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1. Introduction

The Lie algebra E6 may be defined as the algebra of endomorphisms of a 27 -
dimensional complex vector space MC which annihilate a particular cubic poly-
nomial. This raises a natural question: what is this polynomial? If we choose a
basis for MC consisting of weight vectors {Xw} (for some Cartan subalgebra of
E6 ), then any invariant cubic polynomial must be a linear combination of mono-
mials XwXw′Xw′′ where w + w′ + w′′ = 0 . The problem is then to determine
the coefficients of these monomials.

Of course, the problem is not yet well-posed, since we still have a great deal
of freedom to scale the basis vectors Xw . If we work over the integers instead of
the complex numbers, then much of this freedom disappears. The Z -module M
then decomposes as a direct sum of 27 weight spaces which are free Z -modules
of rank 1 . The generators of these weight spaces are well-defined up to a sign.
Using a basis for M consisting of such generators, a little bit of thought shows
that the invariant cubic polynomial may be written as a sum

∑
w+w′+w′′=0

εw,w′,w′′XwXw′Xw′′

where εw,w′,w′′ = ±1 . The problem is now reduced to the determination of the
signs εw,w′,w′′ . However, this problem is again ill-posed, since the Xw are only
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well-defined up to a sign.
This problem is resolved by examining more carefully what we mean by work-

ing “over Z ”. First, let us consider the problem of constructing the (split) Lie
algebra of E6 over Z . We know that this algebra should be a direct sum of the
corresponding cocharacter lattice of rank 6 and 72 “root spaces” which are free
Z -modules of rank 1 . Since there is no canonical choice of generator for these
root spaces, one again encounters sign ambiguities which makes it difficult to give
a direct definition of the Lie bracket. The set Γ of roots has a two-fold cover Γ̃
consisting of all possible generators for root spaces. Moreover, this covering has
a natural partially defined “multiplication” which arises from the Lie bracket. It
turns out that this two-fold covering and its “multiplication” have a particularly
transparent structure which is best understood by considering a two-fold covering
Λ̃ of the entire root lattice Λ . This leads to a known (see [6]) construction of
E6 , and every other simply-laced Lie algebra, over the integers.

The same ideas likewise may be applied to give a construction of all minuscule
representations of simply laced algebras (again over Z ). We will describe this
construction, together with a formalism which allows one to characterize multilin-
ear maps between such representations. In particular, our formalism will apply to
the cubic form on the representation M of E6 , and enable us to determine the
signs εw,w′,w′′ .

Let us now summarize the contents of this paper. In §2 we will summarize
the background material on which we draw. Much of this material (root systems,
quadratic forms over F2 , del Pezzo surfaces) is standard, while some (such as the
connection between unitary structures and 〈±1〉 -extensions) is more obscure.

In §3 our work begins. First we show how to construct a Lie algebra, given
the data of a double cover of its root lattice. We then develop a formalism which
enables us to build its minuscule representations in an analogous way. Using this
formalism, we will also be able to construct a number of natural multilinear maps
between minuscule representations.

In §4 , we apply our formalism to study an extension W̃ of the Weyl group W
of a (simply-laced) semisimple Lie algebra. Using this group, we will then show
that the invariant multilinear maps constructed in §4 are the only ones which
exist.

Finally, in §5 and §6 , we specialize to the cases of E6 and E7 . In these
cases our formalism leads to explicit descriptions of the minuscule representations
of these algebras, and of the invariant forms they carry.

Notation and Terminology

If M is a free module over a commutative ring R (for example a vector space over
a field), we denote the dual module by M∨ . If x1, . . . , xn is a basis for M , then
we let x∗1, . . . , x

∗
n denote the dual basis for M∨ . We will denote the symmetric
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and exterior powers of M by Sn(M) and ∧nM , respectively. These we regard
as quotients of the n -fold tensor power of M . If S is an R -algebra, we let MS

denote M⊗R S (we will use this convention only in the case R = Z , so S can be
an arbitrary ring).

A bilinear form f(x, y) defined on a group M is said to be alternating if
f(x, x) = 0 for all x . Note that this implies f(x, y) = −f(y, x) , but the converse
fails in general when 2 is not invertible.

The symmetric group Sn acts on M⊗n . Correspondingly we get a norm (or
symmetrization) map M⊗n → M⊗n , given by the formula

m1 ⊗ . . .⊗mn 7→
∑

σ∈Sn

mσ(1) ⊗ . . .⊗mσ(n)

This map induces a map from coinvariants to invariants; that is, a map φ :
Sn(M) → (M⊗n)Sn . The image of an element of Sn(M) under this map is
called its polarization; it is a symmetric tensor. One also has a natural map
ψ : (M⊗n)Sn → Sn(M) in the other direction, given by restricting the projection.
The composites φ ◦ ψ and ψ ◦ φ are both simply multiplication by n! = |Sn| .
If n! is invertible in R , then φ and ψ are both isomorphisms, which permits
us to identify Sn(M) with the collection of symmetric tensors. Working over the
integers (as we shall throughout this paper), one must be careful at the primes
dividing n! .

We let 〈±1〉 denote the two-element group of units of the ring Z . In what
follows we will frequently be concerned with extensions of groups (or sets) by
〈±1〉 . We follow the following general convention: if G is some object (such as a
group), then G̃ will generally denote a 〈±1〉 -extension of G . The extension will
be specified in context. Elements of G̃ will be denoted by g̃ , and the image of g̃
in G will be denoted g .

If q is a prime power, we denote by Fq a finite field with q elements. If
K ⊆ L is a finite extension of fields and x ∈ L , we let Tr(x) ∈ K denote the
trace of x . If S is a finite set, we let |S| denote the cardinality of S .

If L is a Lie algebra acting on a module M , we write ML = {m ∈ M : Lm =
0} . Elements of ML are said to be invariants under L .

In what follows, we will discuss the Lie algebras of simply-laced, simply con-
nected, semisimple groups which are split over Z . The restriction to simply-laced
groups is essential to what follows. However, our discussion could easily be mod-
ified so as to apply to groups over an arbitrary ground scheme which are not
necessarily simply connected; their Lie algebras contain the Lie algebras of the
simply-connected analogues with finite index. To simplify our exposition, we will
leave these modifications to the reader.
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2. Background

2.1. Quadratic Forms

In this section we briefly review some basic facts on quadratic forms. For details,
we refer the reader to [2], Chapter 6.3 . Let R be a commutative ring. A quadratic
space over R is a projective R -module M of (finite) constant rank, equipped with
a function q : M → R which possesses the following properties:

• q(λm) = λ2q(m) .
• The function 〈x, y〉 = q(x + y)− q(x)− q(y) is R -linear in each variable. It is

called the bilinear form associated to q .

Such a function q is said to be a quadratic form on M .
By definition, 〈x, x〉 = q(2x) − 2q(x) = 2q(x) . If 2 is not a zero-divisor in

R , then q is determined by 〈x, x〉 : there is a one-to-one correspondence between
quadratic forms q on M and symmetric bilinear forms 〈, 〉 having the property
that 〈x, x〉 is always divisible by 2 . (For this reason, a quadratic space over Z
is also called an even lattice.) Thus, if 2 is invertible in R , quadratic forms and
symmetric bilinear forms are essentially the same thing. At the other extreme,
note that 〈x, x〉 = 0 if 2 = 0 in R , so 〈, 〉 is an alternating bilinear form.

If 〈, 〉 induces an isomorphism of M onto its dual, we say q is nondegenerate.
If 2 is not invertible in R , this is impossible unless M has even rank (as one sees
by base change to a field of characteristic 2 ).

If M has even rank and q is nondegenerate on M , then we may associate to
(M, q) a cohomology class in H1

ét(Spec R,Z/2Z) , called the discriminant of q .
This cohomology class classifies the center of the even part of the Clifford algebra
associated to (M, q) , which is a finite étale R -algebra of rank 2 . The discriminant
is additive (relative to the obvious notion of “direct sum” for quadratic spaces).

Example 2.1.1. Suppose (M, q) is a quadratic space, with M a free R -module
of rank 2n . If x1, . . . , x2n is a basis for M , then

A = (〈xi, xj〉)
is an R -valued matrix; its determinant D is called the determinant of (M, q) and
is well-defined up to the square of a unit in R . Note that D is invertible in R if
and only if q is nondegenerate.

Assume now that R is local, (M, q) is nondegenerate, and 2 is a unit in R .
An easy argument shows that we may choose x1, . . . , x2n so that the matrix A
is diagonal. On the other hand, consider the product X = x1x2 . . . x2n in the
Clifford algebra of (M, q) . A simple argument shows that the center of the even
part of the Clifford algebra is the free R -module generated by 1 and X . It
follows by an easy computation that

X2 = (−1)nq(x1)q(x2) . . . q(x2n) = (−1)n D
22n
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Thus, under the canonical identification

H1
ét(SpecR,Z/2Z) ' R×/R×2

obtained from Kummer theory, we see that the discriminant of (M, q) is repre-
sented by (−1)nD .

In the special case R = F2 (which is really the only case of interest to us),
the cohomology group H1

ét(Spec R,Z/2Z) is isomorphic to Z/2Z ; in this case the
discriminant is also called the Arf invariant of q . Quadratic forms of rank 2n
with Arf invariant 0 are distinguished by the fact that they have 22n−1 + 2n−1

isotropic vectors, while the forms with Arf invariant 1 have only 22n−1 − 2n−1

isotropic vectors (a vector v ∈ V is isotropic if q(v) = 0 ). Alternatively, quadratic
spaces over F2 with Arf invariant 0 may be characterized by the existence of an
n -dimensional subspace on which q vanishes identically. For proofs of these facts,
we refer the reader to [2].

Note that if (M, q) is a quadratic space over R and R → R′ is any ring
homomorphism, we get a natural induced quadratic space (MR′ , qR′) over R′ .
We will generally be interested in quadratic spaces over F2 which arise from even
lattices via “reduction modulo 2 ”. The result of such an operation is described
in the following result:

Theorem 2.1.2. Let Λ be an even lattice (that is, a quadratic space over Z ),
(V, q) the associated quadratic space over F2 . Assume Λ is nondegenerate over
Q . Via the form 〈, 〉 we may identify Λ with a subgroup of Λ∨ having finite
index d . Then (V, q) is nondegenerate if and only if d is odd. Its Arf invariant
is equal to

{
0 if d ≡ ±1 (mod 8)
1 if d ≡ ±3 (mod 8)

Proof. Note that d is the absolute value of the determinant of Λ ; hence the
reduction of d modulo 2 is equal to the determinant of (V, q) . This proves the
first claim. For the second, let R = Z(2) denote the localization of Z at the
prime 2 . Since d is odd, ΛR is a nondegenerate quadratic space over R ; let x
denote its discriminant. Over Q , the discriminant classifies the finite extension
Q[
√±d] (or Q×Q , in the case d = ±1 ). Here the sign is chosen so that ±d ≡ 1

(mod 4) , so 2 does not ramify in the corresponding quadratic extension of Q .
It follows that x classifies the étale R -algebra which is the integral closure R′

of R in Q[
√±d] . Then the Arf invariant of (V, q) is 0 or 1 depending on

whether or not the prime 2 splits or remains prime in Q[
√±d] . Our hypotheses

imply that 2 cannot ramify in this extension, so we may write ±d = 4k + 1 .
Then R′ = R[ 1+

√
4k+1
2 ] is obtained by adjoining to R a root of the polynomial

x2 − x− k . Modulo 2 , this equation has a solution if and only if k is even; that
is, if d ≡ ±1 (mod 8) . ¤
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If (M, q) is a quadratic space, we denote by O(M, q) the group of all R -
automorphisms of M compatible with the form q . For any x ∈ M with q(x)
invertible in R , the map

rx : m 7→ m− q(x)−1〈m,x〉x
is a 2 -torsion element of O(M, q) , loosely understood as “reflection in the hyper-
plane corresponding to x ”. If R is a field and q is nondegenerate, then these
reflections generate O(M, q) unless R = F2 , M has dimension 4 , and the Arf
invariant of (M, q) is trivial (for a proof, see the first chapter of [4]).

Finally, we recall for later use the statement of Witt’s extension theorem (see
also [4]):
Theorem 2.1.3. Assume that R is a field and that q is nondegenerate. If U
and U ′ are subspaces of M and α : U → U ′ is an isomorphism such that
q(u) = q(α(u)) , then α admits an extension to an element of O(M, q) .

2.2. Root Lattices

In this section we will review the facts that will be needed concerning simply laced-
root systems. For details, proofs, or a discussion of non-simply laced root systems,
we refer the reader to [3].

Let us fix a bit of terminology. A lattice is a free Z -module of finite rank
equipped with a symmetric bilinear form 〈, 〉 . We will generally be interested in
lattices Λ satisfying the following additional conditions:
• Λ is positive definite: 〈λ, λ〉 > 0 for any λ 6= 0 .
• The set Γ = {α ∈ Λ : 〈α, α〉 = 2} generates Λ as a Z -module.

These two properties characterize those lattices which arise as root lattices of
simply laced, semisimple algebraic groups. Note that the second condition implies
that Λ is an even lattice, since it is generated by even elements. Consequently we
may define q : Λ → Z by the equation

q(λ) =
〈λ, λ〉

2
For the remainder of this subsection we will assume Λ is such a lattice, corre-

sponding to such an algebraic group G . We shall refer to Γ as its set of roots;
this is a finite set. Note that if α and β are roots, then α + β is a root if and
only if 〈α, β〉 = −1 .

If α is a root, then
rα(γ) = γ − 〈α, γ〉α

is an automorphism of Λ . The set of all such reflections generates a group W
called the Weyl group. Since Γ is finite, W -stable, and generates Λ , W is a
finite group.

Via the bilinear form 〈, 〉 , we may identify Λ with a subset of the dual lattice
Λ∨ . The pairing 〈, 〉 then extends to a Q -valued bilinear form on Λ∨ . The
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quotient Λ∨/Λ is a finite group which is naturally dual to the center of the simply
connected group G .

Since Λ is positive definite, each coset C of Λ in Λ∨ contains finitely many
elements which have minimal norm 〈v, v〉 . The collection of such elements of C
will be denoted by C0 ; they are called minuscule weights. We let tC denote the
value of 〈v, v〉 on C0 . Note that according to our convention, 0 is a minuscule
weight.
Example 2.2.1. Consider the free Z -module M spanned by generators e1,. . . ,en ,
where 〈ei, ej〉 = δij . Let s = e1 + . . .+ en , and set An−1 = {λ ∈ M : 〈λ, s〉 = 0} .

It is clear that An−1 is even and positive-definite. Moreover, the set

{λ ∈ An−1 : 〈λ, λ〉 = 2} = {ei − ej : i 6= j}
generates An−1 , so that An−1 has the three properties listed above; it is the
root lattice of the group G = SLn . The group W may be identified with the
symmetric group Sn , which acts by permuting the ei .

Since M is nondegenerate, we may identify the dual A∨n−1 of An−1 with
M/Zs . Thus the group A∨n−1/An−1 may be identified with M/(Zs + An−1) '
Z/nZ , the isomorphism induced by the map λ 7→ 〈λ, s〉 (mod n) , defined for
λ ∈ M . If C denotes the coset of An−1 in A∨n−1 corresponding to 0 ≤ k < n
via this isomorphism, then the minuscule weights of C are precisely the images
of the elements of the set

{ei1 + ei2 + . . . + eik
}1≤i1<i2<···<ik≤n

in M/Zs . The norm 〈v, v〉 of such a weight is k(n−k)
n .

Example 2.2.2. Let M denote the free Z -module spanned by generators e1,. . . ,en

satifying 〈ei, ej〉 = δij , s = e1 + . . . + en , and set Dn = {λ ∈ M : 〈λ, s〉 ≡ 0
(mod 2)} .

Once again it is easy to see that Dn is positive definite and even, and the set

{λ ∈ Dn : 〈λ, λ〉 = 2} = {±ei ± ej : i 6= j}
generates Dn if n > 1 , so Dn has the three properties enumerated above. In
fact, Dn is the root lattice of the group G = Spin(2n) . The group W may be
identified with a semidirect product of the symmetric group Sn and its natural
representation on Dn/2M ; it acts by permuting the ei and changing an even
number of signs.

The lattice D∨n may be identified with M+ 1
2s ⊆ 1

2M , so the quotient D∨n/Dn

is isomorphic to Z/4Z (if n is odd, so s /∈ Dn ) or Z/2Z× Z/2Z (if n is even,
so s ∈ Dn ).

The sets of minuscule weights corresponding to the four cosets of Dn in D∨n
are {0} , {±ei} and the Weyl group orbits of 1

2s and 1
2 (s− e1) . The norms of

these four classes of weights are 0 , 1 , n
4 , and n

4 , respectively.
Note that if n = 2 , Dn actually decomposes as a direct sum A1 ⊕ A1 . If

n = 3 , Dn is isomorphic to An .
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Example 2.2.3. Once again, let M denote the free Z -module spanned by gen-
erators e0, . . . , en , and set

〈ei, ej〉 =



−1 if i = j = 0
1 if i = j > 0
0 otherwise

Let s = 3e0 − (e1 + . . . + en) , and let En = {λ ∈ M : 〈λ, s〉 = 0} . En is an
even lattice of rank n . M has signature (n, 1) , so En is positive-definite if and
only if 〈s, s〉 = n − 9 is negative; that is, if n ≤ 8 . Finally, one may check that
En is generated by Γ = {λ ∈ En : 〈λ, λ〉 = 2} if and only if n ≥ 3 .

Again, M is nondegenerate, so we may identify E∨n with the quotient M/Zs .
Thus E∨n/En is isomorphic to M/Zs + En ' Z/〈s, s〉Z ; this cyclic group is
generated by the image of e1 . In the next subsection we will give a geometric in-
terpretation of the minuscule weights of the coset corresponding to this generator.

E3 is isomorphic to the direct sum of A1 and A2 , E4 is isomorphic to A4 ,
and E5 is isomorphic to D5 . However, the lattices E6 , E7 , and E8 are new;
they correspond to the exceptional groups with the same names.

If Λ and Λ′ are two lattices possessing the three properties listed at the
beginning of this section, then the orthogonal direct sum Λ ⊕ Λ′ shares those
properties. A basic result in the theory of root systems asserts that every such
lattice may be obtained as an orthogonal direct sum of lattices of the form An , Dn

( n ≥ 4 ), E6 , E7 , and E8 in a unique manner. On the other hand, the lattices
just mentioned are irreducible, in the sense that they cannot be further decomposed
in the same way. The situation for irreducible root lattices is summarized in the
following:

Λ Λ∨/Λ |C0| tC

An−1 Z/nZ
(
n
k

) k(n−k)
n

D2n Z/2Z× Z/2Z 1, 22n−1, 4n, 22n−1 0, n
2 , 1, n

2

D2n+1 Z/4Z 1, 22n, 4n + 2, 22n 0, 2n+1
4 , 1, 2n+1

4

E6 Z/3Z 1, 27, 27 0, 4
3 , 4

3

E7 Z/2Z 1, 56 0, 3
2

E8 {0} 1 0

We will need one more concept from the theory of root systems: that of a
root basis, or system of simple roots. A root basis is a subset ∆ ⊆ Γ which
freely generates Λ , such that in the expression for any element α ∈ Γ as a linear
combination of elements of ∆ , the coefficients which appear are either all positive
or all negative. The basic fact we shall need is that root bases exist, and the Weyl
group W acts transitively on them (in fact, it acts simply transitively).

We conclude with a generalization of a well-known fact concerning the action
of the Weyl group on the minuscule weights.
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Theorem 2.2.4. Let C,C′,C′′ ∈ Λ∨/Λ be such that C + C′ + C′′ = 0 . Then

{(c, c′, c′′) ∈ C0 × C′0 × C′′0 : c + c′ + c′′ = 0}
consists of a single Weyl group orbit.

Proof. Clearly it suffices to treat the case when Λ is irreducible. For this, we
apply the classification and verify the result directly in each case. We give details
for An , the most interesting case. There we may identify Λ∨/Λ with the group
Z/(n + 1)Z . If 0 ≤ i ≤ n and C is the corresponding coset, we may identify the
minimal elements of C with i -element subsets of {0, . . . , n} . Given three cosets
which sum to 0 , there is a corresponding triple 0 ≤ i, j, k ≤ n with i + j + k ≡ 0
(mod n + 1) . If i = j = k = 0 the result is obvious, while if i + j + k > n + 1 we
may replace each coset with its negative and reduce to the case i+ j + k ≤ n+1 .
Finally, if i + j + k = n + 1 , then the assertion is equivalent to the evident fact
that the symmetric group Sn+1 acts transitively on the set of triples (X,Y,Z) of
disjoint subsets of {0, . . . n} having respective sizes i , j , and k . ¤

Corollary 2.2.5. Let C ∈ Λ∨/Λ . Then W acts transitively on C0 .

Proof. Apply the last theorem to the cosets C,−C , and Λ . ¤

2.3. del Pezzo Surfaces

In this section, we review the connection between del Pezzo surfaces and excep-
tional root lattices. For more details, see [13].

We will invoke this discussion only sparingly in the rest of this paper, so the
present section may be safely omitted by a reader who is unfamiliar with classical
algebraic geometry.

For simplicity, we work over the complex numbers. Let S denote the surface
obtained by blowing up P2 at n distinct points p1, . . . , pn . Then H2(S,Z) is
the free lattice on generators H , E1, . . . En , where H is the pullback of the
hyperplane class on P2 and the Ei are the classes of the exceptional divisors.
The negative of the intersection pairing endows H2(S,Z) with the structure of a
lattice, isomorphic to the lattice M we used in the construction of the exceptional
lattices.

