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Transitively twisted flows of 3-manifolds

Hiromichi Nakayama

Abstract. A non-singular C! vector field X of a closed 3-manifold M generating a flow ¢
induces a flow of the bundle NX orthogonal to X. This flow further induces a flow Py: of the
projectivized bundle of NX. In this paper, we assume that the projectivized bundle is a trivial
bundle, and study the lift Zp; of Py, to the infinite cyclic covering M x R. We prove that the
flow Zy¢ is not minimal, and construct an example of ¢ such that Zp; has a dense orbit. If ¢y
is almost periodic and minimal, then Zy; is shown to be classified into three cases: (1) All the
orbits of Zy; are bounded. (2) All the orbits of Zy; are proper. (3) Ly is transitive.
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1. Introduction

Let M be a closed 3-dimensional manifold, and X, a non-singular C! vector field
of M. Denote by ¢, the flow generated by X. Let T'M denote the tangent bundle
of M and let NX denote the quotient bundle of TM by the 1-dimensional bundle
tangent to X. For any ¢, the derivative Dy, of ¢, induces a flow on N X, denoted by
Ny, which is called the infinitesimal flow of p;. Let PX denote the projectivized
bundle |, (N.X —0)/v ~ kv) (v € N.X -0,k € R~ 0), where N.X is the
fiber of NX at z. Then N, also induces a flow on PX, which is denoted by P;.
The flow P, represents the angular part of N¢;.

In this paper, we assume that PX is a trivial bundle (in particular, if H?(M) =
0). We parametrize PX by M xR/Z, i.e. each fiber is the 1-dimensional projective
space P, which is identified with S and is parametrized by R/Z. Denote by [s]
the element of P! represented by s € R and by 7 : M x R — PX the projection
(m(z,8) = (z,[s])). Then there is a unique flow Zy; of M x R which is a lift of
Py, (See §2). We call it the angular flow of ¢;.

In this paper, we are concerned with dense orbits of Zp;. It will be shown
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in §3 (Corollary 3) that there is a C* flow whose angular flow has a dense orbit
(i.e. transitive). However it is impossible that all the orbits of Zp; are dense (i.e.
minimal), which will be shown in §2 (Corollary 1). We will further prove in §2
that, if ¢, is almost periodic and minimal, then Z; is classified into the following
three cases (Corollary 2).

(1) All the orbits of Zy; are bounded.

(2) All the orbits of Zy; are proper.

(3) Ly is transitive.

The author wishes to thank the referee of this paper, who informed the author
of the brilliant history of this subject as follows: In 1976 in an international con-
ference on Dynamical systems at IMPA, Rio de Janeiro, Brazil, Alberto Verjovsky
delivered a conference in which he constructed a flow, (which he called the “induc-
tance” flow) canonically associated to a smooth nonsingular flow, ¢; : M — M,
defined on a closed, smooth 3-manifold and corresponding to the vector field X.
This flow was constructed with the specific purpose to be applied to the so-called
Gottschalk conjecture which states that no minimal flow exists on the 3- sphere. If
G2(M) denotes the Grassmannian bundle of oriented 2-planes tangent to M and
if N C Go(M) denotes the subset of Go(M) of two planes which contain the line
field generated by the nonsingular vector field X then N is the total space of a
locally trivial fibre bundle 7w : N — M which, in particular, is the trivial bundle,
N = M x St if H>(M,Z) = 0. Via the action of Dy;, on N we obtain a flow
gt : N — N, which is an extension of ¢y, i. e. mo gy = ¢ om. This is the “induc-
tance” flow of Verjovsky. The name is an obvious reference to Ampere’s Law. The
flow g; preserves the circles which are the fibres and send each circle onto its image
by projective transformations of S* = P!. At that conference attended, in partic-
ular, Dennis Sullivan, the late Michael Herman and Etienne Ghys who after the
conference gave some ideas related to the talk. In particular, Etienne Ghys could
prove that no minimal transversely conformal flow could exist in the 3-sphere.
In this case the action of g; on the fibres is, after conjugation, by rotations. A
natural question that arose from that conference was: Under what conditions is a
smooth minimal flow on a 3-manifold tangent to a foliation, such is the case of the
horocycle flow on PSL(2,R)/I" where I is a co-compact discrete subgroup. Such
manifolds can be homology 3-spheres (such is the case of Brieskorn manifolds V,, 4.,
with % + % + 1 < 1). Some months later after the conference cited before, Michael
Herman constructed an example of a smooth diffeomorphism of the 2-torus 72,
such that its differential acts minimally on the space of lines tangent to the torus
and it is isotopic to the identity. Therefore, the flow which is the suspension of this
diffeomorphism, and defined on the 3-torus T can never be tangent to a foliation.
Michael Herman never published his result, however, he wrote an excellent paper,
in collaboration with Albert Fathi, in which they proved, in particular, that if a
compact manifold S admits a smooth locally-free action of the torus T™ (n > 1)
then S admits a smooth minimal action of R®»~!. For n = 1, S admits a minimal
diffeomorphism. Actually this was previously given by Anosov and Katok ([1]).
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In this paper, we use the idea of the above construction of the minimal flows
to construct a flow whose angular flow is transitive but not minimal. The author
would like to express his gratitude to Shigenori Matsumoto, who communicated
to the author the construction of Alberto Verjovsky which inspired of this modi-
fication from the minimality to the transitivity.

