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Logarithmic cohomology of the complement of a plane curve
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Abstract. Let D,z be a plane curve germ. We prove that the complex Q°(log D), computes
the cohomology of the complement of D,x only if D is quasihomogeneous. This is a partial
converse to a theorem of [5], which asserts that this complex does compute the cohomology of
the complement, whenever D is a locally weighted homogeneous free divisor (and so in particular
when D is a quasihomogeneous plane curve germ). We also give an example of a free divisor
D C C3 which is not locally weighted homogeneous, but for which this (second) assertion con-
tinues to hold.
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1. Introduction

In [5] the last three authors showed that if D is a locally quasi-homogeneous free
divisor in the complex manifold X then locally the complex ¢ (log D) of holomor-
phic differential forms with logarithmic poles along D calculates the cohomology of
the complement of D in X. More precisely, the following two equivalent statements
hold:

Theorem 1.1. With D as above,

1. If V .C X is a Stein open set then the de Rham map (integration of forms over
cycles) gives rise to an isomorphism

R*(T(V,Q%(log D))) = H*(V \ D;C).

2. Denoting by U the complement of D in X and by j : U — X the inclusion, the
de Rham morphism gives rise to an isomorphism

Q*(log D) = Rj.(Cp). O
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By analogy with Grothendieck’s Comparison Theorem [8], in which the complex
Q*(log D) is replaced in these two statements by Q°(«D), but which holds for an
arbitrary divisor, we summarise this with a slogan: if D — X is a locally quasi-
homogeneous free divisor then the logarithmic comparison theorem holds.

The definition of local quasi-homogeneity, (called strong quasi-homogeneity in
[5]), is as follows:

Definition 1.2.

1. The polynomial h(z1,- -+ ,2n) = 3. @i, 4,230 -+ 2in € Ocn is weighted homo-
geneous if there exist positive integer weights wi,---,w, such that
h(z*, -+, z¥) is homogeneous.

2. The divisor D C X is locally quasi-homogeneous if for all x € D there are
local coordinates on X, centered at x, with respect to which D has a weighted
homogeneous defining equation.

Every plane curve is a free divisor, since the module of logarithmic vector fields
Der(log D) is reflexive and thus has depth at least 2. In [4, Cor. 4.2.2] the first
author showed that if D is a plane curve then the logarithmic de Rham com-
plex Q°*(log D) is perverse, a necessary condition for the logarithmic comparison
theorem.

In [6] the logarithmic comparison theorem has been tested for the following
non locally quasi-homogeneous plane curve (cf. [9]): D = {f = 2} + 25 + x4z, =
0} € X = C2. A basis for Der(log D) is given by:

0 0
61 = (1627 + 20x1x2)a—xl + (127122 + 161:%)6—1'2

0 0
6o = (16z123 + 43 — 12521 19) = + (1225 — 4% + 5x125 — 10023) —.
ory Oz
Let Dx be the sheaf of linear differential operators with holomorphic coefficients
on X and I the left Dx-ideal generated by d1,d2. By [4, Th. 4.2.1], we have a
(canonical) isomorphism (in the derived category)

Q*(log D) ~ RHomp, (Dx/I,Ox),

and so we can compute the characteristic cycle CC(Q*(log D)) as the cycle Z in
T*X determined by the ideal J = o(I) generated by the principal symbols of
elements in I. The symbols o1 = 0(d1),02 = o(d2) form a regular sequence in
Or-x and so, by [4, Prop. 4.1.2], the ideal J is generated by o1,02. An easy
computation shows that the multiplicity of the conormal at 0 in Z is 4. On the
other hand, the multiplicity of the conormal at 0 in CC(Rj.(Cy)) is equal to
multg(D) — 1 = 3 (cf. [3]), and so the logarithmic comparison theorem does not
hold for D.
For the family of non locally quasi-homogeneous plane curves (cf. [9])

1

i +ab+ab =0, p>qg+1>5,
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the multiplicities of the conormal at 0 in CC(Q*(log D)) and in CC(Ry.(Cy))
are 2(q — 2) and g — 1 respectively, and so these curves also do not satisfy the
logarithmic comparison theorem.

A natural question is therefore whether or not the logarithmic comparison
theorem holds for a given free divisor.