We let KS denote the canonical bundle (the top exterior power of the holo-
morphic cotangent bundle) of S . Let s = −c1(KS) ∈ H2(S,Z) . Then s =
3H − (E1 + . . . + En) . If n ≤ 8 and the points p1, . . . , pn are in general position,
then −KS is ample (surfaces with this property are called del Pezzo surfaces). We
will henceforth assume this to be the case. Then the lattice

En = {x ∈ H2(S,Z) : x ∪ s = 0}
may be identified with the primitive cohomology of S (relative to an embedding
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of S in projective space via some power of the anticanonical bundle −KS ).
Of particular interest to us are the “lines” on S ; that is, effective divisors E on

S with E.(−KS) = 1 (such divisors map to lines if we map S to projective space
via its “anti-canonical series”). The Hodge index theorem implies that E.E ≤ 0 .
Since the arithmetic genus of E is

1
2
(E.E + E.KS)

we see that E is a smooth rational curve with self-intersection −1 . Conversely,
suppose E is any divisor with E.E = E.KS = −1 . Then KS − E cannot be
effective (it has negative intersection with the ample class −KS ), so h2(S,E) =
h0(S,KS − E) = 0 , and the Riemann-Roch theorem implies

h0(S,E) ≥ 1 +
1
2
(E.E−KS.E) = 1

so that E is an effective class.
We can give the “lines” on S a lattice-theoretic interpretation, as follows.

Note that if e ∈ H2(S,Z) is the class of a line E , then 〈e, s〉 = −e.s = 1 , so
that the image of e is a generator of E∨n/En . Let e′ denote the image of e in
E∨n . One easily calculates that 〈e′, e′〉 = 10−n

9−n . If e′′ ∈ E∨n is any other lattice
element representing the same coset of En , then e′′ = e′+ λ for λ ∈ En , so that
〈e′′, e′′〉 ≡ 〈e′, e′〉 (mod 2) . If n < 8 , then

10− n

9− n
< 2

which implies that 〈e′, e′〉 ≤ 〈e′′, e′′〉 . If equality holds, one easily checks that e′′

is the image of the class of a unique “line” on S . Thus, for n < 8 , the “lines” on
S correspond bijectively to the elements in E∨n of minimal length among those
representing a fixed generator of E∨n/En . For n = 8 , this argument breaks down.
The 240 lines on S correspond to the 240 roots of the E8 lattice.
Example 2.3.1. If n ≤ 6 and the points p1, . . . , pn are chosen in general po-
sition, then −KS is actually very ample and gives rise to an embedding of S in
P9−n as a surface of degree 9 − n . For n = 0 , the image surface contains no
lines. If n = 1 , S contains a single line: the exceptional divisor of the blow up.
If n = 2 , S contains three lines: the two exceptional divisors and the proper
transform of the line joining the two chosen points in P2 . For n = 3 or 4 , the
same reasoning shows that we get 6 and 10 lines, respectively.

If n = 5 , −KS embeds S in P4 as an intersection of two quadric hypersur-
faces. In this case S contains 16 lines. In addition to the 5 exceptional divisors
and the proper transforms of the 10 lines joining the 5 chosen points, we have
the proper transform of the conic passing through the 5 points.

If n = 6 , −KS embeds S in P3 as a smooth cubic surface. In this case S
contains 27 lines ( 6 exceptional divisors, 15 proper transforms of lines, and 6
proper transforms of conics). This situation is much-studied in classical geometry;
we will return to it in our discussion of E6 .
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If n = 7 , −KS is not very ample, but still has no base locus. It induces
a map to P2 , which realizes S as a double cover of the plane branched over
a smooth quartic curve ∆ . In this case S contains 56 “lines” (7 exceptional
divisors, 21 proper transforms of lines, 21 proper transforms of conics, and the
proper transforms of the 7 cubics which pass through all 7 points and are double
at one of the points), which project two-to-one onto the 28 bitangents to ∆ .

If n = 8 , −KS corresponds to a pencil of plane cubics passing through the
points p1, . . . , p8 . This linear series has a nonempty base locus: the ninth point
of intersection of the pencil. There are 240 “lines” on S .

2.4. 〈±1〉 -Extensions

Let A be an abelian group. In this section we will be concerned with groups Ã
which are extensions of A by 〈±1〉 . In other words, we want to study exact
sequences of the form

0 → 〈±1〉 → Ã → A → 0

Note that since the group 〈±1〉 has no nontrivial automorphisms, such an
extension is necessarily central.

Two 〈±1〉 -extensions of A are isomorphic (as extensions of A ) if there
is an isomorphism between them (as groups) compatible with the maps to A .
Isomorphism classes of 〈±1〉 -extensions are classified by the cohomology group
H2(A, 〈±1〉) .

Since A is abelian, the group law A × A → A is a group homomorphism.
Consequently we get a sequence of natural maps

H2(A, 〈±1〉) → H2(A×A, 〈±1〉)
→ Hom(H2(A×A,Z), 〈±1〉)
→ Hom(H1(A,Z)⊗H1(A,Z), 〈±1〉)
' Hom(A⊗A, 〈±1〉)

More concretely, we can associate to any 〈±1〉 -extension Ã of A a bilinear
Z/2Z -valued form 〈, 〉 : A×A → Z/2Z by the equation

(−1)〈x,y〉 = x̃ỹx̃−1ỹ−1

One can easily show that 〈, 〉 is well-defined, bilinear, and strictly alternating
(that is, 〈a, a〉 = 0 for any a ∈ A ). Thus the above construction actually yields
a natural transformation

φ : H2(A, 〈±1〉) → Hom(∧2A,Z/2Z)

Suppose now that A is annihilated by 2 . Then we can define a finer invariant
of Ã as follows. For v ∈ A , define q(v) ∈ Z/2Z by the equation

(−1)q(v) = ṽ2 ∈ 〈±1〉
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It is easy to verify that q is a quadratic form on the F2 -vector space A . In fact,
q(v + u) − q(v) − q(u) = 〈v, u〉 is the alternating form defined above. In other
words, we get a natural transformation

φ′ : H2(A, 〈±1〉) → S2(A)∨

In simple cases, these invariants completely characterize the extensions:
Theorem 2.4.1. If A is a finitely generated, free Z -module then φ is an isomor-
phism. If A is a finite-dimensional F2 -vector space, then φ′ is an isomorphism.

Proof. Using the Künneth formula, one sees that it suffices to prove these assertions
in the cases where A = Z and A = F2 , respectively. In these cases, it is easy to
check the result directly. ¤

Let us now return to the general case. If Ã is any 〈±1〉 -extension of an
abelian group A , we will write Aut(Ã) to denote its group of automorphisms as
an extension of A ; that is, the collection of all automorphisms leaving 〈±1〉 ⊆ Ã
stable (this is frequently, but not always, the full automorphism group of Ã ).
This group acts naturally on the quotient A ' Ã/〈±1〉 , so we get a natural
homomorphism Aut(Ã) → Aut(A) . The kernel of this homomorpism consists of
those ψ : Ã → Ã which have the form ψ(ã) = ε(a)ã , where ε(a) ∈ 〈±1〉 ⊆ Ã .
One can easily check that such a map is a homomorphism if and only if ε : A →
〈±1〉 is a homomorphism. In other words, we have an exact sequence

0 → Hom(A, 〈±1〉) → Aut(Ã) → Aut(A)

This sequence is generally not exact on the right. Indeed, any ψ ∈ Aut(Ã)
induces an automorphism of A which must preserve any structure invariantly
associated to the extension Ã . Thus, if A = V is a finite-dimensional F2 -vector
space, we get a factorization

Aut(Ṽ) → O(V, q) ⊆ Aut(V)

The map on the left is surjective; this follows from the fact that the extension Ã
is classified up to isomorphism by q . Thus we actually get a short exact sequence

0 → V∨ → Aut(Ṽ) → O(V, q) → 0

Similar reasoning may be applied in case A is a finitely-generated free Z -
module. In this case the sequence takes the form

0 → Hom(A, 〈±1〉) → Aut(Ã) → Aut(A, 〈, 〉) → 0

where Aut(A, 〈, 〉) denotes the “symplectic group” of all automorphisms of A
compatible with the alternating form 〈, 〉 .
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2.5. Unitary Structures and 〈±1〉 -extensions

If V is an F2 -vector space, extensions of V by 〈±1〉 correspond bijectively to
quadratic forms on V . For any quadratic form q , there is an extension Ṽ , unique
up to isomorphism, such that ṽ2 = (−1)q(v) . However, there is no functorial
manner in which Ṽ may be associated to the pair (V, q) . Indeed, the natural
surjection Aut(Ṽ) → O(V, q) does not split in general. However, this surjection
may well split over some large subgroup of O(V, q) . Correspondingly, one might
hope to define Ṽ functorially in terms of (V, q) and some additional data. We
will now show that this is possible when given a Hermitian structure on V .

In what follows, we fix a generator ω for the multiplicative group of F4 .
Let V be an F4 -vector space equipped with a Hermitian form h . That is,
h : V × V → F4 is map which is linear in the first variable and satisfies the
law h(x, y) = h(y, x) , where x = x2 denotes the nontrivial automorphism of F4

over F2 . Then q(v) = h(v, v) ∈ F2 defines a quadratic form on the underlying
F2 -vector space; the associated symplectic form is given by 〈u, v〉 = Tr(h(u, v)) .

We define a group V as follows. The elements of V are formal symbols ±v ,
where v ∈ V . We define multiplication so that

v̄ū = (−1)Tr (ωh(v,u))v + u

(−x)y = x(−y) = −(xy)

It is easy to see that V is a group. The element 0 is the identity of V , and
−0 is a central involution. The quotient of V by the subgroup generated by
−0 is canonically isomorphic to V again; thus V is a 〈±1〉 -extension of V .
Furthermore, for v ∈ V , v is a lift of v and v2 = (−1)Tr (ωq(v))0 = (−1)q(v)0 , as
desired.

Let G denote the group of all semilinear automorphisms of V compatible with
the form q . That is, an element g ∈ G is an F2 -linear orthogonal transformation
of (V, q) with the property that g(tv) = σg(t)g(v) , where σg is an automorphism
of F4 over F2 . The assignment g → σg is a homomorphism from G to Gal(F4 :
F2) whose kernel is the unitary group U(V, h) . We define an action of G on V
as follows:

g(±v) =
{ ±g(v) if σg is the identity
±(−1)q(v)g(v) otherwise

In particular, the map V → V given by multiplication by ω ∈ F×4 lies in the
unitary group, giving a canonical automorphism of V of order 3 , which we will
denote by ω .
Theorem 2.5.1. Let Ṽ be some 〈±1〉 extension of an F2 -vector space V′ such
that the associated quadratic space (V, q) is 2n -dimensional and nondegenerate.
The definition of ω gives a one-to-one correspondence between the following types
of data:
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• F4 -structures on V , together with Hermitian forms h inducing the quadratic
form q and isomorphisms Ṽ ' V over V .

• Elements g ∈ Aut(Ṽ) of order 3 such that g fixes only the center of Ṽ .
Such data exist if and only if the Arf invariant of (V, q) is equal to n .

Proof. One direction is clear: given an F4 -structure on V together with a Her-
mitian form h and an isomorphism Ṽ ' V , the automorphism ω pulls back to
an automorphism of Ṽ with the appropriate properties. We must now show that
if g ∈ Aut(Ṽ) has order 3 and fixes only the center of Ṽ , then from g we may
reconstruct the rest of the data on V .

Since g must fix the center, we have an induced action of g on V . Since g
has order 3 ,

0 = g3 − 1 = (g − 1)(1 + g + g2)

annihilates V . On the other hand, since g has no fixed points on V , g − 1 is
invertible so 1+g+g2 = 0 . Thus we may define an action of F4 on V by setting
ωv = g(v) .

We define h as follows. Let 〈, 〉 denote the alternating form associated to q .
Since v + ωv + ω2v vanishes, we have 〈v, u〉+ 〈ωv, u〉+ 〈ω2v, u〉 = 0 for any u .
Thus either all three of these terms vanish, in which case we set h(v, u) = 0 , or
〈ωiv, u〉 = 〈ωjv, u〉 = 1 and 〈ωkv, u〉 = 0 , in which case we set h(v, u) = ω−k .
One easily checks that h is a Hermitian form on V . For any v ∈ V we have
〈v, v〉 = 0 , and so h(v, v) = 〈ωv, v〉 = 〈ω2v, v〉 . On the other hand,

q(v) = q(ω2v) = q(v + ωv) = q(v) + q(ωv) + 〈v, ωv〉 = 〈v, ωv〉
so that h induces the given form q on V .

For ṽ ∈ Ṽ , set εṽ = ṽg(ṽ)g2(ṽ) . We define a map φ : Ṽ → V by the rule
φ(ṽ) = εṽv . For ṽ, ũ ∈ Ṽ , we have

εṽũ = ṽũg(ṽũ)g2(ṽũ) = εṽεũ(−1)〈u,g(v)〉+〈u,g2(v)〉+〈g(u),g2(v)〉

Since 〈g(u), g2(v)〉 = 〈u, g(v)〉 , the exponent is equal to

〈u, g2(v)〉 = 〈u, ω2v〉 = Tr h(u, ω2v) = Tr (ωh(u, v))

From this it follows that φ(ṽũ) = φ(ṽ)φ(ũ) , so φ is a group homomorphism.
Using the commutative diagram

0 −→ Z/2Z −→ Ṽ −→ V −→ 0
↓ ↓ φ ↓

0 −→ Z/2Z −→ V −→ V −→ 0

we see that φ is an isomorphism. The automorphism ω carries ±v to ±ωv ; to
see that this goes over to the automorphism g ∈ Aut(Ṽ) , we need to check that
εṽ = εg(ṽ) . That is, we need to know that

ṽg(ṽ)g2(ṽ) = g(ṽ)g2(ṽ)g3(ṽ)
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In other words, we must show that ṽ commutes with g(ṽ)g2(ṽ) . The commutator
is given by

〈v, g(v) + g2(v)〉 = 〈v, ωv + ω2v〉 = 〈v, v〉 = 0

as required. This completes the reconstruction of our original data from the auto-
morphism g . It is easy to see that the recipe we just gave is the only one possible,
which completes the proof of the main claim.

For the last point, note that all nondegenerate Hermitian spaces (V, h) over
F4 split as direct sums of one-dimensional nondegenerate Hermitian spaces over
F4 . In such a space, q is nonzero on all three nonzero vectors, so (V, q) has Arf
invariant 1 . Inductively we see that a nondegenerate quadratic space admitting
a compatible Hermitian structure must have Arf invariant n . On the other hand,
nondegenerate quadratic spaces of even dimension are classified up to isomorphism
by their Arf invariant, so if (V, q) has Arf-invariant n then it admits a compatible
Hermitian structure. Since 〈±1〉 extensions of F2 -vector spaces are classified up
to isomorphism by the associated quadratic form, it follows that an isomorphism
Ṽ ' V always exists. ¤

By Theorem 2.1.2, we see that Theorem 2.5.1 applies in particular in case
V = Λ/2Λ where Λ is a root lattice of type E6 , E8 , or An ( n ≡ 0, 2 (mod 8) ).
We will make use of this in our discussion of E6 .

3. Constructions

We assume now, and throughout the rest of this paper, that Λ is a positive definite
lattice generated by Γ = {α ∈ Λ : 〈α, α〉 = 2} . We let V denote the F2 -vector
space Λ/2Λ . The form

q : Λ → Z

q(λ) =
〈λ, λ〉

2
descends to an F2 -valued quadratic form on V which we also denote by q .

The Z -valued bilinear form 〈, 〉 induces a Z/2Z -valued bilinear form which
we will also denote by 〈, 〉 . Since Λ is even, 〈, 〉 is alternating (interpreted as
a Z/2Z -valued form), and therefore classifies some 〈±1〉 -extension Λ̃ of Λ .
Similarly, the form q classifies a 〈±1〉 -extension Ṽ of V . Either of these may
be recovered from the other. Indeed, if we start with Ṽ , we can set

Λ̃ = Λ×V Ṽ = {(λ, ṽ) ∈ Λ× Ṽ : λ ≡ v (mod 2)}
Suppose instead that we begin with the extension Λ̃ . One can easily check

that the map
φ : Λ̃ → Λ̃
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λ̃ 7→ (−1)q(λ)λ̃2

is a group homomorphism. The image of φ is a normal subgroup of Λ̃ . It is not
hard to see that the cokernel of φ is a 〈±1〉 -extension of V corresponding to the
quadratic form q .

The extension Λ̃ will play a crucial role in resolving sign ambiguities when
Λ is the root lattice of a simply-laced semisimple group G . Over the integers,
the corresponding Lie algebra is almost completely determined by the lattice Λ .
We say “almost” because, as noted earlier, the covering Λ̃ is determined only
up to noncanonical isomorphism. All of our constructions will be functorial in
Λ̃ . However it is impossible to make our constructions functorial in Λ itself.
Indeed, the Weyl group W of Λ acts on Λ , but generally does not act on the
corresponding Lie algebra.

The lattice Λ itself may be identified with the tangent space to a maximal
torus. The remainder of the Lie algebra is a direct sum of root spaces, each
of which is a free Z -module of rank 1 . However, there is no canonical choice
of generator for these root spaces, and this makes it difficult to describe the Lie
bracket. To resolve this problem, we will actually introduce two generators for each
root space, corresponding to the two preimages of a root in Λ̃ . These generators
will be indexed by the set Γ̃ , the preimage of Γ in Λ̃ .

3.1. The Lie Algebra L

In this section, we outline a well-known construction of the simply laced (split)
Lie algebras over Z ; this construction may be found, for example, in [6]. Let L′

denote the free abelian group generated by symbols Xγ̃ where γ̃ ∈ Γ̃ , modulo
the relations X−γ̃ = −Xγ̃ . For x ∈ 〈±1〉 , we let εx denote the corresponding
element of Z . Now set L = Λ⊕L′ . We endow L with a bilinear bracket operation
[, ] as follows:
• [λ, λ′] = 0 for λ, λ′ ∈ Λ .
• [λ,Xγ̃ ] = −[Xγ̃ , λ] = 〈λ, γ〉Xγ̃ for λ ∈ Λ .
• [Xγ̃ , Xγ̃′ ] = Xγ̃γ̃′ if γ + γ′ ∈ Γ .
• [Xγ̃ , Xγ̃′ ] = εγ̃γ̃′γ if γ + γ′ = 0 .
• [Xγ̃ , Xγ̃′ ] = 0 otherwise.
Theorem 3.1.1. L is a Lie algebra over Z .

Proof. One easily sees that the above definition is compatible with the relation
X−h = −Xh . To complete the proof, we must show that the bracket is alter-
nating ( [X,X] = 0 ) and that the Jacobi identity holds ( [X, [Y,Z]] + [Y, [Z, X]] +
[Z, [X,Y ]] = 0 ). The skew-symmetry is obvious from the definitions; we must
check the Jacobi identity. By symmetry it suffices to consider four cases:
• x, y, z ∈ Λ . Then all brackets vanish and we are done.
• x, y ∈ Λ , z = Xγ̃ . Then [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 〈x, γ〉〈y, γ〉Xγ̃ −
〈y, γ〉〈x, γ〉Xγ̃ + 0 = 0 .
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• x ∈ Λ , y = Xγ̃ , z = Xγ̃′ . If γ + γ′ = 0 , then

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0− 〈x, γ′〉εγ̃γ̃′γ + 〈x, γ〉εγ̃γ̃′γ
′ = 0

If γ + γ′ ∈ Γ , then

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 〈x, γ + γ′〉Xγ̃γ̃′ − 〈x, γ′〉Xγ̃γ̃′ + 〈x, γ〉Xγ̃′γ̃

Since γ +γ′ is a root, 〈γ, γ′〉 = −1 , so γ̃γ̃′ = −γ̃′γ̃ ; then Xγ̃′γ̃ = −Xγ̃γ̃′ and
the result follows.
If γ + γ′ 6= 0 is not in Γ , then all three terms vanish.

• x = Xα̃ , y = Xβ̃ , z = Xγ̃ . There are two cases to consider. First suppose
α+β +γ = 0 . Then β +γ = −α ∈ Γ , so that [x, [y, z]] = [Xα̃, Xβ̃γ̃ ] = εα̃β̃γ̃α .
Similarly [y, [z, x]] = εβ̃γ̃α̃β and [z, [x, y]] = εγ̃α̃β̃γ . Since α + β is a root, we

must have 〈α, β〉 = −1 so α̃β̃ = −β̃α̃ ; similarly α̃γ̃ = −γ̃α̃ and β̃γ̃ = −γ̃β̃ .
Thus α̃β̃γ̃ = β̃γ̃α̃ = γ̃α̃β̃ = ±1 , so

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = ±(α + β + γ) = 0

Now suppose α+β+γ 6= 0 . If [x, [y, z]]+[y, [z, x]]+[z, [x, y]] is to be nonzero, at
least one term, say [x, [y, z]] must be nonzero. Without loss of generality β+γ
and α+β+γ are both roots; in other words 〈β, γ〉 = −1 and 〈α, β+γ〉 = −1 .
Since the asymmetry of the bracket is known, we may further assume (possibly
switching y and z ) that 〈α, β〉 ≤ −1 and 〈α, γ〉 ≥ 0 . If 〈α, β〉 = −1 , then
[y, [z, x]] = 0 , [x, [y, z]] = Xα̃β̃γ̃ and [z, [x, y]] = Xγ̃α̃β̃ . But these cancel since

γ̃α̃β̃ = α̃γ̃β̃ = −α̃β̃γ̃ .
Finally, suppose that 〈α, β〉 = −2 , so that α = −β . Then [x, [y, z]] = Xα̃β̃γ̃ =

εα̃β̃Xγ̃ , [y, [z, x]] = 0 , and [z, [x, y]] = [z, (α̃β̃)α] = −〈γ, α〉εα̃β̃z , and the sum
vanishes once again.

