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Abstract. For G a simple simply connected algebraic group defined over a field F , Rost has
shown that there exists a canonical map RG : H1(F, G) → H3(F, Q/Z(2)). This includes the
Arason invariant for quadratic forms and Rost’s mod 3 invariant for exceptional Jordan algebras
as special cases. We show that RG has trivial kernel if G is quasi-split of type E6 or E7. A
case-by-case analysis shows that it has trivial kernel whenever G is quasi-split of low rank.
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For G a simple simply connected algebraic group over a field F , the set of all
natural transformations of functors

H1(?, G) −→ H3(?, Q/Z(2))

is a finite cyclic group [KMRT98, §31] with a canonical generator. (Here Hi(?,M)
is the Galois cohomology functor which takes a field extension of the base field
F and returns a group if M is abelian and a pointed set otherwise. When F has
characteristic 0, Q/Z(2) is defined to be lim−→µ⊗2

n for µn the algebraic groups of nth
roots of unity; see [EKLV98, p. 95] or [Gil00, I.1(b)] for a more complete definition.)
This generator is called the Rost invariant of G and we denote it by RG. In an
abuse of notation, we also write RG for the map H1(F,G) −→ H1(F, Q/Z(2)).

This map provides a useful invariant for algebraic structures classified by
H1(F,G), and an important and typically difficult question is to describe the
kernel of RG. For example, when G is split of type Dn, RG is essentially the Ara-
son invariant I3F → H3(F, Z/2) for quadratic forms, where InF is as usual the
nth power of the ideal IF of even-dimensional quadratic forms in the Witt ring
of F . That the kernel of the Arason invariant is precisely I4F is a quite difficult
result due independently to Merkurjev–Suslin [MS91] and Rost. (The proof of the
main result of this paper somehow boils down to this one fact.) In general, one
doesn’t even know if the kernel of RG is trivial. On the other hand, the question
becomes tractable if we assume that G is quasi-split. Generally RG has nontrivial
kernel; we give easy examples where G is split of type D8 (in 1.9) and B7 (in
1.6), and quasi-split of type 2A6 (in 1.11). It should be mentioned that RG can
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have nontrivial kernel when G is split of type E8 as well; Gille [Gil, Appendix] has
produced an example by applying his results from [Gil00] to reduce the question
to the same one for a split group of type D8.

The principal result in this paper is to enlarge the list of quasi-split groups for
which the Rost invariant is known to have trivial kernel.

Main Theorem 0.1. Suppose that G is a quasi-split simply connected group of
type E6 or E7. Then the Rost invariant RG has trivial kernel.

0.2. There are some easy consequences of this theorem that may help the reader
place it in context. The first is that as a vastly less powerful corollary, we obtain
Serre’s “Conjecture II” for quasi-split groups of type E6 and E7, in that if F has
p-cohomological dimension ≤ 2 for p = 2, 3 (see [Ser94, I.3] for a definition), then
the main theorem implies that H1(F,G) is trivial. This conjecture appeared in
print back in 1962 [Ser62], and remained open for such groups until the 1990s,
when Chernousov (unpublished) and Gille [Gil01] proved it (amongst other cases)
independently and by different methods. Here we get it for free from the Main
Theorem.

0.3. Another consequence is the following: Suppose that L is a field extension of
F of degree relatively prime to 2 and 3 and that G is a group of type E6 or E7.
Serre asked in [Ser95, p. 233, Q. 1] if the natural map H1(F,G) → H1(L,G) is
injective. Our Main Theorem gives the partial answer that it has trivial kernel in
the case where G is quasi-split. This result was already known by experts in the
area using arguments special to groups of type E6 and E7, but as for Conjecture II
we get it for free here.

0.4. There is also an application to finite-dimensional algebras. There is a
large family of nonassociative algebras with involution called structurable algebras
which includes central simple associative algebras with involution (as studied in
[KMRT98]) and Jordan algebras (with involution the identity), see [All94] for a
survey. The simple structurable algebras have all been classified, and they consist
(roughly) of the two families already mentioned plus four others. The most poorly
understood of these four additional types consists of 56-dimensional algebras all of
which are isomorphic over a separably closed field and have automorphism group
which is simply connected of type E6. Call algebras belonging to this class Brown
algebras. There is a natural equivalence relation defined on the set of structurable
algebras called isotopy [AH81] which is weaker than isomorphism, and in the case
of Jordan algebras is the same as the traditional notion of isotopy. For Albert alge-
bras, it is known that any algebra isotopic to the split one is actually split. (This is
equivalent to the cohomological statement that the map H1(F, F4) → H1(F,E6)
induced by the embedding F4 → E6 described in 2.4 has trivial kernel.) The Main
Theorem here combined with [Gar01b, 4.16(2), 5.12] shows that an analogous con-
clusion holds for Brown algebras, i.e., a Brown algebra isotopic to the split one is
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quasi-split. This was previously unknown. (This has the cohomological interpreta-
tion that the map H1(F,EK

6 ) → H1(F,E7) induced by the embedding EK
6 → E7

described in 3.5 has trivial kernel.)

The material in [KMRT98] is sufficient to show that the kernel of the Rost
invariant is trivial for quasi-split groups of type G2, D4 (including those of triali-
tarian type [KMRT98, 40.16]), and F4, at least away from the “bad primes” 2 and
3. As easy corollaries to results needed for the E6 and E7 cases, we get analogous
results for groups of type 2An, Bn, and nontrialitarian groups of type Dn with
small n in Section 1. Since H1(F,G) is always trivial for G split of type An or Cn,
we get the following:

Theorem 0.5. Suppose that G is a simple simply connected algebraic group. If
G is
• quasi-split of (absolute) rank ≤ 5;
• quasi-split of type B6, D6, or E6; or
• split of type D7 or E7,

then the Rost invariant RG has trivial kernel.

The proofs of these theorems that we will give here and the material in
[KMRT98] rely on the ground field having “good” characteristic, meaning for our
purposes 6= 2, 3. However, it is a consequence of Gille’s main theorem in [Gil00]
that one only needs to prove that the Rost invariant has trivial kernel for fields of
characteristic 0. Consequently, all fields considered here will be assumed to have
characteristic 6= 2, 3, but our two theorems will still hold for all characteristics.
(Of course, in prime characteristic the group Q/Z(2) must be defined somewhat
differently [Gil00], but this affects neither the statement of the theorems nor our
proofs.)

Section 1 dispenses with the classical groups. (Some of that material is useful
later.) Sections 2 and 3 contain the material necessary to reduce questions about
the Rost invariant for a larger group to a subgroup. That material easily reduces
the proof of the main theorem to considering the quasi-split 2E6 case, which is
treated in the remaining Sections 4 through 7.1

Remark 0.6 (Noninjectivity for F4). We caution the reader that even when the
Rost invariant has trivial kernel, it may be far from injective. For example, for F4

the split group of type F4, the set H1(F, F4) classifies Albert F -algebras. From
known facts about Albert algebras, it is easy to show that two classes α1, α2 cor-
responding to isotopic Jordan algebras J1, J2 have the same Rost invariant. Since
there are many isotopic Albert algebras which are not isomorphic (for example,

1After this paper was released as a preprint, Chernousov sent to me a different proof of
the 2E6 case [Che00], which uses a completely different argument. His proof will be published
elsewhere.
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over R there are 3 isomorphism classes of Albert algebras and two of these are iso-
topic [Jac71, p. 119]), the Rost invariant for F4 has trivial kernel but is typically
not injective.

Notations and conventions

All algebraic groups considered here will be affine. We say that an algebraic group
G is simple if it has finite center and no noncentral closed normal subgroups defined
over an algebraic closure. When we say that a group is “of type Tn”, we implicitly
mean that it is simple of that type. We will use the standard notations Gm, Ga,
and µn for the algebraic groups with F -points F ∗, F , and the nth roots of unity
in F , and G◦ will always denote the identity component of an algebraic group G.
For a variety X we write X(F ) for its F -points.

Our notation for quadratic forms will follow the standard reference [Lam73],
with two quirks: We use the Pfister-approved notation for Pfister forms, so
¿a1, . . . , anÀ := 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉, and we write H for the hyperbolic
plane 〈1,−1〉.

The standard reference for Galois cohomology is [Ser94, §I.5], and for algebras
with involution (including the groups Spin (A, σ), O(A, σ), and SO(A, σ)) it is
[KMRT98].

1. Quasi-split groups of type A, B, and D

As indicated in the introduction, the Rost invariant “should” have trivial kernel
for quasi-split groups of small rank. To prove this for E6, we will need a result
on groups of type D, which also easily settles this question for groups of type A
and B. (For the results in this section, our global hypothesis that our fields have
characteristic 6= 3 is not required; we need only assume characteristic 6= 2.) For q a
nondegenerate quadratic form over F , there is a short exact sequence of algebraic
groups

1 −−−−→ C −−−−→ Spin(q) −−−−→ SO(q) −−−−→ 1 (1.1)

with C isomorphic to µ2.