The purpose of this paper is to prove a partial converse to Theorem 1.1. We
prove:

Theorem 1.3. Let D be a reduced plane curve. If the logarithmic comparison
theorem holds for D, then D is locally quasi-homogeneous.

Our proof shows that if h is a local equation of D, and the logarithmic com-
parison theorem holds, then there is a vector field germ x such that x - h = h.
As a reduced curve has isolated singularities, we can then apply the theorem of
K. Saito [10]: if h € Ocn o has isolated singularity and h belongs to its Jacobian
ideal Jp, then in suitable coordinates h is weighted homogeneous.

We conjecture that in higher dimensions the following version of our Theorem
1.3 holds:

Conjecture 1.4. If D — X is a free divisor and if the logarithmic comparison
theorem holds, then for all x € D there is a local equation h for D around x, and
a germ of vector field x vanishing at x such that x - h = h.

A singular free divisor of dimension greater than 1 has non-isolated singulari-
ties, so even if this conjecture is true, Saito’s theorem cannot be used to deduce
local quasi-homogeneity. Indeed, it is mot true in higher dimensions that if the
logarithmic comparison theorem holds for a free divisor D then D is necessarily
locally quasi-homogeneous. This is shown by an example in Section 4 below: the
logarithmic comparison theorem holds for the free divisor

D = {(v,y,2) : zy(z + y) (22 +y) = 0}

(the total space of a family of four lines in the plane with varying cross-ratio, cf.
[4]), in the neighbourhood of (0,0, ), with A € C\ {0, 1}; however it is well known
that this divisor is not locally quasi-homogeneous. On the other hand, it does
satisfy Conjecture 1.4.

Adrian Langer has indicated to us that he has subsequently found a shorter

proof of Theorem 1.3, using globalisation and a comparison of Chern classes!.

1Added on November 2001.
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2. Preliminary results

In this section we recall the spectral sequence argument used in [5] to compare the
cohomology of the logarithmic complex Q*(log D) with the cohomology of X \ D.
Except for referring to “local” rather than “strong” quasi-homogeneity, we will
use the same notation as [5].

Without loss of generality we assume X = C™ with coordinates z; and xg = 0.
Let V' be a Stein neighbourhood (sufficiently small) of 0, let & be the open cover
of V'\ {0} consisting of the sets U; = V N {z; # 0}, and let U’ be the open cover
of V'\ D consisting of the open sets U/ = (V\ D)N{z #0} =U; \ D.

We consider the two double complexes

KP1 = CUU, QP (log D))
and R §
KP4 =CiU', QP),

equipped with the exterior derivative d (the horizontal differential) and the Cech
differential ¢ (the vertical differential). There is an obvious restriction morphism
Pp.q : KPP — KP7 which commutes with both differentials, and thus gives rise to
morphisms of the two spectral sequences arising from each double complex. These
spectral sequences have F; terms

"EPY = HY U, QP (log D))
"EPT = HIU' Q)

’Ef’q = @1§i1<---<iq+1§"hp <F<n Uij ;¥ (log D)))

J
/Ef’q = @1§i1<---<iq+1§nhp <I‘<n U;’Q'))
J

As both U and U’ are Stein covers,
HYU,QF(log D)) = HY(V \ {0}, 97 (log D))
and § §
HYU' ,QP)) = HIY(V \ D,QP)).
As V'\ D is Stein, H9(V \ D,QP) = 0 if ¢ > 0. Tt follows that

" P _ HP(V\D§(C) ifg=0
2 0 ifg#0"

and in particular the spectral sequence "' E converges to the cohomology of V'\ D.

Now assume that outside 0, D is locally quasi-homogeneous, so that by 1.1
Rj.(Cy) ~ Q*(log D), again outside 0. As U and U’ are Stein covers, by 1.1 the
quotient of the restriction p, , defines an isomorphism 'p, ,: "EP'? — 'EP for all
p,q. This isomorphism persists to give an isomorphism of the cohomology of the
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total complexes Kt and Kt as calculated by the spectral sequences. It follows
that the spectral sequence " E, like " E, also converges to the cohomology of V'\ D:

HY(V\ D;C) = @pigr, "BRL.

