macaulay.
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Proof. Same proof as Theorem 30 in [5].

4. Application to the multicone

Let X be the weight lattice of a symmetrizable Kac-Moody algebra g and let
X+ be the set of dominant weights. Fix a dominant weight λ , let Vλ be the
corresponding irreducible complex representation, Wλ be the stabilizer of λ in
the Weyl group W of g and denote by ≤ the Bruhat order on Sλ = W/Wλ .

Recall that the character of Vλ can be combinatorially described by means of
path models (see [18] for details). Denote by Π the set of all piecewise linear paths
in X⊗ZR starting at the origin and ending on an integral weight, and let Π+ be
the subset of paths having their image inside the dominant Weyl chamber. Fix a
path π ∈ Π+ ending in λ . The path model Bπ of Vλ is the set of paths obtained
from π by applying the root operators fα , eα . In particular the path model of
πλ : t 7→ tλ is the set of LS paths of shape λ . Recall now that (Sλ,≤) has a set
of bonds given by fλ(σ, τ) = (σ(λ), β∨) for an adjacent pair σ = sβ(τ) < τ and
that LS paths of degree 1 over (Sλ,≤, fλ) correspond to LS paths of shape λ as
seen in [5].

Now let λ1, λ2 be dominant weights. The posets (Sλ1 ,≤) , (Sλ2 ,≤) can be
lifted to a poset (Sλ1,λ2 ,≤) by declaring Sλ1 3 σ1 < σ2 ∈ Sλ2 whenever there
exist w1, w2 ∈ W such that w1 ≤ w2 in W , ω1 = σ1 mod Wλ1 and ω2 =
σ2 mod Wλ2 (see Section 7). Note that the posets Sλ1,λ2 and Sλ2,λ1 are different.

Now consider the graph G(π) associated to a path π whose set of vertices is
Bπ , with an arrow η −→ η′ coloured by a simple root α if fα(η) = η′ . Recall
(see [18],[19]) that the map πλ1 ∗ πλ2 7→ πλ2 ∗ πλ1 extends to an isomorphism of
graphs φλ1,λ2 : G(πλ1 ∗ πλ2) −→ G(πλ2 ∗ πλ1) . Also note that Bπλ1∗πλ2

is exactly
the set of pairs of LS paths (η, η′) such that max supp η ≤ min supp η′ in Sλ1,λ2

(see Theorem10.1 [19]).

Example 4.1. Let us see a simple instance of this graph isomorphism. Take G
to be the simple group SL3 and let ω1 , ω2 be the two fundamental weights.
Consider the two paths πω1 : t 7→ tω1 and πω2 : t 7→ tω2 . The coloured graph
obtained starting with the path πω1 ∗ πω2 (resp. πω2 ∗ πω1 ) is the one showed in
Figure 1 (resp. Figure 2). The isomorphism can be traced after the corresponding
arrows in the following two graphs.

There is, however, a general pattern here. Suppose that G is of type A . Then
the isomorphism of graphs φωi,ωj , where ωi and ωj are fundamental weights, can
be computed using the jeu de taquin and the tableau representation for paths (see
[17] for generalities on jeu de taquin and in particular [4] for this computation).

Let us see a slightly more complicated example. Let us keep G = SL3 , and
compute the isomorphism φω1,λ , where λ = ω1 + ω2 as above. The graph corre-
sponding to πω1 ∗πλ and to πλ ∗πω1 are showed in Figures 3 and 4 below. To the
best of our knowledge there is no simple combinatorial technique, like tableaux
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and jeu de taquin, to fully understand this computation.

πω1 ∗ πω1−ω2

α1

��

πω1 ∗ πω2
α2oo

α1 // πω2−ω1 ∗ πω2

α2

��
πω2−ω1 ∗ πω1−ω2

α1

��

π−ω2 ∗ πω2

α2

��
πω2−ω1 ∗ πω2

α2 // π−ω2 ∗ π−ω1 π−ω2 ∗ πω1−ω2
α1oo

Figure 1. The graph G(πω1 ∗ πω2)

πω1−ω2 ∗ πω1

α1

��

πω2 ∗ πω1
α2oo

α1 // πω1−ω2 ∗ πω2−ω1

α2

��
π−ω1 ∗ πω1

α1

��

πω1−ω2 ∗ πω2−ω1

α2

��
π−ω1 ∗ πω2−ω1

α2 // π−ω1 ∗ π−ω2 πω1−ω2 ∗ π−ω2
α1oo

Figure 2. The graph G(πω2 ∗ πω1)

Let us return to the general construction. Now we have all we need to de-
fine a multiposet. Let λ1, λ2, . . . , λn be dominant weights. We have the posets
with bonds (Sλi ,≤, fλi) and for i 6= j we can define ≤i,j using the lifting of
(Sλi ,≤) and (Sλj ,≤) to (Sλi,λj ,≤) . We also have the swappings φλi,λj from
Li,j2 = Bπλi∗πλj to Lj,i2 = Bπλj ∗πλi , hence we can define a multiposet with bonds
(Sλi ; fλi ;φλi,λj ) that we denote by S(λ1, . . . , λn) . We note here that a monomial
π1 · · ·πn of LS-paths of shape λ1, . . . , λn is standard (in the sense of definition
in Section 1) if and only if π1 ∗ · · · ∗ πn ∈ G(πλ1 ∗ · · · ∗ πλn) (see again Theorem
10.1 [19]).

Now let R = k be an algebraically closed field and let G be the simply
connected semisimple group corresponding to g and let B ⊂ G be a Borel
subgroup corresponding to the dominant weights X+ . Given an LS path π of
shape λ we can associate with it a section pπ ∈ H0(G/B,Lλ) of the line bun-
dle Lλ = G ×B k−λ (see [20],[16]). Consider now the algebra A(λ1, . . . , λn) =
⊕a∈NnH0(G/B,La1λ1+···+anλn) . We have the following
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πω1 ∗ πλ
α1 //

α2

��

πω2−ω1 ∗ πλ
α1 //

α2

��

πω2−ω1 ∗ πα2

α2

��
πω1 ∗ πα1

α1

��

π−ω2 ∗ πλ
α1 //

α2

��

π−ω2 ∗ πα2

α2

��
πω2−ω1 ∗ πα1

α1

��

π−ω2 ∗ πα1

α1

��

π−ω2 ∗ π− 1
2α2
∗ π 1

2α2

α2

��
πω2−ω1 ∗ π− 1

2α1
∗ π 1

2α1
α2 //

α1

��

π−ω2 ∗ π− 1
2α1
∗ π 1

2α1

α1

��

π−ω2 ∗ π−α2

α1

��
πω2−ω1 ∗ π−α1

α2 // π−ω2 ∗ π−α1
α2 // π−ω2 ∗ π−λ

Figure 3. The graph G(πω1 ∗ πλ) .

