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Abstract. A non-singular C1 vector field X of a closed 3-manifold M generating a flow ϕt

induces a flow of the bundle NX orthogonal to X. This flow further induces a flow Pϕt of the
projectivized bundle of NX. In this paper, we assume that the projectivized bundle is a trivial
bundle, and study the lift ∠ϕt of Pϕt to the infinite cyclic covering M × R. We prove that the
flow ∠ϕt is not minimal, and construct an example of ϕt such that ∠ϕt has a dense orbit. If ϕt

is almost periodic and minimal, then ∠ϕt is shown to be classified into three cases: (1) All the
orbits of ∠ϕt are bounded. (2) All the orbits of ∠ϕt are proper. (3) ∠ϕt is transitive.
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1. Introduction

Let M be a closed 3-dimensional manifold, and X, a non-singular C1 vector field
of M . Denote by ϕt the flow generated by X. Let TM denote the tangent bundle
of M and let NX denote the quotient bundle of TM by the 1-dimensional bundle
tangent to X. For any t, the derivative Dϕt of ϕt induces a flow on NX, denoted by
Nϕt, which is called the infinitesimal flow of ϕt. Let PX denote the projectivized
bundle

⋃
z∈M ((NzX − 0)/v ∼ kv) (v ∈ NzX − 0, k ∈ R − 0), where NzX is the

fiber of NX at z. Then Nϕt also induces a flow on PX, which is denoted by Pϕt.
The flow Pϕt represents the angular part of Nϕt.

In this paper, we assume that PX is a trivial bundle (in particular, if H2(M) =
0). We parametrize PX by M×R/Z, i.e. each fiber is the 1-dimensional projective
space P1, which is identified with S1 and is parametrized by R/Z. Denote by [s]
the element of P1 represented by s ∈ R and by π : M × R → PX the projection
(π(z, s) = (z, [s])). Then there is a unique flow ∠ϕt of M × R which is a lift of
Pϕt (See §2). We call it the angular flow of ϕt.

In this paper, we are concerned with dense orbits of ∠ϕt. It will be shown
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in §3 (Corollary 3) that there is a C∞ flow whose angular flow has a dense orbit
(i.e. transitive). However it is impossible that all the orbits of ∠ϕt are dense (i.e.
minimal), which will be shown in §2 (Corollary 1). We will further prove in §2
that, if ϕt is almost periodic and minimal, then ∠ϕt is classified into the following
three cases (Corollary 2).

(1) All the orbits of ∠ϕt are bounded.
(2) All the orbits of ∠ϕt are proper.
(3) ∠ϕt is transitive.
The author wishes to thank the referee of this paper, who informed the author

of the brilliant history of this subject as follows: In 1976 in an international con-
ference on Dynamical systems at IMPA, Rio de Janeiro, Brazil, Alberto Verjovsky
delivered a conference in which he constructed a flow, (which he called the “induc-
tance” flow) canonically associated to a smooth nonsingular flow, ϕt : M → M ,
defined on a closed, smooth 3-manifold and corresponding to the vector field X.
This flow was constructed with the specific purpose to be applied to the so-called
Gottschalk conjecture which states that no minimal flow exists on the 3- sphere. If
G2(M) denotes the Grassmannian bundle of oriented 2-planes tangent to M and
if N ⊂ G2(M) denotes the subset of G2(M) of two planes which contain the line
field generated by the nonsingular vector field X then N is the total space of a
locally trivial fibre bundle π : N → M which, in particular, is the trivial bundle,
N = M × S1 if H2(M, Z) = 0. Via the action of Dϕt, on N we obtain a flow
gt : N → N , which is an extension of ϕt, i. e. π ◦ gt = ϕt ◦π. This is the “induc-
tance” flow of Verjovsky. The name is an obvious reference to Ampère’s Law. The
flow gt preserves the circles which are the fibres and send each circle onto its image
by projective transformations of S1 = P1. At that conference attended, in partic-
ular, Dennis Sullivan, the late Michael Herman and Etienne Ghys who after the
conference gave some ideas related to the talk. In particular, Etienne Ghys could
prove that no minimal transversely conformal flow could exist in the 3-sphere.
In this case the action of gt on the fibres is, after conjugation, by rotations. A
natural question that arose from that conference was: Under what conditions is a
smooth minimal flow on a 3-manifold tangent to a foliation, such is the case of the
horocycle flow on PSL(2, R)/Γ where Γ is a co-compact discrete subgroup. Such
manifolds can be homology 3-spheres (such is the case of Brieskorn manifolds Vp,q,r