¤

Theorem 3.1.2. LC is a simply-laced, semisimple Lie algebra over C , with root
lattice Λ .

Proof. Recall ([12], Chapter VI) that semisimplicity of a complex Lie algebra is
equivalent to the nondegeneracy of the Killing form

(X,Y )k = Tr{Z 7→ [X, [Y,Z]]}
An easy computation shows that

LC = ΛC ⊕
⊕
±α∈Γ

(CX±α̃ ⊕CX±−̃α)

is an orthogonal decomposition of LC into nondegenerate subspaces. Thus LC

is semisimple. ΛC is obviously a Cartan subalgebra, identified with its dual via
the Killing form. The root spaces for this Cartan subalgebra are spanned by the
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Xα̃ . Identifying ΛC with its dual via 〈, 〉 , we see that the roots span exactly the
lattice Λ ⊆ ΛC . ¤

Over Z , the Killing form is far from nondegenerate. We can define a “better”
symmetric bilinear form (, ) on L as follows:

(λ, λ′) = 〈λ, λ′〉
(λ,Xα̃) = (Xα̃, λ) = 0

(Xα̃, Xβ̃) =
{

εα̃β̃ if α + β = 0
0 otherwise

An easy computation shows that (, ) is an L -invariant pairing of L ⊗ L →
Z . Furthermore, the restriction of (, ) to the orthogonal complement of Λ is
irreducible. It follows that the absolute value of the determinant of (, ) is equal to
|Λ∨/Λ| . If Λ is irreducible, then the irreducibility of the adjoint representation
of LC implies that (, )k = c(, ) for some constant c . We can determine c by
evaluating both sides on a root α . We obtain

2c = (α, α)k =
∑

β

〈β, α〉2 = 2
∑

〈β,α〉≥0

〈β, α〉2

Thus c = 4 + |{β : 〈β, α〉 = 1}| .
The values of c are given in the following table:

Λ c

An−1 2n
Dn 4n− 4
E6 24
E7 36
E8 60

See Chapter I.4 of [14] for a calculation of this constant for more general Lie
algebras and a discussion of its relationship to the “bad primes” of a Lie algebra.
Remark 3.1.3. If, in the definition of (, )k , we compute traces with respect to
representations other than the adjoint representation, we can do a little better.
Using the standard representations of An and Dn , we get c = 1 and c = 2 ,
respectively. The nontrivial minuscule representations of E6 and E7 give c = 6
and c = 12 .

3.2. Cosets C ∈ Λ∨/Λ

Recall that a representation of a semisimple Lie algebra (over C ) is said to be
minuscule if the Weyl group acts transitively on its nonzero weights. There is one
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minuscule representation corresponding to each element of Λ∨/Λ (we will later
show how to construct this representation); it is characterized by the property that
its highest weight vector has minimal length (within that coset). We will take this
as our starting point.

Let C be a coset of Λ in Λ∨ . Recall that tC denotes the minimal value
attained by 〈, 〉 on C . We write C0 = {x ∈ C : 〈x, x〉 = tC} ; by 2.2.5, this
consists of a single orbit under the Weyl group.

Before we begin, we will need a few combinatorial facts about the set C0 .
Since all elements of C0 have the same length, no three of them can lie on a line.
For some lines, we can be even more specific:
Lemma 3.2.1. Let v ∈ C0 and let α be a root. Then v + tα ∈ C0 if and only
if t = 0 or t = −〈α, v〉 .
Proof. v− 〈α, v〉α is the image of v under the reflection through the hyperplane
orthogonal to α ; since C0 is invariant under W we must have v−〈α, v〉α ∈ C0 .

For the “only if” direction, note that v, v − 〈α, v〉α, and v + tα all lie on a
line. It follows that these three points are not distinct; either t = 0 , t = −〈α, v〉 ,
or 〈α, v〉 = 0 6= t . In the last case, Weyl invariance gives v − tα ∈ C0 , and we
get a contradiction since {v − tα, v, v + tα} is a set of distinct collinear points of
C0 . ¤

Lemma 3.2.2. If v ∈ C0 , α ∈ Γ , then |〈v, α〉| ≤ 1 .

Proof. Replacing α by −α if necessary we may assume 〈v, α〉 ≥ 0 . By minimality
we must have

〈v − α, v − α〉 ≥ 〈v, v〉
Using 〈α, α〉 = 2 , this gives 〈v, α〉 ≤ 1 as desired. ¤

Lemma 3.2.3. Let v ∈ C0 , and let α, β be roots with α + β 6= 0 . Assume
v + α ∈ C0 and v + α + β ∈ C0 . Then 〈α, β〉 = 0 if v + β ∈ C0 and −1
otherwise.

Conversely, if 〈α, β〉 = −1 and v + α + β ∈ C0 , then either v + α ∈ C0 or
v + β ∈ C0 .

Proof. Since v + α ∈ C0 , we have 〈v, α〉 = −1 ; similarly 〈v + α, β〉 = 〈v, β〉 +
〈α, β〉 = −1 . If v + β ∈ C0 , we get 〈v, β〉 = −1 and thus 〈α, β〉 = 0 .

Now suppose v + β /∈ C0 . Then v + β is not the image of v under the
reflection rβ corresponding to β , so 〈v, β〉 6= −1 . Then 〈v, β〉 ≥ 0 so we must
have 〈α, β〉 ≤ −1 . Since α 6= −β ; we also have 〈α, β〉 ≥ −1 , proving the
assertion.

For the converse, note that α + β is a root. Thus v + α + β ∈ C0 just means
−1 = 〈v, α+β〉 = 〈v, α〉+ 〈v, β〉 . Without loss of generality we have 〈v, α〉 = −1 ,
〈v, β〉 = 0 , which proves v + α ∈ C0 . ¤
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3.3. The Category C

In order to construct the minuscule representation corresponding to a coset of Λ
in Λ∨ , we will need some sort of data analogous to the two-fold cover Λ̃ of Λ .
The most straightforward approach is to attempt to embed Λ̃ in some 〈±1〉 -
extension Λ̃∨ of Λ∨ . Unfortunately, this is not always possible (though this idea
has its merits, which will be spelled out in §3.5 and §3.9 ). In general, the best
we can hope for is to cover the cosets of Λ “one at a time”.

We let C denote the category whose objects are maps π : C̃ → Λ∨ , where C̃
is a Λ̃ -torsor (that is, a set on which the group Λ̃ acts on the left, freely and
transitively) and π is Λ̃ -equivariant. Here Λ̃ acts on Λ∨ by translations by
elements of its quotient group Λ .

If π : C̃ → Λ∨ and π′ : C̃′ → Λ∨ are objects of C , a morphism from π to π′

is a Λ̃ -equivariant map φ : C̃ → C̃′ such that π′ ◦ φ = π . Such a morphism is
necessarily invertible, so C is a groupoid.

We now show that C has the structure of a monoidal category. To begin, let
us define the tensor product of two objects of C .

Let π : C̃ → Λ∨ be an object in C . There is also a natural right action of Λ̃
on C̃ , by the formula

xγ̃ = (−1)〈π(x),γ〉γ̃x

One easily checks that the left and right actions of Λ̃ commute with one another.
Now suppose π : C̃ → Λ∨ and π′ : C̃′ → Λ∨ both lie in C . Define π ⊗ π′ :

C̃×Λ̃ C̃′ → Λ∨ by the formula (π⊗π′)(c̃× c̃′) = π(c̃)+π′(c̃′) . One readily checks
that π ⊗ π′ is an object of C̃ ; further there are natural isomorphisms

(π ⊗ π′)⊗ π′′ ' π ⊗ (π′ ⊗ π′′)

which constitute an associativity constraint for C .
The natural map π0 : Λ̃ → Λ → Λ∨ gives rise to a canonical “identity” object

of C . Furthermore one can define C̃−1 = {c̃−1 : c̃ ∈ C̃} ; this has a left Λ̃ action
given by γ̃c̃−1 = (c̃γ̃−1)−1 and a map to Λ∨ given by (π−1)(c̃−1) = −π(c) .

One has canonical isomorphisms π0⊗π ' π , π⊗π0 ' π , and π⊗π−1 ' π0 '
π−1 ⊗ π (the last defined so that c̃ × c̃−1 → 1 ∈ Λ̃ ). Thus we have a monoidal
structure (with duality) on the category C .

3.4. Minuscule Representations

We are now ready to construct the minuscule representations of L . Fix an object
π of C . Let C̃0 denote π−1(C0) . Let Mπ denote the free abelian group gener-
ated by symbols {Yc̃}c̃∈C̃0

, modulo the relations Y−c̃ = −Yc̃ . Thus, the rank of
M is equal to the cardinality of C0 .
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We define a bilinear map [, ] : L⊗Mπ → Mπ as follows:

[x, Yc̃] =



〈x, c〉Yc̃ if x ∈ Λ
Yγ̃x̃ if x = Xγ̃ and γ + c ∈ C0

0 if x = Xγ̃ and γ + c /∈ C0

Theorem 3.4.1. The map described above defines an action of L on Mπ .

Proof. We must show that the relation [[x, y], u] = [x, [y, u]]− [y, [x, u]] is satisfied.
Since this relation is trilinear we may assume u = Yc̃ . If x, y ∈ Λ the result is
obvious. If x ∈ Λ , y = Xγ̃ , then

[[x, y], u] = 〈x, γ〉[Xγ̃ , Yc̃] = 〈x, γ〉Yγ̃c̃

(with the understanding that Yγ̃c̃ = 0 if γ + c /∈ C0 .) Meanwhile the left side is

[x, Yγ̃c̃]− 〈x, c〉Yγ̃c̃ = (〈γ + c, x〉 − 〈c, x〉)Yγ̃c̃

as desired. The case where x = Xγ̃ , y ∈ Λ is handled by the same reasoning.
Thus we are reduced to considering the case where x = Xγ̃ , y = Xγ̃′ . There

are several cases, depending on the value of n = 〈γ, γ′〉 . Suppose first that
n = −2 . Then

[[x, y], z] = (γ̃γ̃′〈γ), c〉Yc̃

[x, [y, z]] vanishes unless 〈γ, c〉 = 1 , in which case [x, [y, z]] = Yγ̃γ̃′c̃ . Similarly
[y, [x, z]] = Yγ̃′γ̃c̃ if 〈α, c〉 = −1 and vanishes otherwise. Since γ̃ and γ̃′ commute
and −2 < 〈α, γ〉 < 2 , we get

[x, [y, z]]− [y, [x, z]] = 〈α, γ〉Yγ̃γ̃′c̃ = εγ̃γ̃′〈γ, c〉Yc̃

as desired.
If n = −1 , then [x, y] = Xγ̃γ̃′ . If γ + γ′ + c /∈ C0 there is nothing to prove.

Otherwise, [[x, y], z] = Yγ̃γ̃′c̃ . By Lemma 3.2.3 we have without loss of generality
γ′ + c /∈ C0 and γ + c ∈ C0 , so [x, [y, z]] = 0 and

−[y, [x, z]] = −[Xγ̃′ , Yγ̃c̃] = −Yγ̃′γ̃c̃ = Yγ̃γ̃′c̃

as needed.
If n = 0 , then [x, y] = 0 , so we just need to show [x, [y, z]] = [y, [x, z]] .

If 〈γ, γ′〉 = 0 , then γ̃γ̃′ = γ̃′γ̃ . Without loss of generality we may assume
[x, [y, z]] 6= 0 ; then γ + γ′ + c, γ′ + c ∈ C0 . It suffices to show that both sides
are equal to Yγ̃γ̃′c̃ = Yγ̃′γ̃c̃ , which in turn follows from the fact that γ + c ∈ C0 ,
again by Lemma 3.2.3.

If n > 0 , we have again [x, y] = 0 so the left side vanishes. Lemma 3.2.3
shows that c, c + γ′ , and c + γ′ + γ cannot all lie in C0 , so [x, [y, z]] vanishes.
Similarly [y, [x, z]] vanishes and we are done. ¤

Consequently we get a functor π Ã Mπ from the groupoid C to the category
of representations of L . The automorphism group of any object π ∈ C is 〈±1〉 ;
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this group acts on Mπ , multiplying by 〈±1〉 . We will later show that this is the
full automorphism group of Mπ (as a representation of L ).

Clearly Mπ decomposes into weight spaces corresponding to the elements of
C0 . Thus over C , Mπ is a minuscule representation corresponding to the coset
C ; in particular it is irreducible. In fact, a much stronger irreducibility result
holds:
Theorem 3.4.2. Let R be a commutative ring, and let M ⊆ (Mπ)R be a sub-
module invariant under the action of LR . Then M = a(Mπ)R for some ideal
a ⊆ R .

Note that this result does not hold for the adjoint representation of L (for
example, M = 2pgl2 is an invariant subspace of sl2 over Z which has index 4 ,
and hence is not of the above form).

Proof. Each element of M can be written as a sum∑
c∈C0

kc̃Yc̃

where k−c̃ = −kc̃ . Let K be the set of all coefficients kc̃ which occur in such
decompositions, and let a be the ideal generated by K . Clearly M ⊆ a(Mπ)R ,
so it suffices to verify the reverse inclusion. For this, it suffices to show that for
any k ∈ K and any c̃ , we have kYc̃ ∈ M .

We now apply the fact that W operates transitively on C0 . Since W is
generated by the reflections rα and

[Xα̃, Yc̃] = Yc̃′ , c
′ = rα(c)

when 〈α, c〉 = −1 , it suffices to verify that for each nonzero k ∈ K , there is some
c̃ with kYc̃ ∈ M .

Consider all sums
s =

∑
c∈C0

kc̃Yc̃ ∈ M

such that kc̃ = k for some c̃ . We know that at least one such sum exists.
Therefore we may consider the one with the minimal number of nonzero terms. If
s has only one nonzero term, then kYc̃ = s ∈ M and we are done. Otherwise,
we may assume that k = kc̃ and that kd̃ 6= 0 for c 6= d . The transitivity of W
implies that the sets {α ∈ Γ : 〈α, c〉 = −1} and {α ∈ Γ : 〈α, d〉 = −1} have the
same size. Since c 6= d , these sets are not identical; therefore there is a root α
with 〈α, c〉 = −1 < 〈α, d〉 . Then [Xα̃, s] lies in M , contains k as a coefficient,
and has fewer nonzero terms, a contradiction. ¤

3.5. Cosets of Odd Order

The isomorphism class of an object π ∈ C is determined by the image of π in
Λ∨ . This makes the category C almost superfluous; it is necessary only because
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every object has non-trivial automorphisms (in fact, the automorphism group of
any object in C is 〈±1〉 assuming 〈, 〉 is nondegenerate on Λ ). However, it is
possible to canonically associate an object of C to every coset of odd order, thus
simplifying our formalism in this case.

Let Λo denote the union of all cosets of Λ in Λ∨ having odd order. Then
there is a canonical isomorphism Λo/2Λo ' Λ/2Λ = V . Let Λ̃o denote the fiber
product Λo ×V Ṽ . This is a 〈±1〉 -extension of Λo containing Λ̃ . For any coset
C of Λ in Λo , its preimage C̃ in Λ̃o is a Λ̃ -torsor. Moreover, the composite

πC : C̃ → Λ̃o → Λo ⊆ Λ∨

is an object of C , naturally associated to the coset C . Furthermore, there are
canonical isomorphisms πΛ ' π0 , π−C ' π−1

C , πC ⊗ πC′ ' πC+C′ , determined
by the group structure on Λ̃0 .

3.6. Multiplication

We now show how the monoidal structure on the category C manifests itself in
the world of Lie algebra representations. Let π and π′ be objects in C . We
define a map φπ,π′ : Mπ ⊗Mπ′ → Mπ⊗π′ . Set

φπ,π′(Yc̃, Yc̃′) =
{

Yc̃ c̃′ if c + c′ ∈ (C + C′)0
0 otherwise

Theorem 3.6.1. The map φπ,π′ is L -invariant.

Proof. For ease of notation, let us just write φ for φπ,π′ . The Λ -invariance
of φ is clear, so it suffices to show that for any α̃ ∈ Γ̃ , c̃ ∈ C̃ , c̃′ ∈ C̃′ , we
have [Xα̃, φ(Yc̃, Yc̃′)] = φ([Xα̃, Yc̃], Yc̃′) + φ(Yc̃, [Xα̃, Yc̃′ ]) . Both sides are integral
multiples of Yα̃c̃ c̃′ which vanishes unless 〈α, α + c + c′〉 ≤ 1 , or in other words
〈α, c+ c′〉 ≤ −1 . Thus we may assume without loss of generality that 〈α, c〉 = −1
and 〈α, c′〉 ≤ 0 .

First suppose 〈α, c′〉 = 0 . Then the last term vanishes, so we just need to
prove that [Xα̃, φ(Yc̃, Yc̃′)] = φ(Yα̃c̃, Yc̃′) . If c + c′ /∈ (−C − C′)0 , the left side
vanishes, but so does the right side since α + c + c′ is the result of applying the
simple reflection rα to c + c′ and therefore does not lie in (−C− C′)0 . On the
other hand, if c + c′ ∈ (−C − C′)0 , then α + c + c′ ∈ (−C − C′)0 by the same
reasoning and both sides are equal to Yα̃c̃ c̃′ .

Now assume 〈α, c′〉 = −1 . Then 〈α, c+c′〉 = −2 , so we have c+c′ /∈ (−C−C′)0
and φ(Yc̃, Yc̃′) = 0 . Thus we are reduced to showing φ(Yα̃c̃, Yc̃′)+φ(Yc̃, Yα̃c̃′) = 0 .
If α + c + c′ /∈ (−C − C′)0 , both terms vanish and we are done. Otherwise, the
sum is equal to Yα̃c̃ c̃′ + Yc̃α̃c̃′ , which vanishes since c̃α̃ = −α̃c̃ . ¤

Example 3.6.2. Let π0 : Λ̃ → Λ∨ denote the identity of C . We have Λ0 = {0} ,
so Mπ0 is a rank 1 Z -module. It has a canonical generator corresponding to
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the identity element of Λ̃ . Correspondingly there are canonical isomorphisms
Mπ ⊗Mπ0

∼→ Mπ , Mπ0 ⊗Mπ
∼→ Mπ . These isomorphisms are given by the maps

φπ,π0 and φπ0,π , together with the identity constrints π
∼→ π ⊗ π0 and π

∼→
π0 ⊗ π . Thus our construction above is compatible with the identity constraints
on C .
Example 3.6.3. There is a natural isomorphism π⊗ π−1 ' π0 ; composing with
φπ,π−1 , we get an L -invariant pairing

Mπ ⊗Mπ−1 → Z

One may easily check that this is a perfect pairing of Mπ with Mπ−1 .

3.7. Commutativity

If π and π′ are objects of C , then π ⊗ π′ and π′ ⊗ π have the same image in
Λ∨ , so they are isomorphic. We now show how to single out a particularly nice
choice of isomorphism between them.

Given any element v ∈ C , note that 〈v, v〉 ≡ tC (mod 2Z) . This is because
v = v0 + λ , where λ ∈ Λ and v0 has minimal length, so

〈v, v〉 = 〈v0, v0〉+ 2〈λ, v0〉+ 〈λ, λ〉 ≡ tC (mod 2Z)

Thus, for any v ∈ C , v′ ∈ C′ , we have tC+C′ ≡ 〈v+v′, v+v′〉 ≡ tC +tC′+2〈v, v′〉
(mod 2Z) . Thus, if we set

tC,C′ =
tC+C′ − tC − tC′

2
then 〈v, v′〉 − tC,C′ is always an integer.

Now let π : C̃ → Λ∨ and π′ : C̃′ → Λ∨ be objects in C . We define a map
ηπ,π′ : C̃⊗ C̃′ → C̃′ ⊗ C̃ by the rule

ηπ,π′(ṽ ⊗ ṽ′) = (−1)〈v,v′〉−tC,C′ ṽ′ ⊗ ṽ

One easily checks that ηπ,π′ is a well-defined isomorphism in the category C .
Remark 3.7.1. Although η is functorial and the compositions ηπ,π′ ◦ ηπ′,π nat-
urally give the identity, the isomorphisms η

C̃,C̃′ do not define a commutativity
constraint on the category C . This is because

(ηπ,π′ ⊗ idπ′′)(idπ ⊗ ηπ′,π′′) 6= ηπ⊗π′,π′′

in general. Indeed, these isomorphisms are off by a sign (−1){C,C′,C′′} , where

2{C,C′,C′′} = tC+C′+C′′ − tC+C′ − tC+C′′ − tC′+C′′ + tC + tC′ + tC′′

Remark 3.7.2. Suppose C and C′ are cosets of odd order. Then the composite

πC ⊗ πC′ ' πC+C′ ' πC′ ⊗ πC

differs from the isomorphism ηπC,πC′ by the sign (−1)tC,C′ (where the latter is
well-defined since 〈C,C′〉 has odd denominator).
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Remark 3.7.3. If C is n -torsion, then 〈nC,C〉 = 〈Λ,C〉 = 0 ∈ Q/Z . Thus
tC ∈ 〈C,C〉 ⊆ 1

n 〈nC,C〉 lies in 1
nZ .

