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Logarithmic cohomology of the complement of a plane curve
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Abstract. Let D, x be a plane curve germ. We prove that the complex Ω•(log D)x computes
the cohomology of the complement of D, x only if D is quasihomogeneous. This is a partial
converse to a theorem of [5], which asserts that this complex does compute the cohomology of
the complement, whenever D is a locally weighted homogeneous free divisor (and so in particular
when D is a quasihomogeneous plane curve germ). We also give an example of a free divisor
D ⊂ C3 which is not locally weighted homogeneous, but for which this (second) assertion con-
tinues to hold.
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1. Introduction

In [5] the last three authors showed that if D is a locally quasi-homogeneous free
divisor in the complex manifold X then locally the complex Ω•(log D) of holomor-
phic differential forms with logarithmic poles along D calculates the cohomology of
the complement of D in X. More precisely, the following two equivalent statements
hold:

Theorem 1.1. With D as above,
1. If V ⊂ X is a Stein open set then the de Rham map (integration of forms over

cycles) gives rise to an isomorphism

hk(Γ(V,Ω•(log D))) ∼→ Hk(V \D; C).

2. Denoting by U the complement of D in X and by j : U ↪→ X the inclusion, the
de Rham morphism gives rise to an isomorphism

Ω•(log D) ∼→ Rj∗(CU ). ¤
∗Supported by MEC of Spain and EPSRC of United Kingdom.
1Partially supported by PB97-0723.
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By analogy with Grothendieck’s Comparison Theorem [8], in which the complex
Ω•(log D) is replaced in these two statements by Ω•(∗D), but which holds for an
arbitrary divisor, we summarise this with a slogan: if D ↪→ X is a locally quasi-
homogeneous free divisor then the logarithmic comparison theorem holds.

The definition of local quasi-homogeneity, (called strong quasi-homogeneity in
[5]), is as follows:

Definition 1.2.
1. The polynomial h(z1, · · · , zn) =

∑
ai1,··· ,in

zi1
1 · · · zin

n ∈ OCn is weighted homo-
geneous if there exist positive integer weights w1, · · · , wn such that
h(zw1

1 , · · · , zwn
n ) is homogeneous.

2. The divisor D ⊂ X is locally quasi-homogeneous if for all x ∈ D there are
local coordinates on X, centered at x, with respect to which D has a weighted
homogeneous defining equation.

Every plane curve is a free divisor, since the module of logarithmic vector fields
Der(log D) is reflexive and thus has depth at least 2. In [4, Cor. 4.2.2] the first
author showed that if D is a plane curve then the logarithmic de Rham com-
plex Ω•(log D) is perverse, a necessary condition for the logarithmic comparison
theorem.

In [6] the logarithmic comparison theorem has been tested for the following
non locally quasi-homogeneous plane curve (cf. [9]): D = {f = x4

1 + x5
2 + x4

2x1 =
0} ⊂ X = C

2. A basis for Der(log D) is given by:

δ1 = (16x2
1 + 20x1x2)

∂

∂x1
+ (12x1x2 + 16x2

2)
∂

∂x2

δ2 = (16x1x
2
2 + 4x3

2 − 125x1x2)
∂

∂x1
+ (12x3

2 − 4x2
1 + 5x1x2 − 100x2

2)
∂

∂x2
.

LetDX be the sheaf of linear differential operators with holomorphic coefficients
on X and I the left DX -ideal generated by δ1, δ2. By [4, Th. 4.2.1], we have a
(canonical) isomorphism (in the derived category)

Ω•(log D) ' RHomDX
(DX/I,OX),

and so we can compute the characteristic cycle CC(Ω•(log D)) as the cycle Z in
T ∗X determined by the ideal J = σ(I) generated by the principal symbols of
elements in I. The symbols σ1 = σ(δ1), σ2 = σ(δ2) form a regular sequence in
OT∗X and so, by [4, Prop. 4.1.2], the ideal J is generated by σ1, σ2. An easy
computation shows that the multiplicity of the conormal at 0 in Z is 4. On the
other hand, the multiplicity of the conormal at 0 in CC(Rj∗(CU )) is equal to
mult0(D) − 1 = 3 (cf. [3]), and so the logarithmic comparison theorem does not
hold for D.

For the family of non locally quasi-homogeneous plane curves (cf. [9])

xq
1 + xp

2 + xp−1
2 x1 = 0, p ≥ q + 1 ≥ 5,
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the multiplicities of the conormal at 0 in CC(Ω•(log D)) and in CC(Rj∗(CU ))
are 2(q − 2) and q − 1 respectively, and so these curves also do not satisfy the
logarithmic comparison theorem.

