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Harmonic forms and near-minimal singular foliations
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Abstract. For a closed 1-form ω with Morse singularities, Calabi discovered a simple global
criterion for the existence of a Riemannian metric in which ω is harmonic. For a codimension
1 foliation F , Sullivan gave a condition for the existence of a Riemannian metric in which all
the leaves of F are minimal hypersurfaces. The conditions of Calabi and Sullivan are strikingly
similar. If a closed form ω has no singularities, then both criteria are satisfied and, for an
appropriate choice of metric, ω is harmonic and the associated foliation Fω is comprised of
minimal leaves. However, when ω has singularities, the foliation Fω is not necessarily minimal.

We show that the Calabi condition enables one to find a metric in which ω is harmonic and
the leaves of the foliation are minimal outside a neighborhood U of the ω-singular set. In fact, we
prove the best possible result of this type: we construct families of metrics in which, as U shrinks
to the singular set, the taut geometry of the foliation Fω outside U remains stable. Furthermore,
all compact leaves missing U are volume minimizing cycles in their homology classes. Their
volumes are controlled explicitly.
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Introduction

Probably, it has been observed for a long time that a single simple geometric prop-
erty implies two quite different phenomena: the first is the intrinsic harmonicity
of a given closed 1-form ω and the second – the intrinsic minimality of the foli-
ation Fω determined by this form. The first implication of this global geometric
property (we call it the Calabi Property) was discovered by Calabi ([Ca]) and the
second, for non-singular foliations, – by Sullivan ([S2]). It is easy to see that, if
ω has no singularities, then the Calabi property is satisfied and, as a result, ω
is intrinsically harmonic and Fω is intrinsically minimal. However, 1-forms typi-
cally do have singularities and so do the corresponding foliations. In general, the
ω-singularities obstruct both the harmonicity of ω and the minimality of Fω.

The research has been supported by US–Israel Binational Science Foundation Grant 9400073.
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Therefore, it is natural to ask whether, in the presence of the Calabi property,
there exists a Riemannian metric with respect to which ω is harmonic and the
leaves of Fω are volume-minimizing hypersurfaces. In this paper we show that one
can find such a metric which harmonizes ω and “almost” minimizes the leaves of
Fω, thus bringing Calabi’s and Sullivan’s theories under a single roof.

Let us clarify and expand upon this claim. Let M be a smooth compact n-
manifold and ω – a closed 1-form on M . We say that ω is of Morse type if, locally,
it is the differential of a Morse function. We assume that ω has no singularities on
the boundary ∂M and that its restriction on ∂M also is a form of the Morse type.

Let Sω denote the singular set of ω – it is a finite collection of points. Similarly,
let S∂

ω denote the singular set of ω, restricted to ∂M . Put

S?
ω = Sω t S∂

ω

and
M◦

ω = M \ Sω, ∂M◦
ω = ∂M \ S∂

ω, M?
ω = M \ S?

ω. (0.1)

Definition 0.1. We say that a smooth path γ : [0, 1] → M is ω-positive if, for
any t ∈ [0, 1], ω(γ̇(t)) > 0. Here γ̇(t) denotes the velocity vector tangent to γ at
γ(t).

The following is a modification of an important global property of ω, studied
in [Ca].

Definition 0.2. We say that ω satisfies the relative Calabi property, if
(i) for each point x ∈ M◦

ω, there exists through x a closed ω-positive path;
(ii) for each point x ∈ ∂M◦

ω ,there exists in ∂M through x a closed ω-positive
path.

Calabi was investigating the following problem: Given a closed 1-form ω on a
closed smooth n-manifold M , when does there exist a Riemannian metric g, such
that ω is harmonic with respect to the g?

If such a metric exists, we will say that ω is intrinsically harmonic.
In this paper the harmonicity of a closed differential form ω for manifolds with

boundary is interpreted as the property d(∗ω) = 0, where “∗” stands for the Hodge
star-operator (and not as a general solution of the Laplace’s equation).

Calabi proved that, for a closed M , condition (i) is equivalent to the intrinsic
harmonicity of ω ([Ca]).

Remark. Locally, ω = df , f being a Morse function. Property (i) prevents f from
having local maxima and minima in the interior of M and (ii) – on its boundary.

A closed Morse-type 1-form which possesses properties (i) and (ii) will be called
a Calabi form.
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Since ω is closed, it defines a (n − 1)-dimensional foliation Fω on M . This
foliation may have singular leaves with the Morse-type singularities: locally, in the
leaf topology, the Fω-leaves are the hypersurfaces of constant level for a function
f whose differential is ω. Hence, in a neighborhood of a singularity, the singular
leaves are homeomorphic to cones over products of two spheres.

It is possible to verify that Calabi’s properties (i), (ii) have the following nice
interpretation in terms of the foliation Fω:

Each compact leaf component is pierced by a loop transversal to Fω

and a similar property holds for Fω|∂M . (0.2)

The verification depends on two observations:
1) if there exists an ω-positive loop through a nonsingular point x of a leaf

component L, then such a loop exits through any other nonsingular point y ∈ L;
2) any non-compact leaf component L is pierced by an ω-positive loop (cf.

[FKL]).

For foliations without singularities on closed manifolds, Sullivan showed ([S2]),
that property (0.2) is equivalent to the existence of a metric in which all the leaves
are minimal hypersurfaces. In other words, (0.2), equivalent to the Calabi property
of Definition 0.2, implies the intrinsic minimality of the leaves. Such intrinsically
minimal foliations are also called taut. They have been extensively studied by a
number of authors: [S1], [S2], [KT] [HL], [HT].