Suppose C is a 2 -torsion element of Λ∨/Λ , and let v ∈ C have minimal
length. If π : C̃ → Λ∨ is an object of C covering the coset C and ṽ is a
preimage of v , then

ηπ,π ṽ ⊗ ṽ = (−1)〈v,v〉−tC,C ṽ ⊗ ṽ

Using the fact that C + C = Λ , we see that tC,C = −tC , so ηπ,π = (−1)2tC .
We will call a 2 -torsion coset C orthogonal if tC is an integer, and symplec-

tic otherwise. In a moment we will justify this terminology by showing that it
reflects the nature of the invariant bilinear forms on the corresponding (self-dual)
minuscule representation.

Let us now consider the commutativity properties of the maps φπ,π′ .

Theorem 3.7.4. The diagram

Mπ ⊗Mπ′ ' Mπ′ ⊗Mπ

↓ ↓
Mπ⊗π′

ηπ,π′' Mπ′⊗π

commutes.

Proof. The commutativity translates directly into the condition that ηπ,π′(ṽṽ′) =
ṽ′ṽ when v ∈ C0 , v′ ∈ C′0 , and v + v′ ∈ (C + C′)0 . But then

tC+C′ = 〈v + v′, v + v′〉 = 〈v, v〉+ 〈v′, v′〉+ 2〈v, v′〉 = tC + tC′ + 2〈v, v′〉
so that 〈v, v′〉 = tC,C′ and the result follows from the definition. ¤

Now let π : C̃ → Λ∨ be any object of C . We have a natural multiplication

φπ,π : Mπ ⊗Mπ → Mπ⊗π

A special case of the commutativity above shows that φπ,π(x, y) = Mηπ,π
φπ,π(y, x).

Here ηπ,π is an automorphism of π⊗π . Thus φπ,π is symmetric or antisymmetric
depending as ηπ,π is trivial or nontrivial. The triviality of ηπ,π can be checked
on an element ṽ⊗ ṽ , where v ∈ C0 . We see that ηπ⊗π(ṽ⊗ ṽ) = (−1)tC−tC,C ṽ⊗ ṽ ,
so the relevant sign is

(−1)2tC− t2C
2

Example 3.7.5. If C is 2 -torsion, then φπ,π defines a bilinear form on Mπ .
Since t2C = 0 , the above calculation shows that this form is symmetric or al-
ternating, depending on the sign (−1)2tC . In other words, Mπ is an orthogonal
representation if C is orthogonal, and a symplectic representation if C is sym-
plectic.
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3.8. Examples

Let us now discuss the results of these constructions in various cases. First, let us
briefly outline what happens in the reducible case. If Λ is an orthogonal direct
sum of smaller lattices Λi , we may take Λ̃ to be a central product of the groups
Λ̃i . The Lie algebra L may be identified with the product of the corresponding
algebras Li . There is a natural multifunctor

P :
∏

i

Ci Ã C

which allows us to make a functorial identification

MP{πi} '
⊗

i

Mπi

The multifunctor P is “linear” with respect to the monoidal category struc-
tures. With respect to the product decomposition above, the maps φ may be
computed componentwise. In other words, we can reduce everything to the case
when Λ is irreducible. We now consider this case.
Example 3.8.1. Suppose Λ = An−1 . Then L is sln(Z) , the Lie algebra of
endomorphisms of Zn having trace 0 . There is an isomorphism of Λ∨/Λ with
Z/nZ . Fix π1 ∈ C having image corresponding to 1 ∈ Z/nZ ; we may identify
Mπ1 with Zn , the standard representation of L . If we set πk = π⊗k

1 for 0 ≤ k ≤
n , then Mπk

is naturally isomorphic to ∧k(Mπ1) , If k+k′ ≤ n , then the natural
map Mπk

⊗ Mπk′ → Mπk+k′ is just exterior multiplication. Note π0 and πn

are isomorphic, but not canonically: the choice of isomorphism corresponds to the
specification of an orientation on Zn . The remaining bilinear maps (corresponding
to k + k′ > n ) have a similar interpretation as exterior multiplication between
exterior powers of the dual of the standard representation.

Note from this example that the two natural maps φπ⊗π′,π′′ ◦ (φπ,π′ ⊗ 1) and
φπ,π′⊗π′′ ◦ (1 ⊗ φπ′,π′′) from Mπ ⊗Mπ′ ⊗Mπ′′ to Mπ⊗π′⊗π′′ need not coincide.
For example, take n = 2 and fix an isomorphism π0 → π2 corresponding to a
symplectic form [, ] on M = Mπ1 ; then we get two maps M⊗M⊗M → M which
are given respectively by

(v ⊗ u⊗ w) 7→ [v, u]w

and
(v ⊗ u⊗ w) 7→ [u,w]v

Thus our maps φπ,π′ are not compatible with the associativity constraints on C .
Example 3.8.2. Let Λ = Dn . Then L is the Lie algebra of Spin2n . There are
four cosets of Λ in Λ∨ . The corresponding representations of L are the trivial
representation, the standard representation on Z2n , and the two half-spin rep-
resentations ∆± . The only really interesting multiplicative structures we obtain
are maps



Vol. 76 (2001) On simply laced Lie algebras and their minuscule representations 541

Z2n ⊗∆± → ∆∓

(and “transposes” thereof). These have a natural interpretation in terms of the
action of the corresponding Clifford algebra (which contains Z2n ) acting on its
spin representation (isomorphic to ∆+ ⊕∆− ).

If Λ = E8 , then L is a form of the Lie algebra E8 over Z . Λ∨/Λ is trivial,
so there are no nontrivial minuscule representations. The other two exceptional
cases, E6 and E7 , are more interesting and we will discuss them in §5 and §6 .

3.9. The Category S

For cosets of odd order, we were able to simplify things by considering objects of
C of the form πC . We now develop an analogous formalism to handle cosets of
order 2 . We define a new category S as follows. An object of S is a pair (π, e)
where π is an object of C and e : π ⊗ π → π0 is an isomorphism. A morphism
(π, e) → (π′, e′) in S is a morphism φ : π → π′ of underlying C -objects satisfying
the compatibility condition e = e′ ◦ (φ⊗ φ)
Remark 3.9.1. Roughly speaking, objects of S parametrize self-dual minuscule
representations of L , where we keep track of the isomorphism of the representation
with its dual via the isomorphism e .

There is a natural product operation on S :

(π, e)⊗ (π′, e′) = (π ⊗ π′, (e⊗ e′) ◦ (1⊗ ηπ,π′ ⊗ 1))

This product is functorial. It is also associative: the natural isomorphism (π ⊗
π′) ⊗ π′′ ' π ⊗ (π′ ⊗ π′′) is compatible with any e, e′, e′′ . To see this, note that
both of the corresponding maps

(π ⊗ π′ ⊗ π′′)⊗ (π ⊗ π′ ⊗ π′′) → π0

differ from the symmetrically defined isomorphism

(e⊗ e′ ⊗ e′′) ◦ (1⊗ ηπ′,π ◦ ηπ′′,π′ ◦ 1) ◦ (1⊗ 1⊗ ηπ′′,π ⊗ 1⊗ 1)

by the same sign (−1){C,C′,C′′} . Consequently the isomorphism classes of objects
of S form a group which surjects naturally onto the group of 2 -torsion elements
of Λ∨/Λ . The kernel of this surjection is canonically isomorphic to 〈±1〉 .

If (π, e) is any object of S , the map e defines a morphism of C objects
π⊗π ' π0 . This prolongs to an isomorphism of S -objects (π, e)⊗(π, e) ' (π0, e

′) ,
where e′ : π0 ⊗ π0 → π0 is determined by the compatibility e′ ◦ (e ⊗ e) =
e0 ◦ (e ⊗ e) ◦ (idπ ⊗ ηπ,π ⊗ idπ) , where e0 : π0 ⊗ π0 ' π0 is the standard map.
e′ and e0 differ by the sign of ηπ,π . This determines the group structure on the
isomorphism classes of elements of S .

The group Λ̃o provides particularly nice representatives (in C ) for cosets of
odd order. Let us now attempt to handle cosets of order 2 in the same way.
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For any object E = (π : C̃ → Λ∨, e) of S , we let Λ̃E be the disjoint union
Λ̃E = Λ̃ ∪ C̃ . Λ̃ is a group which operates on C̃ on the right and on the left.
Together with the map e : C̃× C̃ → Λ̃ , we get a multiplication operation on Λ̃E .
Clearly the identity of Λ̃ serves as an identity element for Λ̃e and multiplicative
inverses exist. The associative law is more subtle. For ṽ ∈ Λ̃E , let us write

deg(ṽ) =
{

0 if ṽ ∈ Λ̃
1 otherwise

Theorem 3.9.2. For x̃, ỹ, z̃ ∈ Λ̃E , x̃(ỹz̃) = (−1)2tC deg(x̃) deg(ỹ) deg(z̃)(x̃ỹ)z̃

Proof. If any of x̃ , ỹ , and z̃ has degree 0 then x̃(ỹz̃) = (x̃ỹ)z̃ , so the result is
clear. The functions x̃⊗ỹ⊗z̃ → x̃(ỹz̃), (x̃ỹ)z̃ give two isomorphisms C̃⊗C̃⊗C̃ → C̃
which differ by a sign ε = ±1 . Take x̃ = ỹ = z̃ , where x ∈ C0 . Then x̃e(x̃, x̃) =
εe(x̃, x̃)x̃ , so that ε = (−1)〈x,2x〉 = (−1)2tC as desired. ¤

Consequently Λ̃E is a group if and only if C is orthogonal. If C is symplectic,
as is the case for the nontrivial coset of the root lattice of E7 , then Λ̃E satisfies
a more complicated “graded-associative law”.
Remark 3.9.3. Here is another way to view the construction of Λ̃E . Let C̃i

denote the i -fold product of C̃ with itself (as a Λ̃ -bitorsor). Then E specifies
an isomorphism between C̃2 and Λ̃ . The square of E is an isomorphism of C̃4

with Λ̃ , which is independent of the choice of E . Using this isomorphism, we can
define a group structure on the disjoint union H = C̃0

∐
C̃1

∐
C̃2

∐
C̃3 . Then,

if we identify E with an element of C̃2 , then E generates a subgroup of H of
order 2 . This subgroup is normal if C is orthogonal; if C is symplectic, then the
normal subgroup generated by E is {±E,±0̃} . In either case, we define Λ̃E to
be the quotient of H by the subgroup generated by E . This is equipped with a
group law if C is orthogonal, and a “nonassociative” group law if C is symplectic.

4. The Group W̃

The Weyl group of a semisimple group G is usually defined as a quotient N(T)/T ,
where T is a maximal torus of G and N(T) its normalizer. For many purposes
it is important to consider representatives of elements of the Weyl group inside of
G . However, since the sequence

0 → T → N(T) → W → 0

does not split in general, one must first pass to some extension of W . Tits ([15])
observed that one can get by with a finite extension by working with algebraic
groups over Z and restricting the above sequence to Z -valued points (on which
it is still exact). T(Z) is a finite 2-torsion abelian group, so the Z -points of N(T)
constitute a finite extension W̃ of W which actually lies in G . In this section,
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we will give a combinatorial construction of this group and analyze its structure,
for the case of simply-laced groups.
Remark 4.0.4. Our notation W̃ violated our convention in that W̃ is not a
central extension of W by 〈±1〉 . We trust that no confusion will result.

4.1. Construction of W̃

Fix a basis ∆ ⊆ Γ of simple roots. Recall ([11], Chapter 1.9) that W may be
presented by generators {rα}α∈∆ subject to the relations:

r2
α = 1

〈α, β〉 = 0 =⇒ rαrβ = rβrα

〈α, β〉 = −1 =⇒ rαrβrα = rβrαrβ

(4.1)

We will construct an extension of W̃ by giving a slightly more complicated set
of generators and relations. To begin with, W̃ should contain the Z -points of a
torus in the associated group. For simplicity, we work with the simply-connected
form; then T(Z) may be naturally identified with V = Λ/2Λ . For v in V or
Λ , we will write ev to denote the corresponding element of W̃ . Let ∆̃ denote
the preimage of ∆ in Λ̃ . We now define W̃ to be the free group generated over
V by formal symbols {nα̃}α̃∈∆̃ subject to the following relations:

n−α̃ = n−1
α̃

n2
α̃ = eα

nα̃ev = erα(v)nα̃

〈α, β〉 = 0 =⇒ nα̃nβ̃ = nβ̃nα̃

〈α, β〉 = −1 =⇒ nα̃nβ̃nα̃ = nβ̃nα̃nβ̃

(4.2)

An equivalent presentation is given in [15].
Example 4.1.1. For the lattice A1 , W̃ is isomorphic to Z/4Z , generated by
any symbol nα .

If we set each ev equal to the identity, the relations (4.2) for the nα̃ reduce
to the relations (4.1) for the rα . Hence we have an exact sequence

V → W̃ → W → 0

We will soon show that this sequence may be extended by 0 on the left.

4.2. Representations of W̃

We will now investigate the structure of the group W̃ . The group Ṽ acts on
itself by conjugation; the kernel of this action contains −1 so we get an induced
action of V on Ṽ . For ṽ ∈ Ṽ , α̃ ∈ Γ̃ , set
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nα̃(ṽ) =
{

ṽ if 〈α, v〉 = 0
α̃ṽ otherwise

One readily verifies that the relations above are satisfied, so we get an action
of W̃ on Ṽ compatible with the action of W̃ on Ṽ . There is also a natural
action of W̃ on Λ (via W ). Moreover these two actions induce the same action
on Λ/2Λ . Thus we obtain a natural action of W̃ on

Λ̃ ' Λ×V Ṽ = {λ, ṽ) ∈ Λ× Ṽ : λ ≡ v (mod 2)}
Representations of L also give rise to representations of W̃ . Let M be any

representation of L on which the action of each generator Xγ̃ is nilpotent. Then
each exp(Xγ̃) is an automorphism of MQ = M ⊗Z Q . Thus we may define
an automorphism nγ̃ = exp(Xγ̃) exp(−Xγ̃−1) exp(Xγ̃) . If M decomposes into
( Λ∨ -valued) weight spaces under the action of L , then V acts on M by the rule

v(x) = (−1)〈v,λ〉x

whenever x lies in the weight space corresponding to λ . A slightly tedious cal-
culation shows that this induces an action of W̃ on MQ .

In the special case M = Mπ of the representations constructed in the last
section, the square of the action of any Xγ̃ is zero; thus exp(Xγ̃) = 1 + Xγ̃ ,
and the automorphism nγ̃ is actually defined on Mπ itself (before making a base
change to Q ). This property also holds for representations of L that are obtained
by taking tensor products of representations of the form Mπ .

Let us compute the action of nα̃ on Mπ . If 〈α, c〉 = 0 , then Yc̃ is invariant
under exp(Xα̃) and exp(−Xα̃−1) . If 〈α, c〉 = −1 , then
exp(Xα̃) exp(−Xα̃−1) exp(Xα̃)Yc̃ = Yα̃c̃ . Similarly if 〈α, c〉 = 1 we get nα̃Yc̃ =
−Yα̃−1c̃ .

In particular, n2
α̃Yc̃ = (−1)〈α,c〉Yc̃ . If we define an action of V on Mπ by

eλ(Yc̃) = (−1)〈λ,c〉Yc̃ , then the above calculation shows that n2
α̃ = eα . It is clear

that nα̃ and nβ̃ commute when 〈α, β〉 = 0 . Moreover if 〈α, β〉 = −1 , then a
quick calculation shows that nα̃nβ̃nα̃ = nβ̃nα̃nβ̃ . Consequently we get an action

of W̃ on Mπ . Note that this action permutes the generators Yc̃ . Thus W̃ acts
on the set C̃0 (in a manner compatible with the action of W on C0 ).

Our analysis provides the setting for the following theorem:

Theorem 4.2.1. The group W̃ acts in a natural way on the groups Λ̃ , Γ̃ , and
each representation Mπ . If g, h ∈ W̃ are such that g and h induce the same
automorphism of Λ̃ and of Mπ for every π ∈ C , then g = h .

Proof. Let z = gh−1 . Since W acts faithfully on Λ , the image of z in W is
the identity; thus we may assume z = eλ for some λ ∈ Λ . We also know that z
acts trivially on Ṽ , which implies that 〈λ, v〉 is even for every v ∈ Λ . If λ /∈ 2Λ ,
then there is some v ∈ Λ∨ with 〈λ, v〉 odd. Let C be the coset of v ; then 〈λ, c〉
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is odd for all c ∈ C . Choose π : C̃ → Λ∨ in C to have image C . Then z acts
on Mπ by multiplication by −1 , contrary to the hypothesis. ¤

The above proof also shows the following:
Corollary 4.2.2. The natural map V → W̃ is injective.

We now show that the group W̃ is independent of the choice of simple roots
∆ . Before doing this, we need to make some preliminary remarks. First, we will
study the action of W̃ on Λ̃ more closely.
Lemma 4.2.3. Let β̃ , α̃ ∈ Γ̃ ⊆ Λ̃ , and let g = nβ̃ ∈ W̃ .

g(α̃) =




−β̃2 if 〈α, β〉 = −2
β̃α̃ if 〈α, β〉 = −1
α̃ if 〈α, β〉 = 0
−β̃−1α̃ if 〈α, β〉 = 1
−β̃−2α̃ if 〈α, β〉 = 2

Proof. We assume 〈α, β〉 ≤ 0 , the other cases being analogous. It suffices to
show that both sides are have the same images in both Λ and Ṽ . For Λ this is
obvious. In Ṽ , we have g(α̃) = α̃ if 〈α, β〉 is even and g(α̃) = β̃α̃ otherwise.
This proves the result in case 〈α, β〉 is 0 or −1 . If 〈α, β〉 = −2 , then g(α̃) = α̃

in Ṽ . On the other hand, α̃ and −β̃2α̃ differ by −β̃2 which lies in the kernel
of the projection Λ̃ → Ṽ . ¤

Note that W̃ is generated by the symbols nα̃ , α̃ ∈ ∆̃ . Consequently every
g ∈ W̃ has some minimal expression as a product of these generators; the minimal
number of generators required we will call the length of g .

We now investigate the action of W̃ on sets of the form C̃0 .
Lemma 4.2.4. Let π : C̃ → Λ∨ be an object of C , ṽ ∈ C̃0 , α̃ ∈ Γ̃ , g ∈ W̃. If
〈α, v〉 = −1 then g(α̃ṽ) = g(α̃)g(ṽ) .

Proof. Both expressions make sense because 〈α, v〉 = −1 implies that α̃ṽ ∈ C̃0 ,
and also the fact that W preserves lengths shows that 〈g(α), g(v)〉 = −1 so that
also g(α̃)g(ṽ) ∈ C̃0 . Using induction on the length of g , we can easily reduce
to the case where g has length 1 ; say g = nβ̃ . We will assume 〈β, v〉 ≤ 0 , the
other cases being analogous.

First suppose 〈β, v〉 = 0 , so g(ṽ) = ṽ . Since α + v ∈ C0 , we see that
−1 ≤ 〈β, α〉 ≤ 1 . If 〈β, α〉 = −1 , then g(α̃ṽ) = β̃α̃ṽ = g(α̃)g(ṽ) as desired. If
〈β, α〉 = 0 , then g(α̃ṽ) = α̃ṽ = g(α̃)g(ṽ) . If 〈β, α〉 = 1 , then g(α̃ṽ) = −β̃−1α̃ṽ =
g(α̃)g(ṽ) .

Now suppose 〈β, v〉 = −1 . Then g(ṽ) = β̃ṽ . We have 0 ≤ 〈β, α〉 ≤ 2 . If
〈β, α〉 = 0 , then

g(α̃ṽ) = β̃α̃ṽ = α̃β̃ṽ = g(α̃)g(ṽ)
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If 〈β, α〉 = 1 , then

g(α̃ṽ) = α̃ṽ = α̃β̃−1β̃ṽ = (−β̃−1α̃)(β̃ṽ) = g(α̃)g(ṽ)

Finally, if 〈β, α〉 = 2 , then

g(α̃ṽ) = −β̃−1α̃ṽ = −β̃−2β̃α̃ṽ = (−β̃−2α̃)(β̃ṽ) = g(α̃)g(β̃)

and the proof is complete. ¤

To show that the group W̃ does not depend on the choice of root basis ∆ , we
first define elements nα̃ ∈ W̃ in general. Pick any α̃ ∈ Γ̃ , and set

nα̃ = w̃nβ̃w̃−1

where w̃ is chosen so that α̃ = w̃(β̃) and β̃ ∈ ∆̃
Lemma 4.2.5. The above definition is independent of the choice of w̃ .

Proof. It suffices to show that the equation defining nα̃ actually holds when α̃ ∈
∆̃ . To verify this, we need to show that both sides induce the same transformations
of Λ , Ṽ , and each Mπ . In the first two cases this is easy, so we concentrate on
the third.