with 1
p + 1

q + 1
r < 1). Some months later after the conference cited before, Michael

Herman constructed an example of a smooth diffeomorphism of the 2-torus T 2,
such that its differential acts minimally on the space of lines tangent to the torus
and it is isotopic to the identity. Therefore, the flow which is the suspension of this
diffeomorphism, and defined on the 3-torus T 3 can never be tangent to a foliation.
Michael Herman never published his result, however, he wrote an excellent paper,
in collaboration with Albert Fathi, in which they proved, in particular, that if a
compact manifold S admits a smooth locally-free action of the torus Tn (n > 1)
then S admits a smooth minimal action of Rn−1. For n = 1, S admits a minimal
diffeomorphism. Actually this was previously given by Anosov and Katok ([1]).
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In this paper, we use the idea of the above construction of the minimal flows
to construct a flow whose angular flow is transitive but not minimal. The author
would like to express his gratitude to Shigenori Matsumoto, who communicated
to the author the construction of Alberto Verjovsky which inspired of this modi-
fication from the minimality to the transitivity.

2. Dense orbits of angular flows

First we give a precise definition of the angular flow ∠ϕt. We define Φ : PX×R →
PX by Φ(z, [s], t) = Pϕt(z, [s]) for z ∈ M and [s] ∈ P1. Then there is a map
Ψ : M × R × R → M × R satisfying π◦Ψ = Φ◦(π × id ) and Ψ(z, 0, 0) = (z, 0) for
some z ∈ M .

M × R× R Ψ−→ M × R
π × id ↓ © ↓ π

PX × R Φ−→ PX

Then we have Ψ(z, s, 0) = (z, s) for any z and s. We define the angular flow
∠ϕt : M × R → M × R by ∠ϕt(z, s) = Ψ(z, s, t). Then ∠ϕt is a lift of Pϕt by
definition, i.e. π◦∠ϕt = Pϕt◦π. For any u (0 5 u 5 1), we obtain πΨ(z, s, u(t1 +
t2)) = πΨ(Ψ(z, s, ut1), ut2). Hence we have Ψ(z, s, t1 + t2) = Ψ(Ψ(z, s, t1), t2),
which implies that ∠ϕt is a flow of M × R. Conversely, it can be shown that a
flow of M × R which is a lift of Pϕt is ∠ϕt.

Remark. If Pϕt is generated by a vector field, then ∠ϕt is generated by its lift
on M × R. We define ∠ϕt in terms of isotopy as above because ϕt is assumed to
be of C1 and, furthermore, we will construct a flow with the transitive angular
flow in §3 by using these isotopies.

Let O(z, s) denote the orbit of ∠ϕt passing through (z, s) ∈ M × R, and
let O+(z, s) (resp. O−(z, s)) denote the positive (resp. negative) semiorbit
{∠ϕt(z, s); t = 0} (resp. {∠ϕt(z, s); t 5 0}). Denote by pi (i = 1, 2) the i-th
projection of M ×R and M × P1. The orbit O(z, s) is called upper bounded (resp.
lower bounded) if {p2∠ϕt(z, s) ; t ∈ R} is upper (resp. lower) bounded. The upper
(resp. lower) bounded semiorbit is defined in the same way.

Next we show two general properties concerning with lifts needed later.

Lemma 1. There is C > 0 such that, if |p2∠ϕt2(z, s)− p2∠ϕt1(z, s)| = 1, then

|p2∠ϕt2(z, s)− p2∠ϕt1(z, s)| < C|t2 − t1|
for any (z, s) ∈ M × R, t1 ∈ R and t2 ∈ R.