A natural question is therefore whether or not the logarithmic comparison
theorem holds for a given free divisor.

The purpose of this paper is to prove a partial converse to Theorem 1.1. We
prove:

Theorem 1.3. Let D be a reduced plane curve. If the logarithmic comparison
theorem holds for D, then D is locally quasi-homogeneous.

Our proof shows that if h is a local equation of D, and the logarithmic com-
parison theorem holds, then there is a vector field germ χ such that χ · h = h.
As a reduced curve has isolated singularities, we can then apply the theorem of
K. Saito [10]: if h ∈ OCn,0 has isolated singularity and h belongs to its Jacobian
ideal Jh then in suitable coordinates h is weighted homogeneous.

We conjecture that in higher dimensions the following version of our Theorem
1.3 holds:

Conjecture 1.4. If D ↪→ X is a free divisor and if the logarithmic comparison
theorem holds, then for all x ∈ D there is a local equation h for D around x, and
a germ of vector field χ vanishing at x such that χ · h = h.

A singular free divisor of dimension greater than 1 has non-isolated singulari-
ties, so even if this conjecture is true, Saito’s theorem cannot be used to deduce
local quasi-homogeneity. Indeed, it is not true in higher dimensions that if the
logarithmic comparison theorem holds for a free divisor D then D is necessarily
locally quasi-homogeneous. This is shown by an example in Section 4 below: the
logarithmic comparison theorem holds for the free divisor

D = {(x, y, z) : xy(x + y)(zx + y) = 0}

(the total space of a family of four lines in the plane with varying cross-ratio, cf.
[4]), in the neighbourhood of (0, 0, λ), with λ ∈ C\{0, 1}; however it is well known
that this divisor is not locally quasi-homogeneous. On the other hand, it does
satisfy Conjecture 1.4.

Adrian Langer has indicated to us that he has subsequently found a shorter
proof of Theorem 1.3, using globalisation and a comparison of Chern classes1.

1Added on November 2001.
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2. Preliminary results

In this section we recall the spectral sequence argument used in [5] to compare the
cohomology of the logarithmic complex Ω•(log D) with the cohomology of X \D.
Except for referring to “local” rather than “strong” quasi-homogeneity, we will
use the same notation as [5].

Without loss of generality we assume X = C
n with coordinates zi and x0 = 0.

Let V be a Stein neighbourhood (sufficiently small) of 0, let U be the open cover
of V \ {0} consisting of the sets Ui = V ∩ {zi 6= 0}, and let U ′ be the open cover
of V \D consisting of the open sets U ′i = (V \D) ∩ {zi 6= 0} = Ui \D.

We consider the two double complexes

Kp,q = Čq(U ,Ωp(log D))

and
K̃p,q = Čq(U ′,Ωp),

equipped with the exterior derivative d (the horizontal differential) and the Čech
differential δ (the vertical differential). There is an obvious restriction morphism
ρp,q : Kp,q → K̃p,q which commutes with both differentials, and thus gives rise to
morphisms of the two spectral sequences arising from each double complex. These
spectral sequences have E1 terms

′′Ep,q
1 = Ȟq(U ,Ωp(log D))

′′Ẽp,q
1 = Ȟq(U ′,Ωp)

′Ep,q
1 = ⊕1≤i1<···<iq+1≤nhp

(
Γ
(⋂

j

Uij
,Ω•(log D)

))

′Ẽp,q
1 = ⊕1≤i1<···<iq+1≤nhp

(
Γ
(⋂

j

U ′ij
,Ω•

))
.

As both U and U ′ are Stein covers,

Ȟq(U ,Ωp(log D)) = Ȟq(V \ {0},Ωp(log D))

and
Ȟq(U ′,Ωp)) = Ȟq(V \D,Ωp)).

As V \D is Stein, Ȟq(V \D,Ωp) = 0 if q > 0. It follows that

′′Ẽp,q
2 =

{
Hp(V \D; C) if q = 0
0 if q 6= 0 ,

and in particular the spectral sequence ′′Ẽ converges to the cohomology of V \D.
Now assume that outside 0, D is locally quasi-homogeneous, so that by 1.1

Rj∗(CU ) ' Ω•(log D), again outside 0. As U and U ′ are Stein covers, by 1.1 the
quotient of the restriction ρp,q defines an isomorphism ′ρp,q: ′E

p,q
1 → ′Ẽp,q

1 for all
p, q. This isomorphism persists to give an isomorphism of the cohomology of the
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total complexes Ktot and K̃tot as calculated by the spectral sequences. It follows
that the spectral sequence ′′E, like ′′Ẽ, also converges to the cohomology of V \D:

Hk(V \D; C) ' ⊕p+q=k
′′Ep,q

∞ .