πλ ∗ πω1
α1 //

α2

��

πα2 ∗ πω1
α1 //

α2

��

πα2 ∗ πω2−ω1

α2

��
πα1 ∗ πω1

α1

��

π− 1
2α2
∗ π 1

2α2
∗ πω1

α1 //

α2

��

π− 1
2α2
∗ π 1

2α2
∗ πω2−ω1

α2

��
π− 1

2α1
∗ π 1

2α1
∗ πω1

α1

��

π−α2 ∗ πω1

α1

��

π−α2 ∗ πω2−ω1

α2

��
π−α1 ∗ πω1

α2 //

α1

��

π−λ ∗ πω1

α1

��

π−α2 ∗ π−ω2

α1

��
π−α1 ∗ πω2−ω1

α2 // π−λ ∗ πω2−ω1
α2 // π−λ ∗ π−ω2

Figure 4. The graph G(πλ ∗ πω1) .

Proposition 4.1. A(λ1, . . . , λn) is a special LS algebra over the multiposet
S(λ1, . . . , λn) . It admits a flat deformation to the special discrete algebra
A{S(λ1, . . . , λn)} .

Proof. The second statement is a consequence of the first and of Theorem 3.1.
The map π 7→ pπ gives an injection of L1(S(λ1, . . . , λn)) in A(λ1, . . . , λn) . We
claim that with respect to this injection A(λ1, . . . , λn) verifies LS1, LS2 and LS3
for an LS algebra over a multiposet.

Let λ = λ1 + · · ·+ λ1︸ ︷︷ ︸
a1

+ · · · + λn + · · ·+ λn︸ ︷︷ ︸
an

, where a1, . . . , an are non neg-

ative integers. Then the set of standard monomials pπ1 · · · pπa1
· · · pπa1+···+an
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forms a basis of V∗λ ' H0(G/B,Lλ) ([20], Theorem 4). This proves LS1 for
A(λ1, . . . , λn) since any k -linear relation among monomials must be homoge-
neous in A(λ1, . . . , λn) .

We know that the relations for A(λ1, . . . , λn) are generated by the relations of
degree 2 (see [12]). Now, it is clear that if the quadratic relations fulfil LS2 then
any relation fulfils LS2. So we can suppose n = 2 .

Proposition 7.3 of [16] can be generalized verbatim to LS paths of different
shapes. Then the inequality obtained there can be read as our lexicographic re-
quirement in LS2 as in [5]. Moreover, A(λ1, . . . , λn) is special using Corollary 7.4
of [16] for different shapes. �

Now let F = G/P be the flag variety corresponding to the parabolic subgroup
P and let ω1, . . . , ωn be the fundamental weights of G corresponding to P . We
call any intersection of a toric variety with a projective subspace a linear section
of the toric variety. Then we have

Theorem 4.1. The multicone over the flag variety F admits a flat deformation
to a union of linear sections of toric varieties.

Proof. First we note that the S.R. for A(ω1, . . . , ω`) are defining relations for
the multicone over F . Then applying the previous proposition to A(ω1, . . . , ω`)
we obtain a discrete algebra A0 = A{S(ω1, . . . , ω`)} . It is clear that A0 is
the coordinate ring of a union of linear sections of toric varieties, where linear
sections come from the equations `1 · · · `r = 0 for the weak standard, non standard
monomials `1 · · · `r . �

Example 4.2. In the proof of the previous Proposition 4.1 we used [12] to derive
the S.R. for the algebra A(λ1, . . . , λn) from the quadratic S.R. Note that the
property of being generatated by quadratic S.R. is no longer true in the deformed
algebra A{S(λ1, . . . , λn)} if weak-standard is different from standard. Also for
G = SL4 : consider the fundamental weights with indexing ω2, ω3, ω1 ; the tableau
(24, 134, 2) is not standard but it is weak-standard, so there is no way to derive
p24p134p2 = 0 in A{S(ω2, ω3, ω1)} from the set of quadratic S.R.: pi1···ispj1···jt =
0 where (i1 · · · is, j1 · · · jt) is a non standard tableau.

5. The good string case

In most cases we can obtain a more precise version of Theorem 4.1. Suppose
G is a simple Kac-Moody group, let D be the Dynkin diagram of G and let
B ⊂ P = ∩α∈DPPα be a parabolic subgroup, where Pα is the maximal parabolic
subgroup corresponding to a simple root α and DP ⊂ D is some subset. Now fix
an indexing of DP , say DP = {α1, . . . , αn} , and, for h = 1, . . . , n− 1 let Di be
the connected component of D \ αi+1 containing αi .
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Definition 5.1. We say that P has the good string property (g.s.p.) if for some
indexing α1, . . . , αn of DP we have αj 6∈ Di for all 1 ≤ i < j ≤ n .

This definition of good string is equivalent to the one given in [19]. Notice
that Section 1 of [19] can be easily generalized to Kac-Moody algebra using min-
imal representatives instead of maximal representatives for elements of Coxeter
group/parabolic subgroup in Lemma 11.1, Corollary 2 and Lemma 11.3 there.
Therefore we have

Lemma 5.1. [see [19], Lemma 11.3] If P has the g.s.p. then the multiposet
S(ω1, . . . , ωn) is canonical, i.e. all weak standard monomials are standard.

Theorem 5.1. If the parabolic subgroup P has the good-string property then the
multicone over the flag variety F = G/P admits a deformation to a union of
toric varieties. Moreover the multicone over F is Cohen-Macaulay, hence normal,
whenever G is of finite type.

Proof. As in the proof of Theorem 4.1, A(ω1, . . . , ω`) admits a flat deformation to
A{S(ω1, . . . , ω`)} . Since S(ω1, . . . , ω`) is canonical when P has the good string
property, we can improve the result of Theorem 4.1 obtaining that F can be flat
deformed to a union of toric varieties. Further A(ω1, . . . , ω`) is Cohen-Macaulay
if and only if S(ω1, . . . , ω`) is Cohen-Macauly by Theorem 3.2. But S(ω1, . . . , ω`)
is a Bruhat poset and, if we assume that G is of finite type, S(ω1, . . . , ω`) is lexi-
cographically shellable, as we will prove in Section 9, and hence Cohen-Macaulay.
Finally the normality of the multicone follows from non singularity of the flag
variety. �

In order to characterize parabolic subgroups with the g.s.p. we give the follow-
ing simple criterion that covers finite and affine types.