Proof. Without loss of generality, we can assume that t2 is greater than t1. Let d
denote the metric of P1 induced from the natural metric of R/Z. Since Pϕt is a con-
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tinuous flow of a compact manifold, there is C > 0 such that d(p2Pϕt(z, [s]), [s]) <
1/2 for any z ∈ M , [s] ∈ P1 and |t| < 1/C. Hence |p2∠ϕt(z, s)− s| = 1/2 implies
that |t| = 1/C for any z ∈ M and s ∈ R. Here we assume that p2∠ϕt1(z, s)
is less than p2∠ϕt2(z, s). Let n denote the largest integer smaller than or equal
to p2∠ϕt2(z, s) − p2∠ϕt1(z, s). Then n is greater than or equal to 1 by assump-
tion. We take a finite sequence {bj}j=0,1,··· ,2n such that t1 = b0 < b1 < · · · <
b2n 5 t2 and p2∠ϕbj

(z0, s0) = p2∠ϕt1(z0, s0) + j/2 (j = 1, 2, · · · , 2n). Then
|p2∠ϕbj+1(z0, s0) − p2∠ϕbj

(z0, s0)| = 1/2. Hence we have bj+1 − bj = 1/C. Thus
we obtain that t2− t1 = 2n/C = (n+1)/C > |p2∠ϕt2(z, s)− p2∠ϕt1(z, s)|/C. We
can show the lemma in the same way in case where p2∠ϕt1(z, s) is greater than
p2∠ϕt2(z, s). ¤

Lemma 2. Let τ : M×R → M×R denote the shift defined by τ(z, s) = (z, s+1).
Then ∠ϕt commutes with τ .

Proof. By definition, we have

πτ−1∠ϕtτ(z, s)
= π∠ϕt(z, s + 1)
= Pϕt π(z, s + 1)
= Pϕt π(z, s) = Φ(π(z, s), t).

Therefore, (z, s, t) 7→ τ−1∠ϕtτ(z, s) is a lift of Φ satisfying τ−1∠ϕ0τ(z, 0) = (z, 0).
Thus we obtain τ−1∠ϕtτ = ∠ϕt. ¤

Let Y be a topological space. For a homeomorphism g : Y → Y and a
continuous function h : Y → R, we define a homeomorphism ψ of Y × R by
ψ(z, s) = (g(z), s + h(z)), which is called a cylinder homeomorphism. Gottschalk
and Hedlund ([3]) studied cylinder homeomorphisms and showed several impor-
tant properties. Though the angular flow ∠ϕt does not satisfy that p2∠ϕt(z, s2)−
p2∠ϕt(z, s1) = s2 − s1, the following argument similar to that of Gottschalk and
Hedlund is valid by Lemma 2.

Lemma 3. Let (z0, s0) be a point of M ×R. If there are sequences {un}n=1,2,··· ⊂
R and {vn}n=1,2,··· ⊂ R such that un < vn and

max{p2∠ϕun
(z0, s0), p2∠ϕvn

(z0, s0)}+ n

5 max{p2∠ϕt(z0, s0) ; un 5 t 5 vn}
(resp. min{p2∠ϕun

(z0, s0), p2∠ϕvn
(z0, s0)} − n

= min{p2∠ϕt(z0, s0) ; un 5 t 5 vn}),
then there is an orbit of ∠ϕt which is upper (resp. lower) bounded.

Proof. We only prove the existence of upper bounded orbit of ∠ϕt in case where
max{p2∠ϕun

(z0, s0), p2∠ϕvn
(z0, s0)} + n 5 max{p2∠ϕt(z0, s0) ; un 5 t 5 vn}.
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Let wn be the time between un and vn such that p2∠ϕwn
(z0, s0) is the maximum

of {p2∠ϕt(z0, s0) ; un 5 t 5 vn}. By lemma 1, there is C > 0 such that wn −
un > n/C and vn − wn > n/C. Hence we have limn→∞ wn − un = ∞ and
limn→∞ vn − wn = ∞.

Let (zn, sn) = ∠ϕwn
(z0, s0). Denote by bsc the largest integer smaller than or

equal to s. For any t satisfying un − wn 5 t 5 vn − wn, we have

p2∠ϕt(zn, sn − bsnc)
= p2∠ϕtτ

−bsnc∠ϕwn
(z0, s0)

= p2∠ϕt+wn
(z0, s0)− bsnc

5 p2∠ϕwn
(z0, s0)− bsnc,because un 5 t + wn 5 vn

= sn − bsnc
< 1

By taking a subsequence, we can assume that (zn, sn−bsnc) converges to some
point (z∞, s∞) as n →∞. Then we can show p2∠ϕt(z∞, s∞) 5 1 for any t ∈ R as
follows: Suppose on the contrary that there is t∈R such that p2∠ϕt(z∞, s∞)>1.
Then there is a neighborhood U of (z∞, s∞) such that p2∠ϕt(z, s) > 1 for any
(z, s) ∈ U . For a sufficiently large n, (zn, sn−bsnc) is contained in U and un−wn 5
t5vn−wn. However this contradicts the above consideration that p2∠ϕt(zn, sn−
bsnc) is less than 1. Thus O(z∞, s∞) is an upper bounded orbit. ¤

Lemma 4. If ∠ϕt has a bounded positive (negative) semiorbit, then there is a
bounded orbit of ∠ϕt. Moreover, if ϕt is minimal (i.e. all the orbits of ϕt are
dense), then all the orbits of ∠ϕt are bounded.