As D is a free divisor, Ȟq(V \ {0},Ωp(log D)) = 0 for q 6= 0, n − 1, so ′′E1

has only two non-null rows; writing for the moment Ωp(D) and V ∗ in place of
Ωp(log D) and V \ {0}, ′′E1 thus looks like

Ȟn−1(V ∗, Ω0(D))
d1→ · · · d1→ Ȟn−1(V ∗, Ωp(D))

d1→ · · · d1→ Ȟn−1(V ∗, Ωn(D))
0 · · · 0 · · · 0
...

...
...

...
...

0 · · · 0 · · · 0

Γ(V, Ω0(D))
d1→ · · · d1→ Γ(V, Ωp(log D))

d1→ · · · d1→ Γ(V, Ωn(log D)).

(Note that as n ≥ 2 and as the Ωp(log D) are free modules, we have Γ(V ∗,Ωp(D))=
Γ(V,Ωp(D)).)

As this spectral sequence converges to the cohomology of V \D, we have

Hn−1(V \D; C) ' E0,n−1
∞ ⊕ · · · ⊕ En−1,0

∞ = E0,n−1
n+2 ⊕ hn−1(Γ(V,Ω•(log D)))

Hn(V \D; C) = E0,n
∞ ⊕ · · · ⊕ E0,n

∞ = E1,n−1
n+2 ⊕ hn(Γ(V,Ω•(log D)))

dn+1(E
0,n−1
n+2 )

,

where
E0,n−1

n+2 = Ker d1 : Ȟn−1(V ∗,Ω0(D)) → Ȟn−1(V ∗,Ω1(D)).

In [5], the main theorem was proved by showing that if D is locally quasi-homo-
geneous then the complex

(Ȟn−1(V \ {0},Ω•(log D)), d1)

is exact.

3. Proof of the Theorem

We continue with the discussion of the last paragraph. If the natural morphism
Ω•(log D) → Rj∗(CU ) is a quasi-isomorphism (i.e. if the logarithmic comparison
theorem holds for D) then by the formulae of the last section, d1 : Ȟn−1(V \
{0},Ω0(log D)) → Ȟn−1(V \ {0},Ω1(log D)) is injective.

Let {ω1, · · · , ωn} be a free basis of Ω1(log D) as OV -module, and let δ1, · · · , δn

be the dual basis of Der(log D). Then Ȟn−1(V \ {0},Ω0(log D)) = Ȟn−1(V \
{0},OCn) and Ȟn−1(V \{0},Ω1(log D)) ' ⊕n

1 Ȟn−1(V \{0},OCn). The morphism
d1 : Ȟn−1(V \ {0},Ω0(log D)) → Ȟn−1(V \ {0},Ω1(log D)) now becomes

Ȟn−1(V \ {0},OCn) d1→ Ȟn−1(V \ {0},OCn)n

[g] 7→ ([δ1 · g], · · · , [δn · g]).
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where g ∈ Γ(V \ ∪i{zi = 0},OCn) = Γ(Cn \ ∪i{zi = 0},OCn) represents the class
[g] in Ȟn−1(Cn \ {0},OCn).

For δ ∈ DerC(OCn), we denote by dδ the homomorphism

dδ : Ȟn−1(V \ {0},OCn) → Ȟn−1(V \ {0},OCn), dδ([g]) = [δ · g].

Proposition 3.1. Let mCn,0 be the maximal ideal of OCn,0 and let δ ∈
mCn,0DerC(OCn),

δ = (x1, · · · , xn)




a1,1 · · · a1,n

...
...

...
an,1 · · · an,n







∂/∂x1

...
∂/∂xn


 + δ≥1

with the ai,j ∈ C and δ≥1 ∈ m2
Cn,0DerC(OCn). If dδ is injective, then the eigen-

values of A do not satisfy any relation with positive integer coefficients (in this
case, we will say that δ satisfies condition (I)).

Proof. By a coordinate change we can make A lower triangular. Its eigenvalues
a1, · · · , an are then the elements of the diagonal. The group Ȟn−1(V \ {0},OCn)
is isomorphic to the space of Laurent series, convergent for all x = (x1, · · · , xn)
with x 6= 0, whose non-zero coefficients are those with strictly negative indices in
all variables, i.e. ∑

i1,··· ,in<0

ai1,··· ,in
xi1

1 · · ·xin
n .