2. Dense orbits of angular flows

First we give a precise definition of the angular flow Zp;. We define ® : PX xR —
PX by ®(z,[s],t) = Pyi(z,[s]) for z € M and [s] € PL. Then there is a map
U:MxRxR— M xR satisfying mo¥ = ®o(7 x id) and ¥(z,0,0) = (z,0) for
some z € M.
MxRxR -2 MxR
mxid | O Il
PX xR -2 PpPXx

Then we have U(z,s5,0) = (z,s) for any z and s. We define the angular flow
Lot M xR — M x R by Zpi(z,8) = U(z,s,t). Then Ly is a lift of Py by
definition, i.e. moZy; = Ppiom. For any u (0 £ u < 1), we obtain 70 (z, s, u(t; +
ta)) = w0 (W(z,s,uty),uty). Hence we have U(z,s,t1 + to) = U(¥U(z,s,t1),t2),
which implies that Z¢, is a flow of M x R. Conversely, it can be shown that a
flow of M x R which is a lift of Py, is Zipy.

Remark. If Py, is generated by a vector field, then Zy; is generated by its lift
on M x R. We define Zy; in terms of isotopy as above because ¢; is assumed to
be of C' and, furthermore, we will construct a flow with the transitive angular
flow in §3 by using these isotopies.

Let O(z,s) denote the orbit of Zp; passing through (z,s) € M x R, and
let O4(z,8) (resp. O_(z,s)) denote the positive (resp. negative) semiorbit
{Zpi(z,s);t = 0} (resp. {Zpt(z,s);t < 0}). Denote by p; (i = 1,2) the i-th
projection of M x R and M x P!. The orbit O(z, s) is called upper bounded (resp.
lower bounded) if {paZpi(z,s); t € R} is upper (resp. lower) bounded. The upper
(resp. lower) bounded semiorbit is defined in the same way.

Next we show two general properties concerning with lifts needed later.

Lemma 1. There is C > 0 such that, if |paLow, (2, 8) — p2les, (2,8)] 2 1, then
|p2£g0t2 (Zv 5) - p24¢t1 (Z> S)| < C|t2 - t1|
for any (z,8) € M xR, t; € R and ty € R.

Proof. Without loss of generality, we can assume that t, is greater than ¢;. Let d
denote the metric of P! induced from the natural metric of R/Z. Since Py is a con-
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tinuous flow of a compact manifold, there is C' > 0 such that d(p2 Py (2, []), [s]) <
1/2 for any z € M, [s] € P! and [t| < 1/C. Hence |p2Zpi(2,8) — s| = 1/2 implies
that [t| 2 1/C for any z € M and s € R. Here we assume that psZyy, (2, s)
is less than paZey,(2,s). Let n denote the largest integer smaller than or equal
to polpt,(2,8) — P2l (2,8). Then n is greater than or equal to 1 by assump-
tion. We take a finite sequence {b;};=0,1,... 2n such that t; = by < by < --- <
ban g t2 and P24<ij (ZOvSO) = p2490t1 (20380) + J/Z (] = 1727 T ,QTL) Then
lp2Zy, ., (20, 80) — 2Ly, (20, 50)| = 1/2. Hence we have b; 1 —b; = 1/C. Thus
we obtain that to —t1 2 2n/C 2 (n+1)/C > |paLer,(2,8) —p2 Lt (2, 8)|/C. We
can show the lemma in the same way in case where paZyy, (2, s) is greater than
P2Lp,(2,5). 0

Lemma 2. Let 7: M xR — M X R denote the shift defined by 7(z,s) = (z,s+1).
Then Zyy commutes with 7.