Proposition 5.1. (1) Let G be a simple Kac-Moody group whose Dynkin dia-
gram D has no loop. A parabolic subgroup P = ∩α∈DPPα has the g.s.p. if
and only if there exists a subset P of D containing DP and isomorphic, as
a graph, to a (connected) segment.

(2) Let G be of type A(1)
` . A parabolic subgroup P = Pα1 ∩ · · · ∩ Pαn has the

g.s.p. if and only if n ≤ 2 .

Proof. Let P be a segment containing DP , say P = {α1, . . . , αm} . We choose
the indexing of DP as a subset of P , say DP = {αh1 , . . . , αhn} for some 1 ≤
h1 < · · · < hn ≤ m . We claim that DP has the g.s.p. with respect to this
indexing. Indeed if αhj ∈ Di for some j > i then D must contain two different
segments joining αhi and αhj . But then D should contain a loop. This also
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proves (2). Now suppose that P has the g.s.p. and let DP = {α1, . . . , αn} be
an indexing such that αj 6∈ Di for all 1 ≤ i < j ≤ n . We use induction on n .
If n = 2 then the claim is clear since for every pair of vertices of a connected
graph there exists a segment containing them. So we can suppose n > 2 . Note
that {α1, . . . , αn−1} is an indexing of DP \ αn with the g.s.p. and hence we
can suppose that there exists a segment P ′ containing {α1, . . . , αn−1} . Now let
P ′′ = {β0 = αn−1, β1, . . . , βs = αn} be a segment joining αn−1 and αn . Let
βi ∈ P ′ ∩ P ′′ . If i > 0 then {βi, βi+1, . . . , βs} ⊂ Dn−1 and this is impossible
since DP has the g.s.p. So P ′ ∩ P ′′ = {αn−1} and hence P = P ′ ∪ P ′′ is a
segment containing {α1, . . . , αn} . �

Example 5.1. If G is of type A` , B` , C` , F4 , G2 , A(1)
1 , C(1)

` , G(1)
2 , F(1)

4 ,
A(2)

2 , A(2)
2` , D(2)

`+1 , E(2)
6 , D(3)

4 (see [11]) then any parabolic subgroup has the g.s.p.
In particular, the full flag variety G/B admits a deformation to a union of toric
varieties.

Using the last remark of Section 2 we have a new proof of the following result
(see [12]) in the g.s.p. case:

Proposition 5.2. If λ1, . . . , λn are dominant weights such that the positive lattice
〈λ1, . . . , λn〉N is stabilized by some parabolic subgroups P of G having the g.s.p.
then A(λ1, . . . , λn) is isomorphic to a polynomial ring modulo an ideal generated
by quadratic relations.

6. Coxeter groups and Bruhat order

In the following four sections we turn to pure combinatorial methods of Coxeter
groups. In this section we briefly recall the fundamental properties of Bruhat order
on Coxeter groups and parabolic subgroups. Everything is well-known: proofs and
further details can be found, for example, in [3], [6], [9], [8], [24] and [25].

Definition 6.1. A Coxeter group is a pair (W,S) such that W is a group and
S is a distinguished set of generators of W such that

(1) s2 = e , for all s ∈ S ,
(2) (sisj)(pij) = e , pij ≥ 2 , for all si 6= sj in S such that sisj is of finite

order,
is a presentation of W .

In the sequel (W,S) is a fixed Coxeter group. If w = s1s2 · · · sq ∈W , si ∈ S
is an expression of w in terms of the generators, we call the word s1s2 · · · sq in
the alphabet S an expression for w . The length len(w) of w ∈ W is the least
integer q for which an expression w = s1s2 · · · sq exists. Such an expression



Vol. 76 (2001) Deformation and Cohen-Macaulayness of the multicone 451

w = s1s2 · · · sq of minimal length is called reduced.
One of the main tools for performing computations with reduced expressions

is the following property, called the exchange condition.

Theorem 6.1. Let w = s1 · · · sr with si ∈ S , not necessarily a reduced expres-
sion. Suppose s ∈ S satisfies len(ws) < len(w) . Then there exist an index i for
which ws = s1 · · · ŝi · · · sr (omitting si ). If the expression for w is reduced, then
i is unique.

Now we recall the definition of Bruhat order on a Coxeter group (W,S) . This is
the most useful way to order a Coxeter group compatibly with the length function.
Let T be the set of conjugates of S in W , i.e., T = {wsw−1|w ∈W, s ∈ S} , the
elements of T are usually called reflections.

Definition 6.2. For two elements w,w′ of W write w′ ← w if w′ = wt for
some t ∈ T with len(w′) < len(w) . Then define w′ < w if there is a sequence
w′ = w0 ← w1 ← · · · ← wm = w . The resulting relation w′ ≤ w gives a partial
ordering of W having e as the unique minimal element, and is called the Bruhat
order.

A first remark on this definition. When w′ ← w the length difference is not
specified and it can be more than 1 . However, what is true is that ≤ -adjacent
elements differ in length by exactly 1 . Notice that the definition has a one-sided
appearance, since we have written the t ∈ T on the right in the arrow definition.
But is not hard to show that the left sided version is equivalent to the one given
above. The following important characterization is very useful. Furthermore it
explains the left-right symmetry of the definition.

Lemma 6.1. Let w = s1s2 · · · sq be a fixed reduced expression for w . Then
w′ ≤ w if and only if there exists a reduced expression w′ = si1si2 · · · sik with
1 ≤ i1 < i2 < · · · < ik ≤ q . In other words w′ can be written as a sub expression
of any reduced expression for w .

Let J ⊂ S and let WJ be the subgroup generated by J in W . Subgroups of
the form WJ are called parabolic. This kind of subgroups of W are, in general,
far from being normal. There is however a good way to represent cosets modulo
WJ .

Lemma 6.2. Let J ⊂ S and let WJ be the corresponding parabolic subgroup.
Then the set

WJ = {w ∈W|ws > w for all s ∈ J}

satisfies:
(1) each element w ∈ W can be factored in a unique way as w = uv with
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u ∈WJ and v ∈WJ ,
(2) if w = uv as in (1) then len(w) = len(u) + len(v) ,
(3) each element u ∈WJ is the unique minimal element of the coset uWJ and

in particular is the unique element of minimal length of such coset.