For p ≥ n, we set

Gp =




∑
i1, · · · , in < 0
i1 + · · ·+ in = −p

cix
i1
1 · · ·xin

n




,

F p =




∑
i1, · · · , in < 0
i1 + · · ·+ in ≥ −p

cix
i1
1 · · ·xin

n




.

Then F p = Gp⊕Gp−1⊕· · ·⊕Gn. Each Gp is a finite-dimensional C-vector space,
whose dimension we denote by rp, and dδ restricts to morphisms of vector spaces

dδ |F p : F p → F p

and
dδ |Gp : Gp → F p.
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Let us denote by dp
δ,p the component of this second restriction lying in Gp. Then

dp
δ,p depends only on the weight 0 part δ0 of δ. We claim that with respect to a

suitable ordered basis of Gp, its matrix [dp
δ,p] is lower triangular.

As basis for Gp we take the monomials

1
xi1

1 · · ·xin
n

with i1 + · · ·+ in = p.
We have

dδ(x−i1
1 · · ·x−in

n ) = −
∑
j,k

ik aj,k x−i1
1 · · ·x−(ik−1)

k · · ·x−(ij+1)
j · · ·x−in

n . (1)

Thus, if we give our basis of Gp the lexicographic order corresponding to the order
of the coordinates x1, · · · , xn, then since aj,k = 0 if j < k (recall that we have
chosen our coordinates so that A is lower triangular), the matrix [dp

δ,p] is lower
triangular.

Let q ≤ p. Then dδ(Gq) ⊂ Gq + Gq−1 + · · · + Gn. Thus, it follows from the
above that if we give F p the ordered basis consisting of the ordered bases for each
Gq, n ≤ q ≤ p that we have chosen, and order these by descending value of q, then
the matrix of dδ |F p is also lower triangular.

What are its diagonal elements? In the right-hand side of equation (1), the
coefficient of x−i1

1 · · ·x−in
n is equal to

i1a1,1 + · · ·+ inan,n;

this is the diagonal element in the matrix of dδ |F p in the row and column cor-
responding to the basis element x−i1

1 · · ·x−in
n . Note that the diagonal elements

of A are its eigenvalues; thus, the diagonal elements in the matrix of dδ |F p with
respect to the chosen basis are all linear combinations i1λ1 + · · · + inλn of the
eigenvalues λ1, · · · , λn of A, with the ij positive integers and i1 + · · · + in ≤ p.
As this matrix is lower triangular, dδ |F p is injective only if the product of these
diagonal elements is non-zero. ¤

Remark 3.2. We have used in the proof of this lemma the fact that if dδ is
injective then so is its restriction to each F p. We do not know if the opposite
implication holds. It seems likely that an argument involving faithful flatness
would prove it. However, we do not need it in what follows.

Let D be a plane curve. We suppose as above that 0 is the singular point of
D. In this case the upper non-zero row in the E2 page of the spectral sequence ′Ẽ
begins

d1 : Ȟ1(C2 \ {0},OC2) → ⊕2
1Ȟ

1(C2 \ {0},OC2).
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Theorem 3.3. Let D be a plane curve, singular at 0. If d1 is injective, then there
is a local equation h for D around 0, and a germ of vector field χ at 0 such that
χ · h = h.

Proof. Any reduced plane curve whose equation has non-zero quadratic part is
quasihomogeneous, by the classification of singularities of functions of two vari-
ables: such a curve is equivalent to Ak, x2 + yk+1 = 0, for some k. For a quasi-
homogeneous curve, the conclusion of the theorem of course holds. Thus, we may
assume that the equation h of D lies in m3

C2,0. As the determinant of the coeffi-
cients of a free basis of Der(log D) is a local defining equation for D ([11]), we may
therefore choose a free basis δ, γ for Der(log D) such that γ has zero linear part.
In fact the supposition that d1 is injective implies that at least one member of the
basis has non-zero linear part, as otherwise d1([1/xy]) = ([δ · 1/xy], [γ · 1/xy]) = 0.

We may thus take

δ = δ0 + δ1 + δ2 + · · · =
∑
k≥0

∑
i+j=k+1

(
αijx

iyj ∂

∂x
+ βijx

iyj ∂

∂y

)

where δ0 = xA∂x
t, with A 6= 0 and in Jordan normal form, i.e.

A =
(

λ1 0
0 λ2

)
or A =

(
λ1 0
1 λ1

)
.