Let π : C̃ → Λ∨ be an object of C , and let c̃ ∈ C̃0 . We must show that

nα̃w̃Yc̃ = w̃nβ̃Yc̃

If 〈β, c〉 = 0 , both sides are equal to w̃Yc̃ and there is nothing to prove. We will
assume that 〈β, c〉 = −1 , the other case being analogous. We must show that

w̃Yc̃ = Yc̃′ ⇒ w̃Yβ̃c̃ = Yw̃(β̃)c̃′

which is just a special case of Lemma 4.2.4. ¤

Now if we replace ∆ with any other system ∆′ of simple roots, we get an
alternative system of generators nδ̃′ for W̃ ; these generate W̃ and are subject
to the same relations since they differ from the old generators by conjugation.
Moreover one easily checks that this new description of W̃ is compatible with the
actions of W̃ on Λ̃ and Mπ described above.

Note that nα̃ = n−α̃−1 . To see this, it suffices to check that both elements of
W̃ induce the same transformation on Λ , Ṽ , and each Mπ . On Λ , both induce
the simple reflection corresponding to ±α . For Ṽ , this follows from the fact that
α̃ and −α̃−1 have the same image in Ṽ . For the Mπ , this follows from our
earlier calculations.
Theorem 4.2.6. Let π : C̃ → Λ∨ be an object of C . There is a unique action
of W̃ on C̃ which extends the action of W̃ on C̃0 and such that the left action
Λ̃× C̃ → C̃ is W̃ -equivariant.
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Proof. Uniqueness is obvious. Pick ṽ ∈ C̃0 , and let g(ṽ) = γ̃g ṽ for g ∈ W̃ .
We define an action of W̃ on the whole of C̃ by the formula g(λ̃ṽ) = g(λ̃)γ̃g ṽ .
Clearly this definition does not change if we replace ṽ by −ṽ . We know that W
acts transitively on C0 . Thus, in order for this definition to be independent of
the choice of ṽ , it is necessary and sufficient that γ̃gh = γ̃gg(γ̃h) . This cocycle
condition is also equivalent to the fact that we have defined an action; that is, that
(gh)ṽ = g(hṽ) .

We prove the cocycle condition is satisfied by induction on the length of h . If
the length of h is zero, there is nothing to prove. If the length of h is > 1 , then
we may write h as a product h′h′′ where h′ and h′′ have smaller length. Then,
using the inductive hypothesis we get

γ̃gh = γ̃gh′h′′ = γ̃gh′gh′(γ̃g′′) = γ̃gg(γ̃h′)gh′(γ̃h′′) = γ̃gg(γ̃h′h
′(γ̃h′′)) = γ̃gg(γ̃h)

as required.
We are thus reduced to proving the result in the case h has length 1 ; that is,

h = nα̃ . Replacing α̃ with −α̃−1 if necessary, we may assume that 〈α, v〉 ≤ 0 .
If 〈α, v〉 = 0 , then h(ṽ) = ṽ , so γ̃h is the identity, and γ̃gh = γ̃g as desired.
Otherwise 〈α, v〉 = −1 ; then h(ṽ) = α̃ṽ , and we must show that g(α̃ṽ) =
g(α̃)g(ṽ) . This is precisely the statement of 4.2.4. ¤

Remark 4.2.7. Let π : C̃ → Λ∨ and π′ : C̃′ → Λ∨ be objects in C . The group
W̃ acts on C̃ and C̃′ , compatibly with its action on Λ̃ ; thus we get an induced
action of W̃ on C̃×Λ̃ C̃′ . In fact, this agrees with the action defined above (for
the object π⊗ π′ ). This follows from the uniqueness statement and the fact that
φπ,π′ , being a map of L -modules, is W̃ -equivariant.
Remark 4.2.8. The group W̃ acts on Ṽ and Λo in a compatible manner; thus
it acts on Λ̃o . This action leaves C̃ stable for any coset C of odd order. We
claim this agrees with the action defined above on C̃ . In view of the uniqueness
statement of the last theorem, it suffices to check the agreement on C̃0 , and for
generators of W̃ . This follows easily from our earlier calculations.

4.3. The Structure of W̃

The Weyl group W acts orthogonally on V via some homomorphism ψ : W →
O(V, q) . This homomorphism is covered by the action of W̃ on Ṽ we have
defined, which gives a homomorphism ψ̃ : W̃ → Aut Ṽ . Restricting ψ̃ to V ⊆ W̃ ,
one gets automorphisms of Ṽ that are trivial on V . Recall that this group is
canonically isomorphic to V∨ . Thus we have a commutative diagram:

0 −→ V −→ W̃ −→ W −→ 0
↓ ↓ ψ̃ ↓ ψ

0 −→ V∨ −→ Aut(Ṽ) −→ O(V, q) −→ 0
(4.3)
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Here the map V → V∨ simply corresponds to the pairing 〈, 〉 (mod 2) .
Lemma 4.3.1. If Γ is irreducible, then the kernel of ψ is either trivial or ±1 ,
depending on whether or not −1 ∈ W .

Proof. Suppose w ∈ W induces the identity on V . Then for any root α ,
w(α) is another root which is congruent to α modulo 2Λ . Since Γ is simply
laced, one easily sees that w(α) = εαα where εα = ±1 . If 〈α, β〉 = −1 , then
−1 = 〈w(α), w(β)〉 = εαεβ〈α, β〉 = −εαεβ , so εα = εβ . This implies that the
function ε is constant on each component of the Dynkin diagram corresponding
to a choice of simple roots. Since Γ is irreducible and the simple roots generate
Λ , we see that w = ±1 , as desired. ¤

Remark 4.3.2. Our entire construction could be carried out starting not with
the root lattice Λ , but with any lattice containing Λ and contained in Λ∨ .
Such lattices correspond to forms of the associated group other than the simply
connected form.

In particular, if we began with Λ∨ , we would get an extension W̃′ of W by
V∨ , which could be identified with the Z -points in the normalizer of a torus in
a split adjoint semisimple group over Z . One has a diagram analogous to 4.3 as
above, but the left column is replaced by the identity isomorphism

V∨ ' V∨

Consequently we may identify W̃′ with the fiber product Aut(Ṽ)×O(V,q) W , the
set of all pairs (α,w) ∈ Aut(Ṽ)×W which induce the same automorphism of V .
Remark 4.3.3. Under the map ψ , the reflection rα goes to the “reflection”

v → v − 〈v, α〉α
The image of ψ is the subgroup of O(V, q) generated by such reflections.
Remark 4.3.4. In the case of E6 , Λ∨/Λ has order 3 . Hence the natural map
V → V∨ is an isomorphism. The element −1 is not in the Weyl group so that ψ
is injective. The quadratic form q is nondegenerate on V . Since the 36 pairs of
roots all go over to nonisotropic vectors in V , we see that (V, q) has nontrivial
Arf invariant and every non-isotropic element is the image of a root. Hence the
image of ψ is group generated by all reflections: that is, all of O(V, q) . Thus ψ

is an isomorphism. Our diagram now shows that ψ̃ is an isomorphism.
For other groups, such as E7 , the situation is more complicated. Let us

now investigate the diagram 4.3 more closely. There is an induced “snake ho-
momorphism” δ from the kernel of the representation of W on V to the group
Λ∨/(Λ + 2Λ∨) .
Theorem 4.3.5. The map δ vanishes.

Proof. Clearly it suffices to prove this in the case Γ is irreducible. If ψ is injective
there is nothing to prove. Otherwise, we may assume that −1 lies in the Weyl
group. Let w̃ ∈ W̃ be a lifting of −1 ∈ W . Then w̃ acts on Λ̃ covering the
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map Λ −1→ Λ ; hence we get w̃(ṽ) = (−1)q′(v)ṽ−1 , where q′ : Λ → Z/2Z is some
function. Since W̃ acts by automorphisms, q′ is forced to satisfy the equation
q′(v + u) = q′(v) + q′(u) + 〈v, u〉 . Thus q′ differs from q by a linear functional,
so we may write q′(v) = q(v) + 〈λ, v〉 for some well-defined λ ∈ V∨ . Since the
automorphism

ṽ → (−1)q(v)ṽ−1

is trivial on Ṽ , the desired result is equivalent to the assertion that λ lies in the
image of V .

Dually, this is equivalent to the assertion that the form on V defined by pairing
with λ vanishes on the kernel of the natural map V → V∨ . Any element of this
kernel may be represented in the form 2µ , where µ ∈ Λ∨ . Let π : C̃ → Λ∨ be
such that π(µ̃) = µ . Since 2µ ∈ Λ , there is an isomorphism e : π ⊗ π ' π0 . Let
E = (π, e) . Working in Λ̃E , we have by definition

(µ̃µ̃)(µ̃µ̃)w̃ = (−1)q′(2µ)

We have seen that the group W̃ acts naturally on each torsor C̃ , compatible
with all morphisms in C̃ . Hence W̃ acts naturally on Λ̃E compatibly with its
multiplication. Thus

(−1)q′(2µ) = (µ̃µ̃)(µ̃w̃µ̃w̃) = µ̃(µ̃(µ̃w̃µ̃w̃) = ±µ̃((µ̃µ̃w̃)µ̃w̃) = ±(µ̃µ̃w̃)2 = ±1

where the sign depends on whether C is orthogonal or symplectic. On the other
hand, q(2µ) = 〈2µ,2µ〉

2 = 2〈µ, µ〉 is even or odd depending on whether or not C
is orthogonal or symplectic. It follows that

q(2µ) ≡ q′(2µ) (mod 2)

and so λ(2µ) = 0 as desired. ¤

Consequently we get a short exact sequence of finite abelian groups:

0 → (Λ ∩ 2Λ∨)/2Λ → ker ψ̃ → kerψ → 0

.
Remark 4.3.6. We may describe this extension more explicitly. Let us assume
once again that −1 ∈ W , and consider a lifting of −1 to some w̃ ∈ ker ψ̃ .
Then w̃2 is the image of some class λ ∈ V . To determine λ , consider a finite-
dimensional representation V of LC having highest weight µ ∈ Λ∨ . Recall that
W̃ , may be identified with a group of C -points of the associated simply connected
group, so it acts on V in a manner compatible with its action on Λ∨ . Let Y
be a weight vector for µ , so that Y w̃ is a weight vector for µṽ = −µ . Since
−1 ∈ W , V is self-dual via some L -invariant pairing (, ) . Then 〈, 〉 is also Weyl-
invariant, so we get (Y, Y w̃) = (Y w̃, Y w̃2

) = (Y w̃, (−1)〈λ,µ〉Y ) . Thus 〈λ, µ〉 = ±1
depending on whether the representation V is orthogonal or symplectic.
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Remark 4.3.7. Let S denote the finite abelian group of isomorphism classes of
objects in S . Our results suggest a kind of “duality” between the exact sequences

0 → (Λ ∩ 2Λ∨)/2Λ → ker ψ̃ → kerψ → 0

and
0 → 〈±1〉 → S → (Λ∨ ∩ 1

2
Λ)/Λ → 0

4.4. Invariant Tensors

Let πi : C̃i → Λ∨ be objects of C for 1 ≤ i ≤ k , and write Mi for Mπi . An
element of M = M1 ⊗ · · · ⊗Mk has the form

x =
∑

ci∈(Ci)0

mc̃1,...,c̃k
Yc̃1 ⊗ · · · ⊗ Yc̃k

where the coefficients satisfy the relation

mc̃1,...,c̃i−1,−c̃i,c̃i+1,...,c̃k
= −mc̃1,...,c̃i−1,c̃i,c̃i+1,...,c̃k

so each term in the sum is independent of the representatives {c̃i} chosen to
represent the {ci} . We have the same description of elements of MR for any
commutative ring R : one only needs to allow the coefficients to take values in R .

If x is invariant under the action of the whole of L , then it is invariant under
the action of W̃ . This in turn is equivalent to mc̃1,...,c̃k

= mw̃c̃1,...,w̃c̃k
for all

w̃ ∈ W .
If k = 3 , more information is available:

Lemma 4.4.1. Suppose that k = 3 and that x ∈ MR is LR -invariant. The
coefficient mc̃1,c̃2,c̃3 vanishes unless c1 + c2 + c3 = 0 .

Proof. Over Z , this follows from the Λ -invariance of x . However, we want to
give a proof that is valid over an arbitrary commutative ring.

To show that c1 + c2 + c3 = 0 , it suffices to show that 〈α, c1 + c2 + c3〉 = 0
for every α ∈ Γ . Replacing α by −α if necessary, we may assume k = 〈α, c1 +
c2 + c3〉 ≤ 0 . If k = 0 we are done. If k = −1 , then α ∈ Λ does not annihilate
x , a contradiction.

Suppose k < −1 . Then 〈α, ci〉 ≤ 0 for each i . Without loss of generality,
〈α, c1〉 = −1 . Then the coefficient of Yα̃c̃1 ⊗ Yc̃2 ⊗ Yc̃3 in Xα̃x is mc̃1,c̃2,c̃3 . The
L -invariance of x then implies that this coefficient vanishes. ¤

Using this, we can easily prove the following:
Theorem 4.4.2. Let k = 3 . Then (MR)LR is a free R -module of rank 1 if
C1 + C2 + C3 = 0 ∈ Λ∨/Λ , and vanishes otherwise.

Proof. The vanishing follows from the lemma we just proved. For the second
claim, fix a triple c̃1, c̃2, c̃3 such that c1 + c2 + c3 = 0 . This induces a map
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ψ : (MR)LR → R

x 7→ mc̃1,c̃2,c̃3

Since W acts transitively on the collection of triples {(a1, a2, a3) ∈ C1
0×C2

0×
C3

0 : a1 + a2 + a3 = 0} , the W̃ -invariance of x ∈ (MR)LR shows that all nonzero
coefficients of x are determined by mc̃1,c̃2,c̃3 . This proves that ψ is injective. For
the surjectivity, we choose an isomorphism π1 ⊗ π2 ' (π3)−1 . The “transpose”
of the multiplication map φπ1,π2 gives rise to an element x of (MR)LR with
ψ(x) = ±1 . ¤

Corollary 4.4.3. Let π be an object of C , M = Mπ . Then all LR -endomor-
phisms of MR are given by scalar multiplication by elements of R .

Proof. Apply Theorem 4.4.2 to π , π−1 , and π0 . ¤

Using this, we can finally prove our claim concerning the automorphism group
of the representations Mπ .
Corollary 4.4.4. Let π be an object of C , M = Mπ . Every LR -automorphism
of MR is given by scalar multiplication by a unit in R . In particular, every
automorphism of M is given by multiplication by ±1 .
Remark 4.4.5. These results do not generalize in a simple way to invariant
tensors of degree k > 3 . We will see this when we examine E7 in the case k = 4 .

5. The Lie Algebra E6

Let C be a 3 -torsion element of Λ∨/Λ , and let π : C̃ → Λ∨ have image C . Let
η be a generator for the rank 1 Z -module (Mπ ⊗Mπ ⊗Mπ)L . We can choose
an isomorphism π⊗ π ' π−1 so that η corresponds to the map φπ,π . This map
is symmetric or skew-symmetric depending on the sign (−1)2tC− t2C

2 ; since t2C =
t−C = tC , we see that η is symmetric in the first two factors if 3tC ≡ 0 (mod 4)
and antisymmetric otherwise. Exactly the same reasoning applies to symmetry
when other factors are exchanged. Thus η is either completely symmetric or
completely antisymmetric.

This applies in particular if C is a generator of Λ∨/Λ when Λ = E6 , which
we will assume for the remainder of this section. We have seen that tC = 4

3 , so
that η is completely symmetric. Thus we see that the minuscule representation
Mπ is a rank 27 Z -module equipped with a symmetric trilinear form η . This
section is devoted to the study of η .
Remark 5.0.6. To avoid cumbersome notation, we will actually study the in-
variant cubic polynomial on Mπ , rather than the invariant form. The polynomial
lives in S3 Mπ , while the invariant form lives in S3(Mπ

∨) . Up to replacing π by
π−1 , there is no difference.
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5.1. The Weyl Group of E6

Before diving in to the study of E6 , we collect here a few facts concerning its Weyl
group. The computations necessary to justify the numerical assertions which follow
are elementary, so we leave them to the reader.

We saw earlier that the Weyl group W of E6 is isomorphic to the orthogonal
group of the nondegenerate 6 -dimensional F2 quadratic space, which has Arf
invariant 1 . This group has order 27345 . Theorem 2.5.1 shows that V admits
an Hermitian structure which induces its quadratic form. The automorphisms of
V which preserve this Hermitian structure form a subgroup of W isomorphic to
the unitary group U3(2) , which has order 2334 . Its center has order 3 , and it
is isomorphic to the centralizer of its center in W (a fact which underlies what
follows).

Another subgroup of W will be relevant in what follows. Since V has Arf in-
variant 1 , a maximal isotropic subspace U ⊆ V is 2 -dimensional. The stabilizer
of such a subspace is a maximal parabolic subgroup P of W , and has index 45 in
W . In P there is a unique nontrivial transformation which is the identity when
restricted to U⊥ ; this is a central involution σ ∈ P , and P is the centralizer of σ
in W . By Witt’s extension theorem, W acts transitively on the isotropic planes
contained in V . Thus there are precisely 45 such planes.

For more details we refer the reader to [5].

5.2. The Invariant Cubic

Since Λ has index 3 in Λ∨ , we have Λo = Λ∨ . Note that if v0, v1, v2 ∈ C0 are
such that v0 + v1 + v2 = 0 , then 〈vi + vj , vi + vj〉 = 〈vk, vk〉 = tC , so we cannot
have vi = vj . It follows that as σ ranges over the symmetric group S3 , all 6
terms ±Yṽσ(0)

⊗Yṽσ(1)
⊗Yṽσ(2)

are distinct. Consequently, the symmetric tensor η

is the polarization of an integral cubic polynomial Θ(z) ∈ S3 Mπ . More explicitly,
we may write this cubic as a sum

Θ(z) =
∑

{w,w′,w′′}⊆C0,w+w′+w′′=0

(w̃w̃′w̃′′)Yw̃Yw̃′Yw̃′′

Remark 5.2.1. Returning for the moment to the situation of general Λ , suppose
C is a coset of odd order in Λ∨/Λ . If v, v′ ∈ C0 have the same reduction
modulo 2Λo (recall that Λo is the union of all cosets ∈ Λ∨/Λ having odd order),
then v − v′ ∈ Λ ∩ 2Λo = 2Λ . Then v+v′

2 ∈ C , contradicting the minimality of
〈v, v〉 = 〈v′, v′〉 . Thus the reduction map C0 → Λo/2Λo ' Λ/2Λ is injective.

This remark applies in particular to the case of E6 : the triples {w,w′, w′′}
appearing in the above sum are determined by their reductions {w,w′, w′′} in
V . Any such triple consists of the nonzero elements in some plane of V . Since
tC = 4

3 is divisible by 4 , q vanishes identically on such a plane. Moreover, the
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Weyl group acts on the set of triples {w,w′, w′′} which sum to zero compatible
with its action on the isotropic 2 -planes of V . Since W → O(V, q) is surjective
in this case, Witt’s extension theorem implies that W acts transitively on the
isotropic planes. Thus there are precisely 45 terms in the expression for Θ ,
which correspond bijectively to the 45 isotropic planes in V .

In order to get a more explicit formula for Θ , we need to choose a set of genera-
tors for its weight spaces. In order to do this, we need to introduce some additional
data. Note that V is a 6 -dimensional quadratic space over F2 with Arf invari-
ant 1 , so it admits a compatible Hermitian structure by Theorem 2.5.1. Fix an
element ω ∈ Aut(Ṽ) of order 3 with only central fixed points. This determines a
Hermitian form h on V characterized by the property that Tr(h(v, v′)) = 〈v, v′〉 .
Using the identification of Ṽ with the group V provided by Theorem 2.5.1, we
get canonical liftings vω ∈ Ṽ for each v ∈ V . If ω is clear from context we will
simply write v instead of vω .

Now we have a canonical basis for Mπ , given by {Yv}v∈C0 . Given a triple
{v, v′, v′′} of nonzero elements in an isotropic plane, we can ask: in the invariant
cubic, what is the sign on the term YvYv′Yv′′ ? This is easily computed: we know
the sign to be given by

v v′v′′ = (−1)Tr(ωh(v,v′)+ωh(v,v′′)+ωh(v′,v′′))

Using the fact that v′′ = v + v′ and that h(v, v) = q(v) = 0 , we see that the sign
is given by (−1)Tr(ωh(v′,v′′)) .

Since v′ + v′′ = v is isotropic, we have 0 = 〈v′, v′′〉 = Tr(h(v′, v′′)) so that
h(v′, v′′) ∈ F2 . If h(v′, v′′) = 0 , then since h(v′, v′) = q(v′) = 0 = q(v′′) =
h(v′′, v′′) , h must vanish on the entire F4 -vector space generated by v′ and v′′ .
Since V is nondegenerate, this vector space can be at most 1 -dimensional and we
see that v′ and v′′ are linearly dependent. Conversely, if v′ and v′′ are linearly
dependent, than h(v′, v′′) is a multiple of h(v′, v′) = q(v′) = 0 . Therefore the
sign v v′v′′ is 1 if {w,w′, w′′} span an F4 -line in V , and −1 otherwise.