In general, the foliation Fω fails to be intrinsically minimal in the vicinity of
its singularity. For example, consider the 1-dimensional foliation on the plane in
a neighborhood of a hyperbolic singularity; clearly, there is no metric in which all
the hyperbolas are geodesic curves. Therefore, in general, even for Calabi forms,
one can not expect Fω to be minimal. However, the next best to the minimality
property can be achieved: the deviation of the leaves from minimality numerically
can be made arbitrary small and arbitrary localized in the vicinity of the singular
set S?

ω. Such foliations will be called near-minimal.

Our goal is to merge the Sullivan’s and Calabi’s results within a more general
context of singular foliations. In particular, we going to prove the following fact:

Given a Calabi form ω, there exists a metric, with respect to which the form is
harmonic and all the leaves of Fω are near-minimal (cf. Theorem A).

Furthermore, we show that the orthogonal to Fω 1-foliation F∗ω (tangent to
the kernels of the form ∗ω) also is near-minimal: it consists of leaves that deviate
from geodesic lines only in the vicinity of the ω-singular points. Again, by the
choice of metric, the length deviation can be made arbitrary small.

This gives a beautiful geometric structure: an intrinsically harmonic 1-form
produces a pair of mutually orthogonal singular foliations, both of which are near-
minimal and, actually, minimal away of the singularities.
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In small dimensions, these foliations definitely fail to be minimal with respect
to any metric. Nevertheless, we suspect that, if the dimension of M exceeds 7,
sometimes the word “near” can be be dropped from the statement about the leaves
of Fω (cf. Conjecture 4.1).

Many results of this paper on the volume-minimizing cycles (built of compact
Fω-leaves) have somewhat more general classical analogs, formulated in terms
the mass-minimizing foliation cycles and currents. These classical results were
established for generic non-singular foliations on compact closed manifolds (cf.
[HL], [S], [S1]) and stated in terms of the Geometric Measure Theory. In this
context, our contribution can be described as reproducing these results for the
non-compact manifolds {M?

ω} in a fashion that permits an extension of the metric
in question across the singularities. In particular, we prove (cf. Proposition 2.5) a
“taut” version of the rational Poincaré duality (in dimensions 1 and (n− 1)).

We also extend the setting for manifolds with boundary and investigate the
impact of boundary effects on the intrinsic harmonicity and minimality of the
leaves. When the form ω|∂M is non-singular, and ω satisfies (0.2), then it is
possible to “synchronize” the harmonicity and minimality on M and ∂M ; for
ω|∂M with singularities, it is very much an open problem.

The introduction of foliations with singularities, induced by closed 1-forms,
drastically changes the landscape of the classical foliation theory. On the one hand,
one avoids some of the pathologies (think about the Reeb foliation), characteristic
for the most general (non-singular) foliations, on the other hand, the presence of
singularities generates new diverse possibilities and complications. For example,
Novikov’s Theorem ([N2]) states that, if a foliation Fω is produced by a closed
non-singular form ω, then all the leaves are either compact, or non-compact. This
is not the case for foliations generated by closed forms with singularities – such
foliations often are mixed bags.

The objects and constructions that facilitate our proofs are, so to speak, hand-
made. As a result, we are able to avoid a great deal of Functional Analysis and
Geometric Measure Theory. Our only generic tool is Stokes’ Theorem.

1. Statements of the main results

Most of our results are organized in eight big blocks: Theorems A, B, A⊥, B⊥

from Section 1, and Theorems C, D, C⊥, D⊥ from Section 3. Theorems A, B,
A⊥, B⊥ deal with more restrictive boundary conditions imposed on the 1-form
ω (cf. Definition 0.2), while Theorems C, D, C⊥, D⊥ – with more relaxed ones
(cf. Definition 3.1). Theorems A, B, C, D are concerned mostly with the (n− 1)-
dimensional foliation Fω, while Theorems A⊥, B⊥, C⊥, D⊥ – with an auxiliary
1-dimensional foliation FΩ, transversal to Fω and generated by the gradient flow



Vol. 77 (2002) Harmonic forms and near-minimal singular foliations 43

of ω. Otherwise, the theorems share many similar (and dual) claims that we have
chosen to repeat in order to avoid confusing multiple cross-references.

Prior to formulating a number of propositions, we shall introduce a few nota-
tions and make a few comments.

For each ω-singular point Aj ∈ Sω, there exists a system of Morse coordinates
{xi = xi(j)}1≤i≤n, centered on Aj , so that, locally,

ω =
n∑

i=1

aixi dxi ai ∈ R. (1.1)

Since Calabi’s property prevents the ai’s from all being of the same sign, it is
possible to stretch the coordinates {xi} in such a way that

n∑
i=1

ai = 0. (1.2)

This calibration of {xi} insures that ω is harmonic with respect to the euclidean
metric (dgE)2 =

∑n
i=1 dx2

i .
A similar choice of Morse coordinates is available at the singularities of ω|∂M .

In a neighborhood of a singularity A∂
k ∈ S∂

ω,

ω = a1 dx1 +
n∑

i=2

aixi dxi , (1.3)

where x1 is a coordinate in a transversal to the boundary direction, so that x1 is
positive in M and ω|∂M =

∑n
i=2 aixi dxi. Due to property (ii) in Definition 0.2,

we may assume that
∑n

i=2 ai = 0 to insure the harmonicity of ω|∂M in the
euclidean metric (dgE |∂M )2 =

∑n
i=2 dx2

i .
In fact, the singularities of ω|∂M come in two flavors: positive with a positive

a1’s and negative with a negative a1’s. Thus, S∂
ω = S∂

ω,+tS∂
ω,−, where S∂

ω,+ stands
for the set of the positive singularities.