Let h be the reduced equation of D:

h = hn + hn+1 + hn+2 + · · · =
∑
k≥n

hk =
∑
k≥n

∑
i+j=k

aijx
iyj ,

where the polynomials hi are homogeneous of degree i.
Let us now suppose that δ is not an Euler vector field for h, we will see that

(up to multiplication by a non-zero constant) the only possibility for h and δ is

h1 = · · · = hn−1 = 0, hn = xayb and δ0 = qx
∂

∂x
− py

∂

∂y
.

First case: hn =
∑

i+j=n aijx
iyj and δ0 = λ1x

∂
∂x + λ2y

∂
∂y . Then

0 = δ0(hn) =
∑

i+j=n

(iλ1 + jλ2)aijx
iyj .

So, aij = 0 if iλ1+jλ2 6= 0; thus, since by assumption hn 6= 0, we have qλ1 = −pλ2

and p + q = n (p, q ∈ N). In this case,

hn = xpyq, δ0 = qx
∂

∂x
− py

∂

∂y
.

Second case: hn =
∑

i+j=n aijx
iyj and δ0 = (λ1x + y) ∂

∂x + λ1y
∂
∂y . Then

0 = δ0(hn) = nλ1an0x
n +

∑
i+j=n,j≥1

(nλ1aij + iai+1,j−1)xiyj .
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So, if λ1 6= 0, then we must have an0 = 0, then an−1,1 = 0, · · · , a1,n−1 = 0, a0n = 0,
so that hn = 0. This is absurd, by hypothesis.

If λ1 = 0, then d1 is not injective, because

d1([1/xy]) = (dδ([1/xy]), dγ([1/xy])) = (0, 0).

Then, we have

h = xpyq + hn+1 + hn+2 + · · · , δ0 = qx
∂

∂x
− py

∂

∂y
.

We will prove that, in this case, after a coordinate change h can be reduced to
h = xpyq with p + q = n ≥ 3. This contradicts our supposition that h is reduced.
Then our initial supposition about δ is false, and δ is an Euler vector field for h.

Inductively, for all k ≥ 0, we construct coordinates (x(k), y(k)) and functions
h(k) such that

h(x, y) = h(k)(x(k), y(k)) = xp
(k)y

q
(k) +

∑
s≥n+k

h(k)
s (x(k), y(k)) ≡ xp

(k)y
q
(k)(m

n+k
C2,0),

where h
(k)
i is homogeneous of degree i. Then, by Artin approximation [1, Theorem

1.2], there exist coordinates z1, z2 solving the equation

h(x, y)− zp
1zq

2 = 0.

Let us construct the x(k), y(k), h(k). We suppose that we have x(k), y(k) and h(k) ∈
C{x(k), y(k)}, such that

h(x, y) = h(k)(x(k), y(k)) = xp
(k)y

q
(k) +

∑
s≥n+k

h(k)
s ,

δ
(k)
0 = qx(k)

∂

∂x(k)
− py(k)

∂

∂y(k)
.

We define x(k+1), y(k+1) and h(k+1) ∈ C{x(k+1), y(k+1)}, such that

h(x, y) = h(k+1)(x(k+1), y(k+1)) = xp
(k+1)y

q
(k+1) +

∑
s≥n+k+1

h(k+1)
s ,

δ
(k+1)
0 = qx(k+1)

∂

∂x(k+1)
− py(k+1)

∂

∂y(k+1)
.

Let h
(k)
n+k =

∑
i+j=n+k a

(k)
i,j xi

(k)y
j
(k), then

δ
(k)
0 (hn+k) =

∑
i+j=n+k

(iq − jp)a(k)
i,j xi

(k)y
j
(k).

As the part of h(k) of degree less than n + k is xp
(k)y

q
(k), it follows that the part of

degree n + k of δ(k)(h(k)) ∈ mC2,0h
(k) belongs to (xp

(k)y
q
(k)):

[δ(k)(h(k))]n+k = δ
(k)
0 (h(k)

n+k) + δ
(k)
k (xp

(k)y
q
(k)) ∈ (xp

(k)y
q
(k)),
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but
δ
(k)
k (xp

(k)y
q
(k)) ∈ (xp−1

(k) yq
(k), x

p
(k)y

q−1
(k) ),

then
δ
(k)
0 (h(k)

n+k) ∈ (xp−1
(k) yq

(k), x
p
(k)y

q−1
(k) ),

so
(iq − jp)a(k)

i,j = 0 (i + j = n + k) if i < p− 1 or j < q − 1,

but if iq − jp = 0, then (i, j) = n+k
n (p, q), and i > p, j > q. So h

(k)
n+k ∈

(xp−1
(k) yq

(k), x
p
(k)y

q−1
(k) ) :

h
(k)
n+k = xp−1

(k) yq
(k)fk+1(x(k), y(k)) + xp

(k)y
q−1
(k) gk+1(x(k), y(k)).