There are 27 nonzero isotropic vectors in V and the multiplicative group
F×4 acts freely on them. The 9 orbits correspond bijectively to 9 terms in the
invariant cubic with coefficient 1 , while the other 36 terms have coefficient −1
(assuming the form to be written in terms of the canonical basis obtained from ω ).
Note that although the basis Yv depends on the choice of ω , the signs in the cubic
form depend only on the induced F4 -structure on V . They are even unchanged
if the F4 -structure is altered by an automorphism of F4 . (For example, we could
replace ω with ω2 ; this has the effect of replacing v with (−1)q(v)v , and in
particular leaves every generator Yv for Mπ unchanged.) Thus, we have proven
the following:
Theorem 5.2.2.

Θ(z) =
∑

p={0,v,v′,v′′}⊆V

YvYv′Yv′′ −
∑

q={0,v,v′,v′′}⊆V

YvYv′Yv′′

where p ranges over the 9 isotropic planes in V which are F4 -invariant and q
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ranges over the remaining 36 isotropic planes which are not.

5.3. Combinatorics of the Signs

The goal of this section is to prove that our explicit description of the cubic
invariant under E6 , as given in the last section, is “optimal” in some sense. We
continue to assume Γ is the root system of E6 , and C ∈ Λ∨/Λ is nontrivial. We
will frequently identify C0 with its image in V .

Let us introduce some terminology. Let X denote the set of all isotropic 2-
dimensional subspaces of V . If x, y ∈ X , we call x and y adjacent if x ∩ y is
nontrivial. Note that for x ∈ X , any isotropic vector orthogonal to all of x must
lie in x , since otherwise the 3-dimensional subspace spanned by that vector and
x would be totally isotropic, contradicting the fact that Λ/2Λ has Arf invariant
1. Consequently, if x, y ∈ X are not adjacent then the restriction of 〈, 〉 to x× y
is nondegenerate, so (x⊕ y, q|(x⊕ y)) is a nondegenerate quadratic space of Arf
invariant 0 . q cuts out a split quadric surface in P(x⊕y) , which has two rulings
by lines. P(x) and P(y) are lines of the quadric which do not meet, hence they
belong to the same ruling, together with some other line P(z) . In this situation
we will say that x , y and z are collinear. The quadric surface has another ruling
by lines, corresponding to another collinear triple x′, y′, z′ , which we will refer to
as the conjugate triple to {x, y, z} . The following easy fact will be needed in the
next section:

Theorem 5.3.1. W acts transitively on the collinear (noncollinear) triples of
nonadjacent elements of X .

Proof. In both cases this is a consequence of Witt’s extension theorem. ¤

A basis is a choice v ∈ C̃0 of preimage for each v ∈ C0 . Every basis B
determines a map sB : X → {±1} , given by {v, v′, v′′} → v v′v′′ . A signing is an
element of {±1}X which arises in this way. If s is a signing, we let Xs = {x ∈
X : s(x) = 1} , and |s| = |Xs| .

A marking is an element g ∈ Aut(Ṽ) of order 3 with only central fixed points.
We saw in the last section that every marking determines a basis B with |sB| = 9 .
If g is a marking then g2 is also a marking, which we will refer to as the conjugate
marking; we have seen that conjugate markings determine the same basis.

Every basis B (in this combinatorial sense) gives a Z -basis for MC , with
respect to which we may write the invariant cubic as∑

x={0,v,v′,v′′}∈X

sB(x)YvYv′Yv′′

Thus, |s| is the number of terms in the corresponding expression for Θ in which
the coefficient 1 appears.
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There are 227 possible choices of basis, and some will be better than others.
One might ask if it is possible to choose a basis B such that sB is constant; that
is, all the signs in the invariant cubic are the same. This is in fact impossible:
there does not exist a basis B such that |sB| = 0 . This naturally leads us to
ask: what is the minimal value of |sB| , and for what “optimal bases” is this value
achieved? This question is answered by the following result:
Theorem 5.3.2. For any basis B , we have |sB| ≥ 9 , and equality holds if and
only if B is the basis associated to some marking.

The proof of this result will occupy the rest of this section. Our first objective is
to determine the basic relationships between the various objects we are considering.

Note that the group V∨ acts freely on the collection of all basis: if B is a
basis, then set λB = {(−1)λ(v)v : v ∈ B} . V∨ also acts freely on the collection of
markings via right multiplication inside Aut(Ṽ) . If g is a marking with associated
basis B , then the basis associated to gλ is the set

Bgλ = {ṽ ∈ C̃0 : ṽ(gλ)ṽ(gλ)2 ṽ = 0 ∈ Ṽ}
But

ṽ(gλ)ṽ(gλ)2 ṽ = (−1)λ(v)+λ(v)+λ(g(v))ṽg ṽg2
ṽ

Thus Bgλ = g(λ)Bg .
Theorem 5.3.3. • There are 5120 markings.
• Two markings determine the same basis if and only if they are conjugate.
• There are 227 bases. Two bases determine the same signing if and only if they

differ by the action of V∨ . Thus there are 221 signings.

Proof. We begin with the third claim. For any pair of bases B = {v} and
B′ = {v̂} , we can define a function λ : C0 → ±1 by the rule λ(v) = vv̂ . Our goal
is to show that λ extends to a linear functional on V if and only if sB = sB′ .
One direction is obvious; for the other, note that sB = sB′ translates into the
statement that λ(v + v′) = λ(v) + λ(v′) whenever 〈v, v′〉 = 0 .

Let x ∈ V . If x = 0 , set f(x) = 0 ; if x 6= 0 but q(x) = 0 set f(x) = λ(x) .
Finally, if q(x) = 1 , then choose y such that 〈y, x〉 = 1 and q(y) = 0 (there are
12 such choices for y ), and set f(x) = λ(y) + λ(x + y) . We first show that f is
well-defined. For this, we must show that if q(x) = 1 and y, y′ are chosen with
〈y, x〉 = 〈y′, x〉 = 1 , q(y) = q(y′) = 0 , then λ(y) + λ(x + y) = λ(y′) + λ(x + y′) .
If y = y′ + x this is obvious. Replacing y′ by x + y′ if necessary, we may
assume 〈y, y′〉 = 1 . We may rewrite the desired equality as λ(y) + λ(x + y′) =
λ(y′) + λ(x + y) , which follows since both sides are equal to λ(x + y + y′) by our
assumption on λ .

Now we must show that f is linear. Note that the relation f(x + y) =
f(x) + f(y) is symmetric in x , y , and z = f(x + y) . If any of x , y , and
z is zero, the result is obvious, so assume otherwise. If q(x) = q(y) = q(z) = 0
the result follows from our assumption on λ . If q(x) = q(y) = 0 , q(z) = 1 , the
result follows from the definition of f(z) . So now assume q(x) = q(y) = 1 . We
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can choose w with 〈x,w〉 = 〈y, w〉 = 1 , q(w) = 0 (there are 4 such choices for
w ). Then

f(x) + f(y) = λ(w) + λ(x + w) + λ(w) + λ(y + w) = f(x + w) + f(y + w) = f(z)

by the case just handled.
Now we verify the second statement. Suppose two markings g and g′ deter-

mine the same basis. Then they determine the same signing s . Pick v ∈ C0 ;
the results of the last section show that for v ∈ x , s(x) = 1 if and only if
x = {v, g(v), g2(v)} . The same is true of g′ so we get g′(v) ∈ {g(v), g2(v)} .
Replacing g′ by its conjugate if necessary, we may assume g(v) = g′(v) . Now
we claim that g and g′ induce the same F4 -structure on V . Note that K =
{w : 〈v, w〉 = 1, q(w) = 0} , together with v , spans V , so it suffices to check
equality for w ∈ K . The above argument shows that either g(w) = g′(w) or
g2(w) = g′(w) . But 〈v, w〉 = 1 implies 〈g(v), g(w)〉 = 1 , which is impossible in
the latter case.

Thus g and g′ induce the same action on V , so g′ = gλ for some λ ∈ V∨ .
Our earlier analysis now applies to show that Bg = Bg′ = g(λ)Bg , which gives
λ = 0 and g = g′ .

For the first statement, note that V∨ acts freely on the set of markings, and
its orbits correspond to all possible F4 -structures on V compatible with q . The
number of such orbits is equal to the index of U(V, h) in O(V, q) , which is
27345
2334 = 80 . ¤

If g is a marking, let us write sg for sBg
. We will call such signings special.

The proposition above shows that there are 40 special signings. Note that if
s is special, corresponding to some F4 -structure on V , then Xs consists of
all isotropic F4 -lines in V . No two distinct F4 -lines meet nontrivially, so the
elements of Xs are pairwise nonadjacent. Consequently, for x, y ∈ Xs , there is
a unique z ∈ X such that x , y , and z are collinear. In fact, this z also lies in
Xs . The situation is summarized by the following proposition.
Theorem 5.3.4. If s is special, x, y ∈ Xs , then there is a unique z ∈ Xs with
collinear to x and y . This notion of “collinear” endows Xs with the structure of
a two-dimensional affine space over F3 . There are 12 collinear triples {x, y, z}
in Xs , and X −Xs is a disjoint union of the 12 conjugate triples {x′, y′, z′} .

Proof. We will postpone a proof of the assertions regarding the structure of Xs

until the next section. Granting these for the moment, let us prove the last claim.
Since we know X − Xs has 36 elements, it suffices to show that given dis-
tinct collinear {x0, y0, z0}, {x1, y1, z1} ⊆ Xs , the conjugate triples {x′0, y′0, z′0}
and {x′1, y′1, z′1} are disjoint. If not, then without loss of generality x′0 = x′1 ,
and x′0 meets x0 , y0 , z0 , x1 , y1 , and z1 nontrivially. Since p, q ∈ Xs

meet nontrivially if and only if they coincide and x′0 − {0} has 3 elements, the
set {x0, y0, z0, x1, y1, z1} can contain at most 3 elements, thus {x0, y0, z0} =
{x1, y1, z1} , contrary to our assumption. ¤
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Lemma 5.3.5. Let s be a special signing, s′ any signing. Suppose Xs∩Xs′ = ∅
(Xs ∩Xs′ = {x})) . Then Xs′ has at least 12 elements (Xs′ contains at least 8
elements not adjacent to x) .

Proof. Consider V to be endowed with the F4 -structure corresponding to s .
We can choose bases B and B′ so that s = sB , s′ = sB′ ; then there is some
function ε : C0 → ±1 such that ṽ ∈ B if and only if ε(v)ṽ ∈ B′ .

For each y ∈ Xs ( Xs − {x} ), y /∈ Xs′ . Thus the set of {v ∈ y − {0} :
ε(v) = −1} is odd. Note that F×4 acts freely on the 36 elements of X − Xs .
Let {z, ωz, ω2z} denote an orbit. Then z ∪ωz ∪ω2z consists of 0 together with
three isotropic F4 -lines. Each of these isotropic lines contains an odd number
of v with ε(v) = −1 (if z is not adjacent to x ). So z ∪ ωz ∪ ω2z contains
an odd number of nonzero v with ε(v) = −1 . Consequently, we see that one of
{z, ωz, ω2z} contains an odd number of nonzero v with ε(v) = −1 . Say z does,
then s′(z) = −s(z) = 1 .

We have shown that every F×4 -orbit on X−Xs (whose members are adjacent
to x ) meets Xs′ . An easy count shows that there are 12 (8) such orbits, and the
proposition follows. ¤

We may now prove a weak version of our main result.

Lemma 5.3.6. Suppose s is a signing with |s| ≤ 9 . Then |s| = 9 .

Proof. There are 40 special signings s′ , each of which assumes the value 1 on
1
5 of the elements of X . By homogeneity, for each x ∈ X , there are 8 special
signings that are positive on x . Thus there are at most 72 pairs (x, s′) where
s(x) = s′(x) = 1 and s′ is special. By the Pigeonhole Principle, there is a special
signing s′ for which Xs′ ∩ Xs has size at most 1 . If Xs ∩ Xs′ is empty, then
|s| ≥ 12 , a contradiction. Otherwise, there is some x ∈ Xs∩Xs′ and Xs contains
at least 8 other elements not adjacent to x . Thus |s| ≥ 9 and we are done. ¤

We must now show that if |s| = 9 , s is special. Our basic strategy is to find
special signings s′ which approximate s , in the sense that Xs∩Xs′ may be made
large. So we need to obtain some tools for measuring the size of Xs ∩Xs′ .

Lemma 5.3.7. Let s be an arbitrary signing and s′ special. Then

|s| ≡ |Xs ∩Xs′ |+ k (mod 2)

where k is the number of lines in the affine space Xs′ meeting Xs is an odd
number of points.

Proof. Each element of Xs either lies in Xs′ or lies in a triple {x′, y′, z′} conju-
gate to a line {x, y, z} of Xs′ . Since there are an even number of lines, it suffices
to show that for every such triple {x, y, z} ,

|Xs ∩ {x, y, z}|+ 1 ≡ |Xs ∩ {x′, y′, z′}| (mod 2)
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or in other words, s(x)s(y)s(z) = −s(x′)s(y′)s(z′) . Let s = sB , s′ = sB′ , and
let ε : C0 → ±1 be such that ṽ ∈ B if and only if ε(v)ṽ ∈ B′ . Then

s(w) = s′(w)
∏

v∈w−{0}
ε(v)

Since the nonzero elements of x∪ y ∪ z and the nonzero elements of x∪ y ∪ z , it
suffices to verify that s′(x)s′(y)s′(z) = −s′(x′)s′(y′)s′(z′) , which is obvious. ¤

Corollary 5.3.8. Let s be a signing with |s| = 9 , and let s′ be a special signing.
Then |Xs ∩Xs′ | cannot be equal to 2 or 4 . If |Xs ∩Xs′ | = 3 then |Xs ∩Xs′ |
is a line of Xs′ .

Proof. Let K = Xs ∩ Xs′ . Then the lemma implies that 9 ≡ |K| + k (mod 2) ,
where k is the number of lines in Xs′ meeting K in an odd number of points.
But k is readily computed directly: if |K| = 2 , then k = 6 . If |K| = 4 then
k = 8 if K contains a line of Xs′ and k = 6 otherwise. If |K| = 3 and K is
not a line, then k = 3 . In each case we get a contradiction. ¤

Lemma 5.3.9. Let s be a signing, s′ a special signing. Then |s| ≥ |Xs∩Xs′ |+k ,
where k is the number of of lines in Xs′ meeting Xs exactly twice.

Proof. It suffices to show that for each line {x, y, z} ⊆ Xs′ meeting Xs exactly
twice, the conjugate line {x′, y′, z′} meets Xs′ . Assume x, y ∈ Xs . Write
s = sB , s′ = sB′ , and let ε : C0 → ±1 be such that ṽ ∈ B if and only if
ε(v)ṽ ∈ B′ . Then on x − {0} and y − {0} , ε assumes the value −1 an even
number of times, while on z − {0} it assumes the value −1 an odd number
of times. Consequently ε assumes the value −1 an odd number of times on
(x∪ y ∪ z)− {0} = (x′ ∪ y′ ∪ z′)− {0} . Without loss of generality, ε assumes the
value −1 an odd number of times on x′ − {0} . Then s(x′) = −s′(x′) = 1 , so
x′ ∈ Xs as desired. ¤

Corollary 5.3.10. Let s be a signing with |s| = 9 , and let s′ be a special
signing. Then |Xs ∩Xs′ | cannot be 5, 6, 7 , or 8 .

Proof. Let K = Xs ∩Xs′ . The lemma shows that 9 ≥ |K| + k , where k is the
number of lines of Xs′ meeting K exactly twice.

If |K| = 8 , then any of the four lines through the unique element of Xs′ −K
meets K exatly twice. Thus 9 ≥ 8 + 4 , a contradiction.

If |K| = 7 , any line meeting Xs′ − K meets K exactly twice except for the
line joining the two points of Xs′ −K . Thus 9 ≥ 7 + 6 , a contradiction.

Suppose |K| = 6 . If Xs′ −K is a line, then k = 8 is the number of lines not
parallel to this line, so 9 ≥ 6 + 8 . If Xs′ −K is not a line, then a line meets K
exactly twice if and only if it meets Xs′−K exactly once, so k = 6 and 9 ≥ 6+6 .

Finally, suppose |K| = 5 . If Xs′−K contains a line, then k = 7 and 9 ≥ 5+7 .
If Xs′ −K does not contain a line, we need to work a little harder. Let K be the
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union of the lines {x, y, z} and {x, y′, z′} . The last lemma shows that Xs meets
the lines conjugate to yy′ , yz′ , zy′ and zz′ . Consequently, we see that each of
{y, z, y′, z′} is adjacent to two other points of Xs , and each point of Xs − Xs′

is adjacent to two points in {y, z, y′, z′} . Thus x is the only point in Xs which
is not adjacent to another point of Xs . Consequently, for any special s′′ such
that |Xs ∩Xs′′ | = 1 , we get Xs ∩Xs′′ = {x} . Suppose there are n such special
signings s′′ . For any other special signing, |Xs∩Xs′′ | ≥ 3 . Counting the number
of pairs {(w, s′′) : w ∈ Xs′′} in two different ways, we get 72 ≥ n + 3(40 − n) ,
so that n ≥ 24 . On the other hand, there are exactly 8 special signings s′′ with
x ∈ Xs′′ , so that n ≤ 8 , a contradiction. ¤

Lemma 5.3.11. Let s be a signing, s′ a special signing, and suppose |Xs∩Xs′ |
is a line in Xs′ . Then there is another special signing s′′ with |Xs ∩Xs′′ | > 3 .

Proof. Let {x, y, z} ⊆ Xs′ be a line parallel to Xs∩Xs′ . Write s = sB , s′ = sB′ ,
and let ṽ ∈ B if and only if ε(v)ṽ ∈ B′ . Then since {x, y, z} does not meet Xs ,
ε assumes the value −1 an odd number of times on x−{0} , y−{0} , and z−{0} ,
hence on (x ∪ y ∪ z)− {0} . If {x′, y′, z′} is the conjugate line, then without loss
of generality, ε assumes the value −1 an odd number of times on x′ , so that
s(x′) = −s′(x′) = 1 . It suffices to show that we can choose s′′ special so that
Xs ∩Xs′ ⊆ Xs′′ and x′ ∈ Xs′′ .

Consider V to be endowed with an F4 -structure corresponding to s′ . The line
Xs′ ∩Xs corresponds to an F4 -subspace M ⊆ V on which q is nondegenerate.
Correspondingly we may decompose V = M⊕M⊥ as F4 -Hermitian spaces. We
may define a new F4 -structure on V which is the same on M , but conjugated
by the nontrivial automorphism of F4 on M⊥ . This gives rise to new special
signing s′′ . Since the F4 -structures agree on M , we get Xs ∩ Xs′ ⊆ Xs′′ . To
complete the proof, we show that x′ ∈ Xs′′ .

By construction, x′ is not adjacent to any element of Xs ∩ Xs′ . Thus x′

meets M trivially, so it projects isomorphically to M⊥ . Thus we may identify x′

with {m + g(m) : m ∈ M⊥} , where g : M⊥ → M is some F2 -linear map. q is
isotropic on x′ ; thus

0 = q(m + g(m)) = q(m) + q(g(m)) + 〈m, g(m)〉 = q(m) + q(g(m))

so that g is an isometry. Thus g(M⊥) is a 2 -dimensional subspace of M on
which g has Arf invariant 1 . There are precisely two such subspaces, and these
are permuted by F×4 ; since this group has odd order, it permutes them trivially,
so g(M⊥) is an F4 -line in M .

Given F4 -structures on M and M⊥ , the condition that x′ be an F4 -subspace
of V is that g be F4 -linear. An F2 -isomorphism of two one-dimensional F4 -
vector spaces is either linear or antilinear. Since we know x′ /∈ Xs′ , g is not
linear with respect to the original F4 -structure on M⊥ . Thus it is linear with
respect to the twisted structure and we get x′ ∈ Xs′′ as desired. ¤
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We can now give the proof of Theorem 5.3.2:

Proof. We have seen that |s| = 9 . Choose s′ special so that n = |Xs ∩Xs′ | is
as large as possible. If n ≤ 1 , then Xs ∩Xs′ ≤ 1 always, so that

72 = {(x, s′) : x ∈ Xs ∩Xs′} =
∑
s′
|Xs ∩Xs′ | ≤ 40

Thus n > 1 . On the other hand, Corollary 5.3.8, Lemma 5.3.10 and Corollary
5.3.11 imply that n 6= 2, 3, 4, 5, 6, 7, 8 . Thus n = 9 , and Xs = Xs′ , so s = s′ is
special. ¤

Remark 5.3.12. There are other ways to understand our optimal expression for
the cubic form. For example, one may identify the group E6 with the set of
automorphisms of

Hom(V0,V1)⊕Hom(V1,V2)⊕Hom(V2,V0)

preserving the cubic form

(φ, φ′, φ′′) → det(φ) + det(φ′) + det(φ′′) + Tr(φ′′ ◦ φ′ ◦ φ)

Here the Vi are taken to be free modules of rank 3 equipped with specified
generators of the ∧3(Vi) (so that the determinants are well defined). See [1] for
details. One sees immediately that with respect to a choice of basis of the Vi ,
the cubic form is expressed as a sum of 45 monomials with 36 plus signs and
9 minus signs. Thus, (the negative of) this expression of the cubic is associated
to some marking g ∈ W̃ ⊆ E6 . Choose bases {vi, v

′
i, v

′′
i } for the Vi so that the

associated volume form on each Vi is given by vi∧v′i∧v′′i , and consider the maps
gi defined by the condition that gi(vi) = v′i , gi(v′i) = v′′i , gi(v′′i ) = vi . Together
these maps induce a transformation of

Hom(V0,V1)⊕Hom(V1,V2)⊕Hom(V2,V0)

which is the required marking.
It is not difficult to check that the centralizer of a marking g ∈ E6 is a sub-

group of the form H = (SL3×SL3×SL3)/µ3 , where µ3 is a central subgroup
embedded diagonally. Under the action of the group H , a nontrivial minuscule
representation of E6 decomposes as above:

V ' Hom(V0,V1)⊕Hom(V1,V2)⊕Hom(V2,V0)

Of course, g is not a marking with respect to a maximal torus of H , since g is
central in H .