Lemma 1.2. For q a d-dimensional nondegenerate quadratic form with anisotropic
part of dimension dan such that d ≥ 5 and d + dan < 16, the kernel of the Rost
invariant of Spin(q) is precisely the image of H1(F,C) in H1(F,Spin(q)).

The hypothesis d ≥ 5 ensures that Spin(q) is simple and simply connected, so
that it makes sense to speak of the Rost invariant RSpin(q).

Proof. The set H1(F, SO(q)) classifies quadratic forms of the same dimension and
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discriminant as q [KMRT98, 29.29]. For α ∈ H1(F,Spin(q)) we set qα to be the
quadratic form corresponding to the image of α in H1(F, SO(q)). Then qα − q is
not only even-dimensional with trivial discriminant (i.e., qα − q ∈ I2F ), but since
qα comes from H1(F,Spin(q)), it has the same Clifford invariant as q [KMRT98,
31.11] and so qα − q ∈ I3F by Merkurjev’s Theorem. As described in [KMRT98,
p. 437], the Rost invariant of α is the Arason invariant e3(qα − q) ∈ H3(F, Z/2).
(Since Z/2 = µ⊗2

2 , we can consider Z/2 to be a subgroup of Q/Z(2) and hence
H3(F, Z/2) is a subgroup of H3(F, Q/Z(2)).)

Suppose first that α is in the image of H1(F,C). Sequence (1.1) induces an
exact sequence

SO(q)(F ) −−−−→ H1(F,C) −−−−→ H1(F,Spin(q)) −−−−→ H1(F, SO(q)),
(1.3)

and since the Rost invariant RSpin(q) “factors through” H1(F, SO(q)), certainly
RSpin(q)(α) is trivial.

Conversely, suppose that α is in the kernel of the Rost invariant. Then e3(qα−q)
is trivial, but as mentioned in the introduction the kernel of e3 is precisely I4F .
Since dim qα = dim q = d, the hypotheses on q ensure that the dimension of the
anisotropic part of qα−q is strictly less than 16. Since qα−q ∈ I4F , it is hyperbolic
by the Arason–Pfister Hauptsatz [Lam73, X.3.1]. Thus qα is isomorphic to q and
α is in the kernel of the map H1(F,Spin(q)) → H1(F, SO(q)), which is just the
image of H1(F,C). ¤

The first map in (1.3) is the spinor norm, which immediately produces the
following lemma.

Corollary 1.4. Suppose that q is as in Lemma 1.2. Then the kernel of the Rost
invariant is isomorphic to F ∗/SN(q)F ∗2, where SN(q) is the image of the spinor
norm map SO(q)(F ) → F ∗/F ∗2. ¤

1.5. Quasi-split simply connected groups of type Bn are actually split, so of the
form Spin(q) for q = nH ⊥ 〈1〉. In terms of the lemma, d = 2n + 1 and dan = 1.
So q satisfies the hypotheses for 2 ≤ n ≤ 6. Since q is isotropic, it has surjective
spinor norm, so the Rost invariant for a split group of type Bn has trivial kernel
for 2 ≤ n ≤ 6.

Example 1.6 (B7). As just mentioned, the split simply connected group of type
B7 is isomorphic to Spin(q) for q = 7H ⊥ 〈1〉. The Rost invariant RSpin(q) can
have nontrivial kernel. Sequence (1.1) induces an exact sequence

H1(F,Spin(q)) −−−−→ H1(F, SO(q)) ∂−−−−→ H2(F,µ2) (1.7)

where the set H1(F, SO(q)) classifies nondegenerate quadratic forms with the same
dimension (15) and discriminant (1 · F ∗2) as q.

Fix a base field F and a nonhyperbolic 4-fold Pfister form ϕ over F (e.g. F = R,
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ϕ = ¿−1,−1,−1,−1À). Set qα = −ϕ′ for ϕ′ such that ϕ = 〈1〉 ⊥ ϕ′. Then
disc qα = (−1)(

15
2 ) det(−ϕ′) = 1 ·F ∗2, so there is a unique element of H1(F, SO(q))

corresponding to qα. The image of qα under the connecting homomorphism ∂ is
[C0(qα − q)], which by [Lam73, V.2.10] is the same as [C(qα − q)] which is trivial
since qα − q = −ϕ ∈ I3F . Thus qα is the image of some α in H1(F,Spin(q)). But
then RSpin(q)(α) = e3(qα − q) = e3(−ϕ), which is trivial since ϕ ∈ I4F .

1.8. An analysis for groups of type Dn similar to the one in 1.5 for Bn shows
that the Rost invariant for a simply connected group is trivial for groups of type
1Dn with 3 ≤ n ≤ 7 and for groups of type 2Dn with 3 ≤ n ≤ 6. As in the B case,
we show that one of these bounds is sharp.

Example 1.9 (1D8). The situation here is quite similar to the one in Example
1.6, except that q = 8H. Use the same base field F and nonsplit 4-fold Pfister
form ϕ from before. There is a unique element of H1(F, SO(q)) corresponding to
ϕ and since ϕ = ϕ− q ∈ I4F , the same reasoning shows that there is a nontrivial
class in H1(F,Spin(q)) which is the inverse image of ϕ and which has trivial Rost
invariant.

Lemma 1.2 easily deals with quasi-split groups of type 2An of low rank.

Corollary 1.10. If G is a quasi-split simply connected group of type 2An with
n ≤ 5, the kernel of the Rost invariant RG is trivial.

Proof. Set K to be the quadratic field extension of F which splits G and take
(V, hd) to be a “maximally split” (n+1)-dimensional hermitian form over K. (See
below for a more explicit description.) Then G is SU(V, hd), the algebraic group
with F -points

SU(V, hd)(F ) =


g ∈ GL(V )(K) |

h(gv, gv′) = h(v, v′)
for all v, v′ ∈ V and
det g = 1


 .

The trace form of hd is defined to be the quadratic form qd on V considered as a
2(n + 1)-dimensional vector space over F given by qd(v) = hd(v, v). Then

hd =

{
mH if n+1 = 2m,
mH ⊥ 〈1〉 if n+1 = 2m+1

and qd =

{
2mH if n+1 = 2m,
2mH ⊥ ¿dÀ if n+1 = 2m+1,

where K = F (
√

d) if n = 2m for some integer m, and the H occurring in the
description of hd is the usual unitary hyperbolic plane as described in [Sch85,
7.7.3].

The set H1(F,G) classifies nonsingular hermitian forms h on V which have
the same dimension and discriminant as hd [KMRT98, p. 403]. The group G
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embeds in SO(V, qd) in an obvious manner. The corresponding map H1(F,G) →
H1(F, SO(V, qd)) sends h to its trace form q, and this map is an injection by [Sch85,
10.1.1(ii)]. Moreover, the Rost invariant RG(h) is just e3(q − qd) by [KMRT98,
31.44]. Since dim qd = 2n + 2 < 13 and the anisotropic part of qd has dimension
0 (if n + 1 is even) and 2 (if n + 1 is odd), as in the proof of Lemma 1.2, if RG(h)
is trivial, q ∼= qd and so h ∼= hd. ¤

Example 1.11 (2A6). Take F = R, K = C, and consider G = SU(V, hd) for
hd the hermitian form 3H ⊥ 〈1〉 over K, so that G is simply connected quasi-
split of type 2A6. Then the hermitian form h = 〈−1,−1,−1,−1,−1,−1,−1〉 has
trace form q = −7¿−1À which is not hyperbolic, so h corresponds to a (unique)
nontrivial class in H1(F,G). However,

q − qd = −7¿−1À−¿−1À = −¿−1,−1,−1,−1À ∈ I4F,

so RG(h) is trivial.

2. Folded root systems

2.1. The Rost multiplier. A loop in an arbitrary algebraic group G is a homo-
morphism Gm → G. Let G∗ be the set of loops in G. As in [KMRT98, p. 432], we
set Q(G) to be the abelian group of all integer-valued functions on G∗ such that

(1) for gf the loop given by gf(x) = gf(x)g−1, q(gf) = q(f) for all g ∈ G and
f ∈ G∗; and

(2) for any two loops f and h with commuting images, the function Z×Z −→ Z
given by (k,m) 7→ q(fkhm) is a quadratic form.

When G is a simple group, Q(G) is cyclic with a canonical generator which is
positive definite [KMRT98, 31.27], hence is identified with Z. Now suppose that
we have two simple simply connected groups H ⊂ G. The inclusion gives a map
H∗ → G∗, so we in turn have a map Z = Q(G) → Q(H) = Z. Because the
canonical generators are positive definite, this map must be multiplication by a
positive integer n, which we define to be the Rost multiplier of the inclusion.