Proof. By definition, we have
T L7 (2, 8)
= 71loi(z,8+ 1)
= Py m(z,s+ 1)
= Py w(z,8) = ®(n(z, s),t).
Therefore, (z, s,t) — 77 Zp;7(z, 8) is a lift of ® satisfying 771 Zpo7(2,0) = (z,0).
Thus we obtain 771 Zpm = Zip;. ]

Let Y be a topological space. For a homeomorphism g : ¥ — Y and a
continuous function h : ¥ — R, we define a homeomorphism ¢ of ¥ x R by
¥(z,5) = (9(2),s + h(z)), which is called a cylinder homeomorphism. Gottschalk
and Hedlund ([3]) studied cylinder homeomorphisms and showed several impor-
tant properties. Though the angular flow Zp; does not satisfy that paZp:(z, s2) —
paZpi(z,81) = s3 — s1, the following argument similar to that of Gottschalk and
Hedlund is valid by Lemma 2.

Lemma 3. Let (29, 50) be a point of M xR. If there are sequences {up tn=12,... C
R and {v,}n=12,... C R such that u, < v, and

max{pzZpu, (20, 50), P2ZLPv, (20, 50) } + 1
§ maX{PQZ@t(zo, SO); Unp § t é vn}

(resp. min{psZpy, (20,50), P2LPo, (20, 50)} — 1
2 min{paZp¢(20,50); Un St = vp}),

then there is an orbit of Zo; which is upper (resp. lower) bounded.

Proof. We only prove the existence of upper bounded orbit of Zy; in case where
max{p2Zpu, (20, 50), P2£pu, (20,50)} + 1 = max{paZpi(20,50); un =t = vn}.
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Let w,, be the time between w,, and v,, such that ps Ly, (20, so) is the maximum
of {p2Zoi(20,80); un <t < vy} By lemma 1, there is C > 0 such that w, —
u, > n/C and v, — w, > n/C. Hence we have lim, o w, — u, = oo and
lim,, o0 Uy, — Wy = 00.

Let (zn, $n) = £¢w, (20, 80). Denote by |s] the largest integer smaller than or
equal to s. For any ¢ satisfying u,, — w, <t < v, — w,, we have

p2Zoi(2n, 80 — [5n])
= palipyr Ll Loy, (20, 50)
= p2ZLpttw, (20, 50) — [ 5n]
< p2low, (20, 80) — | Sn], because u, <t +w, < v,

= S — |Sn]
<1

By taking a subsequence, we can assume that (z,, s, — | $n]) converges to some
point (2o0, Soc) s n — 00. Then we can show ps £ (200, S00) S 1 for any t € R as
follows: Suppose on the contrary that there is t €R such that psZps(zeo, Soo) > 1.
Then there is a neighborhood U of (ze, Seo) such that poZpi(z,s) > 1 for any
(z,s) € U. For asufficiently large n, (2, Sn,— [ $n]) is contained in U and u, —wy, <
t < v, —w,. However this contradicts the above consideration that psZps(zn, s, —
lsn]) is less than 1. Thus O(zs, Soo) is an upper bounded orbit. O

Lemma 4. If Zyp; has a bounded positive (negative) semiorbit, then there is a
bounded orbit of L. Moreover, if ¢ is minimal (i.e. all the orbits of ¢y are
dense), then all the orbits of Zp: are bounded.

Proof. If Zy; has a bounded positive (resp. negative) semiorbit, then its w-limit
(resp. a-limit) set K is a non-empty compact invariant set. Then an orbit con-
tained in K is bounded in the positive and negative time. For any (zo,so) of K,
the orbit O(zp, 8¢9 + n) is bounded for any n € Z, because Zyp; commutes with
7. Hence, O(zp, s) is also bounded for any s € R. If ¢; is further assumed to be
minimal, then 7(K) is the whole manifold M. Therefore, all the orbits of Ly, are
bounded. ]

The orbit O(z,s) is called proper if lim;_, o p2Zpi(2,8) = +00 or —oo and
lims—, oo p2Zpt(2,8) = 400 or —oo. Then O(z, s) is a closed set of M x R.