We call WJ the set of minimal representatives of W modulo WJ . In view of
this lemma, it is not surprising that the partial order on WJ ∼= W/WJ induced
by the Bruhat order on W is significant. In what follows, we shall denote the
induced order on WJ also by ≤ .

Notice that a parabolic subgroup WI is itself the Coxeter group (WI, I) . We
have defined the Bruhat order on WI as a restriction of the Bruhat order of W .
We can also consider the Bruhat order of WI as the Coxeter group (WI, I) . We
have

Lemma 6.3. If I ⊂ S , the Bruhat order of the Coxeter group (WI, I) agrees with
the restriction on WI of the Bruhat order of W .

Now we collect some results, to be used in the sequel, whose proofs are standard.

Lemma 6.4. Let u ∈ WJ , v ∈ WJ . If u = s1 · · · sp , v = s′1 · · · s′q are reduced
expressions for u and v then s1 · · · sps′1 · · · s′q is a reduced expression for uv .

Lemma 6.5. Assume that u ∈ WJ , w ∈ W , w > u and len(w) = len(u) + 1 .
Then either w ∈WJ or w = us for some s ∈ J .

Lemma 6.6. Let w ≤ w′ in W and s ∈ S . Then either ws ≤ w′ or else
ws ≤ w′s , or both.

As a final remark notice that if the Coxeter group (W,S) is finite then there
exists a unique longest element w0 in W that is also a unique maximal element
for the Bruhat order on W . Furthermore if W is finite, the parabolic subgroup
WI , I ⊂ S , is finite and hence it admits a longest element w0,I . By Lemma 6.3
we can consider w0,I either as the longest element of the Coxeter group (WI, I)
or as the unique maximal element of WI as subset of W .

We end this section by setting some notation. If w is an element of W ,
then we denote by [w]I the minimal representative of w modulo the parabolic
subgroup WI . Further, we denote by wI

0 the longest element of WI in case W
is finite.

7. Bruhat posets

In this section we introduce the main objects of our interest and we prove some
related properties. Let (I, J) be a pair of subsets of S , and consider the associated
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sets of minimal representatives WI , WJ . These are posets, i.e. partially ordered
sets with respect to the Bruhat order as seen in Section 6. Now consider the
disjoint union W(I,J) = WI tWJ . We want to define an order on the set obtained
by “glueing” the two posets WI , WJ . For details see [13],[14], [15] and [7].

Definition 7.1. Let I1 = I , I2 = J and let τ, σ ∈W(I,J) . Set τ � σ if
(1) τ ∈WIh , σ ∈WIk with h ≤ k and
(2) there exist τ ′, σ′ ∈ W such that τ ′ ≤ σ′ and τ ′ = τ mod WIh , σ′ =

σmod WIk .

The following simple lemma shows that the definition really extends the Bruhat
order on WI and on WJ .

Lemma 7.1. Let τ, σ ∈ WI . There exist τ ′, σ′ ∈ W such that τ ′ ≤ σ′ and
τ ′ = τ mod WI , σ′ = σmod WI if and only if τ ≤ σ .

Proof. Let u, v ∈ WI be such that τ ′ = τu , σ′ = σv . First of all notice that
τ ≤ τu = τ ′ ≤ σ′ by Lemma 6.4 and so we can suppose u = e , i.e. τ ′ = τ . Now
let σ = s1s2 · · · sr and v = s′1s

′
2 · · · s′t be reduced expressions for σ and v . From

τ ≤ σv we have τ = si1si2 · · · sips′j1s′i2 · · · s′jq for some 1 ≤ i1 < i2 < · · · < ip ≤ r ,
1 ≤ j1 < j2 < · · · jq ≤ t . But then τ = si1si2 · · · sip mod WI and since τ ∈ WI

we have τ = si1si2 · · · sip ≤ σ . �

The relation � is a partial order, as seen easily from Lemma 7.1 to show an-
tisymmetry. We call the poset (W(I,J),�) the glueing of WI and WJ . Notice
that, by definition, although W(I,J) and W(J,I) agree as sets, they differ as par-
tially ordered sets. In view of last lemma we will freely write τ � σ or τ ≤ σ if
τ, σ ∈WI or τ, σ ∈WJ . Further, note that using Lemma 7.1 it is easy to prove
that (2) in Definition 7.1 is equivalent to:
(2’) there exist τ , σ ∈ WI1∩I2 such that τ ≤ σ and τ = τ mod WIh , σ =

σmod WIk .
Indeed, clearly (2’)⇒ (2) since WI1∩I2 ⊂ W . Conversely, let τ = [τ ′]I1∩I2 , σ =
[σ′]I1∩I2 . Then τ ≤ σ by Lemma 7.1 and [τ ]I1 = [[τ ]I1∩I2 ]I1 = τ , [σ]I2 =
[[σ′]I1∩I2 ]I2 = σ .

Example 7.1. Let W = S3 , the group of permutations on three letters. It is
a Coxeter group with respect to generators S = {s1 = (1 2), s2 = (2 3)} . Let
I = {s1} , J = {s2} . Then the posets W(I,J) , W(J,I) are the ones depicted in
Figure 5.

Now we want to study some aspects of the adjacency relation in W(I,J) in
the case of a finite W . So we assume through the rest of this paper that
W is a finite Coxeter group unless otherwise specified. The next part of
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Figure 5. The posets WI , WJ , W(I,J) , W(J,I) .

this section is devoted to the proof of a certain “homogeneity” in the adjacency
relation between WI ↪→W(I,J) and WJ ↪→W(I,J) .

Definition 7.2. We write τ / σ if τ ∈ WI , σ ∈ WJ , τ � σ and they are
adjacent, i.e. there does not exist τ ′ ∈WI such that τ � τ ′ � σ and there does
not exist σ′ ∈WJ such that τ � σ′ � σ .

Let us introduce some sets related to the adjacency relation / .

WI
+ = {τ ∈WI | there exists σ ∈WJ, such that τ / σ}

WJ
− = {σ ∈WJ | there exists τ ∈WI, such that τ / σ}

Further, throughout this section w will be the element w = [w0,J]I , i.e. the
minimal representative of w0,J , the longest element of WJ , modulo the parabolic
subgroup WI . We fix once and for all reduced expressions

w0,J = s1s2 · · · sr
w = si1si2 · · · sit

where 1 ≤ i1 < i2 < · · · < it ≤ r . Notice that w ∈WI ∩WJ .