The naturality of the Rost invariant implies that we have a commutative dia-
gram

H1(F,H) −−−−→
RH

H3(F, Q/Z(2))y n·
y

H1(F,G) RG−−−−→ H3(F, Q/Z(2)),

where n is the Rost multiplier of the inclusion [KMRT98, 31.34]. This is the
motivation for our study of this invariant.
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2.2. Luckily, it can be quite easy to compute such a “Rost multiplier”. Suppose
that G and H are split and contain split maximal tori S and T respectively such
that the T lies in S. Since G and H are simply connected, the character groups
X(T ) and X(S) are identified with the weight lattices, but the character groups
are dual to the loop groups S∗ and T∗ [Bor91, 8.6] and the weight lattices are
dual to the lattices generated by the coroots, which we denote by Λc,G and Λc,H ,
respectively. (By a coroot, we mean the roots of the dual root system, which are
denoted by α̌ in [Bou68, VI.1] for α a root.) Putting these dualities together,
we obtain identifications S∗ = Λc,G and T∗ = Λc,H , so the inclusion T ⊂ S
induces a map Λc,H → Λc,G. Now the dual root systems (whose roots are the
coroots) are indeed root systems [Bou68, VI.1.1, Prop. 2] and so they each have
a unique minimal Weyl-group invariant positive-definite integer-valued quadratic
form [Bou68, VI.1.2, Prop. 7], say q and r (for the forms for G and H respectively).
Hence q induces such a form on Λc,H , which must be of the form nr for some natural
number n. This n is the Rost multiplier of the inclusion.

Criterion (2) in the definition of Q(G) implies that its canonical generator
is identified with the positive-definite Weyl-group invariant quadratic form on the
dual root system which takes the value 1 on short coroots. (Short roots correspond
to long roots, where we adopt the convention that short = long in the event that
all roots have the same length. In that case, the quadratic form is very easy to
identify, in that its Gram matrix is simply the Cartan matrix of the root system
with all entries divided by 2.) So one can simply compute the image of a short
coroot from H in the dual root system for G to find the Rost multiplier of the
inclusion.

Example 2.3 (SLn → SL2n). The block diagonal embedding SLn ↪→ SL2n via
x 7→ ( x

x ) has Rost multiplier 2. The map given by x 7→ ( x
1 ) has Rost multi-

plier 1.

Example 2.4 (Folding). The split simply connected group of type E6 can be
realized as the group Inv (J) of invertible linear maps of the split Albert algebra J
which preserve the cubic norm form. The algebra J has a nondegenerate symmetric
bilinear trace form T given by setting T (x, y) to be the trace of the product x · y
[Jac68, p. 240, Thm. 5], and for ϕ ∈ Inv (J)(F ) we define ϕ† ∈ GL(J)(F ) to
be the unique map satisfying T (ϕ(j), ϕ†(j′)) = T (j, j′) for all j, j′ ∈ J . This
defines an outer automorphism of E6 = Inv (J) [Jac61, p. 76, Prop. 3] and the
subgroup of elements fixed by this automorphism is the split group F4 of F -algebra
automorphisms of J .

We would like to compute the Rost multiplier of the inclusion F4 ⊂ E6. Fix
an F -split maximal torus S in G := E6 which is preserved by the automorphism
(such as the one denoted by “S6” in [Gar01b, pf. of 7.2]) and fix a set of simple
roots ∆ of G with respect to S. We would like our outer automorphism to leave ∆
invariant, although it probably does not do so. However, two things are apparent
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from the definition of the Rost multiplier: it is not changed by scalar extension
nor by modifying the automorphism ϕ 7→ ϕ† by an inner automorphism of E6. So
we may assume that the base field is separably closed and so that the F -points of
the Weyl group of G with respect to S (i.e., the F -points of NG(S)/S) is the full
Weyl group of the root system of G with respect to S. Then we may modify our
outer automorphism by an element of the Weyl group so that F4 is described as
the subgroup of E6 fixed by the automorphism f induced by the automorphism of
∆ which is given by the unique nontrivial automorphism of the Dynkin diagram.
That is, we set H := F4 = Gf (= the subgroup of G of elements fixed by f),
and T := (Sf )◦ (= the identity component of T ∩ Gf ) is a maximal torus in H.
The restrictions of elements of ∆ to T give a root system of H with respect to
T [Sch69, p. 108] and the fibers of this restriction map are the orbits of f in ∆
[Sch69, 3.5].

Now Λc,G is a free Z-module with basis ∆̌ = {δ̌ | δ ∈ ∆} which is permuted by
f and Λc,H is the fixed sublattice. So Λc,H has a basis consisting of one element
for each orbit of f in ∆̌, and this element is given by the sum of the elements in the
orbit in ∆̌. There is a coroot δ̌ ∈ ∆̌ which is fixed by f , hence δ̌ is a member of the
Z-basis for Λc,H . The form q on Λc,G restricts to a positive-definite Weyl-invariant
form on Λc,H such that q(δ̌) = 1, consequently q restricts to be the minimal such
form r. By the discussion in 2.2 the Rost multiplier of the inclusion F4 ⊂ E6 is 1.

Remark 2.5. Presumably this same argument also works in the other instances
where one obtains a root system by “folding up” another root system all of whose
roots have the same length, i.e., C`+1 ⊂ A2`+1, Bn−1 ⊂ Dn, and G2 ⊂ D4. The
other root system consisting of roots of the same length, A2`, folds up to give the
smaller root system BC`, see [Hec84, Table I].

3. Small representations

We say a representation V of an algebraic group G is small if G has an open
orbit in P(V ). We are interested in small representations in the case where G
is simple, which have all been classified as a consequence of the (more general)
classification of prehomogeneous vector spaces, see [Kim88] for a survey. These
small representations also provide “standard relative sections” in the language of
[Pop94, 1.7], and in that sense were classified in [Èla72, Table 1]. Our motivation
for studying these representations comes from the following easy lemma, which
was pointed out to me by Rost.

Lemma 3.1. Suppose that G is an algebraic group over a field F such that G
has a small representation V , and that F is infinite or G is connected. Let H be
a subgroup of G consisting of the elements which stabilize some F -point in the open
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orbit in P(V ). Then the natural map

H1(F,H) → H1(F,G)

is surjective.

Proof. If the base field F is finite, then by hypothesis G is connected, and by
Lang’s Theorem H1(F,G) is trivial so the lemma holds. So we may assume that
F is infinite.

Fix a 1-cocycle z ∈ Z1(F,G). It defines a twisted version P(V )z of P(V ) which
is the same as P(V ) over the separable closure Fsep of F but has a different Galois
action: For w ∈ P(V )z(Fsep) and σ ∈ Gal(Fsep/F ), σ acts by

σ ∗ w = zσσw

where juxtaposition denotes the usual action. The twisted version Uz of U , defined
analogously, is an open subset of P(V )z.

Since the representation gives a map G → GL(V ), P(V )z is F -isomorphic to
P(V ). In particular, since F is infinite, P(V )z(F ) is dense in P(V )z(Fsep). Since
Uz(Fsep) is open in P(V )z(Fsep), the two sets Uz(Fsep) and P(V )z(F ) must meet
nontrivially, i.e., Uz has some F -point which we will denote by xz.

Now let x ∈ U(F ) be the point with stabilizer subgroup H and fix some
g ∈ G(Fsep) such that gx = xz. Then for all σ ∈ Gal(Fsep/F ), the element
g−1zσ(σg) fixes x and so lies in H(Fsep). Thus z is cohomologous to something in
the image of Z1(F,H). ¤

Example 3.2 (On−1 ⊂ On). Write On for the orthogonal group of the dot product
on Fn. Then the subgroup of On which stabilizes [v] ∈ P(Fn) where v has nonzero
length is just On−1 × µ2, where On−1 is the orthogonal group for the (n − 1)-
dimensional space of vectors in Fn which are orthogonal to v. Iterating this
process recovers the fact that all nondegenerate quadratic forms are diagonalizable,
a.k.a. the Spectral Theorem.

Example 3.3 (Spinn [Igu70], [GV78], [Pop80]). For Spinn the spin group for an
n-dimensional maximally split quadratic form, the spin representation (if n is odd)
or the half-spin representation (if n is even) is small for n ≤ 12 and n = 14. In
the n = 14 case, the stabilizer subgroup is isomorphic to (G2×G2) o µ8, and this
leads to structural statements about 14-dimensional forms in I3F , see [Ros99].

Example 3.4 (F4 ×µ3 ⊂ E6). We write E6 for the split group of type E6 which
can be realized as Inv (J) as described in 2.4. By [Jac61, p. 71, Thm. 7], E6 acts
transitively on the subset of J consisting of elements of norm 1, so certainly this
is a small representation.