Notice that, for odd n’s, the condition
∑n

i=1 ai = 0 prevents us from calibrat-
ing Morse coordinates, so that |ai| = 1 for all i’s. Nevertheless, without loss of
generality, one can assume that the modules of all ai’s are equal 1 or 2. The same
applies to the singularities from S∂

ω. For those we can assume that |a1| = 1 and
the rest of the |ai|’s are equal 1 or 2. Unless, stated differently, these assumptions
will hold in what follows.

Of course, the topology of M imposes restrictions on the list of singularities
from Sω and S∂

ω (for example, see [N], [N1]). On the other hand, the Calabi
property itself does not restrict the types of ω-singularities in M , besides the
obvious exclusion of the singular points of indices 0 and n. In fact, given a closed
1-form ω on a closed manifold with no singularities of indices 0 and n, it is possible
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to deform it to a new closed form ω′ with the same list of singular points and
satisfying Calabi’s condition ([FKL]), ([Ho]).

For any ε > 0, consider the ε-ellipsoids

Bε,j =
{
{xi} :

n∑
i=1

a2
i x2

i < ε2
}

in the calibrated Morse coordinates {xi} around each of the singularities Aj ∈ Sω.
Similarly, for any ε > 0 and each singularity A∂

k ∈ S∂
ω, consider the half-ellipsoid

B+
ε,k =

{
{xi} : a2

1x
2
1 +

n∑
i=2

a2
i x2

i < ε2, x1 ≥ 0
}

(The ellipsoids {Bε,j}j and {B+
ε,k}k will serve as elements of a special ω-subordinate

cover of M .)
In what follows we always assume that ε is sufficiently small, so that all the

2ε-ellipsoids {B2ε,j}j and {B+
2ε,k}k are disjoint.

We denote by M◦
ω,ε the complement in M to the ε-ellipsoids, centered on the

points from Sω. Similarly, let M?
ω,ε denote the complement to the ε-ellipsoids

centered on the points from S?
ω.

We say that a differential i-form Ω vanishes on the boundary ∂M , if it gets
zero values on any i-tuple of vectors, tangent to ∂M .

Consider the natural pairing

? : Hi(M,∂M ;R)⊗Hi(M,∂M ;R) −→ R.

For a closed i-form Ω which vanishes on ∂M and a relative i-cycle Σ, realized by
an embedding (Σ, ∂Σ) ↪→ (M,∂M) of a pseudo-manifold1 Σ, the pairing ? is given
by integration:

[Ω] ? [Σ] =
∫
Σ

Ω.

Furthermore, if the restriction of Ω on ∂M is exact, i.e. if Ω|∂M = d Ψ for an
(i − 1)-form Ψ, and Ψ is supported on a set A ⊂ ∂M which retracts on a
(n − i − 1)-dimensional CW-complex, then the integration of Ω produces a well-
defined functional on Hi(M,∂M ;Z) and thus, on Hi(M,∂M ;R).

Let ∗g denote the Hodge star-operator in a Riemannian metric g.

1 a CW-complex with a singular set of codimension 2.
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Finally, we are in position to formulate

Theorem A. Let M be an oriented smooth and compact n-manifold equipped with
a Calabi 1-form ω [cf. Def. 0.2 or (0.2)]. Given positive numbers λ, µ, λ ≥ 1,2 there
exists a smooth λµ-family of Riemannian metrics gλ,µ on M , so that the following
holds:

(1) All the metrics gλ,µ are conformally equivalent. For any µ′ ≤ µ, the met-
rics gλ,µ and gλ,µ′ coincide on the complement to the µ-ellipsoids centered on the
singularities of ω.

(2) The form ω is harmonic with respect to gλ,µ.
(3) The closed (n − 1)-form Ω = ∗gλ,µ

(ω) is λ, µ-independent. It gives rise to
a non-trivial class [Ω] ∈ Hn−1(M,∂M ;R).

(4) All the leaves of the foliation Fω, outside of the µ-ellipsoids, are minimal
hypersurfaces3 in the metric gλ,µ.

(5) If the restriction ω|∂M has no singularities in ∂M , then ω|∂M has analogous
properties (1)–(4) with respect to the gλ,µ-induced metric on the boundary.

Statement (2) above is a slight reenforcement of the main result in [Ca]; (4)
should be compared with [S2], Corollary 3, which deals with non-singular folia-
tions. The fact that there exists a metric, for which both statements (2) and (4)
are valid, is a new observation even for a non-singular ω.

Theorem B. Let M,ω,Ω and gλ,µ be as in Theorem A.
(1) Let F be any finite union of compact leaves of the foliation Fω, which does

not intersect the µ-ellipsoids around the singularities of ω. Then F minimizes the
gλ,µ-induced (n − 1)-volume V (F ) among all relative cycles (pseudo-manifolds)
(Σ, ∂Σ) ↪→ (M,∂M), subject to the homological constraint [Ω] ? [Σ] = [Ω] ? [F ]. In
particular, F minimizes the volume in its relative homology class. This minimal
volume V (F ) = λ−1[Ω] ? [F ].

(2) Any relative cycle (Σ, ∂Σ) ↪→ (M,∂M) of the volume V (F ) and such that
[Ω] ? [Σ] = [Ω] ? [F ], outside of the µ-ellipsoids, is comprised of compact leaves of
the foliation Fω (being restricted to the exterior of the ellipsoids).