The following lemma is a key result for our purpose.

Lemma 7.2. If σ ∈WJ
− then σw ∈WI .

Proof. Suppose that σw does not belong to WI . Then there exists s ∈ I such
that σws < σw . This yields σ′

.= [σws]J ≤ σ , using Lemma 7.1 and the fact
that w ∈WJ . But we have

σws = [σw]I mod WI,
σws = σ′mod WJ,
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which implies [σw]I � σ′ � σ . Hence σ′ = σ , since σ ∈WJ
− .

Now fix a reduced expression σ = s′1 · · · s′p . Then a reduced expression for
σws can be obtained by omitting a simple reflection in

σw = s′1 · · · s′psi1si2 · · · sit
by the exchange condition in Theorem 6.1. Now we consider the two possi-
ble cases. If σws = s′1 · · · s′psi1 · · · ŝik · · · sit , for some 1 ≤ k ≤ t we deduce
ws = si1 · · · ŝik · · · sit and this is impossible, since w ∈WI , s ∈WI . In the other
case σws = s′1 · · · ŝ′ik · · · s

′
pw , for some 1 ≤ k ≤ p , and since s ∈ WJ , we find

σ = σ′ = [σws]J = [s′1 · · · ŝ′ik · · · s
′
p]

J and this is impossible too as σ ∈WJ . �

The next step is the proof of the following.

Lemma 7.3. If WI 3 τ / σ ∈WJ then τ = σw .

Proof. We know that σw ∈ WI by previous lemma. Let us show that σw � σ .
Indeed let ε

.= σw0,J , then we have

ε = σmod WJ
ε = σwmod WI

and so σw ≤ σ .
Suppose now that τ ′ ∈WI is such that τ ′ ≤ σ . Then there exist τ , σ ∈W

such that
τ = τ ′mod WI,
σ = σmod WJ,
τ ≤ σ in W.

We have σ = σv for some v ∈WJ , hence σv ≤ σw0,J . So τ ≤ σw0,J and using
Lemma 7.1 we find τ ′ ≤ σw . �

Let us denote by ρw : W → W the map given by right multiplication by w ,
i.e. the map W 3 v 7→ vw ∈W . Obviously ρw is a bijection, W being a group.
In the following theorem we see that this map describes the new adjacency relation
in W(I,J) obtained by glueing.

Theorem 7.1. The map ρw : WJ
− → WI

+ is a poset isomorphism. Moreover
WI

+ = (WJw) ∩WI and WJ
− = WJ ∩ (WIw−1) .

Proof. Let σ ∈WJ
− . Then there exists τ ∈WI

+ such that τ / σ , and by theorem
above τ = σw = ρw(σ) . Hence the map ρw is well defined. On the other hand if
τ ∈WI

+ then there exists σ ∈WJ such that τ /σ . Hence σ ∈WJ
− and τ = σw ,

so ρw is surjective. ρw is also clearly injective.
Now let σ1 � σ2 in WJ

− , i.e. σ1 ≤ σ2 . Fix a reduced expression σ2 =
s′1 · · · s′p , then we have σ1 = s′j1 · · · s′jq for some indexes 1 ≤ j1 < j2 < · · · < jq ≤
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p by Lemma 6.1. Then σ2w0,J = s′1 · · · s′ps1 · · · sr and σ1w0,J = s′j1 · · · s′jqs1 · · · sr
are reduced expressions, hence σ1w0,J ≤ σ2w0,J in W . This last inequality shows
σ1w ≤ σ2w in WI using Lemma 7.1, since [σ1w0,J]I = σ1w and [σ2w0,J]I = σ1w .

On the other hand, suppose σ1w � σ2w in WI , i.e. σ1w ≤ σ2w , and choose
reduced expressions σ1 = s′′1 · · · s′′q , σ2 = s′1 · · · s′p . Recall that w ∈ WJ , hence
σ1w = s′′1 · · · s′′qsi1si2 · · · sit and σ2w = s′1 · · · s′psi1si2 · · · sit are reduced expres-
sions. So σ1 = s′′1 · · · s′′q is a subword of s′1 · · · s′p = σ2 .

As for the last statement of the theorem, notice that WI
+ ⊂ WJw ∩WI by

Lemma 7.3. Now let τ ∈ WJw ∩WI , i.e. τ = σw ∈ WI with σ ∈ WJ . We
have τ � σ . Suppose τ ′ ∈WI

+ , σ′ ∈WJ
− are such that τ ≤ τ ′ / σ′ ≤ σ . Then

τ ′ = σ′w and we have τ = σw ≤ σ′w = τ ′ . But σ, σ′ ∈WJ and w ∈WJ , hence
as above, σ ≤ σ′ . So σ′ = σ , τ ′ = τ ∈WI

+ . Now the assertion for WJ
− follows

from the first part of the theorem. �

Now we give a characterization of WI
+ that will be useful in Section 9.

Lemma 7.4. WI
+ is the set of all elements τ of WI which admit a reduced

expression of the form τ = s′1s
′
2 · · · s′psi1si2 · · · sit , for some s′1, . . . , s

′
p ∈ S

Proof. Clearly every element of WI
+ admits such an expression by Theorem 7.1.

Conversely, use induction on p . If p = 0 then τ = w ∈ WI
+ . Suppose p > 0 .

Let τ ′ = s′2 · · · s′psi1si2 · · · sit .
First of all we show τ ′ ∈ WI . Let s ∈ I . From τ ∈ WI we have that τs =

s′1 · · · s′ps is a reduced expression, hence τ ′s = s′2 · · · s′ps is a reduced expression
and so τ ′ = s′2 · · · s′p < s′2 · · · s′ps = τ ′s . This proves τ ′ ∈WI .

Further s′2 · · · s′psi1si2 · · · sit is a reduced expression and so, by induction τ ′ ∈
WI

+ , i.e. σ′ = s′2 · · · s′p ∈ WJ
− . Let σ = s′1 · · · s′p . Notice that this is a reduced

expression, hence σ′ < σ . Now we can use Lemma 6.5 to conclude either σ ∈WJ

or σ = σ′s , for some s ∈ J .
Notice that if σ ∈ WJ then τ = σw ∈ WI

+ by Theorem 7.1, so we can
suppose σ = σ′s , s ∈ J . From this we have [τ ]J = [σ]J = σ′ and hence
WI 3 τ � σ′ ∈WJ . But this is impossible since τ ′ / σ′ and τ ′ < τ < σ′ . �

Our next aim is to prove that the poset obtained by glueing minimal represen-
tatives are graded posets. For this we start with some preliminary lemmas.