Take H to be the subgroup of E6 consisting of elements which fix the identity
element 1J of J projectively. Since the norm form is cubic, µ3 is contained in
H and is central (since it consists of scalar endomorphisms), and any element
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of H differs by an element of µ3 from something which fixes 1J absolutely. This
subgroup of elements fixing 1J is well-known — it is the automorphism group F4 of
J [Jac59, p. 186, Thm. 4], which is split of type F4. So H is isomorphic to F4×µ3,
and the resulting surjective map H1(F, F4 × µ3) → H1(F,E6) is the statement
that H1(F,E6) classifies cubic forms of the form λN for N the norm form on some
Albert F -algebra and λ ∈ F ∗, see [Spr62]. This can also be interpreted in terms
of structurable algebras, see [Gar01b, 2.8(1)].

Example 3.5 (E6 o µ4 ⊂ E7). Write E7 for the split simply connected group of
type E7 over F . It is the group of vector space automorphisms of V = ( F J

J F ) which
preserve a quartic form q as given in [Bro69, p. 87]. Then E7 acts transitively on
the open subset of P(V ) consisting of points [v] such that q(v) 6= 0 by [Fer72, 7.7].

We set H to be the subgroup of E7 which stabilizes the vector v = ( 1 0
0 1 )

projectively. This vector has q(v) 6= 0, and so by [Fer72, 3.7] there are two uniquely
determined (up to scalar multiples) “strictly regular” elements e1 and e2 such that
v lies in their span. These are e1 = ( 1 0

0 0 ) and e2 = ( 0 0
0 1 ). Since E7 preserves the

property of being strictly regular, every element of H must projectively stabilize
e1 and e2 as well, and perhaps interchange them.

Now, the map ω defined by

ω

(
α j
j′ β

)
=

(
iβ ij′

ij iα

)
lies in H, where i is some fixed square root of −1 in the separable closure of F . We
would like to describe an arbitrary h ∈ H, which after modification by ω we may
assume projectively stabilizes each of e1 and e2. Then by [Bro69, p. 96, Lem. 12],
h must be of the form

h

(
α j
j′ β

)
=

(
µ−1α ϕ(j)
ϕ†(j′) µβ

)
where ϕ is a similarity of the norm form on J with multiplier µ and ϕ† is as defined
in 2.4. Since h also stabilizes v, we must have that µ = ±1. In particular, after
modifying h by ω2 = −1, we may assume that h has the form

h

(
α j
j′ β

)
=

(
α ϕ(j)

ϕ†(j′) β

)
where ϕ preserves the cubic norm on J and so lies in E6. We have shown that H
is isomorphic to E6 o µ4.

The surjection on Galois cohomology coming from this example will be more
useful if we can replace E6 o µ4 with a simple group. For K a quadratic étale
F -algebra, we write EK

6 for the simply connected quasi-split group of type E6 over
F which is split by an extension L of F if and only if L⊗F K ∼= L× L.

Proposition 3.6 (Cf. [Gar01b, 4.14]). For each α ∈ H1(F,E7) there is some
quadratic étale F -algebra K such that EK

6 embeds in E7 with Rost multiplier 1
and α is in the image of the induced map H1(F,EK

6 ) → H1(F,E7).
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Proof. Fix some a ∈ Z1(F,E6 o µ4) representing α. The natural projection E6 o
µ4 → µ4 has an obvious section given by sending i 7→ ω; set b to be the image of
a given by the map induced by the composition E6 o µ4 → µ4 → E6 o µ4. Twist
E6 o µ4 by b to obtain a new group (E6 o µ4)b, with a twisted Galois action ∗ so
that

σ ∗ g = bσ(σg)b−1
σ ,

where σg denotes the usual action. There is an isomorphism

H1(F, (E6 o µ4)b)
∼−−−−→
τb

H1(F,E6 o µ4)

where τ−1
b (α) is the class of a 1-cocycle given by σ 7→ aσb−1

σ with values in the
identity component of the twisted group (E6 o µ4)b. This identity component is
just E6 twisted by b, and we would like to show that it is isomorphic to EK

6 for
some quadratic étale F -algebra K. If σ in Gal(Fsep/F ) has bσ = ±1, then σ acts
in the usual manner upon the twisted E6. On the other hand, if bσ = ±ω, then
the twisted action is given by

(σ ∗ h)
(

α j
j′ β

)
= (±ω)σhσ−1(±ω)−1

(
α j
j′ β

)
=

(
α σϕ†σ−1(j′)

σϕσ−1(j) β

)
.

This is precisely the description of the Galois action on EK
6 given in [Gar01b, 2.4]

for K determined by the image of b under the composition H1(F,E6 o µ4) →
H1(F,µ4) → H1(F,µ2) = F ∗/F ∗2, so (E6)b is isomorphic to EK

6 . To see that EK
6

embeds in E7, we observe that the 1-cocycle b is trivial in H1(F,E7) by [Gar01b,
4.10, 5.10], so we have a map

EK
6 ⊂ (E6 o µ4)b ↪→ (E7)b

∼−−−−→
f

E7

where (by a simple computation having nothing to do with E7) H1(f) = τb. This
proves the proposition aside from the claim about the Rost multiplier.

But that claim is easy in the split case (where K = F×F ), since the embedding
of E6 in E7 comes from the obvious embedding of root systems. Since the Rost
multiplier is invariant under scalar extension, the embeddings of quasi-split groups
of type EK

6 in E7 given above all have Rost multiplier 1 as well. ¤

4. 1D4 ⊂ 2E6

For the remainder of the paper we will study the quasi-split group EK
6 of type 2E6

defined in 3.5. In this section we introduce a particular subgroup G of EK
6 which is

reductive of semisimple type 1D4. Defining G will necessitate digging more deeply
in to the structure of Cayley and Albert algebras.

Definition 4.1. Fix C to be the split Cayley algebra endowed with hyperbolic
norm form n and canonical involution .̄ (For more information about Cayley
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algebras, see [KMRT98, §33.C] or [Sch66, Ch. III, §4].) If t ∈ GL(C)(F ) satisfies
n(t(c)) = mn(c) for some m ∈ F ∗ and all c ∈ C, we say that m is a similarity of n
with multiplier µ(t) := m. (Note that if σn is the involution on EndF (C) which is
adjoint for n so that n(tc, c′) = n(c, σn(t)c′) for all c, c′ ∈ C, then µ(t) = σn(t)t.)
Set GO◦(C, n) to be the algebraic group with F -points

GO◦(C, n)(F ) :=
{

t ∈ GL(C)(F )
∣∣∣∣t is a similarity of n with multiplier
µ(t) such that det(t) = µ(t)4

}
.

We can also define a new, seemingly uglier multiplication ? on C by setting x ?
y := x̄ȳ as in [KMRT98, §34.A]. A related triple is a triple (t0, t1, t2) in GO◦(C, n)×3

such that
µ(ti)−1ti(x ? y) = ti+2(x) ? ti+1(y)

for all x, y ∈ C and i = 0, 1, 2 with subscripts taken modulo 3. Write Rel (C, n)
for the algebraic subgroup of GO◦(C, n)×3 consisting of related triples and Spin(n)
for the subgroup of Rel (C, n) consisting of triples with multiplier one (i.e., those
triples such that µ(ti) = 1 for all i).

4.2. The vector space underlying the split Albert F -algebra J is the subspace
of M3(C) consisting of elements fixed by the conjugate transpose ∗ which applies
¯ to each entry and takes the transpose. It is the algebra denoted by H(C3) in
the notation of [Jac68, §I.5] and has multiplication a · b := (ab + ba)/2, where
juxtaposition denotes the usual multiplication on M3(C). When writing down
explicit elements of J , we will use a “·” to indicate entries whose values are forced
by this symmetry condition. The reductive group Rel (C, n) embeds in the group
Inv (J) of norm isometries of J via the map t 7→ gt given by

gt


 ε0 c2 ·

· ε1 c0

c1 · ε2


 =


 µ(t0)−1ε0 t2(c2) ·

· µ(t1)−1ε1 t0(c0)
t1(c1) · µ(t2)−1ε2


 . (4.3)

Let ei denote the element of J whose only nonzero entry is a 1 in the (i+1, i+1)-
position. Any element of Inv (J)(K) which fixes e1, e2, and e3 is of the form gt for
some t ∈ Spin(n) by [Sod66, p. 155, Thm. 1]. This implies that every element of
Inv (J)(F ) which leaves each of subspaces Fei invariant is in the image of Rel (C, n).

4.4. Definition of G. Since Rel (C, n) embeds in Inv (J) over F , it embeds in
EK

6 over K. However, we can identify EK
6 with Inv (J) with a different ι-action

where ιf := ιf†ι, where ι is the nontrivial F -automorphism of K and juxtaposition
denotes the usual action; we fix this identification for the rest of the paper. The
map Rel (C, n) → EK

6 is not defined over F : For t = (t0, t1, t2) ∈ Rel (C, n)(K) and
gt ∈ EK

6 , we have ιgt = gισn(t)−1ι which is typically not the same as gιtι where
σn(t) means to apply σn to each component of t. Define G to be the algebraic
group over F which is the same as Rel (C, n) over K but with a different ι-action:
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for t ∈ G(K), set ιt := ισn(t)−1ι. Then G injects into EK
6 over F via the map g

from (4.3).
This group G is reductive with absolute rank 6 and semisimple part Spin(n) of

type 1D4.