As D is a free divisor, H9(V \ {0},Q”(log D)) = 0 for ¢ # 0,n — 1, so "E;
has only two non-null rows; writing for the moment Q”(D) and V* in place of
OP(log D) and V \ {0}, ”E; thus looks like

(Ve 00D) B B v erD) B B et (v, (D))
0 0 0
0 0 0

dy dy dy dy

rv, Qo)) =2 ... 3 1(V,Q°(logD)) 3 ... 3 T(V,Q"(log D)).

(Note that as n > 2 and as the QP(log D) are free modules, we have T'(V* QP (D)) =
I'(v,Qr(D)).)
As this spectral sequence converges to the cohomology of V' \ D, we have
H'" ' (V\D;C) > S @--- 0 BV = Eply ' @ "1 (D(V, Q2 (log D)))
h™(L(V,Q*(log D)))

" dna1 (BO75T)

b

where § §
Epry b =Ker dy - H™ ' (V*,Q%(D)) — H"(V*,Q'(D)).

In [5], the main theorem was proved by showing that if D is locally quasi-homo-
geneous then the complex

(H""H(V\{0},9°(log D)), d1)

is exact.

3. Proof of the Theorem

We continue with the discussion of the last paragraph. If the natural morphism
Q*(log D) — Rj.(Cyp) is a quasi-isomorphism (i.e. if the logarithmic comparison
theorem holds for D) then by the formulae of the last section, d; : H™ '(V \
{0},92%1og D)) — H" (V' \ {0},Q'(log D)) is injective.

Let {w1, -+ ,wy} be a free basis of Q! (log D) as Oy-module, and let dy,- - , 5,
be the dual basis of Der(log D). Then H" *(V \ {0},Q%log D)) = H* Y (V \
{0}, Ocn) and H*1(V\ {0}, Q' (log D)) ~ @7 H"1(V\ {0}, Ocr ). The morphism
dy - H*=Y(V\ {0},2%(log D)) — H" (V' \ {0},9Q'(log D)) now becomes

A1 (V\ {0}, 0cn) & A1V \ {0}, Ocn )"
9] = ([61-9],---,[0n - g]).
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where g € I'(V \ Ui{2; = 0}, Ocn) = T'(C" \ Ui{z; = 0}, Ocn ) represents the class
lg] in H"~1(C™\ {0}, Ocn).
For § € Derc(O¢n ), we denote by ds the homomorphism

ds : H" ' (V\ {0}, Ocn) — H* 1 (V\ {0}, Ocn), ds([g]) = 1[0 g]-

Proposition 3.1. Let mcng be the mazimal ideal of Ocngo and let § €
mcn oDerc(Ocn),
a1 -0 Gip 0/0x4
6= (1, ma) | 01 : + 021
An1 - Gnon 0/0xy,
with the a; ; € C and §>1 € m@, (Derc(Ocn). If ds is injective, then the eigen-

values of A do not satisfy any relation with positive integer coefficients (in this
case, we will say that & satisfies condition (I)).

Proof. By a coordinate change we can make A lower triangular. Its eigenvalues
a1, ,ap are then the elements of the diagonal. The group H" (V' \ {0}, Ocn)
is isomorphic to the space of Laurent series, convergent for all x = (z1, - ,z,)
with z # 0, whose non-zero coefficients are those with strictly negative indices in

all variables, i.e.
. . 11 DR 7’
E iy e in Ty Ty -

i1, i <O

For p > n, we set

GP = E Gxy T o,
2.17"' ain<0
i1+~~+in:*p

FP

E Gyt
ity i <0
i1+ i > —p

Then FP = GP G GP~ 1@ --- @ G™. Each GP is a finite-dimensional C-vector space,
whose dimension we denote by 7, and ds restricts to morphisms of vector spaces

ds |pp 1 P — FP

and
ds |gr : G" — FP.
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Let us denote by d]g,p the component of this second restriction lying in GP. Then
dfs),p depends only on the weight 0 part §p of §. We claim that with respect to a
suitable ordered basis of GP, its matrix [df ] is lower triangular.

As basis for G? we take the monomials

1
With i1 + -+ in = p.
We have
dé(x;il N m;l") = — sz ajk x;il . .Jj;(ik_l) e m;(ijJrl) N x;iﬂ. (1)
ik

Thus, if we give our basis of G? the lexicographic order corresponding to the order
of the coordinates x1,--- ,x,, then since a;, = 0 if j < k (recall that we have
chosen our coordinates so that A is lower triangular), the matrix [dg’p] is lower
triangular.