Proof. If ∠ϕt has a bounded positive (resp. negative) semiorbit, then its ω-limit
(resp. α-limit) set K is a non-empty compact invariant set. Then an orbit con-
tained in K is bounded in the positive and negative time. For any (z0, s0) of K,
the orbit O(z0, s0 + n) is bounded for any n ∈ Z, because ∠ϕt commutes with
τ . Hence, O(z0, s) is also bounded for any s ∈ R. If ϕt is further assumed to be
minimal, then π(K) is the whole manifold M . Therefore, all the orbits of ∠ϕt are
bounded. ¤

The orbit O(z, s) is called proper if limt→+∞ p2∠ϕt(z, s) = +∞ or −∞ and
limt→−∞ p2∠ϕt(z, s) = +∞ or −∞. Then O(z, s) is a closed set of M × R.

Theorem 1. If ∠ϕt has an orbit which is not proper, then there are an upper
bounded orbit and a lower bounded orbit.

Proof. We will only show that O(z, s) is proper for any (z, s) ∈ M ×R if no orbits
of ∠ϕt are upper bounded. We can prove in the same way that O(z, s) is proper
for any (z, s) ∈ M × R if no orbits of ∠ϕt are lower bounded.
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Suppose that there is a point (z, s) of M × R such that O+(z, s) (resp.
O−(z, s)) is not upper bounded and limt→+∞ p2∠ϕt(z, s) 6= +∞ (resp.
limt→−∞ p2∠ϕt(z, s) 6= +∞). Then there exist a number C and a sequence
{tn}n=1,2,··· ⊂ R such that limn→∞ tn = +∞ (resp. −∞) and p2∠ϕtn

(z, s) 5 C.
Since O+(z, s) (resp. O−(z, s)) is assumed not to be upper bounded, there is a se-
quence {un}n=1,2,··· ⊂ R such that p2∠ϕun

(z, s) > C + n and un > tn (resp. un <
tn). Thus there is an increasing (resp. decreasing) sequence {vn}n=1,2,··· ⊂ R such
that p2∠ϕv2n−1(z, s) 5 C and p2∠ϕv2n

(z, s) > C + n (n = 1, 2, · · · ). By Lemma
3, there is an upper bounded orbit, which contradicts the assumption. Thus we
conclude that limt→+∞ p2∠ϕt(z, s) = +∞ (resp. limt→−∞ p2∠ϕt(z, s) = +∞) if
O+(z, s) (resp. O−(z, s)) is not upper bounded. We can prove in the same way
that limt→+∞ p2∠ϕt(z, s) = −∞ (resp. limt→−∞ p2∠ϕt(z, s) = −∞) if O+(z, s)
(resp. O−(z, s)) is not lower bounded.

If no orbits of ∠ϕt are upper bounded, then no positive (resp. negative) semior-
bits are bounded by Lemma 4, which implies limt→+∞ p2∠ϕt(z, s) = ±∞ (resp.
limt→−∞ p2∠ϕt(z, s) = ±∞) for any (z, s) ∈ M × R by the above consideration.
Therefore the orbit passing through (z, s) is proper. ¤

Corollary 1. ∠ϕt is not minimal.

A subset A of R is called syndetic if R = {a + k ; a ∈ A, k ∈ K} for some
compact set K of R, and a flow ϕt of M is called almost periodic if, for any ε > 0,
there is a syndetic set A such that d(z, ϕa(z)) < ε for any z ∈ M and a ∈ A, where
d is a metric of M . In this case, we can further analyze the orbit structure of ∠ϕt

as follows.

Theorem 2. Let ϕt be an almost periodic minimal flow. If no orbits of ∠ϕt are
bounded and ∠ϕt has an upper bounded positive semiorbit and a lower bounded
positive semiorbit, then ∠ϕt is transitive.