Let

x(k+1) = x(k) +
1
p
fk+1(x(k), y(k)) y(k+1) = y(k) +

1
q
gk+1(x(k), y(k)).

We have

h(x, y) = xp
(k+1)y

q
(k+1) +

∑
r≥k+1

∑
i+j=n+r

a
(k+1)
i,j xi

(k+1)y
j
(k+1).

We define h(k+1) by the equation h(x, y) = h(k+1)(x(k+1), y(k+1)), where

h(k+1) = xp
(k+1)y

q
(k+1) +

∑
s≥n+k+1

h(k+1)
s ,

with h
(k+1)
s =

∑
i+j=s a

(k+1)
i,j xi

(k+1)y
j
(k+1) homegeneous polynomials of degree s ≥

n + k + 1. Moreover, as

x(k+1) = x(k); y(k+1) = y(k) (mod m2
C2,0),

we have δ =
∑

q≥0 δ
(k+1)
q , where each δ

(k+1)
q is homogeneous of degree q, and

δ
(k+1)
0 = qx(k+1)

∂

∂x(k+1)
− py(k+1)

∂

∂y(k+1)
. ¤

Proposition 3.4. Let D a plane curve, singular at 0. If there exists δ ∈ Der(log D)
satisfying condition (I), then there exists a unit α such that αδ · h = h, and so D
is Euler homogeneous.

Proof. The proof is similar to the proof of Theorem 3.3. There, we consider the
case where hn = xpyq and δ0 = qx∂/∂x − py∂/∂y, with p, q ∈ N. Condition
(I) forces one of p and q to be 0. The proof now proceeds as before, with this
additional hypothesis.
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Theorem 3.5. Let (D, 0) ⊂ (C2, 0) be a plane curve. The following conditions
are equivalent:
a) There exists δ ∈ Der(log D)0 such that dδ is injective.
b) There exists δ ∈ Der(log D)0 satisfying condition (I).
c) d1 is injective.
d) (D, 0) is Euler homogeneous.
e) (D, 0) is quasi-homogeneous.
f) The logarithmic comparison theorem holds for (D, 0) on a neighbourhood of 0.

Proof. By Theorem 3.3, if d1 is injective, then (D, 0) is Euler homogeneous. By
Saito’s theorem [10] (for a function h with isolated singularity, h ∈ Jh is equivalent
to the quasihomogeneity of h) to be Euler homogeneous or quasi-homogeneous is
the same. Theorem 1.1 proves that if (D, 0) is quasi-homogeneous, the logarithmic
comparison theorem holds for (D, 0) on a neighborough of 0. From the results of
section 2 we can easily deduce that logarithmic comparison theorem implies the
injectivity of d1. Then, the last four conditions are equivalent. If χ = w1

∂
∂x +w2

∂
∂y

is the Euler vector field then dχ is injective. Proposition 3.1 shows that if dδ is
injective, then δ satisfies (I) and, finally, by proposition 3.4, δ ∈ Der(log D) implies
that D is Euler homogeneous.

4. Example

In this section we give an example of a free divisor D ⊂ C
3 which is Euler homo-

geneous but not locally quasi-homogeneous, and for which the logarithmic com-
parison theorem does hold. This example is studied in [4], where the perversity
of Ω•(log D) is proved. We remark that D is the total space of an equisingu-
lar one-parameter deformation of a plane curve singularity. In [7], Damon shows
that under mild additional hypotheses, all surfaces obtained in this way are free
divisors.

D is defined by the equation

h(x, y, z) = xy(x + y)((z − λ)x + y) = h1h2h3h4, λ ∈ C \ {0, 1}.
Der(log D) has free basis {δ1, δ2, δ3}

δ1 = x ∂
∂x + y ∂

∂y

δ2 = + ((z − λ)x + y) ∂
∂z

δ3 = x2 ∂
∂x − y2 ∂

∂y − (z − λ)(x + y) ∂
∂z .

Note that δ1 · h = 4h, so that h is Euler homogeneous. Note also that it is easy to
check that each of these vector fields is logarithmic, and that the determinant of
their coefficients is a reduced equation for D. From this it follows by a theorem
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of K. Saito ([11]) that they really do form a basis for Der(log D); as no linear
combination of them has non-singular linear part, it follows that D cannot be
quasihomogeneous.

This example of free divisor is interesting also as it provides a counterexample
to the “logarithmic Sard’s theorem”: every point of C = z-axis is a logarithmic
critical value with respect to the projection (x, y, z) 7→ z.