Let ¢ < p. Then ds(G?) C G4+ G9! + ... + G™. Thus, it follows from the
above that if we give F'P the ordered basis consisting of the ordered bases for each
G, n < g < p that we have chosen, and order these by descending value of ¢, then
the matrix of ds |p»r is also lower triangular.

What are its diagonal elements? In the right-hand side of equation (1), the
coefficient of 27" -+ -z, ' is equal to

11a1,1 + -+ InGpon;

this is the diagonal element in the matrix of ds |p» in the row and column cor-
responding to the basis element :El_“ .-z, . Note that the diagonal elements
of A are its eigenvalues; thus, the diagonal elements in the matrix of ds |r» with
respect to the chosen basis are all linear combinations i1 Ay + - -+ + i, A, of the

eigenvalues Ai,---, A, of A, with the i; positive integers and i; + -+ + i, < p.
As this matrix is lower triangular, ds |F» is injective only if the product of these
diagonal elements is non-zero. (]

Remark 3.2. We have used in the proof of this lemma the fact that if ds is
injective then so is its restriction to each FP. We do not know if the opposite
implication holds. It seems likely that an argument involving faithful flatness
would prove it. However, we do not need it in what follows.

Let D be a plane curve. We suppose as above that 0 is the singular point of
D. In this case the upper non-zero row in the F5 page of the spectral sequence 'E
begins

dy - HY(C?\ {0}, O¢2) — @2 HY(C?\ {0}, O¢2).
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Theorem 3.3. Let D be a plane curve, singular at 0. If dy is injective, then there
is a local equation h for D around 0, and a germ of vector field x at 0 such that
X-h=nh.

Proof. Any reduced plane curve whose equation has non-zero quadratic part is
quasihomogeneous, by the classification of singularities of functions of two vari-
ables: such a curve is equivalent to Ay, 2 + y**! = 0, for some k. For a quasi-
homogeneous curve, the conclusion of the theorem of course holds. Thus, we may
assume that the equation h of D lies in m%Q,O. As the determinant of the coeffi-
cients of a free basis of Der(log D) is a local defining equation for D ([11]), we may
therefore choose a free basis d,v for Der(log D) such that v has zero linear part.
In fact the supposition that d; is injective implies that at least one member of the
basis has non-zero linear part, as otherwise dy ([1/xy]) = ([0-1/zy], [v-1/zy]) = 0.
We may thus take

5250+51+52+"':Z Z (Ozij.ﬁ;‘i:l/ja2 +ﬁijxiyjag)
k>0 itjmk+1 v Yy

where §y = QA%H with A # 0 and in Jordan normal form, i.e.

(M0 (M0
A_<0 )\2> or A_<1 >\1>.
Let h be the reduced equation of D:
h=hy+hper+hogo+ -0 = th = Z Z aigz'y’,
k>n k>ni+j=k
where the polynomials h; are homogeneous of degree i.

Let us now suppose that ¢ is not an Euler vector field for h, we will see that
(up to multiplication by a non-zero constant) the only possibility for 4 and ¢ is

0 0
hy=-=hy1=0h,=2%" and & = qro- —pya—y.
First case: h, = Ziﬂ:n a;;jx'y’ and 6o = )\133% + /\gya%. Then
0 = (50(/7/”) = Z (Z)\l —&-j)\g)aijxiyj.
i+j=n

So, a;; = 0 if iA1+jA2 # 0; thus, since by assumption h,, # 0, we have gA\; = —pAo
and p+ ¢ =n (p,q € N). In this case,
0 0
h’I’L = p q’ 6 = _ — _—
Ty 0=4qe o Py By

Second case: h, =Y. a;jx'y’ and 6 = (Miz + y)a% + )qya%. Then

i+j=n

0 = 50(hn) = n)\lanox" + Z (n)\laij + iaiJrLj,l)xiyj.
i+j=n,j>1
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So, if A1 # 0, then we must have a,o =0, thena,—11 =0, -+ ,a1,n—1 =0, a0, =0,
so that h, = 0. This is absurd, by hypothesis.
If Ay =0, then d; is not injective, because

di([1/zy]) = (ds([1/xy]), d+([1/zy])) = (0,0).
Then, we have

0
oz _py(?—y'
We will prove that, in this case, after a coordinate change h can be reduced to
h = xPy? with p + ¢ = n > 3. This contradicts our supposition that % is reduced.
Then our initial supposition about ¢ is false, and § is an Euler vector field for h.
Inductively, for all k& > 0, we construct coordinates (x(x),¥y(x)) and functions
h%) such that

h:xpyq+hn+1+hn+2+”'7 60:q]"