4.5. The center P of G. Set N1 to be the algebraic group with F -points the
elements of K∗ with norm 1 in F . This group is the same as Gm over K, but has a
different ι-action given by ιλ = ι(λ)−1. It is sometimes denoted by R

(1)
K/F (Gm,K).

The center of Rel (C, n) is the subgroup of G×3
m consisting of triples whose

product is one. But we are concerned with G, which has a different ι-action; its
center P is isomorphic to the subgroup of N×3

1 consisting of triples whose product
is 1. This rank 2 torus is F -anisotropic and K-split.

The importance of G is given by the following lemma, excavated from a paper
by Ferrar:

Ferrar’s Lemma 4.6. [Fer69, p. 65, Lem. 3] The natural map H1(K/F,G) →
H1(K/F,EK

6 ) is surjective.

Comments. Ferrar proved this by explicit computations in the Jordan algebra.
However, this can also be seen with more algebraic group-theoretic methods, as was
pointed out to me by Gille. We must assume that our base field has characteristic
0, which as was observed in the introduction does not harm our main results in
any way.

The group Spin8 is split simply connected of type D4 and so contains a subgroup
which is isogenous to SL×4

2 . Each copy of the group SL2 contains a rank 1 torus
which is anisotropic over F and split over K, and we set T4 to be the image in
Spin8 of these four tori. Let T be the subtorus of G generated by T4 and the
center P . It is a rank 6 F -anisotropic torus which is split over K. Let B be a
Borel subgroup of EK

6 defined over K and containing T . Then ιB ∩ B = T , so
by [PR94, p. 369, Lem. 6.28] the natural map H1(K/F, T ) → H1(K/F,EK

6 ) is a
surjection. ¤

Now imagine how the argument for proving the main theorem in the 2E6

case must proceed: We apply some simple argumentation and Ferrar’s Lemma
to show that any class in H1(F,EK

6 ) with trivial Rost invariant must come from
H1(K/F,G). Then we apply some facts about Rost invariants on this smaller
group to obtain the theorem. However, G is reductive, so we want to put our class
with trivial Rost invariant into a simple subgroup if we hope to apply our results
from Section 1. This requires further study of the center of G.

4.7. The group H1(K/F,P ). There is a short exact sequence over K

1 −−−−→ P −−−−→ N×3
1

π−−−−→ N1 −−−−→ 1,
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where π is the product map, which induces an exact sequence

H1(K/F,P ) −−−−→ H1(K/F,N×3
1 )

H1(π)−−−−→ H1(K/F,N1).

The first map is an injection because the product map π is a surjection on F -
points. Any 1-cocycle in Z1(K/F,N1) is determined by its value at ι, and the
condition that it is a 1-cocycle forces that this value lies in F ∗. The obvious check
shows that two such are cohomologous if and only if they differ by a norm from K∗.
So H1(K/F,P ) is isomorphic to the subgroup of (F ∗/NK/F (K∗))×3 consisting of
elements with product in NK/F (K∗).

4.8. The map H1(K/F,G) → H1(K/F,P ). There is a short exact sequence

1 −−−−→ Spin(n) −−−−→ G −−−−→ P −−−−→ 1

where the map G → P is given by sending each ti to its multiplier µ(ti) = σn(ti)ti ∈
N1. This sequence is even exact over K (instead of just over a separable closure
of F ) because the map G → P is surjective over K by [KMRT98, 35.4]. A 1-
cocycle γ ∈ Z1(K/F,G) is determined by its value γι at ι, and the image of γ in
H1(K/F,P ) is the multiplier of γι.

A natural question is the following: Any 1-cocycle in Z1(K/F,EK
6 ) comes from

H1(K/F,G) by Ferrar’s Lemma and so has an image in H1(K/F,P ). Is that image
an invariant of the original class in H1(K/F,EK

6 )? The answer is no, as is shown
in the following lemma. (Explicit situations where the hypotheses are satisfied
nontrivially will be given in 6.6 and 7.10.)

Moving Lemma 4.9. Let η be a 1-cocycle in Z1(K/F,G) whose image in
Z1(K/F,P ) takes the value a at ι. Suppose that there is some j ∈ e0 × JK such
that

j# = 0 and T (j, ηιιj) = r ∈ F ∗.

Then η is cohomologous in H1(K/F,EK
6 ) to a 1-cocycle coming from Z1(K/F,G)

whose image in Z1(K/F,P ) takes the value (r−1, a0, a
−1
0 r) at ι.

The hypotheses in the lemma make use of the Freudenthal cross product × :
J × J → J , which is a commutative bilinear map defined by the relation 6N(j) =
T (j, j × j) for all j ∈ J . The map #: J → J is defined by 2j# := j × j.

The proof is an adaptation of an argument in [Fer80, p. 277].

Proof. First observe that the three elements j, e0, and e0 × j′ for j′ := ηιιj all
have “rank one”, i.e., are sent to zero by the map x 7→ x#.

For x and y in J , we have the identity [McC69, (19)]:

x× (x# × y) = N(x)y + T (x, y)x#. (4.10)

Setting x = w + z, we have x# = w# +w× z + z#. The term of N(x) = N(w + z)
which has degree 1 in w and degree 2 in z is T (w, z#)y. Substituting x = w + z
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into (4.10) and taking the terms on both sides with this degree, we obtain the
identity

w × (z# × y) + z × (y × (z × w)) =

T (w, z#)y + T (z, y)(w × z) + T (w, y)z#. (4.11)

Since the vector space e0 × J is preserved by ι and G(K), we have j′ = e0 ×w for
some w. Applying (4.11), we obtain

e0 × (e0 × j′) = T (e0, e0)(e0 × y) = j′. (4.12)

For N trilinearized so that N(x, x, x) = N(x), we have

6N(e0, j, e0 × j′) = T (e0 × j, e0 × j′) = T (j, e0 × (e0 × j′)) = T (j, j′) = r 6= 0.

(The triple e0, j, e0 × j′ is said to be “in general position”.) By [SV68, 3.11], this
implies that there exist some f ∈ Inv (J)(K) and ρi ∈ K∗ such that

f(j) = ρ0e0, f(e0) = ρ1e1, and f(e0 × j′) = ρ2e2.

Since n is hyperbolic, there is some g = gt ∈ Inv (J)(K) such that g(e0) = ρ−1
0 e0,

g(e1) = ρ−1
1 e1, and g(e2) = ρ0ρ1e2. By replacing f with gf , we may assume that

ρ0 = ρ1 = 1. Moreover, f preserves N , and so ρ2 = 6N(e0, e1, ρ2e2) = r.
Set η′ ∈ Z1(K/F,EK

6 ) to be the cocycle cohomologous to η given by η′ι =
f†ηι

ι(f†)−1. It is standard that the maps † and inverse commute on Inv (J),
hence ι(f†)−1 = ι(f−1)† = ιf−1ι, where the action of ι on EK

6 is as in 4.4. Thus
we have

η′ι = f†ηι ιf−1ι.

Keeping in mind the facts that ei × ei+1 = ei+2; f†(u × v) = f(u) × f(v)
for all u, v ∈ JK ; equation (4.12); and j × (e0 × j′) = re0 (as can be verified by
examining the explicit formula for × given in [Jac68, p. 358, (4)], although the
reader should be cautioned that our definition of × — which agrees with the one
in [KMRT98] and [McC69] — differs from Jacobson’s by a factor of 2), one can
now easily calculate that f†(e0) = e1 and f†(j′) = re0. It follows that

η′ι(e0) = re0, and η′ι(e1) = a−1
0 e1.

Since η is a 1-cocycle, we have ηιι(u× v) = (ιη−1
ι u)× (ιη−1

ι v). Thus ηιι(e0× j′) =
a0e0 × j, and we have

η′ι(e2) = (a0/r)e2.

Since η′ι preserves the linear subspaces Kei for all i, it belongs to G(K), and we
are done. ¤

5. 2D5 ⊂ 2E6

For the purpose of making computations, we will need to make use of another
subgroup of EK

6 , which we define to be the subgroup consisting of elements h such
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that h and h† both fix the element e0 ∈ J . Since the map h → h† is a group
homomorphism on Inv (J), it is clear that H is indeed a subgroup of EK

6 over K,
and it is preserved by the ι-action so it is even defined over F . Our first task is to
describe it explicitly.