Lemma 7.5. Let σ ∈ WJ
− . Then there exists σ′ ∈ WJ

− such that σ′ ≤ σ are
adjacent in WJ .

Proof. Let σ = s′1s
′
2 · · · s′p be a reduced expression for σ and define σ′

.= s′2 · · · s′p .
We want to prove that this σ′ has the desired property.
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As in the proof of the previous lemma we have σ′ ∈ WJ . Now we want
to show σ′ ∈ WJ

− . From σ ∈ WJ
− we have σw ∈ WI . Note that σw =

s′1 · · · s′psi1si2 · · · sit is a reduced expression since σ ∈WJ , w ∈WJ (recall w =
si1si2 · · · sit ). Let s ∈ I . From σw ∈WI we have σws > σw . Note that σws =
s′1 · · · s′psi1si2 · · · sits is a reduced expression. Hence also s′2 · · · s′psi1si2 · · · sits is a
reduced expression and s′2 · · · s′psi1si2 · · · sits > s′2 · · · s′psi1si2 · · · sit . This proves
σ′w ∈WI and so σ′ ∈WJ

− by Theorem 7.1. Now the lemma is clear since σ′ < σ
and they are adjacent in W . �

From Lemma 7.5 we derive that WI
+ and WJ

− contain “enough” saturated chains.

Corollary 7.1. Given σ ∈WJ
− there exists a chain

c : σ = σ0 > σ1 > · · · > σp = e

in WJ
− that is saturated in WJ . Furthermore

c′ .= ρw(c) : σw = σ0w > σ1w > · · · > σpw = w

is a chain in WI
+ saturated in WI .

Proof. The existence of c follows by Lemma 7.5. Clearly c′ is contained in WI
+

and is saturated by construction of c . �

Now we introduce a more general kind of object. Let Ω = (I1, · · · , In) be a
n -tuple of subsets of S . We can glue together the various posets (WIk ,≤) , where
≤ is the Bruhat order, in a unique poset WΩ .= WI1t· · ·tWIn . The construction
is a step by step extension of the case of two subsets I, J seen above:

let τ ∈ WIh , σ ∈ WIk with h ≤ k , then define σ � τ if and only if either
h = k and τ ≤ σ or there exists a chain τ = εh � εh+1 � · · · � εk = σ such that
εi ∈ WIi for i = h, . . . , k and εi � εi+1 in the poset W(Ii,Ii+1) . It is clear that
this is a partial order on WΩ .

Remark 7.1. This definition is not equivalent to the more global following one:
let τ ∈ WIh , σ ∈ WIk with h ≤ k then one defines τ � σ if and only if there
exist τ ′, σ′ ∈ W such that τ ′ ≤ σ′ in W and [τ ′]Ih = τ , [σ′]Ik = σ . Indeed
this is not a partial order: as an example consider W = S4 , I1 = {s1, s3} , I2 =
{s2, s3} , I3 = {s1, s2} and σ = s2s1s3s2 ∈WI1 , τ = s2s1 ∈WI2 , ε = e ∈WI3 .
Then σ ≤ τ ≤ ε for both definitions, whereas σ 6≤ ε for the second one.

We call such a glueing of minimal representatives modulo parabolic subgroups
of some Coxeter group, a Bruhat poset.

We recall that a finite poset (P,≤) is said to be graded if it is bounded –
i.e. it admits a unique maximal element and a unique minimal element – and all
maximal chains in P have the same length, where the length len(c) of a chain
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c is the number of elements in c minus one. This common value for the length
of chains is called the dimension (or the length) of the poset. It is well-known
that the posets (WI,≤) are graded. In general we can now state the following
theorem.

Theorem 7.2. (WΩ,�) is a graded poset.

Proof. For the sake of simplicity we see the proof only for the case Ω = (I, J) , the
general case presenting just a more confusing notation but no real difficulty.

Clearly e ∈ WI ⊂ W(I,J) is the unique minimal element of W(I,J) and wJ
0 ∈

WJ ⊂W(I,J) is the unique maximal element.
Take a maximal chain c from wJ

0 to e . Then there exist τ ∈WI
+ , σ ∈WJ

−
in c with τ / σ . Break c up in two subchains: c1 from τ to e and c2 from
wJ

0 to σ . By Corollary 7.1 there exists a chain from σ to e ∈WJ contained in
WJ
− and saturated in WJ , say c′2 . Moreover c′1

.= ρw(c′2) is a chain from τ to
w in WI

+ and saturated in WI . Finally choose saturated chains c′′1 from w to
e in WI and c′′2 from wJ

0 to e in WJ (see Figure 6). Then we have

ρw

C1 C1
’

C1
’’

C2

’C2

C’’
2

w
0
J

C

e

e

w

τ

σ

Figure 6. The various chains of the proof.

len(c) = len(c1) + 1 + len(c2)
= len(c′′1 ) + len(c′1) + 1 + len(c′′2 )− len(c′2)
= len(c′′1 ) + 1 + len(c′′2 )

where we have used len(c′1) = len(c′2) by construction, len(c1) = len(c′1)+len(c′′1 )
since WI is graded and len(c′′2 ) = len(c′2) + len(c2) since WJ is graded.
Hence the length of c is independent of c . �
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Given τ, σ ∈ WΩ , we denote by [τ, σ] the closed interval [τ, σ] = {ε ∈
WΩ | τ � ε � σ} in WΩ . This is a poset with order � induced from WΩ .
It is clear that

Corollary 7.2. Let τ, σ ∈WΩ . Then [τ, σ] is a graded poset.

8. Lexicographic shellable posets

In this section we introduce the notion of lexicographic shellability for a poset.
Definitions are taken from [1].

Let (P,≤) be a finite graded poset with unique maximal element 1 ∈ P and
unique minimal element 0 ∈ P of dimension r . Denote by C(P) the set of
maximal chains

c : 1 = x0 > x1 > · · · > xr = 0

from 1 to 0 in P . We say that a map

λ : C(P) → Nr
c 7→ λ(c) = (λ1(c), . . . , λr(c))

is a labeling of maximal chains of P . We think of the integer λi(c) as being
associated with the edge (adjacency relation) xi−1 > xi in c : we are labeling c
edgewise from top to bottom with integers.