Theorem 1. If Zp; has an orbit which is not proper, then there are an upper
bounded orbit and a lower bounded orbit.

Proof. We will only show that O(z, s) is proper for any (z,s) € M x R if no orbits
of Zp; are upper bounded. We can prove in the same way that O(z,s) is proper
for any (z,s) € M x R if no orbits of Zy, are lower bounded.
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Suppose that there is a point (z,s) of M x R such that Oi(z,s) (resp.
O_(z,8)) is not upper bounded and lim; ., o paZipi(z,8) # oo (resp.
limy—, oo p2Zpi(2,8) # +00). Then there exist a number C' and a sequence
{tn}n=12,.. C R such that lim,_,o t, = 400 (resp. —o0) and p2Z¢p,, (2,s) < C.
Since O4(z, s) (resp. O_(z,s)) is assumed not to be upper bounded, there is a se-
quence {uy }n=12.. C Rsuch that poZp,, (2,s) > C+n and u, >t, (resp. u, <
t,,). Thus there is an increasing (resp. decreasing) sequence {vp fn=12,... C R such
that peZpy,, ,(2,8) £ C and paZpy,, (2,8) > C+n (n=1,2,---). By Lemma
3, there is an upper bounded orbit, which contradicts the assumption. Thus we
conclude that lim;_, oo p2Zpi(z,8) = 400 (resp. limy, oo p2Zpi(z,s) = +00) if
O4(z,8) (resp. O_(z,s)) is not upper bounded. We can prove in the same way
that limy oo p2Zpi(z,8) = —o0 (resp. limy_,_ oo p2Lpi(z,s) = —o0) if O4(z,s)
(resp. O_(z,s)) is not lower bounded.

If no orbits of Zp; are upper bounded, then no positive (resp. negative) semior-
bits are bounded by Lemma 4, which implies lim;_, 4 p2Zpi(z,8) = £oo (resp.
limg—, oo p2Zpt(2,8) = £o0) for any (z,s) € M x R by the above consideration.
Therefore the orbit passing through (z, s) is proper. ([l

Corollary 1. Zp; is not minimal.

A subset A of R is called syndetic if R = {a+ k;a € A, k € K} for some
compact set K of R, and a flow ¢, of M is called almost periodic if, for any & > 0,
there is a syndetic set A such that d(z, p,(2)) < € for any z € M and a € A, where
d is a metric of M. In this case, we can further analyze the orbit structure of Zy;
as follows.

Theorem 2. Let p; be an almost periodic minimal flow. If no orbits of Ly, are
bounded and Zyp; has an upper bounded positive semiorbit and a lower bounded
positive semiorbit, then Zp; is transitive.

Proof. Let W1 and Wy be arbitrary open sets of M xR. We have only to show that
(User £t (W2)) Wy # 0 (Theorem 9.20 of [3]). There are open sets Uy and Us of
M and open intervals Iy = (a1,b1) and Iy = (ag, be) satisfying U; x I; C Wy and
Uz x Iy C Wy. Then it is enough to show that (| J,cp £9:(Uz x I2)) N (Ur x 1) # 0.

First claim that there are a connected open set V5 contained in Us; and a
syndetic set A such that ¢,(V2) is contained in U; for any a € A. Let x; be a
point of U;. Then there is € > 0 such that the e-ball B.(z1) with center z; is
contained in U;. By the minimality of ¢, there is ¢t; € R such that ¢y, (1) is
contained in Us. Since ¢; is almost periodic, there is a syndetic set A’ such that
d(pa(x),x) < e/2 for any x € M and a € A’. Let V5 be a connected component of
Uz Ny, (Beja(x1)). For any y € Vo, we have d(o_¢, (y),21) < £/2. Furthermore,
we obtain d(pa—¢, (¥), —t,(y)) < &/2 for any a € A’. Hence d(pa—¢, (y),21) < €,
which implies that ¢q—¢, (y) € Uy. Since {a —t1; a € A’} is also syndetic, we
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conclude the claim. In particular, there is C7; > 0 such that, for any ¢ € R, there
is u satisfying —C1/2 £ v £ C1/2 and ¢4, (Vo) C Uy. Hence, for any ¢ € R,
there is v (0 £ v £ C4) satisfying 14, (V2) C Uy by the above consideration for
t+ (C1/2).

