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c© 2001 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

On triangular billiards

Jan-Christoph Puchta

Abstract. We prove a conjecture of Kenyon and Smillie concerning the nonexistence of acute
rational-angled triangles with the lattice property.
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In a recent paper[4] on Billiards on rational-angled triangles, R. Kenyon and
J. Smillie proved the following theorem:

Theorem 1. Let T be an acute non-isosceles rational angled triangle with angles
α , β and γ , which can be written as p1π/q , p2π/q and p3π/q with q ≤ 10000 .
Then T is a polygon with the lattice property if and only if (α, β, γ) is one of the
following:

(π/4, π/3, 5π/12), (π/5, π/3, 7π/15), (2π/9, π/3, 4π/9).

They further showed, that the restricition on q may be dropped, if the following
conjecture was true(see [4], p. 94f):

Conjecture 2. Let n, s, t be integers with (n, s) = 1 , 1 ≤ s, t < n . Assume that
for all p with (p, n) = 1 we have n

2 < ps mod n + pt mod n < 3n
2 . Then one of

the following conditions hold true: n ≤ 78 , s + t = n , s + 2t = n , 2s + t = n ,
or n is even, and |t− s| = n

2 .

In this note we will prove this conjecture:

Theorem 3. Conjecture 2 is true.

Note that the classification of non-obtuse rational angled triangles with the
lattice-property is complete, since the cases of isosceles and right angled triangles
are completely solved in [4], too.

By direct calculation, R. Kenyon and J. Smillie showed, that Theorem 3 is true
for n ≤ 10000 . We will use this fact at several steps in the proof.
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The proof will depend on several facts concerning the distribution of relative
prime residue classes, collected in the next Lemma. We write g(n) for the Jacob-
sthal function, given by the maximal difference of consecutive integers relatively
prime to n , and ω(n) for the number of distinct prime factors of n .

Lemma 4.

1. We have g(n) ≤ 2ω(n) . If ω(n) ≤ 12 , we have g(n) ≤ ω(n)2 .
2. Assume that (a, d, n) = 1 . Then in every interval [x, x + g(n)] there is some

integer ν , such that (n, dν + a) = 1 .
3. For all d > 2 there exists some a with (d, a) = 1 and d

12 < a < 5d
12 .

4. If m is the product of the first ω(n) prime numbers, then g(n) ≤ g(m) .
5. We have g(30) = 6 , g(210) = 10 , g(2310) = 14 , g(30030) = 22 , g(510510)

= 26 , g(9699690) = 34 .

Proof: The first statement was proven by Kanold[3]. To prove the second
statement note first that it is trivial if (d, n) = 1 , for if dd′ ≡ 1 (mod n) , then
the integers dd′ν + d′a are consecutive (mod n) , and none is coprime to n ,
contradicting the definition of g . Now without loss we may assume that n is
squarefree. If (d, n) = e > 1 , the integers dν + a are coprime to n if and only
if they are coprime to n/e , thus using the case (n, d) = 1 we get that there is
some ν ∈ [x, x + g(n/e)] such that (dν + a, n) = 1 . The third statement follows
for d > 30 from the first one, for 3 ≤ d ≤ 30 by direct inspection. The fourth
statement was proven by Iwaniec[1]. The fifth statement can be checked by direct
computation.

Note that the fourth and fifth statement together greatly improve the first one
for ω(n) ≤ 8 .

Note further that the asymptotic behaviour of g is much better understood,
using e.g. the result of Iwaniec[2], it is easy to show that there are at most finitely
many exceptions to conjecture 2. The difficult part of the proof of Theorem 3 is to
give an upper bound for n and find properties on the would-be-counterexample
which makes it feasible to rule out these finitely many values.

To prove our Theorem, we first note that we may choose s = 1 , since otherwise
we replace p by p′ ≡ ps−1 (mod n) . Then we have n

2 + 1 < t < n − 2 . In the
first step we exclude odd values of n .

Assume that n is an odd counterexample to Theorem 3. Define the integer
k by the relation 1 − 1

2k < t
n < 1 − 1

2k+1 , and a := t − (1 − 2−k)n . Since n is
odd, 2k is relatively prime to n , hence we get 2k +2kt mod n > n

2 . But we have
2kt = (2k − 1)n + 2ka , hence 2k(a + 1) > n

2 , i.e. a > n
2k+1 − 1 . By the definition

of k , we have a < n
2k+1 , thus t =

[
n

(
1− 1

2k+1

)]
. Write t = n

(
1− 1

2k+1

)− α .
Next we give an upper bound for 2k . Write t = n − b . The cases b = 1

and b = 2 are excluded, since we would have s + t = n resp. 2s + t = n . If
p ∈

[
n

2(b−1) ,
n
b

]
, we have pt mod n+p < n

2 , thus if there is some p in this interval
relatively prime to n , we are done. Thus we have

n

b
− n

2(b− 1)
< g(n)
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The left hand side is decreasing with b , thus if b <
√

n the left hand side is at
least n(

√
n−2)√

n(
√

n−1)
, and for n > 10000 this is >

√
n

3 . Hence we obtain the bound√
n < 3g(n) . By Lemma 4 this implies ω(n) ≤ 4 , thus g(n) ≤ 10 and n < 300 .