5.4. Cubic Surfaces

Let S be a smooth cubic surface (over the complex numbers). For general back-
ground on such surfaces, we refer the reader to [9].
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Recall that we may identify Λ with the primitive cohomology of S (that is,
the collection of all classes x ∈ H2(S,Z) having zero intersection with −KX ) and
Λ∨ with the quotient of H2(S,Z)/Zc1(KS) . Via this identification, the elements
of C0 are precisely the images of the funademental classes of the 27 lines on S .

Three vectors sum to zero in Λ∨ if and only if their sum in H2(S,Z) is a
multiple of the hyperplane class. Since a line has degree 1 , we see that three
weights of Mπ sum to zero if and only if the three corresponding lines constitute
a hyperplane section of S . In other words, we may identify X (the collection of
isotropic planes in V ) with the collection of tritangent planes to S .

The following fact will be needed later:
Lemma 5.4.1. Let Q denote the abelian group generated by symbols {gL} , where
L ranges over the lines on Z , subject to the relations:

gL + gL′ + gL′′ = 0 if L ∪ L′ ∪ L′′ is a hyperplane section of Z

The natural map φ : Q → Λ∨ is an isomorphism.

Proof. It is easy to see that φ is surjective. Realize S as P2 blown up at 6
points {pi} . For each index i , the exceptional divisor Ei over pi is a line on Z ,
as is the proper transform Ci of a conic passing through the remaining 5 points.
The other lines on Z are the proper transforms Lij of lines joining pi and pj .
Let Q0 denote the subgroup of Q generated by the gEi

. Then Λ∨/φ(Q0) is
isomorphic to Z/3Z . Thus φ(Q0) has rank 6 ; and φ|Q0 is an isomorphism
onto its image. Thus, to prove φ is injective, it suffices to show that Q/Q0 has
size ≤ 3 . Let g′L denote the image of gL in Q/Q0 .

Since Ei , Lij , and Cj are coplanar, we see that g′Lij
+ g′Cj

= 0 . Applying
this twice, we see that g′Lij

= g′Lkj
for any i, j, k . Applying this twice, we see

that g′Lij
does not depend on i or j ; let us denote this element of G/G0 by

g′L . From g′Lij
+ g′Cj

= 0 , we see that g′Cj
= −g′L , so g′L generates G/G0 . If

a, b, c, d, e, f are all distinct, then Lab , Lcd , and Lef are coplanar. It follows
that 0 = g′Lab

+ g′Lcd
+ g′Lef

= 3g′L , so that Q/Q0 has size at most 3 as required.
¤

For nonzero isotropic x ∈ V , we let lx denote the corresponding line of S .
Then lx meets ly if and only if 〈x, y〉 = 0 , in which case x and y generate
an element of X corresponding to the tritangent hyperplane spanned by lx and
ly . Hence each line of S meets precisely 10 of the other 26 lines. Moreover,
since V has no totally isotropic 3-dimensional subspaces, given any p ∈ X and
any nonzero isotropic x not contained in p , x /∈ p⊥ so that the form y → 〈x, x〉
vanishes on precisely one nonzero element of p . Thus given a tritangent plane to
S meeting S in l ∪ l′ ∪ l′′ , each of the other 24 lines meets exactly one of l , l′ ,
and l′′ .

Of particular interest to us are Eckard planes: tritangent planes meeting S in
three concurrent lines. The point of concurrency of these lines is called an Eckard
point of S . Suppose p and p′ are Eckard points of S . The corresponding
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elements of X are adjacent exactly when the line pp′ is contained in S . In this
case we shall say that p and p′ are adjacent.

Lemma 5.4.2. Suppose p and p′ are non-adjacent Eckard points of S , corre-
sponding to x, x′ ∈ X . Then pp′ meets S in a third point p′′ which is also an
Eckard point of S . If x′′ ∈ X is the corresponding element, then x, x′, x′′ are
collinear (in our combinatorial sense).

Proof. One easily shows that p′′ is distinct from p and p′ . Let P and P′ be
the tangent planes to S at p and p′ . Then P meets S in three lines l0 , l1 ,
and l2 , P′ in lines l′0 , l′1 , and l′2 . Rearranging the indices if necessary, we may
assume li and l′i meet for all i . Then li and l′i span a tritangent hyperplane
Qi , containing a third line l′′i of S . Since Qi contains both p and p′ , it contains
the line pp′ and hence also p′′ . If p′′ was a point of li , then li ⊆ S would be
forced to coincide with pp′′ = pp′ , contrary to the assumption that p and p′ are
non-adjacent. Similarly p′′ is not a point of l′i , so p′′ must belong to l′′i . It
follows that l′′0 , l′′1 , l′′2 all meet at p′′ , so that p′′ is a third Eckard point of S .
Furthermore, the lines {l0, l1, l2, l′0, l′1, l′2, l′′0 , l′′1 , l′′2} may be identified with the 9
points on a quadric surface over F2 (the zero locus of q on the projectivization
of the four-dimensional F2 -space spanned by x and x′ ), which is ruled by lines
corresponding to p , p′ , and p′′ so that x , x′ , and x′′ are collinear. ¤

We would now like to obtain an explicit formula for the invariant cubic form in
terms of the combinatorics of the 27 lines on a cubic surface. However, this is im-
possible without specifying some additional data, since the signs are not uniquely
determined until we choose a basis for Mπ . What we need is some geometric
analogue of our notion of a marking. This should take the form of additional data
on S , which permit us to distinguish 9 of the tritangent hyperplanes from the
other 36 . Recall that a marking determines an element of the Weyl group W of
order 3 which does not fix any element of Λ∨ . In view of this, the following is a
natural definition:

Definition 5.4.3. A signing of a smooth cubic surface S is an action of the group
G = µ3 of 3rd roots of unity on S , such all G -invariant elements of H2(S,Z)
are multiples of the hyperplane class c1(K∨S ) .

A general cubic surface does not carry a signing (in a moment we shall obtain
a characterization of exactly which cubic surfaces do admit signings). However,
we shall soon see that signed cubics exist, which is all that we shall need.

Note that a marking of S determines an F4 -structure on V . This admits a
lifting to a marking g ∈ Aut(Ṽ) , which determines a special signing sg . Moreover
sg depends only on the marking of S and not on the further choice of g . Thus,
we are motivated to study signed cubic surfaces.

Let S be a signed cubic surface, and let V = H0(S,K∨S ) . There exists a
representation of G on the canonical bundle KS so that S ↪→ P(V∨) is G -
equivariant (for example, the representation induced by the action of G on V ).
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Let χ denote the identity character of G = µ3 . We have a decomposition V =
V0 ⊕ V1 ⊕ V2 into isotypics for the characters χ0 , χ1 , and χ2 . Let di denote
the dimension of Vi . Twisting the representation of G on KS by a character
and applying an automorphism of G if necessary, we may assume without loss of
generality that d0 ≥ d1 ≥ d2 .
Theorem 5.4.4. d0 = 3 , d1 = 1 , and d2 = 0 , and the cubic defining S is
contained in the χ0 -isotypic of S3(V) .

Proof. Let x ∈ H2(S,Z) be the class of a line contained in S , g ∈ G a generator
of G . Then x + xg + xg2

is G -invariant, hence a multiple of the hyperplane
class. From this we see that every G -orbit of lines on S is a plane section of
S . Since such a plane section is spanned by the three lines in which it meets
S , it is necessarily stable under G . Thus the 9 orbits of G on the 27 lines
give us 9 planes in P3 stable under G , corresponding to 9 distinct G -stable
1 -dimensional subspaces of V . Such a subspace must be contained in an isotypic
Vi . If di ≤ 2 , the linear functions in Vi vanish on a line li ⊆ P(V∨) , hence any
such tritangent must contain the three points of intersection of li with S . Since
any point of S is contained in at most three lines of S , Vi can contain the linear
forms cutting out at most 3 tritangent planes. If dj ≤ 1 , then Vj contains only
one line. Hence d0 = d1 = 2 , d2 = 0 and d0 = 2 , d1 = d2 = 1 are ruled out by
numerical considerations. If d0 = 4 , then G acts trivially on S and we do not
have a signing. This proves the first claim.

For the second, note that the other isotypics of V are of the form V1⊗S2(V0)
and V1⊗V1⊗V0 ; hence any cubic in these spaces is reducible. Since S is smooth,
its defining equation must lie in S3(V)0 . ¤

We have the decomposition S3(V)0 = S3(V0)⊕S3(V1) , so the defining equation
of S has the form

f(x, y, z) + w3 = 0

In other words, S is a cyclic 3 -fold cover of the plane branched over the cubic
curve ∆ cut out by f , and G is the Galois group for the covering.

Let us proceed under the assumption that S is a such a cover of P2 , branched
over a smooth cubic curve ∆ . In this case, it is easy enough to identify the 27
lines on S . If l is a flex line of ∆ , then Sl = S×P2 l is a cyclic three-fold cover
of l totally branched over a point; in other words, Sl (a hyperplane section of S )
consists of three lines meeting in a point. Thus, the 27 lines break into 9 orbits
under the action of G , and each orbit is may be considered as a 3 -fold cover of
one of the 9 flex lines to C . We see that for any x ∈ H2(S,Z) which is the
class of a line, x + g(x) + g2(x) is the hyperplane class. (Here g is a generator
of the Galois group G of S over P2 .) It follows that 1 + g + g2 annihilates
the primitive cohomology of S , so that the action of G on S is a signing of S .
In other words, we have establishes that the signed cubics are none other than
the cyclic cubics: cubic surfaces that may be expressed as cyclic 3-fold covers of
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the plane branched over a smooth plane cubic. For our purposes the important
consequence is that signed cubic surfaces exist.

Now, if S is a cyclic cubic, we may identify ∆ ⊆ P2 with a particular hyper-
plane section of S . The above analysis shows that each of the 9 flex points of
∆ is an Eckard point of S . If s is the signing determined by the signing of S ,
then Xs consists of those x ∈ X for which the corresponding plane meets S in
a G -orbit of lines; these are precisely the tritangent planes lying over the 9 flex
lines to ∆ . In other words, we may identify Xs with the 9 flex points of the
plane cubic ∆ . Since we have established that “geometric” and “combinatorial”
collinearity have the same meaning, this proves that our combinatorial notion of
collinearity provides Xs with the structure of a two-dimensional affine space over
F3 . This proves Theorem 5.3.4, as promised.

We can now give a formula for the invariant cubic in terms of the geometry of
S as follows:
Theorem 5.4.5. Let S be a cyclic 3 -fold cover of P2 branched over a smooth
cubic curve ∆ . Introduce a variable Yl for each of the 27 lines of S , and for
each tritangent plane P let

YP =
∏
l⊆P

Yl

Then the cubic invariant under E6 may be written in the form

Θ =
∑

p

YPp
−

∑
P

YP

where the first sum is taken over all flex points p ∈ C (with Pp the corresponding
Eckard plane) and the second sum over the remaining 36 tritangent planes.

We will close this section with a few amusing remarks related to signed cubic
surfaces; these remarks will not be needed later, so they may be safely omitted if
the reader desires. These result were obtained earlier in [8].

Let us examine the automorphism group of a signed cubic S . Automorphisms
of S commuting with the action of G will act on P2 = S/G , necessarily preserv-
ing the branch locus C . Conversely, any automorphism of P2 preserving C can
be extended to an automorphism of S in three different ways. The automorphism
group H of the general plane cubic has order 18 ; it is a semi-direct product of
Z/2Z acting by inversion on the group H0 of 3 -torsion points of the associated
elliptic curve. Thus we see that any cyclic cubic has carries an action of a group
H̃ , where H̃ is a central extension of H by G .

For any flex point p ∈ C , there is a unique element of H of order two which
stabilizes p . Let σp denote a preimage of this element in H . Then σp permutes
the three lines of S which meet at p ; since σp commutes with the action of G ,
it must permute the three lines in an alternating fashion. Altering the choice of
σp by an element of G , we may arrange that σp fixes the three lines. Then σ2

p

is the identity on a plane and stabilizes three lines not contained in that plane, so
it must act trivially on P3 and hence on S .
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Consequently, H̃ is a semidirect product of Z/2Z with H̃0 , the preimage of
H0 in H̃ . This last group is a Heisenberg extension corresponding to the Weil
pairing on H0 . From this description, we see that the projection H̃ → H admits
a section over a subgroup H ′ ⊆ H if and only if H0 * H ′ . In particular, if p, p′ ,
and p′′ are distinct flex points of C , then the subgroup of H̃ generated by σp ,
σp′ and σp′′ is isomorphic to S3 (its image in H ) if p , p′ , and p′′ are collinear,
and all of H̃ otherwise.

In fact, the existence of the involution σp does not require that S be a cyclic
cubic, but only the existence of an Eckard point p on S . Let us return to the situa-
tion of a general cubic surface S , defined by a homogeneous cubic f(w, x, y, z) = 0
and having an Eckard point p = (1 : 0 : 0 : 0) . Let us assume the corresponding
Eckard plane is given by x = 0 . Then f(w, 0, y, z) is a product of three linear
factors, each of which vanishes where y = z = 0 . Thus f has the form

cx3 + l(w, y, z)x2 + q(w, y, z)x + g(y, z)

Since S is nonsingular at (1 : 0 : 0 : 0) , we must have q(1, 0, 0) 6= 0 . Replacing
w by an appropriate linear combination of w , y , and z , we may assume that
q(w, y, z) = w2 + q′(y, z) for some q′ . Finally, by adding a multiple of x to w ,
we may arrange that

f(x, y, z, w) = c′x3 + l′(y, z)x2 + (w2 + q′(y, z))x + g(y, z)

Note that this equation is invariant under the involution σp of P3 carrying
(w, x, y, z) to (−w, x, y, z) . This involution fixes p and the plane defined by
w = 0 , which meets S in a smooth cubic C since a singular point of C would
also be a singular point of S .

Note that any line or plane containing p is fixed setwise, but not pointwise,
by σp . In particular, σp stabilizes the three lines which meet at p , and every
tritangent plane that contains one of these lines. Note that any line stable under
σp has two fixed points under σp ; thus it is either contained in the plane w = 0
or meets p . Since the plane section of S cut out by w = 0 is smooth, any line
of S stable under σp passes through p . On the other hand, a line l of S not
passing through p lies in a unique tritangent plane meeting S in l∪ l′∪ l′′ , where
l′′ meets p . Then we must have σp(l) = l′ , σp(l′) = l . In particular, the action
of σp on the 27 lines is determined by incidence relations among the lines. We
leave it to the reader to verify that this involution σp agrees with the involution
defined above in the case S is cyclic.

Now we would like to study the relationships between the involutions σp as p
varies over the Eckard points of S . The following fact is basic to what follows:
Lemma 5.4.6. An automorphism σ of a smooth cubic S which fixes all 27 lines
setwise must be the identity.

Proof. Since S is anticanonically embedded in P3 , σ extends to an automor-
phism of P3 . σ must fix all points of intersection of lines of S which meet.
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But among such pairwise intersections there are 5 points, no four of which are
coplanar. Thus σ is trivial on P3 , hence on S . ¤

Now suppose p, p′, p′′ are collinear, non-adjacent Eckard points. Since σp

stabilizes the line joining p , p′ , and p′′ , and has only two fixed points on this
line, we see that σp must permute {p′, p′′} nontrivially. The same reasoning
applies to the involutions σp′ , σp′′ . Thus we get a surjective homomorphism φ
from the subgroup of Aut(S) generated by the involutions σp , σp′ , σp′′ to the
symmetric group S3 .
Theorem 5.4.7. φ is an isomorphism.

Proof. Since automorphisms of S are determined by their action on the 27 lines,
the behavior of the involutions σp , σp′ , and σp′′ are determined by incidence
relations among the 27 lines, and the Weyl group W acts transitively on collinear
triples of elements of X , it suffices to verify this in the case where S is a cyclic
cover of P2 branched over a smooth conic C , and p, p′, p′′ are collinear flex points
of C . But this follows from our analysis of the group H̃ given earlier. ¤

Now suppose that p , q , and r are Eckard points which are nonadjacent
but not collinear. The argument above (this time using the fact that W acts
transitively on noncollinear, pairwise nonadjacent triples of elements of X ) applies
again to show that the group generated by σp , σq , and σr does not depend on
the cubic S . If S is a cyclic cover of P2 branched over C and p, q, and r are
nonadjacent flex points of C , then this group is the group H̃ defined above. In
particular, this group has a central subgroup G whose action gives a signing of
S . Thus we have proven:
Theorem 5.4.8. Suppose S is a smooth cubic surface with three nonadjacent,
noncollinear Eckard points p , q , and r . Then the plane spanned by p , q and
r meets S in a smooth cubic curve C , and S is isomorphic to a cyclic 3 -fold
cover of that plane branched over C .

In other words, the classes of signed cubics, cyclic cubics, and cubics with
three noncollinear pairwise nonadjacent Eckard points coincide. (One could be
more precise. For example, a signing of a cubic is equivalent to an identification
of that cubic with a three-fold cover of P2 and of µ3 with its Galois group.)

5.5. Defining E6

Over the complex numbers, one can define the Lie algebra E6 as the collection of
endomorphisms of a 27 -dimensional complex vector space which leave annihilate
a cubic polynomial on that vector space. We now show that this description of E6

is valid over an arbitray commutative ring. Aside from its intrinsic interest, this
proof will serve as a nice “warm-up” for the next section, where we will investigate
the more difficult problem of defining E7 .
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In the following, we let M = Mπ be a nontrivial minuscule representation of
L , and we write MR = (Mπ)R = (Mπ) ⊗Z R for any commutative ring R . Let
Θ be the invariant cubic polynomial on M constructed earlier.

Theorem 5.5.1. Let R be a commutative ring. Then LR is the Lie algebra of
all endomorphisms of MR which annihilate Θ .

Proof. Let L′ be the Lie algebra of all endomorphisms of MR which annihilate
Θ . Note that MR has a natural Λ∨ grading; it decomposes into weight spaces
Mλ = RYλ̃ . This induces a Λ∨ grading of EndR(MR) . Since Θ is homogeneous
of degree 0 , L′ is a graded submodule of EndR(MR) . Thus L′ decomposes into
weight spaces L′α ( α ∈ Λ∨ ). By construction we have

L′αMλ ⊆ Mλ+α

We need only show that each weight space L′α is contained in LR . Choose
x ∈ L′α . If x = 0 there is nothing to prove. Otherwise, we may assume that
x induces a nontrivial map Mλ → Mα+λ for some λ ∈ C0 . Note that this
implies α ∈ Λ . There are several cases to consider, depending on the value of
〈λ, α + λ〉 ≡ 4

3 (mod Z) :

• 〈λ, α +λ〉 = 4
3 . Then λ = α +λ , so α = 0 . Thus x leaves each weight space

Mµ stable. Suppose x acts on Mµ by the scalar f(µ) . From the invariance of
Θ , we see that f(α)+f(β)+f(γ) = 0 whenever α, β, γ ∈ C0 are weights which
sum to zero. By Lemma 5.4.1, f is induced by a homomorphism Λ∨ → R , or
equivalently an element of ΛR , which proves x ∈ ΛR ⊆ LR .

• 〈λ, α+λ〉 = 1
3 . Then 〈α, α〉 = 〈α+λ, α+λ〉− 2〈α, λ〉− 〈λ, λ〉 = 2 , so α ∈ Γ .

Choose α̃ ∈ Γ̃ over α , λ̃ ∈ C̃0 over λ . It is clear that x annihilates Yµ̃

unless µ + α ∈ C0 (that is, unless 〈α, µ〉 = −1 ). If µ + α ∈ C0 , we have
xYµ̃ = cµYα̃µ̃ for some scalars cµ ∈ C0 . If 〈µ, λ〉 = −2

3 , then there is some
ν ∈ C0 with µ + ν + λ = 0 ; this implies 〈α, ν〉 = 2 which is impossible. Thus
for µ 6= λ , we must have 〈µ, λ〉 = 1

3 , so that γ = −µ + −λ − α lies in C0 .
Examining the coefficient of Y˜̃αµ

Yα̃λ̃Yγ̃ in x(Θ) , we deduce that cµ = cλ .
Thus x = cλXα̃ ∈ LR and we are done.

• 〈λ, α + λ〉 = −2
3 . Then 〈α, α〉 = 4 , 〈λ, α〉 = −2 . Then λ = −α

2 + λ′ , where
〈λ′, α〉 = 0 . If µ ∈ C0 is also such that µ + α ∈ C0 , then we may apply the
same reasoning to write µ = −α

2 + µ′ . Then 〈λ, µ〉 = 〈−α
2 ,−α

2 〉 + 〈λ′, µ′〉 .
Since 〈λ′, λ′〉 = 〈µ′, µ′〉 = 1

3 , we must have 〈λ′, µ′〉 ≥ −1
3 . Thus 〈λ, µ〉 ≥ 2

3 .
Since 〈λ, µ〉 ≡ 4

3 (mod Z) , we get 〈λ, µ〉 = 4
3 , and so λ = µ .