The set {z; O4(z,s) is lower bounded for any s € R} is a nonempty invariant
set of M. Hence it is dense in M by the minimality of ;. Furthermore, the set
{#; O4(%,s) is upper bounded for any s € R} is also dense in M. Thus there are
points (z1,s1) and (22, s2) of Vo X Iy such that O, (z1, 1) is lower bounded and
O, (22, $2) is upper bounded. By Lemma 4, O (z1, s1) is not upper bounded and
O, (72, 82) is not lower bounded.

Denote by Cy the minimal of {paZ¢pi(21,51);¢t = 0}. By Lemma 1, there
is C3 > 1/Cy such that, if |peZLpi(z,s) — p2Lpu(z,s)| = 1, then |paZp(z,s) —
paloy(z,8)| < Cslt —u| for any 2 € M, s € R, t € R and u € R.

We claim that there exists Cy > 0 such that max{paZp,(21,81);¢t < u <
t+C4} > b1 +C1Cs for any t = 0. If not, there is a positive sequence {t,'}n=12,...
such that Cy < paZps, r4u(21,51) £ by + C1C5 for 0 £ u < n. Let (29, s0) be an
accumulating point of {¢y, (21, $1)}n=1,2,... Then the positive semiorbit starting
from (zo, so) is bounded, which contradicts the assumption by Lemma 4.

We choose ta = 0 such that paZyy,(22,82) is less than a3 — C3(Cy + Cy).
Since C3(Cy 4+ Cy4) > 1, we have paZpt, 11(22,82) < ap for 0 £t < Cy + Cy by
the choice of C5. By the choice of Cy, there is ¢3 such that 0 < t3 £ Cy and
D2LPtytt4(21,51) > by + C1C5. Furthermore, by the choice of Cy, there is t4
(0 £ t4 £ C4) such that @, 44,44, (V2) C Uy, Here we have paZog, 1,41, (21,51) >
b1 because C1C5 > 1. On the other hand, we have poZpy,+is41,(22,52) < a1
because 0 < t3 +t4 < C1 + Cy. In consequence, we obtain that s, 544, (V2) C
Ui, paZotyitstt,(21,81) > b1 and paZoe, 14444, (22,82) < a1. This implies that
450t2+t3+t4(‘/2 X 12) intersects Ul X Il O

Corollary 2. Let ¢, be an almost periodic minimal flow. Then Zyy is classified
into three cases:

(1) All the orbits of Zp; are bounded.

(2) All the orbits of Zp; are proper.

(3) Ly is transitive.

Proof. If Zp; has a bounded orbit, then all the orbits of Zy,; are bounded by
Lemma 4. If Zy; has no bounded orbits and there is an orbit which is not proper,
then there are an upper bounded orbit and a lower bounded orbit by Theorem 1,
and furthermore Zyp; is transitive by Theorem 2. ]

3. Construction of transitive angular flows

In this section, we will construct a C> flow of T whose angular flow is transitive
by using a suspension of a toral diffeomorphism.
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Let TT? denote the tangent bundle of T2. Denote by PT? the projectivized
bundle J, e ((T:T% —0) /v ~ kv) (k € R—0), where T.T? is the tangent space of
T? at z. Then PT? is a trivial bundle. We parametrize PT? by T?xP! = T?xR/Z.
Denote by 7 : T? x R — PT? the natural projection (7(z,s) = (2,[s])).

Let G denote the set of C* isotopies of T2 from id obtained by identifying
homotopic ones (i.e. G = {F : T? x I — T?; F is a C* map, F|(T? x {t}) is a
C* diffeomorphism for any ¢t € I = [0,1] and F|(T? x {0}) = id }/ ~, where two
isotopies are identified if they are homotopic with the end points fixed in the sense
of paths of diffeomorphisms). Then G is a complete metrizable space with respect
to the induced C* topology ([2]). Let Fy = F|(T?x{t}) for F € Gandt € I. Then
DF, induces a bundle map PF; : PT? — PT?. We define PF : PT? x I — PT?
by PF(z,[s],t) = PF,(z,[s]). Then there is a lift F': T? x R x I — T? x R of PF
such that F(z,0,0) = (z,0) for some z € T?2.

T2xRxI 25 T2xR
oxid | O lm
P2 x1 IE pre?