The volume of the portion ΣS
µ of Σ, lying inside of the µ-ellipsoids, is given by

the integral λ−1
∫
ΣS

µ
Ω. When λ → +∞, it declines as ∼ λ−1; when µ → 0, it

declines as ∼ µn−1.
(3) For any union F̃ of compact leaf components homologous to F , the vol-

ume variation |V (F̃ )− V (F )| ≤ K · µn−1, where K is a positive, λµ-independent

2 The role of parameter λ will be reveled in Theorem B. In fact, all the claims are valid for
any λ > maxk |a1(k)|.

3 i.e. any compactly supported leaf perturbation in M?
ω,µ, fixed on the boundary of the

ellipsoids, increases the volume of the leaf.
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constant and λ ≥ 2µ.
(4) If the restriction ω|∂M has no singularities in ∂M , then ω|∂M has analogous

properties (1)–(3) with respect to the gλ,µ-induced metric on the boundary.

These claims should be compared with [HL], Theorem 2.3, Theorem 3.3 and
Theorem 7.7, where geometric and homological tautness are shown to be equiva-
lent.

It is interesting to observe that the cycle F , not only realizes the minimal
volume in its (relative) homology class, but does it for the whole affine hyperplane
[Ω] ? [Σ] = [Ω] ? [F ] of relative cycles in Hn−1(M,∂M ;R).

Example. Figure 1a below shows a map fω from a surface M with boundary
onto an oriented circle S1. The map has two Morse-type hyperbolic singularities
located on the handle that joins the upper torus (with the circular cut) with the
lower torus. The fibers of fω form a 1-foliation with two singularities in the interior
of M . The closed 1-form ω is defined to be the pull-back f∗ω(dθ) of the standard 1-
form dθ on the circle. It satisfies properties (i) and (ii) from Definition 0.2. Claims
(2) and (5) from Theorem A imply that ω and its restriction to the boundary ∂M
are intrinsically harmonic (equivalently, the map fω is intrinsically harmonic).

In contrast, the map fω and the form f∗ω(dθ) in Figure 1c are not intrinsically
harmonic. Note that any ω-positive path through any point on the gorge of the
slanted handle will be trapped in the upper torus. Thus, (i) from Definition 0.2
does not hold, although (ii) is valid. As in [Ca], one can show that this failure
prevents ω from being harmonic.

Figure 1b depicts the case when Definition 0.2 is also violated, but a weaker
Definition 3.1 is satisfied. It follows from Theorem C (Section 3) that the appro-
priate form ω is intrinsically harmonic, although its restriction on the boundary
∂M is not.

As shown in [FKL] and [Ho], property (i) from Definition 0.2 can be reformu-
lated in terms of an oriented finite graph Γω(M) defined in terms of M,ω. We
call it the Calabi graph of ω. When all the leaves of Fω are compact, the points of
Γω(M) are just the connected components of the leaves. It turns out that prop-
erty (i) from Definition 0.2 holds, if and only if, a similar property is valid for the
oriented graph Γω(M): in other words, through any point of the graph there exists
an ω-positive loop. Figure 2 below shows the Calabi graphs Γω(M), Γω(∂M) of
the ω’s, produced with the help of Figures 1a, 1b and 1c. ¤

Note that claims (1)–(5) from Theorem A are valid regardless of the existence
in Fω of a non-singular compact leaf F , while claims (1)–(4) from Theorem B
depend on its existence. We do not know under what most general conditions
on ω the foliation Fω has a compact leaf and when such a leaf is non-singular.
However, in a few special cases its existence can be guaranteed. For example, if the
rank of ω is one, (i.e. the form has all its periods R-proportional to some rational



Vol. 77 (2002) Harmonic forms and near-minimal singular foliations 47

fω

F F̃M

S
1

ω

fω

F F̃M

S
1

ω

M M

a b

c

fω

F F̃M

S
1

ω

M

Figure 1

numbers), then all the Fω-leaves are compact. This case is depicted in Figure 1.
On the other end of the spectrum, if ω is completely irrational4 and Calabi,

then on a closed M no leaf components are compact ([FKL]). In fact, a generic
(cf. [FKL]) ω with all non-compact leaves satisfies the Calabi property ([FKL]).
Here a form is called generic if each leaf has at most one singular point.

It also follows from ([FKL]) that ω with no singularities of indices 1 and (n−1)
is a Calabi form. Hence,

Corollary 1.1. Statements (1)–(5) of Theorem A are valid for any generic closed
1-form ω, provided that all the leaves of the foliation Fω on M and the ones of
Fω|∂M on ∂M are non-compact. Also these statements hold if a closed Morse-type
form ω on an n-manifold M has no singularities of indices 0, 1, n − 1, n and its

4 i.e. the first Betti number equals to the rank of the subgroup in R, generated over Q by
the ω-periods.
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restriction ω∂M – no singularities of indices 0, 1, n− 2, n− 1. ¤

For a Calabi form ω, there are pure homological obstructions to the existence of
a compact leaf of Fω. For instance, if such a leaf exists, there is a non-zero integral
element θ ∈ H1(M ;Z), such that θ ∪ [ω] = 0 in H2(M ;R) ([FKL], Prop. 3). Here
M is assumed to be closed.

Therefore, statements (1)–(4) of Theorem B rely on a quite delicate, non-
generic phenomenon.

We say that ω is homologically S-generic, if there is a neighborhood U of the
singular set S?

ω, such that, for any compact leaf component of Fω which intersects
with U , there exists a homologous compact leaf which misses U . For example, all
forms in Figure 1 are S-generic. Of course, if all the leaves of Fω are compact, ω
is homologically S-generic.