5.1. Fix a particular basis u1, u2, . . . , u8 for the split Cayley algebra C as given
in [Gar98, p. 388]. One important thing for us to know about this basis is that
when we bilinearize the norm form n so that n(x, x) = 2n(x), we have

n(ui, uj) =

{
1 if i + j = 9
0 otherwise,

so that the Gram matrix of the symmetric bilinear form with respect to this basis is
a matrix we will denote by S8. It is the 8× 8 matrix which has zeroes everywhere
except for a line of ones connecting the (1, 8) and the (8, 1) entries. Also, the
canonical involution ¯ is given by

ui =



−ui if i 6= 4, 5
u5 if i = 4
u4 if i = 5.

5.2. Over K, H is isomorphic to Spin10 oµ2. Let A denote the 10-dimensional
subspace e0 × J of J , which is A =

(
0 0 ·
· F C
0 · F

)
. For f in Inv (J)(K), we have

f(e0 × j) = f†(e0) × f†(j), so for f ∈ H we have f(A) = A. The multiplication
on J restricts to give A the structure of a central simple Jordan algebra as well,
albeit with a different unit element. It has norm form NA given by

NA

(
0 0 ·· α c
0 · β

)
= αβ − n(c).

Extend scalars to K(t) and fix f in H(K). Then N(te0 + j) = N(f(te0 + j)) =
N(te0 + f(j)). The coefficient of t in this expression is T (e0, j

#) = T (e0, f(j)#).
For j actually lying in A, T (e0, j

#) = NA(j), so f restricts to preserve the norm
on A. Write O(A) for the algebraic subgroup of GL(A) consisting of maps which
preserve the norm NA (i.e., the orthogonal group of the 10-dimensional quadratic
form NA). We have proven that restriction provides a map H → O(A) which is
defined over K.

The map H → O(A) has kernel of order 2: Anything in H which maps to the
identity in O(A) fixes all of the idempotents ei, and so is of the form gt for some
t ∈ Spin(n). However, t0 must also be the identity, so t = (1, 1, 1) or (1,−1,−1)
by [Gar98, 1.5(2)].

We would like to show that the map H → O(A) is surjective. Note that O(A)
is generated by
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• the special orthogonal group SO(B) for B the codimension 1 subspace of A
spanned by C and e1−e2 endowed with the quadratic form given by restricting
NA;

• anything in O(A) with determinant −1; and
• anything in O(A) which does not leave B invariant.

Since for f ∈ Aut(J), f† = f , the subgroup Aut(J/e0) of elements of Aut(J) which
fix e0 is a subgroup of H. As described in [Jac68, p. 376, Thm. 4], Aut(J/e0) ∼=
Spin(B) and the restriction to B gives the surjection onto SO(B). The map(

ε0 c2 ·· ε1 c0
c1 · ε2

)
7→

(
ε0 c1 ·· ε2 c0
c2 · ε1

)
lies in H(K) and restricts to have determinant −1 on A. Finally, we consider
Freudenthal’s maps from [Jac61, p. 74]. For Eij ∈ M3(C) the matrix whose only
nonzero entry is a 1 in the (i, j)-position, 13 the 3× 3 identity matrix, x ∈ C, and
a ∈ J , he defines a map ψij(x) ∈ Inv (J) given by

ψij(x)(a) = (13 + xEij)a(13 + xEij)∗,

where juxtaposition denotes the usual multiplication in M3(C), not the Jordan
multiplication. So ψij(x) ∈ H(K) if i, j 6= 1. In particular, ψ32(u5)|A is given by

ψ32(u5)|A ( ε1 c0· ε2 ) =
(

ε1 c0+ε1u4
· ε2+n(c0,u4)

)
,

which does not leave B invariant.
Finally, we observe that H◦ is isomorphic to Spin(A). The inverse image, call

it H ′, of SO(A) maps onto SO(A) with a kernel which is central and of order 2.
Consequently, H ′ is simple and hence must be isomorphic to Spin(A). Since H ′ is
connected and [H : H ′] = 2, H◦ = H ′.

5.3. Over F , H is isomorphic to Spin(4H ⊥ 〈−1, k〉) o µ2. To compute the
isomorphism class of H over F , we observe that the map h 7→ h† restricts to the
identity on the kernel of the K-map H → O(A), so the ι-action on H induces one
on O(A), which we will calculate explicitly.

Fix the basis (u1, u2, u3, u4, e1, e2, u5, . . . , u8) for A so that the Gram matrix
for the symmetric bilinear form associated with NA becomes(

−S4
S2

−S4

)
,

for S2 and S4 defined analogously to how S8 was in 5.1. Then SO(A) is generated
by
• a torus T consisting of diagonal matrices with diagonal entries (d1, d2, . . .,

d5, d
−1
5 , d−1

4 , . . ., d−1
1 );

• root groups Uij : Ga → SO(A) given by

Uij(r) = 110 + rEij − rEj∗i∗

for 110 the 10 × 10 identity matrix, i∗ := 11 − i, and (i, j) = (i, i + 1) for
i = 1, 2, 3, and their transposes; and
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• root groups Vij : Ga → SO(A) given by

Vij(r) = 110 + r(Eij + Ej∗i∗)

for (i, j) = (4, 5) and (4, 6), and their transposes. (Note that V45(r) =
ψ32(ru5)|A and V46(r) = ψ23(ru4)|A for r ∈ F = Ga(F ).)

Since the torus lies in the image of Rel (C, n) and g†t = gσn(t)−1 , the action on
T and on the first kind of root groups is the usual ι-action. However,

V45(r)† = ψ32(ru5)† = ψ23(−ru4) = V46(−r).

So the map h 7→ h† induces on SO(A) the map f 7→ MfM−1 for

M =
( 14

−S2
14

)
.

Write η for the 1-cocycle in Z1(K/F,O(A)) given by ηι = M . The K-map
H → O(A) descends to a map over F from H onto the twisted group O(A)η, so
we wish to describe the group O(A)η.

But this is now just a problem of explicitly computing a quadratic form given
by descending down a quadratic extension. So we need to find a K-basis of A⊗K
consisting of elements fixed by the map a ⊗ κ 7→ M(a) ⊗ ι(κ). Then O(A)η is
isomorphic to O(q), where q is the restriction of NA to the F -span of those fixed
vectors. Such a K-basis is given by ui for 1 ≤ i ≤ 8, e1 − e2, and

√
ke1 +

√
ke2.

These vectors give an orthogonal basis for a quadratic form 4H ⊥ 〈−1, k〉, which
proves the claim.

Following is a little lemma which foreshadows the way we will prove the Main
Theorem for quasi-split groups of type 2E6.

Lemma 5.4. The Rost multiplier of the inclusion H◦ ⊂ EK
6 is 1. The restriction

of the Rost invariant on H1(F,EK
6 ) to the image of H1(F,H◦) has trivial kernel.

Proof. Since the Rost multiplier is invariant under scalar extension, we may work
over K, where this embedding is described in 5.2. Then some of the coroots
(identified with copies of Gm lying in the maximal torus T from 5.3) for H◦ are
the same as those for Spin(n) considered as a subgroup of Inv (J) via the map g.
Since the inclusion Spin(n) ↪→ Inv (J) has Rost multiplier 1, so does H◦ ⊂ EK

6 .
Since the quadratic form q = 4H ⊥ 〈−1, k〉 is isotropic, the spinor norm map

SO(q)(F ) → F ∗/F ∗2 is surjective. The Rost invariant RH◦ has trivial kernel by
1.4, and the second claim follows. ¤

6. Special cocycles

Definition 6.1. For a = (a0, a1, a2) ∈ (F ∗)×3 with product 1, we define a “spe-
cial” cocycle z := zK,a in H1(K/F,G). Set zι = (z0, z1, z2) where zj = mj(a)dP



Vol. 76 (2001) Rost invariant 703

for P the permutation matrix giving the map uk 7→ uπ(k) for π the permutation
(1 2)(3 6)(4 5)(7 8), mj(a) the diagonal matrix

mj(a) := diag(1, aj , aj , a
−1
j+2, a

−1
j+1, 1, 1, aj) (6.2)

with subscripts taken modulo 3, and

d := diag(1, 1,−1, 1, 1,−1, 1, 1).

The zj form a related triple by [Gar98, 1.6, 1.7, 1.5(3)], so zι ∈ G(K). Note that
σn(mj(a)) = Pmj(a)P , and, since P is an isometry of n, σn(P ) = P−1 = P . We
have

ιzj = σn(mj(a)dP )−1 = Pmj(a)−1PdP = z−1
j

and so z is indeed in Z1(K/F,G).

The image of zK,a in H1(K/F,P ) is the class of a.

6.3. Freedom in the definition. Of course, some of these special cocycles are
cohomologically equivalent in H1(K/F,G). If a and a′ are two triples in (F ∗)×3

such that a−1
j a′j ∈ NK/F (K∗) for all j, fix λj ∈ K∗ such that a−1

j a′j = λjι(λj).
Then for ` = (`0, `1, `2) with `j = Pmj(λ)P , ` is a related triple by [Gar98], so
` ∈ G(K). We have ι` (zK,a′)ι `−1 = (zK,a)ι, i.e., the two cocycles zK,a and zK,a′

are cohomologous.