Example 8.1. Figure 7 shows a simple example of a labeling for the two maximal
chains in the poset W(I,J) , where W = S3 , S = {s1, s2} , I = {s1} and J = {s2} .

2

3

4

1

4

1

2

3

Figure 7. A labeling of W(I,J) as in Example 8.1.

Our first requirement for a labeling is the following.

Definition 8.1. (L1) If two maximal chains c , c′ in P coincide along their
first d edges, 1 ≤ d ≤ r , then λi(c) = λi(c′) for i = 1, 2, . . . , d .
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By a rooted interval ([x, y], c) we mean a pair where [x, y] is an interval
in P and c : 1 = x0 > · · · > xp = y is a saturated chain from 1 to y
in P . Notice that if λ is a labeling satisfying (L1) and ([x, y], c) is a rooted
interval, then all maximal chains of [x, y] receive an induced labeling as fol-
lows. Let d : y = z0 > z1 > · · · > zh = x be a maximal chain in [x, y] ,
choose an arbitrary saturated chain e from x to 0 and consider the maxi-
mal chain c′ .= c ∗ d ∗ e ∈ C(P) , where ∗ means composition of chains. Let
λ(c′) = (λ1(c′), . . . , λr(c′)) and define λ′(d) = (λp+1(c′), λp+2(c′), . . . , λp+h(c′)) .
By abuse of notation we denote this by λ(d) dropping the “prime”. Notice that
the induced labeling still satisfies (L1).

Now we focus on labelings that verify the following property.

Definition 8.2. Let λ : C → Nr be a labeling of the maximal chains of P which
obeys (L1). Then we say that λ is an L-labeling, and that (P,≤) is lexicograph-
ically shellable, if λ verifies
(L2): For every rooted interval ([x, y], c) in P there is a unique maximal chain
d0 in [x, y] whose label is increasing: λ1(d0) < λ2(d0) < · · · < λh(d0) . Furter
if d is any other maximal chain in [x, y] then λ(d0) <lex λ(d) , where <lex is
the lexicographic order on Nr .

The importance of this definition comes from the following theorem (see [23],
[1] and [2]).

Theorem 8.1. If (P,≤) is lexicographically shellable then ∆P , the complex of
chains of (P,≤) , is shellable and thus Cohen-Macaulay.

9. Lexicographic labeling

Now we describe a labeling of maximal chains in a closed interval of a Bruhat
poset. This labeling turns out to be an L-labeling. The procedure described below
is a generalization of the one provided by Björner and Wachs in [2] for minimal
representatives modulo a parabolic subgroup. Indeed our labeling reduces to theirs
in the case of a single parabolic subgroup.

Fix a finite Coxeter group (W,S) , subsets I1, . . . , In of S and consider the
Bruhat poset WΩ for Ω = (I1, . . . , In) as defined above. Let [τ, σ] be a closed
interval in WΩ . First of all notice that no generality is lost if we suppose τ ∈
I1 , σ ∈ In . Now let w2 = [w0,I2 ]I1 , . . . , wn = [w0,In ]In−1 where w0,Ih is the
longest element of the parabolic subgroup WIh , h = 1, . . . , n . Choose reduced



Vol. 76 (2001) Deformation and Cohen-Macaulayness of the multicone 461

expressions
σ = s1 · · · sr1

wn = sr1+2 · · · sr2
...

w2 = srn−1+2 · · · srn
Now take a maximal chain in [τ, σ]

c : σ = x0 > x1 > · · · > xt1 . xt1+1 > · · · > xt2 . xt2+1 > · · · > xt = τ

where we have stressed the / -adjacency relations, i.e. we are supposing

x0, . . . , xt1−1 ∈ WIn ,

xt1 ∈ WIn
− ⊂WIn ,

xt1+1 ∈ WIn−1
+ ⊂WIn−1 ,

xt1+2, . . . , xt2−1 ∈ WIn−1 ,

xt2 ∈ WIn−1
− ⊂WIn−1

and so on. Consider the word α = s1 · · · sr1�sr1+2 · · · sr2� · · ·�srn−1+2 · · · srn
in the alphabet S ∪ {�} , where � is a new symbol. Now, using the exchange
condition, we know that there exists a uniquely determined i1 such that x1 =
s1 · · · ŝi1 · · · sr1 . Repeating this we find uniquely determined indices i1, . . . , it1
such that

xt1 = sj1sj2 · · · sjr1−t1
where {j1 < · · · < jr1−t1} = {1, . . . , r1}\{i1, . . . , it1} . So far, we have defined the
integers i1, . . . , it1 that correspond both to the generators removed from s1 · · · sr1
and to the positions deleted in the word α .

Now we use Theorem 7.1 to deduce xt1+1 = xt1wn . We set it1+1 = r1 + 1 ,
corresponding to deleting the box in position r1 + 1 in the word α , and we start
the same process with the reduced expression

xt1+1 = sj1 · · · sjr1−t1 sr1+2 · · · sr2 .

So we can go on till xt2−1 . Then again we set it2+1 = r2 + 1 deleting the box
in position r2 + 1 . . . . Finally we reach τ having obtained the label λ(c) =
(i1, . . . , it) .

In short we keep track of removed generators in α , considering the boxes as
generators when we move from the poset WIh to the poset WIh−1 , h = n, . . . , 2 .

Let us see an example of this process.

Example 9.1. Let WΩ = W(I,J) be as in the previous examples and consider the
whole WΩ = [e, w0,J] . Start with the word α = s2s1�s2 . Now take the maximal
chain

c1 : s2s1 > s1 > e . s2 > e.
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Then the label is λ(c1) = (1, 2, 3, 4) and the deletion process produces the follow-
ing subwords and corresponding elements of W(I,J)

s2 s1 � s2 7→ s2s1 ∈WJ,
s1 � s2 7→ s1 ∈WJ,
� s2 7→ e ∈WJ,

s2 7→ s2 ∈WI,
∅ 7→ e ∈WI.

Now take the other maximal chain

c2 : s2s1 > s1 . s1s2 > s2 > e.

Then the label is λ(c2) = (1, 3, 2, 4) and corresponds to

s2 s1 � s2 7→ s2s1 ∈WJ,
s1 � s2 7→ s1 ∈WJ,
s1 s2 7→ s1s2 ∈WI,

s2 7→ s2 ∈WI,
∅ 7→ e ∈WI.