Corollary 1.2. Under the hypothesis of Theorem A, for any homologically S-
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generic ω, there exists a metric g on M with the following property:
Any union F of compact Fω-leaves, which minimizes the (n−1)-volume among

all the unions F̃ of compact leaf components homologous to F relative ∂M , is the
volume-minimizing cycle in its relative homology class [F ]. Moreover, for a given
F , by a choice of g, the volume variation among such F̃ ’s can be made arbitrary
small.

Proof. Consider one of the metrics gλ,µ whose existence is claimed in Theorem A.
Let F be a union of compact leaves, minimizing the gλ,µ-induced (n− 1)-volume
among all such unions homologous to F . If F misses the µ-ellipsoids, by (1) and
(3) from Theorem B, we are done.

Since ω is homologically S-generic, there exists µ, so that any finite collection
of compact leaf components is homologous to a collection of compact leaves which
miss the µ-ellipsoids. Pick this particular µ to complete the argument. ¤

Remark. Figure 1 does not suggest that the length variation of all leaves f−1
ω (θ)

in a given relative homology class is very small. By picking the two tori symmetric
with respect to rotations around a vertical axis and the tube that joins them –
tiny, one can get a more accurate illustration of Corollary 1.2.

Corollary 1.3. Let M, ω be as in Theorem A. Given any finite union F of com-
pact non-singular leaves of Fω, there exists a metric g, so that ω is harmonic and
F is the volume-minimizing cycle in its rel − ∂M -homology class.

Proof. Choose µ so that F ⊂ M?
ω,µ and apply statements (2) from Theorem A and

(1)–(3) from Theorem B. ¤

Remark. In the case depicted in Figure 1a, Corollary 1.3 says that one can
“shrink” to the minimum the volume of any preferred non-singular fiber F , and
still keep the harmonicity of the map fω.

Corollary 1.4. In the appropriate metric g on M , any non-trivial element
[F ] ∈ Hn−1(M,∂M ;Z), can be realized as the volume-minimizing fiber of a har-
monic Morse-type map f : M → S1 into the circle. By choice of g, the volume
variation among the f-fibers can be made arbitrary small. Moreover, if n ≥ 6
and π1(M) = Z, one can pick the map f with the minimal in its homotopy class
(equivalently, minimal in the homology class [F ]) numbers of singularities of each
index.

Proof. Remind that there is a nice correspondence between closed 1-forms ω with
rational periods and smooth maps f into the circle ([Ti]). The correspondence
is produced via integration: f(x) =

∫
γx

ω mod τ ·R, where τ is the least com-
mon denominator of the ω-periods and γx denotes a path in M , connecting the
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base point with a generic point x. Furthermore, cohomologous forms give rise to
homotopic maps; harmonic forms produce harmonic maps (for a comprehensive
discussion of harmonic maps see [EL]).

First, it is possible to realize the Poincaré-dual of [F ] by a closed rational 1-
form with no singularities of indices 0 and n. Then, if n ≥ 6, by [F], one can find
a cohomologous form ω′ with the minimal number of singular points of each of
the indices 1 ≤ i ≤ n− 1. In any case, by [FKL] and [Ho], one can deform ω′ to a
Calabi form ω′′ with the same distribution of singularities as ω′ has. Now apply
Theorems A and B to the Calabi form ω′′. ¤

Remark. Intrinsically harmonic map in Figure 1a has the minimal number of
singularities in its homotopy class.

Any closed (n− 1)-form Ω on the complement to its singular set gives rise to a
1-dimensional foliation FΩ. The foliation is tangent to the 1-dimensional kernels
of the form Ω (see (2.6)). In many cases it is possible to extend FΩ across the Ω-
singular set. The extension, also denoted by FΩ, is a 1-foliation with singularities.
In this paper the singularities of FΩ will be modeled after the singularities of the
gradient flows of Morse functions.

Let V = Vg denote the g-induced volume form on M . For a 1-form ω, its
gradient vector field Xω is defined by the formula: Xω c V = ∗g(ω). Here “c”
denotes the contraction of a differential form by a vector field.

The following proposition is very similar to Theorem A. Although most of
the statements of Theorem A⊥ below are, so to speak, the Poincaré-duals of the
corresponding statements in Theorem A, due to initial setting (cf. Definition 0.2),
there is a subtle break in the duality: the roles of ω and Ω are not quite equivalent
– ω is given, while Ω is produced in a way that is far from being canonic. For
example, ω in Theorem A is not Xω-invariant.

Theorem A⊥. Let the manifold M , the 1-form ω, the 2-parametric family of
Riemannian metrics gλ,µ and the (n− 1)-form Ω = ∗gλ,µ

(ω) be as in Theorem A.
Then the following is valid:

(1) The integral curves of the gradient vector field Xω = Xω(λ, µ) give rise
to a singular (λµ-independent) 1-foliation FΩ. Foliations FΩ and Fω are gλ,µ-
orthogonal.

(2) The Xω-generated flow is the gλ,µ− volume-preserving. The form Ω is
invariant under the flow. Hence, Ω defines an (n−1)-dimensional smooth invariant
measure, transversal to the foliation FΩ, – in terms of ([S]) a foliation 1-cycle
which is not homologous to zero.

(3) The leaves of FΩ, outside of the µ-ellipsoids, are geodesics in the metric
gλ,µ.
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(4) If ω|∂M is non-singular, then, with respect to the gλ,µ-induced metric, the
analogous statements hold the pair (∂M,ω|∂M ).