Now choose µ, ν ∈ C0 − {λ} such that λ + µ + ν = 0 . The coefficient of
Yα̃λ̃Yµ̃Yν̃ in x(Θ) is ±c , where x(Yλ̃) = cYα̃λ̃ . The invariance of Θ shows
that c = 0 , which contradicts the choice of λ .

¤



568 J. Lurie CMH

6. The Lie Algebra E7

In this section, we will discuss the case in which Λ is the root lattice of E7 . Then
Λ has index 2 in Λ∨ , so it has one nontrivial coset C . Fix E = (π, e) ∈ S with
π : C̃ → Λ∨ having image C . We have tC = 3/2 , so that the corresponding
representation Mπ is self-dual and symplectic.

It is well-known that the representation Mπ of dimension 56 has an invariant
quartic form. We would like to write this form down in some nice way, analogous
to what we have already done for E6 . This is more difficult for a number of
reasons:
• The map ψ̃ : W̃ → Aut(Ṽ) is no longer an isomorphism. Indeed, ψ is a

surjection with kernel −1 ∈ W , and ψ̃|V has kernel and cokernel isomorphic
to Z/2Z . The snake sequence breaks into short exact pieces 0 → Z/2Z →
ker ψ̃ → Z/2Z → 0 and 0 → Z/2Z → coker ψ̃ → 0 . Since Vπ is symplectic,
our earlier calculations show that the first of these sequences is not split. Since
the image of ψ̃ has index 2 in Aut(Ṽ) , it is a normal subgroup. On the other
hand, this group has a unique subgroup Aut0(Ṽ) of index 2 , consisting of
automorphisms which act trivially on the center of Ṽ . Thus we get a short
exact sequence 0 → Z/4Z → W̃ → Aut0(Ṽ) → 0 , a rather more complicated
situation.

• Our formalism for constructing trilinear forms on minuscule representations
can no longer be applied, and there seems to be no simple analogue for tensor
products of four or more representations.

• Since the coset C has even order, we no longer have a nice representative πC in
C or the group Λ̃o at our disposal. We instead work with an arbitrary π cov-
ering C together with an isomorphism e : π ⊗ π ' π0 , and the corresponding
covering Λ̃E of Λ∨ defined in §3.9 .

• For E6 , the Weyl group W acts transitively not only on the weights of the
fundamental representation, but on 45 triples of weights that sum to zero. The
analogous statement for E7 is false: W has three distinct orbits on quadruples
of weights which sum to zero: those quadruples of the form {x, x,−x,−x} (of
which there are 28 ), those of form {x, y,−x,−y} (for x 6= y , there are 378
of these), and the remaining 630 “general” quadruples {w, x, y, z} for which
no pairwise sums vanish.

• In order to get our most explicit description of the cubic form invariant un-
der E6 , we chose a clever basis for the fundamental representation which was
invariant under a large subgroup of W̃ . This subgroup (the centralizer of an
element of order 3 having no nontrivial fixed points in Λ ) acts transitively on
the weights and has only two orbits (of size 9 and 36 ) on triples of weights
that summed to zero, corresponding to two different signs. The same approach
could be applied to E7 , but the results are not nearly so spectacular. For
example, it is impossible to find a subgroup G ⊆ W̃ which acts transitively
on the set C0 and stabilizes a basis B ⊆ C̃0 . For suppose such a pair (G,B)
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did exist. Since Aut0(V) is a perfect group, ker ψ̃ ' Z/4Z is central in W̃ .
Choose a generator w̃ for ker ψ̃ . Since w̃ centralizes G , G must also stabilize
the basis Bw̃ . Since G acts transitively on C0 , it follows that either Bw̃ = B
or Bw̃ = −B . In either case, we have −B = Bw̃2

= B , a contradiction.
Despite these obstacles, we can still salvage a bit of our old analysis. In partic-

ular, we will find that the object Λ̃E serves as a satisfactory “stand-in” for Λ̃o ,
even though the former is not associative.

6.1. The Invariant Quartic

To begin, let K denote the collection of all ordered 4 -tuples (w, x, y, z) ∈ C4
0

with w +x+y + z = 0 . We let K0 denote the subset consisting of all 4 -tuples of
the form (x, x,−x,−x) or some permutation thereof, K1 the subset of 4 -tuples
which are some permutation of (x, y,−x,−y) ( x 6= y ), and K2 = K− (K0 ∪K1)
the collection of “general” elements of K . We let K̃ , K̃0 , K̃1 , and K̃2 denote
the preimages of these sets in C̃4

0 .

Lemma 6.1.1. Let (w̃, x̃, ỹ, z̃) ∈ K̃2 . Then the expression (w̃x̃)(ỹz̃) ∈ Λ̃E is
symmetric in w̃ , x̃ , ỹ , and z̃ .

Proof. The equation w + x + y + z = 0 implies that − 3
2 = −〈w,w〉 = 〈w, x〉 +

〈w, y〉+〈w, z〉 . Since w and x have the same length and w 6= −x , 〈w, x〉 > − 3
2 .

On the other hand, 〈w, x〉 ≡ tC modulo Z , so 〈w, x〉 ≥ −1
2 . Summing the same

inequalities over y and z , we see that equality must hold, so 〈w, x〉 = 〈w, y〉 =
〈w, z〉 = − 1

2 . Then wx = (−1)〈w,x〉−tCxw = xw , and similarly for other pairwise
products. This shows that the expression above is unchanged by exchanging w
with x or y with z . To complete the proof, it suffices to show invariance under
interchange of x and y . This follows from the associativity properties of the
product:

(w̃x̃)(ỹz̃) = w̃(x̃(ỹz̃)) = −w̃((x̃ỹ)z̃) = −w̃((ỹx̃)z̃) = w̃(ỹ(x̃z̃)) = (w̃ỹ)(x̃z̃)

¤

If w + x + y + z = 0 because of some pairwise cancellations, say w + x = 0 =
y + z , then the above result no longer holds, because w̃x̃ 6= x̃w̃ . In this case,
one must be more careful in how one chooses to form the product. Given such a
triple w̃, x̃, ỹ, z̃ , one can assume (switching ỹ and z̃ if necessary) that 2〈x, y〉 ≡ 3
(mod 4) . Then 2〈w, z〉 = 2〈−x,−y〉 = 2〈x, y〉 ≡ 3 (mod 4) as well. Then one
has w̃z̃ = z̃w̃ , x̃ỹ = ỹx̃ . Moreover, x + y = −(w + z) , so w̃z̃ commutes with
x̃ỹ . Thus the four-fold product (w̃z̃)(x̃ỹ) is independent of the order in which
the factors are chosen, provided that the pairs (x̃, ỹ) and (w̃, z̃) are multiplied
first. Moreover, this pairing is entirely intrinsic to the quadruple (w̃, x̃, ỹ, z̃) .

Thus, whenever we have an ordered quadruple Q̃ = (w̃, x̃, ỹ, z̃) ∈ K̃ , we may
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associate a well-defined sign εQ̃ by the formula

εQ̃ = (w̃x̃)(ỹz̃)

where we assume the tuple has been reordered so 2〈w, x〉 ≡ 2〈y, z〉 ≡ 3 (mod 2) .
The discussion above guarantees that εQ̃ is well-defined and is unchanged if we

apply a permutation to Q̃ .
Note that εQ̃ changes sign whenever any of its arguments changes sign. For

any quadruple Q̃ ∈ K̃ , we let YQ̃ denote the product

Yw̃ ⊗ Yx̃ ⊗ Yỹ ⊗ Yz̃

in M⊗4
π ; then εQ̃YQ̃ is a well-defined element of M⊗4

π depending only on the
underlying 4 -tuple Q = (w, x, y, z) ∈ K ; we denote this element by YQ . (Since
the definition of the sign εQ̃ involves an even number of applications of e , YQ is
even independent of the choice of e .)

We are now in a position to describe the form invariant under E7 :
Theorem 6.1.2. The tensor

Θ = 2
∑

Q∈K0

YQ −
∑

Q∈K1

YQ − 2
∑

Q∈K2

YQ ∈ M⊗4
π

is L -invariant.

Proof. By construction, Θ is Λ -invariant and W̃ -invariant. Let α̃ ∈ Γ̃ ; we
must show that [α̃,Θ] = 0 . The quantity [α̃,Θ] is a weight vector for α ; we
must show that the coefficent c of the monomial Yw̃Yx̃YỹYz̃ vanishes whenever
w + x + y + z = α . Without loss of generality,

−1 ≤ 〈w,α〉 ≤ 〈x, α〉 ≤ 〈y, α〉 ≤ 〈z, α〉 ≤ 1

and the middle quantities sum to 〈α, α〉 = 2 . If 〈w,α〉 = 〈x, α〉 = 0 and 〈y, α〉 =
〈z, α〉 = 1 , the proof that c = 0 proceeds just as in the trilinear case (one needs
only W̃ -invariance).

Otherwise, we have 〈w,α〉 = −1 , 〈x, α〉 = 〈y, α〉 = 〈z, α〉 = 1 . The relevant
contributions come from terms of the form [Xα̃, Y(w,x−α,y,z)] (and similarly with y
or z in place of x ) and the coefficient contributed by such a term is CkεQ̃ where

Q̃ = {w̃, α̃−1x̃, ỹ, z̃} ∈ K̃k . Here Ck = 2,−1,−2 accordingly as k = 0, 1, 2 . We
must show the sum of these contributions is 0 .

Note that

−1 = 〈α,w〉 = 〈w + x + y + z, w〉 =
3
2

+ 〈x,w〉+ 〈y, w〉+ 〈z, w〉

Thus it is impossible to have 〈x,w〉, 〈y, w〉, and 〈z, w〉 all smaller than than
− 1

2 , so at least one of x, y, or z is equal to −w . If x = y = z = −w , then
α = w + x + y + z = w − w − w − w = −2w , so 2 = 〈α, α〉 = 〈−2w,−2w〉 = 6 ,
a contradiction. Suppose x = y = −w , z 6= −w . Then z − α = −w . Now
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Q̃ = (w̃, x̃, ỹ, α̃−1z̃) ∈ K̃0 , while Q̃′ = (w̃, α̃−1x̃, ỹ, z̃), Q̃′′ = (w̃, x̃, α̃−1ỹ, z̃) ∈ K̃1 .
Thus it suffices to show that εQ′ = εQ = εQ′′ . By symmetry, it suffices to show
the equality on the left side. For this we just invoke the definition: note that
〈w, x− α〉 = 〈w, x〉 − 〈w,α〉 = − 1

2 and 〈x, y〉 = 〈w,w〉 = 3/2 , so

εQ̃′ = (ỹz̃)((α̃−1x̃)w̃)
= (ỹ(z̃α̃−1))(x̃w̃)
= −(ỹ(α̃−1z̃))(x̃w̃)
= ((α̃−1z̃)ỹ)(x̃w̃)
= (α̃−1z̃)(ỹ(x̃w̃))
= −(α̃−1z̃)((ỹx̃)w̃)
= (α̃−1z̃)(w̃(ỹx̃))
= ((α̃−1z̃)w̃)(ỹx̃)
= εQ̃

Now let us suppose z = −w , but x, y 6= −w . Then x + y = α , so x 6= y and
Q̃ = (w̃, x̃, ỹ, α̃−1z̃) ∈ K̃2 , while

Q̃′ = (w̃, α̃−1x̃, ỹ, z̃) 6= (w̃, x̃, α̃−1ỹ, z̃) = Q̃′′

both lie in K̃1 . Reasoning as above, it suffices to show that

εQ̃ = −εQ̃′ = −εQ̃′′

By symmetry it suffices to show the first equality. Since y−α = −x 6= w , we have
〈y− α,w〉 < 3

2 so 〈y, w〉 < 1
2 . Since y 6= −w , 〈y, w〉 > −3

2 , so 〈y, w〉 = −1
2 , and

εQ̃′ = (ỹw̃)((α̃−1x̃)z̃) = −(ỹw̃)(x̃(α̃−1z̃)) = −εQ̃

as required. ¤

6.2. Defining E7

Over the complex numbers, E7 can be defined as the algebra of automorphisms of
its 56 -dimensional representation which leave invariant a symplectic form and an
invariant quartic polynomial. However, this description is not valid over a field of
characteristic 2 . First, the object we want to consider is not the invariant quartic,
but its polarization, a symmetric tensor in M⊗4

π . Even if the quartic polynomial
is written (over Z ) in “lowest terms”, its polarization is divisble by 2 . Hence we
consider instead the polarization divided by 2 ; this is the tensor

Θ = 2
∑

Q∈K0

YQ −
∑

Q∈K1

YQ − 2
∑

Q∈K2

YQ

which we constructed in the last section. The problem now is that the “interesting
part” of this tensor is the third term, which still vanishes in characteristic 2 .
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Consequently, we must be more careful if we are to give a description of E7 which
is valid in all characteristics.

In order to do this, we need to consider all invariant tensors of degree 4 . Be-
fore proceeding, note that the symplectic form on M gives rise to an L -invariant
isomorphism of M with its dual. Thus the distinction between covariant and con-
travariant tensors disappears, and we can (and shall) identify Θ with a multilinear
form on M .

Over the complex numbers, we have the decomposition MC ⊗MC ' ∧2MC ⊕
S2(MC) . Neither of these summands is irreducible: M has an invariant symplectic
form, so ∧2MC contains a copy of the trivial representation and S2(MC) con-
tains a copy of the adjoint representation. However, one can easily check that the
residual representations are irreducible, so MC⊗MC is a direct sum of four noni-
somorphic irreducible representations. Since −1 ∈ W , all of these representations
are self-dual. Thus (MC ⊗MC ⊗MC ⊗MC)LC is four dimensional.

It is not hard to see where all these invariant tensors come from. Let [, ]
denote the invariant symplectic form on M (say, corresponding to the isomorphism
e : π ⊗ π ' π0 ). Via this form we may identify M with its dual. Thus we get 3
invariant tensors corresponding to the forms

Φ1 : (w, x, y, z) 7→ [w, x][y, z]

Φ2 : (w, x, y, z) 7→ [w, y][z, x]

Φ3 : (w, x, y, z) 7→ [w, z][x, y]

Together with the form Θ , these generate the space of invariant 4 -tensors over
C . Over Z , the picture is rather similar: (M⊗M⊗M⊗M)L is a free Z -module
of rank 4 . Moreover, the tensors Θ , Φ1 , Φ2 , and Φ3 are well-defined elements
of this module. However, they do not generate the full module, only a submodule
of index 2 . The full module of L -invariants is generated by Φ1 , Φ2 , Φ3 and

Ψ =
Θ + Φ1 + Φ2 + Φ3

2
(the integrality of which follows readily from our formula for Θ ). Note that Ψ
is not completely symmetric, but it is invariant under the all alternating permu-
tations of four letters. Furthermore, it obeys the following simple transformation
law under odd permutations:

Ψ(w, x, y, z) + [w, x][y, z] + [w, y][z, x] + [w, z][x, y] = Ψ(x,w, y, z)

Our goal now is to prove that E7 may be identified with the collection of endo-
morphisms of M leaving invariant Ψ ∈ M⊗4

π and the symplectic structure on M .
For this we will need some preliminary results.
Lemma 6.2.1. Let G7 be the free abelian group generated by symbols {gc}c∈C0 ,
subject to the relations

g−c = −gc
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a + b + c + d = 0 ⇒ ga + gb + gc + gd = 0

Then the natural homomorphism G7 → Λ∨ is an isomorphism.

Proof. Since every element of Γ is a sum of two elements of C0 and Γ generates
Λ , Λ is contained in the image of φ . Together with C0 , Λ generates Λ∨ , so φ
is surjective.

Pick c ∈ C0 , and let J = {gc′ ∈ C0 : 〈c, c′〉 = −1
2 } . Let G′ be the quotient of

G by the subgroup generated by gc . Then G′ is generated by the images g′c′ of
the elements of J which satisfy the relations

x + y + z = −c ⇒ g′x + g′y + g′z

By 5.4.1, G′ is a quotient of the weight lattice of E6 , and is therefore free of
rank 6 . Since G surjects onto a Z -module of rank 7 , G must be free of rank
7 , and φ must be an isomorphism. ¤

Lemma 6.2.2. Let α ∈ Γ , µ, ν ∈ {v ∈ C0 : 〈v, α〉 = −1} . Then either µ + ν =
−α or 〈µ, ν〉 = 1

2 .

Proof. If 〈µ, ν〉 = −1
2 , then 〈µ + ν, µ + ν〉 = 2 , so µ + ν is a root β . Then

〈α, β〉 = 〈α, µ〉+ 〈α, ν〉 = −2

so β = −α , as desired. ¤

Theorem 6.2.3. Let R be a commutative ring. Then LR is the Lie algebra of
all endomorphisms of MR leaving [, ] and Ψ invariant.

Proof. Our proof follows that of Theorem 5.5.1. We let L′ denote the Lie algebra
of all endomorphisms of MR leaving [, ] and Ψ invariant. Note that MR has
a natural Λ∨ -grading into weight spaces Mλ = RYλ̃ . This induces a grading of
EndR(MR) . Since [, ] and Ψ are homogeneous of degree zero, L′ is a graded
R -submodule of EndR(MR) . Thus, we get a decomposition of L′ into weight
spaces L′α having the property that

L′αMλ ⊆ Mλ+α

We need only show that each root space L′α is contained in LR . Let x ∈ L′α .
If x = 0 there is nothing to prove. Otherwise there is some λ ∈ C0 such that x
induces a nontrivial map Mλ → Mλ+α . Then α ∈ Λ . There are several cases to
consider:
• 〈λ, α + λ〉 = 3

2 . Then λ = α + λ , so α = 0 . Then x stabilizes each weight
space Mµ , so it acts by some scalar f(µ) on that space.
From the invariance of [, ] , we see that f(−λ) = −f(λ) . The invariance of Ψ
then that if a, b, c, d ∈ C0 with a+b+c+d = 0 , then f(a)+f(b)+f(c)+f(d) =
0 . Thus f induced a well-defined homomorphism G7 → R . By Lemma 6.2.1,
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f is induced by a homomorphism Λ∨ → R , or equivalently an element of ΛR ,
which proves x ∈ ΛR ⊆ LR .

• 〈λ, α + λ〉 < 1
2 . Let xYλ̃ = kYc̃ . Choose γ, µ, ν ∈ C0 such that (λ +

α, γ, µ, ν) ∈ K2 and γ, µ, ν 6= λ . One easily checks that γ+α, µ+α, ν+α /∈ C0 .
The invariance of Ψ implies that

Ψ(xYλ̃, Yγ̃ , Yµ̃, Yν̃) + Ψ(Yλ̃, xYγ̃ , Yµ̃, Yν̃)
+ Ψ(Yλ̃, Yγ̃ , xYµ̃, Yν̃) + Ψ(Yλ̃, Yγ̃ , Yµ̃, xYν̃) = 0

Examining the left side, we see that the only nonvanishing term is
Ψ(kYc̃, Yγ̃ , Yµ̃, Yν̃) = ±k . This forces k = 0 and we are done.

• 〈λ, λ + α〉 = 1
2 . Then α is actually a root in Γ .

Pick α̃ ∈ Γ̃ lying over α . Then

xYµ̃ =
{

kµYα̃µ̃ if 〈α, µ〉 = −1
0 otherwise

To show that x is a multiple of Xα̃ ∈ LR , it suffices to show that the scalars
kµ are all the same. Let µ and ν be such that 〈α, µ〉 = 〈α, ν〉 = −1 . If
µ + ν = −α , then the invariance of [, ] implies

0 = [xYµ̃, Yν̃ ] + [Yµ̃, xYν̃ ] = ±(kµ − kν)

so kµ = kν . Otherwise, 〈µ, α + ν〉 = −1
2 by Lemma 6.2.2, so we can find

γ, δ ∈ C0 with (µ, (α + ν), γ, δ) ∈ K2 . Since there are 5 choices for the pair
(γ, δ) , we may assume that γ, δ 6= −α− µ , γ, δ 6= −α− ν . Applying Lemma
6.2.2 again, we see that 〈γ, α〉 = 〈δ, α〉 = 0 . Applying the invariance of Ψ and
using the fact that x annihilates Yγ̃ and Yδ̃ , we get

0 = Ψ(xYµ̃, Yν̃ , Yγ̃ , Yδ̃) + Ψ(Yµ̃, xYν̃ , Yγ̃ , Yδ̃) = ±(kµ − kν)

Thus kµ = kν and we are done.
¤

Remark 6.2.4. If 2 is invertible in R , then the above result holds with Ψ
replaced by the symmetric tensor Θ (since the invariance of the Φi follows from
the invariance of the symplectic form on M ). Thus, away from the prime 2 , we
recover the classical description of E7 .
Remark 6.2.5. Our construction of the invariant tensors Θ and Ψ can be
applied to minuscule representations other than the fundamental representation
of E7 . We have used only the fact that C is symplectic and that tC = 3

2 . This
is also the case for the following representations:
• The 3 rd exterior power of the standard representation of sl6 .
• The half-spin representation(s) of Spin12

• The tensor product of the standard representations of sl2 and Spin2n , for any
n .
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There is one other case for which tC = 3
2 , and that is the representation of

sl4 × sl4 which is the tensor product of the two standard representations. This
representation is not self-dual, so there is no analogue of Ψ , but there is an
interesting invariant symmetric quadrilinear form: the tensor product of the two
determinant forms.
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