Here we remark that ﬁ(z, 5,0) = (2,s) for any z € T? and s € R by the property
of lifts. We define the angular lift /F : T?> xR — T? x R by ZF(z,s) = F(z,s,1).
Then ZF is a lift of PFy.

Let F' and F' be isotopies of G. Denote by F'F' the isotopy {FioF";}<;<; and
by F~! the isotopy {Ffl}oétil. Then the following properties hold.

Proposition 1.
(1) LF/F' = Z(FF'
(2) ZFH=(£LF)

Let F be an isotopy of G. Now T° is obtained by identifying 72 x {0} and
T? x {1} of T? x I by id. We define a flow ¢; of T% = {(z,u); 2 € T?, u € S'}
by ¢i(z,u) = (Fuyi F7H(2), u+1t) (In order to construct a C* flow of T, we need
some modification along T2 x {0} and T? x {1}). The flow ¢, is the image of the
flow (z,u) — (z,u+t) by (z,u) — (Fy(z),u). Then ¢, is the suspension flow of F}.
Denote by X the vector field generating ;. Then the projectivized bundle PX
can be identified with ((J,cqe (1272 — 0/v ~ kv)) x S* (k # 0). By construction
of ZF, the time one map of the angular flow Z¢; restricted to T2 x {0} coincides
with ZF (This is the reason why we take the lift F satisfying F(z, s,0) = (2, s) for
any z € T? and s € R). Thus it is enough to construct an isotopy F' of G' whose
angular lift is transitive in order to construct a flow of T° whose angular flow is
transitive.

Theorem 3. There is an isotopy F : T? x I — T? of G whose angular lift /F is
transitive.
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Let {U;}i=1,2,... be a countable base of T2 x R. Let

mi; = {Fea; (2P ) nu; #0}.
neZ
In order to prove that there is an isotopy F' of G whose angular lift ZF is transitive,
we have only to show that 2t = (7, ; M;; is not empty ([3]).

Let Rg : T? x I — T? (§ € S' = R/Z) denote the isotopy defined by
Ry(z,y,t) = (x + t0,y) where z,y € S' = R/Z and t € I = [0,1]. Then the
angular lift /Ry satisfies ZRg(x,y,s) = (x + 6,y,s). Let H denote the subset
{FRyF~'; F € G, 0 € S'} of G, where FRyF~" = {F;(Ry):F, ' }y<4<;- Denote
by H its closure in G. Since G is a complete metrizable space, H is also a complete
metrizable space, and is a Baire space. In order to prove H N9 is not empty (in
particular, 9 # (), we have only to show H N IM;; is an open dense set in H by
Baire’s category theorem.

First remark that 90;; is an open set in H if 9;; is open in G. On the other
hand, if there is n € Z such that ZF"(U;) NU; is not empty, then (ZF')"(U;) NU;
is also nonempty for any F” of G sufficiently near F. Thus 9;; is open in G.

The remaining part of the proof of Theorem 3 is to show that 91;; is dense in
H, whose key lemma is the following.

Lemma 5. For any open sets U and V of T? xR, there is an isotopy F of G such
that (Uyegr LR ZLF(U)) N ZLE(V) # 0.

Proof. We take sufficiently small cubes Cy = (21, 22) X (y1,y2) X (s1, $2) contained
in U and Cy = (2, 25) % (y],y5) % (s}, s5) contained in V satisfying (x1,z2) N
(z!,x4) = 0 (See Figure 1). By moving and twisting id , we obtain an isotopy F'
of G such that

Ft|{(z,y); T1<z<z2, YyES'} = id (t € [Ov 1])7 (1)

ZF(Cy) N{(z,y,s); x € Sl, Y1 <Y <ya, s1<8<s}#0. (2)

Since Uyeg1 ZRo(C1) = {(z,y,8);2 € SYyn <y < y2,81 < s < s2} and
ZF(Cy) = Cy, it is concluded that ZF(Cy) intersects | Jge g1 £Rg(£LF(C1)). Hence
we have (Uycg1 ZRoZF(U)) N ZF(V) is not empty. O

Remark. If we can take an isotopy F' of Lemma 5 such that ZF (V) intersects
every circle {(x,y, s); z € S} instead of (2), then there is an isotopy F such that
/F is minimal ([1],[2]). However this is impossible, which is closely related to the
non-minimality of Zg; (Corollary 1).