Theorem B⊥. Under the assumptions and notations of Theorem A, the following
statements are valid:

(1) Let L be any finite collection of compact and closed FΩ-leaves (equivalently,
of closed trajectories of Xω) that does not intersect the µ-ellipsoids around the
ω-singularities. Then L minimizes the gλ,µ-induced length l(L) among all the 1-
cycles Γ in M , subject to the homological condition

∫
Γ ω =

∫
L

ω. In particular,the
closed geodesic L is of minimal length in its homology class. This minimal length
l(L) = λ−1

∫
L

ω.
(2) Any 1-cycle Γ of the length l(L) and such that

∫
Γ ω =

∫
L

ω, outside of
the µ-ellipsoids, is comprised of a number of compact leaves of FΩ, restricted to
the exterior of the ellipsoids (i.e. Γ is comprised of geodesic loops and arcs). The
length of the portion ΓS

µ of Γ, lying inside of the µ-ellipsoids, is given by the
integral λ−1

∫
ΓS

µ
ω. When λ → +∞, it declines as ∼ λ−1; when µ → 0, it declines

as ∼ µ.
(3) For any finite union L̃ of FΩ-leaves comprised of closed loops and homol-

ogous to L, the length variation |l(L̃) − l(L)| ≤ K · µ, where K is a positive,
λµ-independent constant and λ ≥ 2µ.

(4) If ω|∂M is non-singular, then, with respect to the gλ,µ-induced metric, the
analogous statements hold for the pair (∂M,ω|∂M ).

Statement (2) above should be compared with [S], Th. II.20, Th. I.13 and with
Th. from [S1].

Corollary 1.5. Let M, ω, be as in Theorem A and let n > 2. Given any finite col-
lection of ω-positive loops {γr}, there exists a metric g, so that ω is harmonic and
the γr’s are closed, length-minimizing geodesics in their homology classes. Further-
more, their lengths l(γr) are given by

∫
γr

ω and, thus, are integral combinations
of the ω-periods.

Proof. The proof of this corollary will be embedded in the proofs of Theorems A,
B and A⊥, B⊥ presented in Section 2. ¤

The proposition below describes some of the asymptotic behavior of the metric
spaces (M, gλ,µ) as λ → +∞, or as µ → 0, (or, in general, as λ, µ approach the
virtual boundary of the domain {λ > maxk |a1(k)| > 0, λ ≥ µ > 0}). Notice
that, for a given λ, when µ → 0, the metric gλ,µ develops infinite singularities
around the points of Sω. More specifically, in narrow 2µ-shells surrounding the
singularities, an accumulation of curvature takes place; as µ → 0, the curvature in
the shells tends to infinity.
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Proposition 1.6. Under assumptions and notations of Theorem A, the following
statements are valid:

(1) The n-volume of M?
ω,µ – the complement to the µ-ellipsoids around S?

ω – is
given by the formula λ−2

∫
M?

ω,µ
ω ∧ Ω and declines as ∼ λ−2 when λ → +∞. At

the same time, the combined volume Vµ of the µ-ellipsoids exceeds c · µn, c being
a positive λµ-independent constant. As a result, for a fixed µ, as λ → +∞, the
volume of the µ-ellipsoids approaches the volume of M at the rate ∼ λ−2.

(2) The (n − 1)-volume V (F ) of any F as in (1), Theorem B, is given by the
formula λ−1

∫
F

Ω and tends to zero as ∼ λ−1 when λ → +∞. Thus, the ratio
V (M)/V (F ) declines as ∼ λ−1 when λ → +∞.

(3) As µ → 0, at the complement to the ω-singular set, the point-wise gλ,µ-
norms of ω and Ω both converge to the constant function λ. Alternatively, one can
interpret λ as limµ→0{‖ω‖/V (M)}, where ‖ω‖ denotes the integral norm.

Also, for any finite union of leaf components F̃ as in (3), Theorem B,

lim
µ→0

V (M) = λ−2
∫

M

ω ∧ Ω

and
lim
µ→0

V (F̃ ) = λ−1
∫

F

Ω.

It seems likely that, for a fixed µ, as λ → +∞, the spaces (M, gλ,µ) converge,
in the Gromov’s sense, to a bouquet of a few n-spheres and hemispheres (equipped
with a non-standard metric). The spheres are indexed by the ω-singular points
and the hemispheres – by the ω|∂M -singular points.

2. Proofs of the main results

We start proving Theorems A, B, A⊥, B⊥, as well as Corollary 1.5 and Proposi-
tion 1.6.

Constructing a candidate for ∗gω

Our immediate goal is to construct a closed (n − 1)-form Ω on M serving as a
candidate for the form ∗g(ω), where g is the Riemannian metric to be defined. In
building Ω we follow closely Calabi’s approach ([Ca]), modified for the manifolds
with boundary and refined for the purposes of this proof.

We say that an n-dimensional differential form Θ on an oriented n-manifold N
is positive and write “Θ > 0”, if it defines a non-vanishing section of the canonical
bundle ∧n(T ∗N) and induces the preferred orientation of the tangent bundle TN .
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We seek to insure the positivity condition ω ∧ Ω > 0 everywhere in M◦
ω.

Let Di denote the open i-dimensional unit disk and Di
+ – its half. Let S1 be

the unit circle.
According to the relative Calabi property of ω, for each x ∈ M?