6.4. We will twist by these cocycles to move a cocycle in H1(F,G) so that it
takes values in a semisimple group. For now, we just observe that the semisimple
group we get from one of them, Spin(n)z, is described in [Gar98, pp. 403, 404]:
Let k ∈ F ∗ be such that K = F (

√
k) and let Qi denote the quaternion algebra

(k, ai)F generated by elements x, y such that x2 = k, y2 = ai, and xy = −yx. The
group Spin(n)z is isomorphic to Spin(Ai, σi) where Ai is isomorphic to M4(Qi), σi

is an isotropic orthogonal involution with trivial discriminant, and

(C0(Ai, σi), σi) ∼= (Ai+1, σi+1)× (Ai+2, σi+2), (6.5)

where the subscripts are taken modulo 3. (These properties specify the σi up to
isomorphism [Gar01a, 2.3].)

The Moving Lemma lets us say something useful about the Rost invariant of
our special cocycles.

Corollary 6.6. The Rost invariant REK
6

(zK,a) is trivial if and only if zK,a is
cohomologically trivial in H1(F,EK

6 ).

Proof. Consider the element j =
(

0 0 ·· 0 c
0 · 0

)
in e0 × JK for c = u2/2 + u8. Then

n(c) = 0 and, consulting the explicit formula for j# in [Jac68, p. 358], we see that
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j# = 0. Moreover, for z := zK,a, we have zιιj =
(

0 0 ·
· 0 c′
0 · 0

)
for c′ = u1/2+u7. Then

T (j, j′) = cc′ + cc′ = n(c, c′) = 1.

Applying the Moving Lemma shows that z is equivalent in H1(K/F,EK
6 ) to some

z′ ∈ Z1(K/F,G) whose image in H1(K/F,P ) is (1, a0, a
−1
0 ). In particular, the

0-component of the triple z′ι in GO◦(C, n)×3 belongs to SO(C, n) and the 1- and
2-components have multipliers a0 and a−1

0 respectively. Thus the restriction of z′ι
to the 10-dimensional subalgebra A defined in 5.2 has determinant 1 and so lies
in H◦. If the Rost invariant REK

6
(z) is trivial, then zK,a is trivial in H1(F,EK

6 )
by Lemma 5.4. ¤

In a special case the value of the Rost invariant of our special cocycles can be
computed explicitly.

Lemma 6.7. For a, k ∈ F ∗ such that K = F (
√

k), the Rost invariant of the
1-cocycle zK,(1,a,a−1) is (a) ∪ (k) ∪ (−1) in H3(F, Z/2) ⊂ H3(F, Q/Z(2)).

Proof. The cocycle z := zK,(1,a,a−1) takes values in H and restricts to have de-
terminant 1 on the subalgebra A defined in 5.2, so z ∈ Z1(K/F,H◦). Since the
inclusion H◦ ⊂ EK

6 has Rost multiplier 1, to compute the Rost invariant of z,
we may compute the Rost invariant of z in H1(F,H◦). But recall that H◦ is
isomorphic to Spin(q) for q = 4H ⊥ 〈−1, k〉 and that H1(F, SO(q)) classifies non-
degenerate quadratic forms of the same dimension and discriminant as q. So we
can compute the Rost invariant of z by computing the quadratic form qz corre-
sponding to the image of z in H1(F, SO(q)), which is just the restriction of q⊗K
to the vector subspace fixed by the action a⊗ κ 7→ zιM(a)⊗ ι(κ) for M as in 5.3.

We perform the Galois descent calculation by decomposing A ⊗ K into 2-
dimensional subspaces and calculating the Galois action on those subspaces.

subspace restriction of F -basis for contribution
basis zιM fixed subspace to qz

(u1, u2) S2 totally
(u7, u8) S2 isotropic
(u3, u6) −S2 u3 − u6,

√
ku3 +

√
ku6 〈1,−k〉

(u4, u5) ( a
a−1 ) au4 + u5,−a

√
ku4 +

√
ku5 〈−a, ak〉

(e1, e2)
(

−a−1

−a

)
−e1 + ae2,

√
ke1 + a

√
ke2 〈−a, ak〉

The first two subspaces form a complementary pair of totally isotropic subspaces,
so they contribute two hyperbolic planes to qz. Thus the image of z is qz =
2H ⊥ 〈1,−k,−a, ak,−a, ak〉 and the Rost invariant of z is the Arason invariant
of qz − q = ¿a, k,−1À. ¤
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7. Quasi-split groups of type E6 and E7

This section consists solely of a proof of the main theorem, beginning with a nearly
trivial lemma.

Lemma 7.1. Suppose that C is a central subgroup in a simple simply connected
group Γ. Then H1(F,C) acts on H1(F,Γ) and for ζ ∈ H1(F,C) and γ ∈ H1(F,Γ),
we have

RΓ(ζ · γ) = RΓ(ζ) + RΓ(γ),

where RΓ(ζ) denotes the image of ζ under the composition H1(F,C) −→ H1(F,Γ)
RΓ−−→ H3(F, Q/Z(2)).

Proof. Pick a 1-cocycle z ∈ Z1(F,C) which represents ζ. We have a diagram

H1(F,Γ) H1(F,Γz)
∼−−−−→
τz

H1(F,Γ)

RΓ

y RΓz

y yRΓ

H3(F, Q/Z(2)) H3(F, Q/Z(2))
·+RΓ(ζ)−−−−−→ H3(F, Q/Z(2)).

Here the group Γz is the usual twist of Γ by the cocycle z; it is just the group Γ with
a different Galois action so that a member σ of Gal(Fsep/F ) maps g 7→ zσ

σgz−1
σ .

In our case, zσ is central, so in fact Γz is identical to Γ. The map τz is the usual
twisting map [Ser94, I.5.5], defined by sending a ∈ Z1(F,Γz) to the 1-cocycle
σ 7→ aσzσ. The composition of the two maps on the top row is then the action
of ζ.

The left-hand box commutes because the Rost invariant is canonical. The right-
hand box commutes by [Gil00, p. 76, Lem. 7]. The desired equality is equivalent
to the commutativity of the outer rectangle. ¤

This result has the obvious corollary that the induced map H1(F,C) −→
H3(F, Q/Z(2)) is a group homomorphism.

7.2. Groups of type 1E6. Suppose first that our simply connected quasi-
split group of type E6 is split and denote it simply by E6. From Example 3.4,
we have an embedding F4 × µ3 ↪→ E6 which induces a surjection on H1 terms.
So for ε ∈ H1(F,E6), we can find φ ∈ H1(F, F4) and ζ ∈ H1(F,µ3) such that
φ⊕ ζ 7→ ε. Since E6 is split and the image of µ3 is the center of E6, the image of
H1(F,µ3) → H1(F,E6) is trivial. If ε is in the kernel of the Rost invariant RE6 ,
by Lemma 7.1 φ must be killed by the composition

H1(F, F4) → H1(F,E6)
RE6−−−→ H3(F, Q/Z(2)).

As described in 2.4, the Rost multiplier of the embedding F4 ⊂ E6 is 1, so φ lies
in the kernel of the Rost invariant RF4 , which is known to be trivial. Thus ε is
the image of ζ, which we have already observed is trivial.
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Remark 7.3 (Noninjectivity for 1E6). The Rost invariant is typically noninjective
for the group E6. To see this, we can not simply apply Remark 0.6 and the fact
that the embedding F4 ↪→ E6 has Rost multiplier 1, since two isotopic Albert
algebras have the same image in H1(F,E6).

Instead, fix a ground field F which supports a division (= nonreduced) Albert
F -algebra J . Over the field F (t), the norm N of J does not represent t as can
be seen by elementary valuation theory [Jac68, p. 417, Lem. 1]. Consequently,
N is not isomorphic to tN over F (t), so the images of the two classes (J) ⊕ (1)
and (J)⊕ (t) under the map H1(F, F4)×H1(F,µ3) → H1(F,E6) are distinct by
[Gar01b, 2.8(2)]. However, since the image of H1(F,µ3) → H1(F,E6) is trivial,
by Lemma 7.1 the two classes in H1(F,E6) have the same Rost invariant.

7.4. Groups of type 2E6. Suppose now that our quasi-split simply connected
group of type E6 is not actually split, so that it only becomes split over some
quadratic field extension K of F . Write EK

6 for this group, as we have since
Section 4. By the split case, any α ∈ H1(F,EK

6 ) which is in the kernel of the Rost
invariant must become trivial over K and so belongs to H1(K/F,EK

6 ). Applying
Ferrar’s Lemma 4.6, we have that α is the image of some β ∈ H1(K/F,G).