The following proof is the modification of the proof for the minimality, which
was given by Anosov and Katok ([1]). They showed that a compact manifold
admits a smooth minimal flow if it admits a smooth, locally-free action of the
torus T2 (see also [2] in the higher dimensional case).
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Ca

Ugest £Rp(C1)

Figure 1

Let 79 : T? — T? (6 € S') denote the rotation of T? defined by re(z,y) =
(x+0,y) for z,y € SL.

Lemma 6. Let U and V be open sets of T? x R. For any rational number p, there
is an isotopy F of G such that

(1) rthrp_l = F; foranyt € I,

(2) (Upest £ReLF(U)) N LE(V) # 0.

Proof. Denote by n: T? x R — T?/r, x R the natural projection. By Lemma 5,
there is an isotopy F' : T2 /r,xI — T?/r, from id such that (Uyeg: ZR9ZF'n(U))
NLF'n(V) # 0. Let z{, be a point of T%/r,, and let 29 € T2 be a lift of z{. Then
there is a lift F': T2 x I — T? of F' satisfying F(29,0) = 29. By construction, F
is also an isotopy from id.

T2 %] X, 72
1 O 1

T2 )r, x I 25 12,

Since the isotopy (z,t) — 7,F;r, (2) is also a lift of F” satisfying r,For, *(z0) =
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2o, we obtain rthrp’l = F, forany t € 1.

Since Upeg1 ZRoZF'n(U) N ZF'n(V) is not empty, there are 6 € S*, (21, 51) €
U and (z2,82) € V satisfying ZRgZF'n(z1,51) = £F'n(z2,82). On the other
hand, we have 7o F = f’o(n x id ). Hence, n/F = ZF'y. Since ZRyn/F(z1,$1) =
N/ F(z2,52), there is ' € S such that LRy ZF (21, 81) = £ZF (22, 52). |

Let S? = {(z,y, 2) € R?; 22 +y?+ 22 = 1}. For the f-rotation along the z-axis,
the argument similar to Lemmas 5 and 6 are valid because it is enough to consider
sufficiently small open sets U and V. Thus we can construct such a flow of S3
from the Hopf fibration.

Lemma 7. For any rational number p, R, is contained in M;; N H for any 4
and j.

Proof. Let p be an arbitrary rational number. By Lemma 6, there is an isotopy F'
of G such that r,Fyr, ™' = F, (t € I) and (Upegs LRoZF 1 (U;))NLF~H(U;) # 0.
Hence the subset {6 € S'; ZF/Ry/F~Y(U;) NU; # 0} of S' is a non-empty
open set. Let {ay}r=12.. be a sequence of irrational numbers converging to p.
For any k, there is an integer ny such that ZFZR,, q, ZF Y (U;) NU; # 0. Thus
(Unez(£FZRo, ZF~1)"(U;)) N U; is not empty, which implies that FR,, F~' is
contained in M;; N H and FRpr1 eM;; NH.

Let As : T?x I — T? (s € [0,1]) denote the 1- parameter family of the isotopies
defined by

1—

rip(2) 0<t< >

1+s
Ag(z,t) = 1—s .
Ls)t—14s Lsyi—14s —“<t<

F +‘1)1S +s Ty pF +&1)i51+& (Z) T1s = ts1
Then we have

As(z,1) = F12+ss rpFlersS ) =71,

Ao(z,t) = 14p(2)
and
A1(27t) = Ft rtp Ftil(Z).

Thus R, is identified with FR,,F_1 in G, which is contained in 9;; N H. O

Lemma 8. 9;; N H is dense in H for any i and j.

Proof. We have only to show that FR,F~! is an element of 9;; N H for any
rational number p and F' € G because this implies that H C 9;; N H. We choose
open sets Uy, and U; of T? x R from the countable base {U;} so that Uy is contained
in ZF~1(U;) and U is contained in ZF~1(U;). By Lemma 7, R, is an element
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of My, N H. Hence there is an isotopy F’ of My, N H sufficiently near R,. By
definition, we have

U (¢F2F' 2r="™(U3) nU;

nez
= LF(|J(£F)"2F~(Us) 0 £F~H(Uy))
nez
> ZF(|J(£F) (Ux) nTy) # 0.
nez
Thus we conclude that F/F'F~! is contained in 9;; N H, and FR,F~ € M;; N H.

O

Corollary 3. There is a C™ flow @; of T? such that Loy is transitive.
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