ω = M \S?
ω, there

exists an ω-positive loop γ, moreover, when x ∈ ∂M◦
ω, γ lies in ∂M . If x is not on

the boundary, such a γ has an open tubular neighborhood Uγ , parameterized by
a diffeomorphism

hγ : S1 ×Dn−1 −→ Uγ ⊂ M?
ω , (2.1)

so that each t-path γa(t) = hγ(t, a) (with a ∈ Dn−1 and t ∈ S1) is ω-positive.
For this we need M to be orientable. The non-orientable M ’s can be treated
in a similar way (for the appropriate modifications see ([Ca]). Similarly, any ω-
positive path γ in ∂M , has an open tubular neighborhood in M , parameterized
by a diffeomorphism

hγ : (S1 ×Dn−1
+ , S1 ×Dn−2) −→ (Uγ , U∂

γ ) ⊂ (M, ∂M), (2.2)

so that, for each a ∈ Dn−1
+ , γa(t) = hγ(t, a) is an ω-positive path.

We call such parameterized neighborhoods Uγ of γ “ω-positive tubes”.

Lemma 2.1. Let N be a compact n-manifold and ω – a 1-form satisfying the
relative Calabi condition (cf. Def. 0.2). Let γ be an ω-positive loop in the interior
of N . Then, for n > 2, there exists an open regular neighborhood V of γ, such
that ω|N\V also possess the relative Calabi property.

Proof. By definition, through each x ∈ N?
ω there exists an ω-positive loop γx. For

n > 2 and any point x ∈ N?
ω \ γ the loop γx can be perturbed, so that it misses

the loop γ and and still is ω-positive. Moreover, one can find an open ω-positive
tube U(γx) around γx which does not intersect γ. Take U to be an ω-positive tube
around γ. Then U together with the tubes {U(γx)}x∈N?

ω \ γ form an open cover
U ′ of N?

ω. Let U be the union of elements from U ′ and the open ellipsoids that are
centered on the ω-singular points and do not intersect with U . Since N is compact,
one can find a finite subcover of U consisting of U , the ellipsoids and finitely many
U(γx)’s. Denote them by U(γj). Pick an ω-positive tube V around γ, compactly
contained in U , which does non intersect the tubes {U(γj)}j . Clearly, on N \ V ,
ω enjoys the relative Calabi property. ¤

Let us fix ε > 0, such that all the 2ε-ellipsoids {B2ε,j}j , {B+
2ε,k}k are disjoint.

Consider the compliment M?
ω,ε to the open ε-ellipsoids. For each point x ∈ M?

ω,ε,
pick an ω-positive loop γx surrounded by an ω-positive tube Uγx

. Clearly, as x
ranges in M?

ω,ε, {Uγx
}x form an open cover of M?

ω,ε. Since M is compact, this cover
has a finite subcover {Ul}l. In fact, {Ul}l together with {B2ε,j}j and {B+

2ε,k}k form
a finite cover of M . This ω-subordinate cover U = U(ε), comprised of ω-positive
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tubes, the 2ε-ellipsoids and the half-ellipsoids centered on the singularities, will be
fixed in the considerations to follow.

We start assembling a closed (n − 1)-form Ω from special closed forms with
supports in the elements of U .

Since there are only finitely many open sets Ul (with their compact closures
being contained in M?

ω ), there exists a positive δ = δ(ε), such that each ω-positive
tube Ul from U has an empty intersection with the δ-ellipsoids surrounding S?

ω.
Figure 3 illustrates a choice of δ at a typical singularity; the ω-positive tubes
surrounding the singularity are shaded.

Bδ(ε)
εB

ω

Figure 3

Let ϕj : M → [0, 1] be a smooth bell-shaped function with the support in B2ε,j

which is identically 1 in Bε,j ⊃ Bδ,j . We may assume that, in the calibrated Morse
coordinates, ϕj = ϕ(

∑n
i=1 a2

i x2
i ), where ϕ is a smooth bell-shaped function in one

variable with the derivative ϕ′ < 2/ε (see Figure 4).

1

δ ε 2ε

φ

Figure 4

Functions ϕ+
k : M → [0, 1] with support in B+

2ε,k and of the form ϕ(
∑n

i=1 a2
i x2

i )
can be defined in a similar way.
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Let gE,j and gE,k, respectively, denote the Euclidean metric in the Morse co-
ordinates around the singularities Aj and A∂

k .
In the ellipsoid B2ε,j , put Ω′j = ∗gE,j

(ω) and, in B+
2ε,k, put Ω′k = ∗gE,k

(ω).
Since, due to the calibration of the coordinates, ω is harmonic with respect to gE,j

and gE,k, the forms Ω′j and Ω′k are closed. By the Poincaré Lemma, Ω′j = dΨj for
a (n − 2)-form Ψj in B2ε,j . In fact, in the Morse coordinates {xi}, the form Ψj

has coefficients that are quadratic monomials in the xi’s. Analogously, in B+
2ε,k,

Ω′k = d Ψk. The coefficients of Ψk are linear in the x1 and quadratic in the rest of
the coordinates.

Now let Ωj = d(ϕj · Ψj) and Ω+
k = d(ϕ+

k · Ψk). Notice that, in Bδ,j , Ωj = Ω′j
and, in B+

δ,k, Ω+
k = Ω′k. Evidently, Ωj and Ω+

k are well-defined globally and are
closed.

We proceed to construct a closed (n − 1)-form Ωl supported in the ω-positive
tube Ul ∈ U . Its construction employs the Dn−1- or Dn−1

+ -bundle structure of the
tube Ul over the loop γl, induced by the diffeomorphism hl in (2.1) or (2.2).

Let t denote the S1-coordinate in S1 × Dn−1 and in S1 × Dn−1
+ . Let u1, u2,

. . . , un−1 stand for the disk-directed coordinates. In the case of Dn−1
+ , let u2, . . . ,

un−1 be the coordinates along the equator Dn−2 ⊂ Dn−1
+ (see Figure 5).