Proof. Let W1 and W2 be arbitrary open sets of M×R. We have only to show that
(
⋃

t∈R ∠ϕt(W2))∩W1 6= ∅ (Theorem 9.20 of [3]). There are open sets U1 and U2 of
M and open intervals I1 = (a1, b1) and I2 = (a2, b2) satisfying U1 × I1 ⊂ W1 and
U2×I2 ⊂ W2. Then it is enough to show that (

⋃
t∈R ∠ϕt(U2×I2))∩ (U1×I1) 6= ∅.

First claim that there are a connected open set V2 contained in U2 and a
syndetic set A such that ϕa(V2) is contained in U1 for any a ∈ A. Let x1 be a
point of U1. Then there is ε > 0 such that the ε-ball Bε(x1) with center x1 is
contained in U1. By the minimality of ϕt, there is t1 ∈ R such that ϕt1(x1) is
contained in U2. Since ϕt is almost periodic, there is a syndetic set A′ such that
d(ϕa(x), x) < ε/2 for any x ∈ M and a ∈ A′. Let V2 be a connected component of
U2 ∩ ϕt1(Bε/2(x1)). For any y ∈ V2, we have d(ϕ−t1(y), x1) < ε/2. Furthermore,
we obtain d(ϕa−t1(y), ϕ−t1(y)) < ε/2 for any a ∈ A′. Hence d(ϕa−t1(y), x1) < ε,
which implies that ϕa−t1(y) ∈ U1. Since {a − t1 ; a ∈ A′} is also syndetic, we
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conclude the claim. In particular, there is C1 > 0 such that, for any t ∈ R, there
is u satisfying −C1/2 5 u 5 C1/2 and ϕt+u(V2) ⊂ U1. Hence, for any t ∈ R,
there is v (0 5 v 5 C1) satisfying ϕt+v(V2) ⊂ U1 by the above consideration for
t + (C1/2).

The set {z ; O+(z, s) is lower bounded for any s ∈ R} is a nonempty invariant
set of M . Hence it is dense in M by the minimality of ϕt. Furthermore, the set
{z ; O+(z, s) is upper bounded for any s ∈ R} is also dense in M . Thus there are
points (z1, s1) and (z2, s2) of V2 × I2 such that O+(z1, s1) is lower bounded and
O+(z2, s2) is upper bounded. By Lemma 4, O+(z1, s1) is not upper bounded and
O+(z2, s2) is not lower bounded.

Denote by C2 the minimal of {p2∠ϕt(z1, s1) ; t = 0}. By Lemma 1, there
is C3 > 1/C1 such that, if |p2∠ϕt(z, s) − p2∠ϕu(z, s)| = 1, then |p2∠ϕt(z, s) −
p2∠ϕu(z, s)| < C3|t− u| for any z ∈ M , s ∈ R, t ∈ R and u ∈ R.

We claim that there exists C4 > 0 such that max{p2∠ϕu(z1, s1) ; t 5 u 5
t+C4} > b1 +C1C3 for any t = 0. If not, there is a positive sequence {tn′}n=1,2,···
such that C2 5 p2∠ϕtn

′+u(z1, s1) 5 b1 + C1C3 for 0 5 u 5 n. Let (z0, s0) be an
accumulating point of {ϕtn

′(z1, s1)}n=1,2,···. Then the positive semiorbit starting
from (z0, s0) is bounded, which contradicts the assumption by Lemma 4.

We choose t2 = 0 such that p2∠ϕt2(z2, s2) is less than a1 − C3(C1 + C4).
Since C3(C1 + C4) > 1, we have p2∠ϕt2+t(z2, s2) < a1 for 0 5 t 5 C1 + C4 by
the choice of C3. By the choice of C4, there is t3 such that 0 5 t3 5 C4 and
p2∠ϕt2+t3(z1, s1) > b1 + C1C3. Furthermore, by the choice of C1, there is t4
(0 5 t4 5 C1) such that ϕt2+t3+t4(V2) ⊂ U1. Here we have p2∠ϕt2+t3+t4(z1, s1) >
b1 because C1C3 > 1. On the other hand, we have p2∠ϕt2+t3+t4(z2, s2) < a1

because 0 5 t3 + t4 5 C1 + C4. In consequence, we obtain that ϕt2+t3+t4(V2) ⊂
U1, p2∠ϕt2+t3+t4(z1, s1) > b1 and p2∠ϕt2+t3+t4(z2, s2) < a1. This implies that
∠ϕt2+t3+t4(V2 × I2) intersects U1 × I1 ¤

Corollary 2. Let ϕt be an almost periodic minimal flow. Then ∠ϕt is classified
into three cases:

(1) All the orbits of ∠ϕt are bounded.
(2) All the orbits of ∠ϕt are proper.
(3) ∠ϕt is transitive.