7.4. Twisting. Fix a triple a = (a0, a1, a2) ∈ (F ∗)×3 such that a0a1a2 = 1
which represents the image of β in H1(K/F,P ). (This makes sense thanks to the
description of H1(K/F,P ) in 4.7.) Then we set z := zK,a as defined in 6.1, and
we can twist EK

6 by z to obtain a diagram

H1(F,Gz) −−−−→ H1(F, (EK
6 )z)

R(EK
6 )z−−−−−→ H3(F, Q/Z(2))

τz

y τz

y y·+R
EK

6
(z)

H1(F,G) −−−−→ H1(F,EK
6 )

R
EK

6−−−−→ H3(F, Q/Z(2)),

where the right vertical arrow has the specified value by [Gil00, p. 76, Lem. 7].

7.6. The image of τ−1
z (β) in H1(F, SO(A, σ)). We want to say something about

what kind of class β′ := τ−1
z (β) can be. In particular, its image in H1(K/F,Pz)

is trivial, so β′ comes from the semisimple part of Gz, which is isomorphic to
Spin (A, σ) for (A, σ) one of the three algebras Ai described in 6.4.

We may think of β′ as lying in H1(K/F,Spin (A, σ)) and consider its image in
H1(K/F, SO(A, σ)). Let L be a generic splitting field of A (e.g., a function field of
its Severi–Brauer variety) and consider the image of β′ in H1(L, SO(A, σ)). Since
A is split by L, σ becomes adjoint to the quadratic form¿k, ai+1À ⊥ 2H [Gar01a,
2.3]. The image of β′ determines an 8-dimensional quadratic form q over L, and
the Rost invariant of β′ is just the class of q−¿k, ai+1À in I3L/I4L. However, by
the twisting argument above, the Rost invariant of β′ over F is −REK

6
(z). Since

A is split over L, ai ∈ L∗ is a norm from KL, so by 6.3 and Lemma 6.7 the Rost
invariant becomes (k) ∪ (ai+1) ∪ (−1) over L.
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For φ = ¿k, ai+1À, we have that q − φ lies in I3L and q − φ ≡ φ¿−1À
mod I4L. But then

q + φ = (q − φ) + 2φ ≡ 4φ ≡ 0 mod I4L.

So q + φ is in I4L. However dim(q ⊥ φ) = 12 < 16, so by the Arason–Pfister
Hauptsatz, q ⊥ φ is hyperbolic and we have q ∼= 〈−1〉φ ⊥ 2H.

Consequently, the image of β′ in H1(L, SO(A, σ)) is the same as the image of
−1 ∈ F ∗/F ∗2 = H1(F,Z(SO(A, σ))). Since A is Brauer-equivalent to a quater-
nion algebra, it follows from the material in [Sch85, Ch. 10] that the canonical map
H1(F, SO(A, σ)) → H1(L, SO(A, σ)) is injective. (This was shown independently
in [PSS] and [Dej01].) Thus the image of β′ in H1(F, SO(A, σ)) must also be −1.

7.7. More generally, any simply connected group Γ of type 1D4 is isomorphic
to Spin(Ai, σi) for three central simple algebras Ai of degree 8 with i = 0, 1, 2
endowed with an orthogonal involution σi with trivial discriminant and related as
in (6.5).

Each of the three descriptions of Γ comes paired with natural maps Γ →
SO(Ai, σi) → PΓ for PΓ the adjoint group associated to Γ. The kernel of the
second map is Z(SO(Ai, σi)) ∼= µ2, and the kernel of the composition is Z(Γ),
which is isomorphic to the subgroup of µ×3

2 of elements with product 1. The
group H1(F,Z(Γ)) can be identified with the set of triples b = (b0, b1, b2) ∈
F ∗/F ∗2 with product 1 [KMRT98, 44.14] and where the map H1(F,Z(Γ)) →
H1(F,Z(SO(Ai, σi))) is given by b 7→ bi.

Lemma 7.8. (Notation as in the preceding paragraph.) Suppose an element
η ∈ H1(F,Γ) has the same image in H1(F, SO(Ai, σi)) as ci ∈ F ∗/F ∗2 =
H1(F,Z(SO(Ai, σi))) for i = 1, 2. Then η is the image of ((c1c2)−1, c1, c2) coming
from H1(F,Z(Γ)).

Proof. The short exact sequence 1 → Z(SO(Ai, σi)) → SO(Ai, σi) → PΓ →
1, gives that η is killed by the composition H1(F,Γ) → H1(F, SO(Ai, σi)) →
H1(F, PΓ) for i = 1. Thus η is the image of some class (n0, n1, n2) in H1(F,Z(Γ)).

For general Galois-cohomological reasons, the map H1(F,Z(Γ)) → H1(F,Γ) is
a group homomorphism. (Although the second set doesn’t have a group structure,
the image of the first set does.) The kernel of this map can be described fully by
suitably applying [KMRT98, 35.4], but for our purposes it is enough to observe that
it contains all elements of the form (s, s−1, 1) for s a spinor norm of an element in
SO(A2, σ2)(F ) and symmetrically. Let G(Ai, σi)◦ be the algebraic group of proper
similarity factors, i.e., the group with F -points

G(Ai, σi)◦(F ) =
{
m ∈ F ∗ | ∃ f ∈ A∗i such that m = σi(f)f and NrdAi

(f) = m4
}

.

For every m0 ∈ G(A0, σ0)◦(F ), the kernel contains an element of the form
(m0,m1,m2) and symmetrically. Conversely, if (b0, b1, b2) is in the kernel, then
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bi ∈ G(Ai, σi)◦(F ) for all i.
It is also the case that the natural map F ∗/F ∗2 = H1(F,Z(SO(Ai, σi))) →

H1(F, SO(Ai, σi)) is a group homomorphism, and its kernel is precisely
G(Ai, σi)◦(F ). Thus we may modify n2 by an element of G(A2, σ2)◦(F ) and so
assume that n2 = c2.

Now consider the middle component of the triple (n0, n1, n2). By hypothesis,
n1 = m1c1 for some m1 ∈ G(A1, σ1)◦(F ). By [Mer96, p. 262, Prop.], the group
SN(A2, σ2)(F ) of spinor norms from SO(A2, σ2)(F ) is the group generated by F ∗2

and the norms from finite field extensions E which split A2 and make σ2 isotropic.
By [Mer96, p. 263, Prop.], G(A1, σ1)◦(F ) is equal to the group generated by the
norms from every extension field E which splits A1 and makes σ1 hyperbolic.
Since the (Ai, σi) are related by (6.5), any extension which splits A1 and makes
σ1 hyperbolic certainly splits A2 and makes σ2 isotropic, so SN(A2, σ2)(F ) ⊇
G(A1, σ1)◦(F ). Consequently, the element (m1,m

−1
1 , 1) belongs to the kernel of

H1(F,Z(Γ)) → H1(F,Γ).
Thus η is the image of

(n0, n1, n2)(m1,m
−1
1 , 1) = ((m1c1c2)−1,m1c1, c2)(m1,m

−1
1 , 1) = ((c1c2)−1, c1, c2)

as desired. ¤

7.9. β′ is in the image of H1(K/F,Z(Spin (A, σ))). Let (A, σ) = (A0, σ0)
for (Ai, σi) as in 6.4. Combining the result from 7.6 with Lemma 7.8, we have
that β′ ∈ H1(F,Spin (A, σ)) is the image of (1,−1,−1) ∈ H1(F,Z(Spin (A, σ))).
However, for k ∈ F ∗ such that K = F (

√
k), since K certainly splits A and

makes σ hyperbolic and −k = NK/F (
√

k), by Merkurjev’s norm principle [Mer96,
p. 262, Prop.] there is some element of SO(A, σ)(F ) with spinor norm −k. Then
as described in the proof of Lemma 7.8, β′ is also the image of (1, k, k−1) ∈
H1(F,Z(Spin (A, σ))), which itself is in the image of H1(K/F,Z(Spin (A, σ))).

7.10 Consider the 1-cocycle b = τz(b′) ∈ Z1(K/F,G) for b′ the image of (1, k, k−1)
as above. (Note that b represents the class of β and is the 1-cocycle which takes
the value g(1,−1,−1)zK,a at ι.) For j and c as in the proof of 6.6, we set j′ := bιιj,

so that j′ =
(

0 0 ·
· 0 c′
0 · 0

)
for c′ = u1/2 + u7 and T (j, j′) = n(c, c′) = 1. By the Moving

Lemma 4.9, we may replace β by a different inverse image of α in H1(K/F,G)
and so assume that a = (1, a0, a

−1
0 ).

Any element of G with multiplier (1, ·, ·) lies in H, and since such an element
restricts to have determinant 1 on the subspace A defined in 5.2, it in fact lies in
H◦. Thus α is in the image of H1(F,H◦). Since the Rost invariant of α is trivial,
α must be the trivial class by Lemma 5.4.

7.11. Groups of type E7. We are left with proving that the Rost invariant
has trivial kernel for G split of type E7, but this follows directly from the same
conclusion for quasi-split groups of type E6, thanks to Proposition 3.6.
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