Thus we may suppose b >
√

n .
Let q < 2k+1 be an odd prime, and define the integer l by the relation 2l <

q < 2l+1 . Assume that q 6 |n . Then (q2k−l, n) = 1 , thus we get q2k−lt mod n +
q2k−l > n

2 . Using the relation t = n
(
1− 1

2k+1

)−α with 0 < α < 1 , this becomes

q2k−lt mod n + q2k−l >
n

2
n− qn

2l+1
− q2k−lα + q2k−l >

n

2
n

2
− qn

2l+1
+ q2k−l > 0

Since q ≥ 2l + 1 , this implies

0 < − n

2l+1
+ q2k−l ≤ − n

2l+1
+ 2k+1 ≤ − n

2l+1
+
√

n

hence 2l+1 ≥ √
n . Thus n is divisible by all odd primes ≤ √

n . Using the
elementary bound θ(n) > n/2 , where θ(x) =

∑
p≤x log p , this implies 2n >

e
√

n/2 , which in turn implies n < 121 . However, Theorem 3 is true for all n <
10000 , thus we conclude that it is true for all odd n .

Thus assume that (n, t) is a counterexample to Theorem 3 with n even.
We show that t cannot be too close to n/2 or to n . The proofs for these two

cases run parallel, and we will only give the first one. Set t = n
2 + b . Let p be

any integer relatively prime to n , in particular, p is odd. Then we have

pt =
pn

2
+ bp ≡ −n

2
+ bp (mod n)

thus if n is a counterexample to our Theorem, we conclude that bp 6∈ [n/2, 3n/2−
p] , i.e. p 6∈ [

n
2b ,

3n
2b − p

b

]
. The case b = 1 is excluded, thus the upper bound of this

interval is ≥ n
b , thus in particular we have p 6∈ [

n
2b ,

n
b

]
. But the only conditions

imposed on p were that p is odd and coprime to n . Since all even integers are
not coprime to n , we get that the interval

[
n
2b ,

n
b

]
contains no integer relatively

prime to n . Hence g(n) > n
2b , thus b > n

2g(n) , i.e. t > n/2 + n
2g(n) . In the same

way we have t < n− n
2g(n) .

Set w = (t, n) . As p runs over all integers relatively prime to n , pt runs over
all integers with (pt, n) = w , and pt mod n has period n/w . Hence there is some
p < n/w , relatively prime to n with pt ≡ w (mod n) . But then pt mod n + p ≤
w + n/w , and this is ≤ n/2 , unless w = 1, 2, n/2 or n . The last two cases are
trivially excluded. Thus we are left with the cases w = 1, 2 . Now t

n is a rational
number with denominator >

√
n , thus applying Dirichlet’s Theorem we find an

integer d ≤ √
n and some e ≤ d , such that

∣∣dt
n − e

∣∣ < 1√
n

.
Assume that d = 1 . Then

∣∣ t
n − e

∣∣ < 1√
n

, and because n/2 < t < n , we
conclude t > n − √

n . Together with the bound proved above we obtain the
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inequality
√

n > n
2g(n) , i.e. 2g(n) >

√
n . Using the first statement of Lemma 4,

this yields ω(n) ≤ 4 , thus n < 1156 , but for n < 10000 the Theorem is already
proven. In the same way we exclude the case d = 2 . Now assume d > 2 . Then by
Lemma 4, statement 3, we find some a relatively prime to d with d

12 < a < 5d
12 .

Let p be an integer relatively prime to n which also satisfies p ≡ ae−1 (mod d) .
Note that the right hand side exists, since (e, d) = 1 . Write p = kd + a′ . Then
we have

pt =
pen

d
+ θ

p
√

n

d
= ken +

a′en
d

+ θ
p
√

n

d
≡ an

d
+ θ

p
√

n

d
(mod n)

where θ is some real number of absolute value < 1 . But pt mod n is > n
2 − p ,

thus either the right hand side is > n
2 − p , which yields

an

d
+

p
√

n

d
>

n

2
− p

or the right hand side is negative, which yields

an

d
− p

√
n

d
< 0

From now on, we will only consider the first inequality, because the second one
can be dealt with similarly, but gives a little stronger bounds. By the choice
of a we have a/d ≤ 5/12 , thus we get p(

√
n

d + 1) > n/12 . By Lemma 4,
statement 2, p can be chosen to be ≤ d(g(n)+1) . Thus we obtain the inequality
(
√

n+d)(g(n)+1) > n/12 . Since d ≤ √
n , we finally conclude g(n) >

√
n/24−1 .

The bound g(n) < 2ω(n) shows that this is only possible for ω(n) ≤ 9 . Now
the improved bound g(n) ≤ ω(n)2 lowers the bound to 7, and we can use the
fifth statement from Lemma 4 to conclude n < (24 · 27)2 , thus ω(n) ≤ 6 and
n < (24 · 23)2 = 304704 .

Assume that p is some prime number, such that the least positive residue of
ep (mod d) is in the interval [d/12, 5d/12] . Then by the argument above, we
get p(

√
n

d + 1) > n/12 or p|n . Hence all primes p which satisfy this congruence
condition, have to divide n . By the bounds given above, it suffices to find 7 such
primes to exclude the pair (n, d) .

To finish the proof of Theorem 3, note first that d ≤ √
304704 = 552 . Choose

some d , and compute pmax = 10000
100/d+1 . Count the number of residue classes a

relatively prime to d , with d/12 < a < 5d/12 , and call this number N .Count the
prime numbers up to pmax in all reduced residue classes (mod d) , and choose
those N sequences with the least number of primes in it. If n is a counterexample
to Theorem 3, and d is corresponding in the sense described above, then n is
divisible by all these prime numbers, in particular there are at most 6 such primes.

Doing this for all d ≤ 552 , we found no d such that there could correspond
some n giving a counterexample to Theorem 3.

All computations were performed on a Silicon Graphics Indy workstation using
Mathematica 3.0.
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