Proof. If ∠ϕt has a bounded orbit, then all the orbits of ∠ϕt are bounded by
Lemma 4. If ∠ϕt has no bounded orbits and there is an orbit which is not proper,
then there are an upper bounded orbit and a lower bounded orbit by Theorem 1,
and furthermore ∠ϕt is transitive by Theorem 2. ¤

3. Construction of transitive angular flows

In this section, we will construct a C∞ flow of T 3 whose angular flow is transitive
by using a suspension of a toral diffeomorphism.
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Let TT 2 denote the tangent bundle of T 2. Denote by PT 2 the projectivized
bundle

⋃
z∈T 2((TzT

2−0)/v ∼ kv) (k ∈ R−0), where TzT
2 is the tangent space of

T 2 at z. Then PT 2 is a trivial bundle. We parametrize PT 2 by T 2×P1 = T 2×R/Z.
Denote by π : T 2 × R → PT 2 the natural projection (π(z, s) = (z, [s])).

Let G denote the set of C∞ isotopies of T 2 from id obtained by identifying
homotopic ones (i.e. G = {F : T 2 × I → T 2 ; F is a C∞ map, F |(T 2 × {t}) is a
C∞ diffeomorphism for any t ∈ I = [0, 1] and F |(T 2 × {0}) = id }/ ∼, where two
isotopies are identified if they are homotopic with the end points fixed in the sense
of paths of diffeomorphisms). Then G is a complete metrizable space with respect
to the induced C∞ topology ([2]). Let Ft = F |(T 2×{t}) for F ∈ G and t ∈ I. Then
DFt induces a bundle map PFt : PT 2 → PT 2. We define PF : PT 2 × I → PT 2

by PF (z, [s], t) = PFt(z, [s]). Then there is a lift F̃ : T 2 ×R× I → T 2 ×R of PF

such that F̃ (z, 0, 0) = (z, 0) for some z ∈ T 2.

T 2 × R× I
F̃−→ T 2 × R

π × id ↓ © ↓ π

PT 2 × I
PF−→ PT 2

Here we remark that F̃ (z, s, 0) = (z, s) for any z ∈ T 2 and s ∈ R by the property
of lifts. We define the angular lift ∠F : T 2×R → T 2×R by ∠F (z, s) = F̃ (z, s, 1).
Then ∠F is a lift of PF1.

Let F and F ′ be isotopies of G. Denote by FF ′ the isotopy {Ft◦F ′
t}05t51 and

by F−1 the isotopy {Ft
−1}05t51. Then the following properties hold.

Proposition 1.
(1) ∠F∠F ′ = ∠(FF ′)
(2) ∠(F−1) = (∠F )−1.

Let F be an isotopy of G. Now T 3 is obtained by identifying T 2 × {0} and
T 2 × {1} of T 2 × I by id . We define a flow ϕt of T 3 = {(z, u) ; z ∈ T 2, u ∈ S1}
by ϕt(z, u) = (Fu+tF

−1
u (z), u+ t) (In order to construct a C∞ flow of T 3, we need

some modification along T 2 × {0} and T 2 × {1}). The flow ϕt is the image of the
flow (z, u) 7→ (z, u+t) by (z, u) 7→ (Fu(z), u). Then ϕt is the suspension flow of F1.
Denote by X the vector field generating ϕt. Then the projectivized bundle PX
can be identified with (

⋃
z∈T 2(TzT

2 − 0/v ∼ kv)) × S1 (k 6= 0). By construction
of ∠F , the time one map of the angular flow ∠ϕt restricted to T 2 × {0} coincides
with ∠F (This is the reason why we take the lift F̃ satisfying F̃ (z, s, 0) = (z, s) for
any z ∈ T 2 and s ∈ R). Thus it is enough to construct an isotopy F of G whose
angular lift is transitive in order to construct a flow of T 3 whose angular flow is
transitive.