_ n+k
h(z,y) = Rk )(x(k) y(k)) = x(k)y(k) + Z h T(k), Zl(k)) = x(k)y(k)( <C2,o)a

s>n+k

where hgk) is homogeneous of degree . Then, by Artin approximation [1, Theorem
1.2], there exist coordinates z1, 2o solving the equation
h(x,y) — 2723 = 0.

Let us construct the z(x), y(x), h¥). We suppose that we have T(kys Y(ky and hk) e
C{x @), Y}, such that

s>n+k

0
— PY(k) _(9y(k)

0
58F) = qx
0 (k) 81‘(;@

We define z(j41), Y(k+1) and hk+1) ¢ C{Z(k+1), Y(k+1) }, such that

h($, y) = h(k+1)(x(k+l)7 y(k-l—l)) = x?k+1)y?k+1) + Z h:(;k+1)a

s>n+k+1
0 0
s _ gz oy .
0 (Hl)aw(m—l) (k+1)ay(k+1)

(k) (k)i j
Let h, ), = Zi+j:n+k Qi x(k)ygk)’ then

k
5(() )(hn+k) = Z (ig — jp)a; i )x(k)y(k)
i+j=n+k
As the part of h(®) of degree less than n + k is x?k)y?k), it follows that the part of
degree n + k of 6 (h(®)) € mc2 oh(®) belongs to (@) Yl):

85 (W) = 867 (W) + 007 (2 %) € (ah i),
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but
0 (i) € (@i vy 2yl -
then
56 (i) € iy iy ol
SO

(ig— jp)al) =0 (i+j=n+k)if i<p—lorj<q-1,

but if ig — jp = 0, then (i,j) = ”T*k(p,q), and i > p, j > ¢q. So hfﬂk €
(xpfl q P qfl).
(k) Yy T(k)Y(k) /-
k _ _
hgz—&)-k = xz()k)lygk)fk+1(x(k)’ Yiry) + xl(jk)y?k)lgwrl(x(k)v Yi))-
Let

1 1
T(et1) = Tk) + Z—jfm(x(k), Yk)) Y1) =Yk T 59k+1(9€<k>a Y(k))-

We have

B (k+1) 4 j
h(@,y) = () 1y Y(rny + Z Z a5 )Ykt
r>k+1i+j=n+r
We define h**1) by the equation h(z,y) = h* (24 41), yrt1)), Where

k+1) _ k+1
R = (et 1)Y(har) T Z Ry,
s>n+k+1

with hgkﬂ) = ZiH:S al(-’kjﬂ)xékﬂ)ygkﬂ) homegeneous polynomials of degree s >

n + k + 1. Moreover, as

T(et1) = T(k); Ykt1) = Yk (mod mes ),

we have 6 =3° - 5((1k+1), where each 5((1k+1) is homogeneous of degree ¢, and
0 0
s = qx — — DY . O
0 (k+1)3$(k+1) (k+1)8y(k+1)

Proposition 3.4. Let D a plane curve, singular at 0. If there exists 6 € Der(log D)
satisfying condition (I), then there exists a unit o such that ad - h = h, and so D
1s Fuler homogeneous.

Proof. The proof is similar to the proof of Theorem 3.3. There, we consider the
case where h, = zPy? and §y = qxd/0x — pyd/dy, with p,q € N. Condition
(I) forces one of p and ¢ to be 0. The proof now proceeds as before, with this
additional hypothesis.
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Theorem 3.5. Let (D,0) C (C2,0) be a plane curve. The following conditions
are equivalent:
a) There exists § € Der(log D), such that ds is injective.

b) There exists 6 € Der(log D), satisfying condition (I).

c) di is injective.

e) (D,0) is quasi-homogeneous.

)
)
d) (D,0) is Euler homogeneous.
)
)

f) The logarithmic comparison theorem holds for (D,0) on a neighbourhood of 0.