The basis of Ω1(log D) dual to {δ1, δ2, δ3} is

ω1 =
y2 dx + x2 dy

xy(x + y)

ω2 =
y(z − λ) dx− x(z − λ) dy + xy dz

xy(x(z − λ) + y)

ω3 =
y dx− x dy

xy(x + y)
.

We have to calculate homology groups of the stalk at 0 of the logarithmic de Rham
complex

0 → Ω0(log D) d0→ Ω1(log D) d1→ Ω2(log D) d2→ Ω3(log D) d3→ 0.

Although D is not weighted homogeneous in the strict sense, it is homogeneous if
we assign weights 1, 1, 0 to the variables x, y, z. The Lie derivative with respect to
the vector field δ1,

Lδ1(ω) = ιδ1(dω) + d(ιδ1(ω)),

then defines a contracting homotopy from Ω•(log D) to its weight-zero part
Ω•0(log D). For if ω ∈ Ωk(log D) is a sum of homogenenous parts ωi, and if dω = 0,
then dωi = 0 for all i. Since Lδ1(ωi) = iωi, each ωi, for i 6= 0, is then exact, and
ω is cohomologous to ω − ιδ1(

∑
i6=0(1/i)ωi).

Thus we consider only the weight 0 subcomplex

0 → Ω0
0(log D)

d0
0→ Ω1

0(log D)
d0
1→ Ω2

0(log D)
d0
2→ Ω3

0(log D)
d0
3→ 0.

• We have Ω0
0(log D) = C{z}, and d0(zk) = kzk−1[((z − λ)x + y)ω2−

(z − λ)(x + y)ω3] (k ≥ 0), so

Im(d0
0) = C{z}dz = C{z} 〈((z − λ)x + y)ω2 − (z − λ)(x + y)ω3〉 .

• Ω1
0(log D) = C{z} 〈ω1, xω2, yω2, xω3, yω3〉 , and we find

d1(ω1) = d1(xω2) = d1(xω3) = d1(yω3) = 0
d1(zkω1) = kzk−1((x(λ− z)− y)ω1 ∧ ω2 + (z − λ)(x + y)ω1 ∧ ω3)
d1(yω2) = (xy + y2)ω2 ∧ ω3

d1(zkxω2) = kzk−1((z − λ)(x + y)xω2 ∧ ω3)
d1(zkyω2) = ((k + 1)zk − kλzk−1)(x + y)yω2 ∧ ω3

d1(zkxω3) = kzk−1x(x(z − λ) + y)ω2 ∧ ω3

d1(zkyω3) = kzk−1y(x(z − λ) + y)ω2 ∧ ω3.
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It follows that Ker(d0
1) = C 〈ω1, xω2, xω3, yω3〉 ⊕ Im(d0

0), so

h1(Ω•(log D)0) = C 〈ω1, xω2, xω3, yω3〉
is 4-dimensional. Also we have

Im(d0
1) = C{z} 〈((λ− z)x− y)ω1 ∧ ω2 + (z − λ)(x + y)ω1 ∧ ω3)〉⊕

C{z} 〈
x2, xy, y2

〉
ω2 ∧ ω3.

• Ω2
0(log D) is generated over C{z} by

xω1 ∧ ω2, yω1 ∧ ω2, xω3 ∧ ω1, yω3 ∧ ω1, x
2ω2 ∧ ω3, xyω2 ∧ ω3, y

2ω2 ∧ ω3.

We find

d2(xω1 ∧ ω2) = d2(xω1 ∧ ω3) = d2(yω1 ∧ ω3) = 0
d2(zkx2ω2 ∧ ω3) = d2(zkxyω2 ∧ ω3) = d2(zky2ω2 ∧ ω3) = 0.

d2(zkxω1 ∧ ω2) = kzk−1(λ− z)(x + y)xω1 ∧ ω2 ∧ ω3

d2(yω1 ∧ ω2) = (xy + y2)ω1 ∧ ω2 ∧ ω3

d2(zkyω1 ∧ ω2) = zk−1(x + y)(ky(λ− z)− zy)ω1 ∧ ω2 ∧ ω3)
d2(zkxω1 ∧ ω3) = −kzk−1x((z − λ)x + y)ω1 ∧ ω2 ∧ ω3

d2(zkyω1 ∧ ω3) = −kzk−1y((z − λ)x + y)ω1 ∧ ω2 ∧ ω3.