Theorem 3. There is an isotopy F : T 2 × I → T 2 of G whose angular lift ∠F is
transitive.
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Let {Ui}i=1,2,··· be a countable base of T 2 × R. Let

Mij =
{

F ∈ G ;
( ⋃

n∈Z

∠Fn(Ui)
)
∩ Uj 6= ∅

}
.

In order to prove that there is an isotopy F of G whose angular lift ∠F is transitive,
we have only to show that M =

⋂
i,j Mij is not empty ([3]).

Let Rθ : T 2 × I → T 2 (θ ∈ S1 = R/Z) denote the isotopy defined by
Rθ(x, y, t) = (x + tθ, y) where x, y ∈ S1 = R/Z and t ∈ I = [0, 1]. Then the
angular lift ∠Rθ satisfies ∠Rθ(x, y, s) = (x + θ, y, s). Let H denote the subset
{FRθF

−1 ; F ∈ G, θ ∈ S1} of G, where FRθF
−1 = {Ft(Rθ)tFt

−1}05t51. Denote
by H its closure in G. Since G is a complete metrizable space, H is also a complete
metrizable space, and is a Baire space. In order to prove H ∩M is not empty (in
particular, M 6= ∅), we have only to show H ∩Mij is an open dense set in H by
Baire’s category theorem.

First remark that Mij is an open set in H if Mij is open in G. On the other
hand, if there is n ∈ Z such that ∠Fn(Ui)∩Uj is not empty, then (∠F ′)n(Ui)∩Uj

is also nonempty for any F ′ of G sufficiently near F . Thus Mij is open in G.
The remaining part of the proof of Theorem 3 is to show that Mij is dense in

H, whose key lemma is the following.

Lemma 5. For any open sets U and V of T 2×R, there is an isotopy F of G such
that (

⋃
θ∈S1 ∠Rθ∠F (U)) ∩ ∠F (V ) 6= ∅.

Proof. We take sufficiently small cubes C1 = (x1, x2)× (y1, y2)× (s1, s2) contained
in U and C2 = (x′1, x

′
2) × (y′1, y

′
2) × (s′1, s

′
2) contained in V satisfying (x1, x2) ∩

(x′1, x
′
2) = ∅ (See Figure 1). By moving and twisting id , we obtain an isotopy F

of G such that
Ft|{(x,y); x1<x<x2, y∈S1} = id (t ∈ [0, 1]), (1)

∠F (C2) ∩ {(x, y, s); x ∈ S1, y1 < y < y2, s1 < s < s2} 6= ∅. (2)

Since
⋃

θ∈S1 ∠Rθ(C1) = {(x, y, s) ; x ∈ S1, y1 < y < y2, s1 < s < s2} and
∠F (C1) = C1, it is concluded that ∠F (C2) intersects

⋃
θ∈S1 ∠Rθ(∠F (C1)). Hence

we have (
⋃

θ∈S1 ∠Rθ∠F (U)) ∩ ∠F (V ) is not empty. ¤

Remark. If we can take an isotopy F of Lemma 5 such that ∠F (V ) intersects
every circle {(x, y, s) ; x ∈ S1} instead of (2), then there is an isotopy F such that
∠F is minimal ([1],[2]). However this is impossible, which is closely related to the
non-minimality of ∠ϕt (Corollary 1).

The following proof is the modification of the proof for the minimality, which
was given by Anosov and Katok ([1]). They showed that a compact manifold
admits a smooth minimal flow if it admits a smooth, locally-free action of the
torus T 2 (see also [2] in the higher dimensional case).
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6

- x

y

s

C1

C2

⋃
θ∈S1 ∠Rθ(C1)

0 1

Figure 1

Let rθ : T 2 → T 2 (θ ∈ S1) denote the rotation of T 2 defined by rθ(x, y) =
(x + θ, y) for x, y ∈ S1.

Lemma 6. Let U and V be open sets of T 2×R. For any rational number ρ, there
is an isotopy F of G such that

(1) rρFtrρ
−1 = Ft for any t ∈ I,

(2) (
⋃

θ∈S1 ∠Rθ∠F (U)) ∩ ∠F (V ) 6= ∅.

Proof. Denote by η : T 2 × R → T 2/rρ × R the natural projection. By Lemma 5,
there is an isotopy F ′ : T 2/rρ×I → T 2/rρ from id such that (

⋃
θ∈S1 ∠Rθ∠F ′η(U))

∩∠F ′η(V ) 6= ∅. Let z′0 be a point of T 2/rρ, and let z0 ∈ T 2 be a lift of z′0. Then
there is a lift F : T 2 × I → T 2 of F ′ satisfying F (z0, 0) = z0. By construction, F
is also an isotopy from id .