Proof. By Theorem 3.3, if d; is injective, then (D,0) is Euler homogeneous. By
Saito’s theorem [10] (for a function h with isolated singularity, h € Jj, is equivalent
to the quasihomogeneity of h) to be Euler homogeneous or quasi-homogeneous is
the same. Theorem 1.1 proves that if (D, 0) is quasi-homogeneous, the logarithmic
comparison theorem holds for (D,0) on a neighborough of 0. From the results of
section 2 we can easily deduce that logarithmic comparison theorem implies the
injectivity of d;. Then, the last four conditions are equivalent. If x = w; % +ws aﬁ
is the Euler vector field then d, is injective. Proposition 3.1 shows that if ds is
injective, then ¢ satisfies (I) and, finally, by proposition 3.4, § € Der(log D) implies
that D is Euler homogeneous.

4. Example

In this section we give an example of a free divisor D C C3 which is Euler homo-
geneous but not locally quasi-homogeneous, and for which the logarithmic com-
parison theorem does hold. This example is studied in [4], where the perversity
of Q%(log D) is proved. We remark that D is the total space of an equisingu-
lar one-parameter deformation of a plane curve singularity. In [7], Damon shows
that under mild additional hypotheses, all surfaces obtained in this way are free
divisors.
D is defined by the equation

h(z,y,z) = zy(z + y)((z — N)x + y) = hihohghy, X € C\{0,1}.

Der(log D) has free basis {01, 2,03}

o =g +yh

0y = + (2= Nz +y) g
63 = 222 — yQC% —(z=NE+y)Z.
Note that d; - h = 4h, so that h is Euler homogeneous. Note also that it is easy to

check that each of these vector fields is logarithmic, and that the determinant of
their coefficients is a reduced equation for D. From this it follows by a theorem
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of K. Saito ([11]) that they really do form a basis for Der(log D); as no linear
combination of them has non-singular linear part, it follows that D cannot be
quasihomogeneous.

This example of free divisor is interesting also as it provides a counterexample
to the “logarithmic Sard’s theorem”: every point of C = z-axis is a logarithmic
critical value with respect to the projection (z,y,z) — z.

The basis of Q*(log D) dual to {1, d2, 83} is

y? do + 22 dy

w =
zy(z +y)

ylz =N de —xz(z—\) dy + zy dz

Wy =
zy(z(z — A) +y)
. ydr —x dy
Tyl ty)

We have to calculate homology groups of the stalk at 0 of the logarithmic de Rham
complex

0 — Q%log D) £ Q'(log D) & Q%(log D) £ Q*(log D) £ 0.

Although D is not weighted homogeneous in the strict sense, it is homogeneous if
we assign weights 1,1,0 to the variables x,y, z. The Lie derivative with respect to
the vector field dy,

Ls, (w) = ts, (dw) + d(es, (w)),
then defines a contracting homotopy from Q°(log D) to its weight-zero part
Q8 (log D). For if w € Q*(log D) is a sum of homogenenous parts w;, and if dw = 0,
then dw; = 0 for all 4. Since Ls, (w;) = iw;, each w;, for i # 0, is then exact, and
w is cohomologous to w — ¢5, (32, 40(1/i)w;).
Thus we consider only the weight 0 subcomplex

0 dy 1 a7 2 3 3 dy
0 — Qg(log D) = Qg(log D) = Q5 (log D) = Q5(log D) = 0.
e We have QY(logD) = C{z}, and do(z*) = k"1 [((z — Nz + y)wa—
(z = A)(z +y)ws] (k = 0), so
Im(dp) = C{z}dz = C{z} (((z = Nz + y)wz — (2 = A) (& + y)ws) .
o Ql(log D) = C{2} (w1, Twa, ywa, Tws3, yws) , and we find

di(w1) = di(zwe) = dy(zws) = di(yws) =0
di(zFwy) = k2P ((2(\ — 2) — y)wi Aws + (2 — A) (2 + y)wi A ws)
d1 (yws (:vy +y?)wa A ws
dl(z rwy) = k2 7H((z — N (2 + y)wws A ws)
(

) =
)
)
)
)
)

di(ZFyws) = ((k+1)2% — kEAZF 1) (2 + y)yws A ws
di(2Faws) = k¥ 1a(x(z — N) + y)ws A ws
di(ZFyws) = k2P ly(z(z — N) + y)ws A ws.
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It follows that Ker(d?) = C (w1, 7wa, 2ws, yws) ® Im(dY), so
R (Q®(log D)g) = C (w1, zws, Tws, yws)
is 4-dimensional. Also we have
() = C{} (A — )z — oy Aws + (2 = N)( + pwr A ws)) &
C{z} (2%, 2y, y*) wa A ws.
o O%(log D) is generated over C{z} by
TwW1 N\ wa, Yywi N\ we, Tw3 N\ wi, yws N\ w1, x2w2 N ws, TYwa N\ w3, y2w2 N ws.