We deduce that Ker(d0
2) = C 〈xω1 ∧ ω2, xω1 ∧ ω3, yω1 ∧ ω3〉⊕ Im(d0

1), and thus
that

h2(Ω•(log D)0) = C 〈xω1 ∧ ω2, xω1 ∧ ω3, yω1 ∧ ω3〉
is 3-dimensional.

• Finally,
Im(d0

2) = C{z} 〈
x2, xy, y2

〉
ω1 ∧ ω2 ∧ ω3 = Ω3

0(log D),

and, consequently,
h3(Ω•(log D)0) = 0.

Now consider the intersection D0 = D ∩ {z = 0}, which has equation

h0 = h0
1h

0
2h

0
3h

0
4 = xy(x + y)(−λx + y).

It is a line arrangement, and the cohomology of its complement is therefore given by
the Brieskorn complex, the exterior algebra generated over C by the forms dh0

i /h0
i ,

with trivial differential ([2]). This is of course a subcomplex of Ω•(log D0). Let
V ⊂ C

3 be a neighbourhood of 0. Restriction from C
3 to C

2 = {z = 0} gives rise
to a commutative diagram

∧p ∑
1≤i≤4

C

〈
dhi

hi

〉
a−→ hp(Ω•(log D)(V ))

b−→ Hp(V \D; C)

↓ ↓ ↓∼=
∧p ∑

1≤i≤4

C

〈
dh0

i

h0
i

〉
∼=−→ hp(Ω•(log D0)(V0))

∼=−→ Hp(V0 \D0; C).
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in which the left-hand horizontal morphisms are induced by the inclusion of
the Brieskorn complex in the logarithmic complex, and the right-hand horizon-
tal morphisms are de Rham maps. The lower horizontal morphisms are iso-
morphisms by the theorem of Brieskorn and by 1.1. The right-hand vertical
morphism is an isomorphism because D is a topologically trivial deformation of
D0, so inclusion induces an isomorphism of the homology groups of the comple-
ments. The left-hand vertical morphism is evidently surjective, and thus the de
Rham map hp(Ω•(log D)(V )) → Hp(V \D; C) is surjective. As hp(Ω•(log D)0) =
limU30 hp(Ω•(log D)(V )) and limU30 Hp(V \D; C) = Hp(C3 \D; C), then the de
Rham map hp(Ω•(log D)) → Hp(C3 \D; C) is surjective. To see that it is an iso-
morphism we compare dimensions. A calculation (for example, using the Brieskorn
complex) gives

dimC H1(C2 \D0; C) = 4
dimC H2(C2 \D0; C) = 3
dimC H3(C2 \D0; C) = 0.

As these are the same as the dimension of hp(Ω•(log D)0), this completes the proof
that the logarithmic comparison theorem holds for D. ¤

Remark 4.1. The calculations whose results we summarise here are not so simple
as might be supposed. We have presented each image d0

i (Ω
i
0(log D)) as a module

over C{z} with algebraic generators, obscuring the fact that because D is not
quasihomogeneous, the anti-derivatives of an algebraic exact logarithmic form are
in general transcendental. For example,

zk(x2 + xy)ω1 ∧ ω2 ∧ ω3 = d

( ∞∑
s=1

(zk+s/λs(k + s))xω1 ∧ ω2

)

= d

(
−

(
log

(
1− z

λ

)
+

k∑
s=1

(zs/λss)
)

λkxω1ω2

)

and

zkxyω1 ∧ ω2 ∧ ω3 = d

( ∞∑
s=1

(zk+s/(λ + 1)s(k + s))x(ω1 ∧ ω2 + ω1 ∧ ω3)
)

= d

(
−

(
(λ + 1)k log(1− (z/(λ + 1)))

+
k∑

s=1

(zs(λ + 1)k−ss)
)

x(ω1 ∧ ω2 + ω1 ∧ ω3)
)

.



38 F. J. Calderón Moreno et al. CMH

References

[1] M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277–291.
[2] E. Brieskorn, Sur le groupe de tresses (d’apres V. I. Arnol’d), Sem. Bourbaki 1971/72,

Lecture Notes in Math. 317, Springer Verlag, Berlin, 1973, 21–44.
[3] J. L. Brylinski, A. S. Dubson and M. Kashiwara, Formule de l’indice pour modules

holonomes et obstruction d’Euler locale, C. R. Acad. Sci. Paris Sér. I Math., 293 (1981),
573–576.

[4] F. J. Calderón Moreno, Logarithmic Differential Operators and Logarithmic De Rham
Complexes Relative to a Free Divisor, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 5,
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Apartado postal 1160
41080 Sevilla
Spain
e-mail: narvaez@algebra.us.es

Francisco J. Castro Jiménez
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