T 2 × I
F−→ T 2

↓ © ↓
T 2/rρ × I

F ′−→ T 2/rρ

Since the isotopy (z, t) 7→ rρFtrρ
−1(z) is also a lift of F ′ satisfying rρF0rρ

−1(z0) =
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z0, we obtain rρFtrρ
−1 = Ft for any t ∈ I.

Since
⋃

θ∈S1 ∠Rθ∠F ′η(U)∩∠F ′η(V ) is not empty, there are θ ∈ S1, (z1, s1) ∈
U and (z2, s2) ∈ V satisfying ∠Rθ∠F ′η(z1, s1) = ∠F ′η(z2, s2). On the other
hand, we have η◦F̃ = F̃ ′◦(η× id ). Hence, η∠F = ∠F ′η. Since ∠Rθη∠F (z1, s1) =
η∠F (z2, s2), there is θ′ ∈ S1 such that ∠Rθ′∠F (z1, s1) = ∠F (z2, s2). ¤

Let S2 = {(x, y, z) ∈ R3 ; x2+y2+z2 = 1}. For the θ-rotation along the z-axis,
the argument similar to Lemmas 5 and 6 are valid because it is enough to consider
sufficiently small open sets U and V . Thus we can construct such a flow of S3

from the Hopf fibration.

Lemma 7. For any rational number ρ, Rρ is contained in Mij ∩H for any i
and j.

Proof. Let ρ be an arbitrary rational number. By Lemma 6, there is an isotopy F
of G such that rρFtrρ

−1 = Ft (t ∈ I) and (
⋃

θ∈S1 ∠Rθ∠F−1(Ui))∩∠F−1(Uj) 6= ∅.
Hence the subset {θ ∈ S1 ; ∠F∠Rθ∠F−1(Ui) ∩ Uj 6= ∅} of S1 is a non-empty
open set. Let {αk}k=1,2,··· be a sequence of irrational numbers converging to ρ.
For any k, there is an integer nk such that ∠F∠Rnkαk

∠F−1(Ui) ∩ Uj 6= ∅. Thus
(
⋃

n∈Z(∠F∠Rαk
∠F−1)n(Ui)) ∩ Uj is not empty, which implies that FRαk

F−1 is
contained in Mij ∩H and FRρF

−1 ∈ Mij ∩H.
Let Λs : T 2×I → T 2 (s ∈ [0, 1]) denote the 1- parameter family of the isotopies

defined by

Λs(z, t) =




rtρ(z) 0 5 t 5 1− s

1 + s

F (1+s)t−1+s
1+s

rtρF (1+s)t−1+s
1+s

−1(z)
1− s

1 + s
5 t 5 1

.

Then we have
Λs(z, 1) = F 2s

1+s
rρF 2s

1+s

−1(z) = rρ,

Λ0(z, t) = rtρ(z)

and
Λ1(z, t) = Ft rtρ Ft

−1(z).

Thus Rρ is identified with FRρF
−1 in G, which is contained in Mij ∩H. ¤

Lemma 8. Mij ∩H is dense in H for any i and j.

Proof. We have only to show that FRρF
−1 is an element of Mij ∩H for any

rational number ρ and F ∈ G because this implies that H ⊂ Mij ∩H. We choose
open sets Uk and Ul of T 2×R from the countable base {Ui} so that Uk is contained
in ∠F−1(Ui) and Ul is contained in ∠F−1(Uj). By Lemma 7, Rρ is an element
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of Mkl ∩H. Hence there is an isotopy F ′ of Mkl ∩ H sufficiently near Rρ. By
definition, we have ⋃

n∈Z

(∠F∠F ′∠F−1)n(Ui) ∩ Uj

= ∠F (
⋃
n∈Z

(∠F ′)n∠F−1(Ui) ∩ ∠F−1(Uj))

⊃ ∠F (
⋃
n∈Z

(∠F ′)n(Uk) ∩ Ul) 6= ∅.

Thus we conclude that FF ′F−1 is contained in Mij∩H, and FRρF
−1 ∈ Mij ∩H.

¤

Corollary 3. There is a C∞ flow ϕt of T 3 such that ∠ϕt is transitive.
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