We find

d2 (17(.«.)1 N WQ)

(zwl A ws) = da(yw1 A ws) =0
do(2F2%we A w3) = d 0

(ZFryws Aws3) =

do(2Fzw) A ws)

d2 (ywl AN wg)
do(2Fywy A wo)
)
)

)wl A wa A ws

(x L) (ky(h — 2) — 2y)en Aws A ws)
z((z = N)x 4+ y)wi Awa Aws
“Ly((z = N)x + y)wi Awz A ws.

=dy
da
k2" ()\ 2)(z + y)rwr Awa Aws
(zy
P

do(2Fzw) A ws
do(2Fywr A ws

We deduce that Ker(d9) = C (xw; A wa, 1w A ws, ywi A ws) @ Im(d}), and thus
that
R?(Q*(log D)g) = C (zw; A wa, Twi A ws, ywi A ws)

is 3-dimensional.
e Finally,
Im(d9) = C{z} (2%, 2y, y*) w1 A ws Aws = Q3 (log D),

and, consequently,
R3(Q°(log D)o) = 0.
Now consider the intersection Dy = D N {z = 0}, which has equation
KO = hORSKIRY = zy(z + y)(—Az + y).

It is a line arrangement, and the cohomology of its complement is therefore given by
the Brieskorn complex, the exterior algebra generated over C by the forms dh?/h?,
with trivial differential ([2]). This is of course a subcomplex of Q°®(log Dg). Let
V C €3 be a neighbourhood of 0. Restriction from C3 to C? = {z = 0} gives rise
to a commutative diagram

v oE o) @ D)) S W\ DiO)

1<i<4
. ! 1=
D> C<dh]?> =5 hP(Q*(log Do) (Vo)) —= HP (Vo \ Do: C).
1<i<4 i
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in which the left-hand horizontal morphisms are induced by the inclusion of
the Brieskorn complex in the logarithmic complex, and the right-hand horizon-
tal morphisms are de Rham maps. The lower horizontal morphisms are iso-
morphisms by the theorem of Brieskorn and by 1.1. The right-hand vertical
morphism is an isomorphism because D is a topologically trivial deformation of
Dy, so inclusion induces an isomorphism of the homology groups of the comple-
ments. The left-hand vertical morphism is evidently surjective, and thus the de
Rham map h?(Q2*(log D)(V)) — HP(V \ D;C) is surjective. As h?(Q*(log D)g) =
limrs0 hP(Q°(log D)(V)) and limyse HP(V \ D;C) = HP(C? \ D;C), then the de
Rham map hP(Q*(log D)) — HP(C3\ D;C) is surjective. To see that it is an iso-
morphism we compare dimensions. A calculation (for example, using the Brieskorn
complex) gives

dim¢ HY(C? \ Dy;C) =4
dim¢ H?(C?\ Dy;C) = 3
dime H3(C?\ Dy;C) = 0.

As these are the same as the dimension of h?(2*(log D)g), this completes the proof
that the logarithmic comparison theorem holds for D. O

Remark 4.1. The calculations whose results we summarise here are not so simple
as might be supposed. We have presented each image dY(Q}(log D)) as a module
over C{z} with algebraic generators, obscuring the fact that because D is not
quasihomogeneous, the anti-derivatives of an algebraic exact logarithmic form are
in general transcendental. For example,

(2 + zy)wr Aws Aws = d( Z(zk+s/)\s(k + 5))awy A w2>

d(<_<bg<1i)%é;(f/A%ﬁ)Akﬂuw@>

and

o0

2Pryw; Aws Aws = d( Z(zk+s/()\ +1)°(k+ 9))z(wi Aws + w1 A w;;))
s=1

:d(_<Q+1ﬁbg1—@KA+DD
k

L3+ 1>kSs))x<w1 Awr +wn Aw3>>-

s=1
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