Notice that our labeling assigns a unique label to an edge WIh 3 α/β ∈WIh−1 :
the position of the (n− h+ 1) -th boxes in α , that does not depend on the chain
considered. It follows that, in the minuscule case (see [22] for definition), the
Bruhat posets are still lattices and they are shellable with respect to some edge-
labeling, i.e. a labeling of maximal chains induced by a labeling of the edges.

Now we state the main result of this second half of the paper. Its proof is
almost an adaptation of the proof of Theorem 4.2 in [2] but care must be taken
when, following a maximal chain, we move from WIh to WIh−1 , h = n, . . . , 2 .

Theorem 9.1. Let (W,S) be a Coxeter group, I1, . . . , In be subsets of S and
let Ω = (I1, . . . , In) . Then any closed interval [τ, σ] ⊂ WΩ is lexicographically
shellable.

Proof. We show that the labeling described above is an L-labeling; so our previous
notations will be in force throughout the proof.

(L1) is easily verified since at each step the element we remove from α is
uniquely determined.

It suffices to verify (L2) only for the entire interval [τ, σ] . Indeed let ([u, v], σ =
y0 > y1 > · · · > yr = v) be a rooted interval in [τ, σ] and suppose u ∈ WIh ,
v ∈WIk , h ≤ k . Following y0 > y1 > · · · > yr we produce a uniquely determined
reduced expression v = s′1s

′
2 · · · s′p . The labeling of [u, v] as a rooted interval

of [τ, σ] is then equivalent to the labeling of [u, v] directly obtained starting
with the reduced expression v = s′1s

′
2 · · · s′p , i.e. considering the word α′ =

s′1s
′
2 · · · s′p�srn+1−h+2 · · · srn+2−h�srn+2−h+2 · · · .
Now we prove that at most one maximal chain in [τ, σ] has increasing label.

Use induction on t = length of the maximal chains of [τ, σ] . If t = 1 our claim
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is clear. If Ω = (I1) , i.e. n = 1 , then our labeling reduces to the one in [2] and
hence, being an L-labeling, it verifies (L2). So suppose t > 1 , n > 1 and let

c : σ = x0 > x1 > · · · > xt1 . xt1+1 > · · · > xt2 . xt2+1 > · · · > xt = τ
c′ : σ = x′0 > x′1 > · · · > x′t′1

. x′t′1+1 > · · · > x′t′2
. x′t′2+1 > · · · > x′t = τ

be two maximal chains with increasing labels, say λ(c) = (i1, . . . , it) , λ(c′) =
(j1, . . . , jt) . By construction of the labeling this means

τ = s1 · · · ŝi1 · · · ŝi2 · · · ŝit · · · srn
τ = s1 · · · ŝj1 · · · ŝj2 · · · ŝjt · · · srn

We want to show it = jt . Suppose jt > it . From τ ∈ WI1 ↪→ WΩ we have
jt > it ≥ rn−1 + 1 = the position of the last box in α . Consider now u =
srnsrn−1 · · · sjt+1sjtsjt+1 · · · srn−1srn ∈ T , then

x′t−1 = x′tu = s1 · · · ŝi1 · · · ŝi2 · · · ŝit · · · ŝjt · · · srn
and so len(x′t−1) ≤ len(x′t) − 1 . But this is impossible since x′t−1 > x′t . Hence
jt ≤ it and, by symmetry, it = jt . So x′t−1 = xt−1 and we can use induction on
[xt−1, σ] to derive c = c′ .

Now let

c0 : σ = x0 > x1 > · · · > xt1 . xt1+1 > · · · > xt = τ

be the chain such that λ(c0) = (λ1, . . . , λt) is minimum in the lexicographic order.
We claim that λ(c0) is increasing. Suppose otherwise and let 1 ≤ i ≤ t − 1 be
the least integer such that λi > λi+1 .
Notice that if xi+1, xi−1 are contained in WIh ↪→WΩ for some h then, reducing
to the case WΩ = (Ih) we can use the result of Björner and Wachs to obtain a
contradiction.

Suppose xi+1 ∈ WIh−1 , xi−1 ∈ WIh for some h . No generality is lost if we
suppose h = n , indeed if h < n we can consider the interval [σ, τ ] where τ
is maximal such that τ ∈ c ∩WIh . Now if xi ∈ WIn then xi+1 / xi , hence
λi+1 = r1 + 1 > λi . A contradiction with the assumption that λi > λi+1 . So
xi ∈WIn−1 and xi−1 . xi , λi = r1 + 1 .

Notice that λj < r1 + 1 for any j < i , hence we have the following reduced
expressions:

xi−1 = s1 · · · ŝλ1 · · · ŝλ2 · · · ŝλi−1 · · · sr1 ∈ WIn
−

xi = s1 · · · ŝλ1 · · · ŝλ2 · · · ŝλi−1 · · · sr1sr1+2 · · · sr2 ∈ WIn−1
+

xi+1 = s1 · · · ŝµ1 · · · ŝµ2 · · · ŝµi · · · sr1sr1+2 · · · sr2 ∈ WIn−1

where {µ1 < µ2 < · · · < µi} = {λ1, λ2, . . . , λi−1, λi+1} . Note that µi ≤ ri
since λi+1 < λi = r1 + 1 . Then by Lemma 7.4 we have xi+1 ∈ WIn−1

+ and so
xi+1 = xiwn where

xi = s1 · · · ŝµ1 · · · ŝµ2 · · · ŝµi · · · sr1 ∈WIn
− .
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This suffices to costruct the chain (see Figure 8)

c1 : σ = x0 > · · · > xi−1 > xi . xi+1 > · · · > xt = σ

with label λ(c1) = (λ1, . . . , λi−1, λi+1, r1 + 1 = λi, λi+2, . . . , λt) that is lexico-
graphically strictly less than λ(c0) . This contradicts the choice of c0 , so λ(c0)
must be increasing.

xi+1

xi-1

ix x
i

λi+1

λi+1r+1
1

r+1
1

σ

τ
Figure 8. The chains in the proof of Theorem 9.1.

We must still check the case xi−1 ∈ WIh+1 , xi ∈ WIh , xi+1 ∈ WIh−1 . But
this is ruled out by our assumption that λi > λi+1 as in this case we have
λi = rn−h < rn−h+1 = λi+1 �
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