γ l
u2

u1

t

M

M

Ul

Figure 5

Put Θ = du1 ∧ du2 ∧ · · · ∧ dun−1 and use the diffeomorphism h−1
l to pull-back

the form Θ to a form Ω
′
l in the Ul. This form has the following properties:

(1) dΩ
′
l = 0.

(2) ω ∧ Ω
′
l > 0.

(3) If the core γl of Ul lies in ∂M , then Ω
′
l, being restricted to ∂M , vanishes.

(1) is valid because dΘ = 0; (2) follows from the fundamental positivity prop-
erty ω(hl∗(∂t)) > 0 of the diffeomorphism hl; and (3) – from the observation that
Θ, evaluated at the poly-vector ∂t ∧ ∂2 ∧ · · · ∧ ∂n−1, vanishes.
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Note that we do not insist that either dt = h∗l (ω), or that the hl-images of
the (n − 1)-disks would lie in the leaves of the foliation Fω. Actually, the latter
property is achievable and useful.

Let D̃n−1 ⊂ Dn−1, D̃n−1
+ ⊂ Dn−1

+ be the concentric subdisks of, say, radius
1/2. Denote by ϕ̃l a smooth function on Rn−1, supported in Dn−1 and being
identically 1 in D̃n−1. Let ϕl : M → [0, 1] be a smooth function with the support
in the tube Ul and such that its pull-back h∗l (ϕl) is t-independent. Being restricted
at each of the disk fibers in S1 × Dn−1 or in S1 × Dn−1

+ , it coincides with the
function ϕ̃l.

Now consider the globally-defined form Ωl = ϕ̃l · Ω′l supported in Ul. Because
h∗l (ϕl) is t-independent, Ωl is a closed form on M . By property (2) above and
the choice of ϕl, ω ∧ Ωl > 0 in Ul. By property (3), Ωl|∂M = 0. Hence, the sum
Ω† =

∑
l Ωl satisfies the following list of properties:

(i) Support of Ω† is contained in the interior of M?
ω,δ.

(ii) ω ∧ Ω† > 0 in M?
ω,ε.

(iii) dΩ† = 0.
(iv) Ω†|∂M = 0. (2.3)

For some of the applications (cf. Corollary 1.5), it will be useful to choose some
of the ω-positive tubes Ul with extra-care. In fact, given any finite number of ω-
positive loops {γl}, by Lemma 2.1, it is possible to surround them with ω-positive
tubes Vl, so that each Vl is compactly contained in the appropriate Ul from the
finite cover U and Vl ∩ Ul′ = φ for any l′ distinct from l. Moreover, for a given
collection {γl}, one can pick ε > 0 and the Vl’s in such a way that they have empty
intersections with all the 2ε-ellipsoids. As a result, the Vl’s do not interact with
the rest of elements of the cover U .

Let us form a linear combination of closed (n− 1)-forms

Ω =
∑

j

Ωj +
∑

k

Ω+
k + q · Ω†, (2.4)

where the value of positive constant q will be chosen later. The first two sums are
comprised of exact (n−1)-forms supported in the 2ε-ellipsoids around the singular
set S?

ω.
Although, for each singularity Aj , ω ∧ ∗gE,j

(ω) > 0 everywhere, except at the
origin Aj , a modification of ∗gE,j

(ω) – the form Ωj = d(ϕj · Ψj) – retains this
property inside of the ellipsoid Bε,j (ϕj is constant there), and ω ∧ d(ϕj ·Ψj) fails
to be positive somewhere in the shell B2ε,j \ Bε,j . In a similar way, ω∧d(ϕ+

k ·Ψk)
fails to be positive in the the shell B+

2ε,k \ B+
ε,k. By choosing the constant q in (2.4)

large enough, one can compensate for these failures of positivity and ensure that
ω ∧ Ω > 0 everywhere in M?

ω. The choice of q, in each of the shells, is prescribed
by the requirements

ω ∧ [d(ϕj ·Ψj) + q · Ω†] > 0,
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ω ∧ [d(ϕ+
k ·Ψk) + q · Ω†] > 0. (2.5)

Due to the choice of ω-positive tubes {Ul} which cover the shells, the existence of
an appropriate q is clear. With this choice of q, the construction of the form Ω is
complete.

Let B∂
ε,k = B+

ε,k ∩ ∂M. In the following lemma we list a few properties of Ω.

Lemma 2.2. Given a Calabi form ω and ε > 0, there exists an (n − 1)-form Ω
and a positive δ = δ(ε), so that:

1) dΩ = 0.
2) ω ∧ Ω > 0 in M◦

ω.
3) For each ω-singularity Aj, there exists an euclidean metric gE,j such that,

in the δ-ellipsoid Bδ,j, Ω = ∗gE,j
(ω).

4) For each ω|∂M -singularity A+
k , there exists an euclidean metric gE,k such

that, in the δ-half-ellipsoid B+
δ,k, Ω = ∗gE,k

(ω).
5) Ω|∂M◦

ω,2ε
= 0. In the Morse coordinates, where ω = a1dx1 +

∑n
i=2 aixi dxi

and ϕ+
k = ϕ+

k (0, x2, . . . , xn), one has: Ω|B∂
2ε,k

= a1 ·d(ϕ+
k ·x2 dx3∧· · ·∧dxn) and

Ω|B∂
δ,k

= a1 · dx2 ∧ · · · ∧ dxn.
6) For any given finite set of ω-positive loops {γl}, one can find ω-positive

tubes Vl ⊃ γl, in which Ω = (h−1
l )∗(du1∧· · ·∧dun−1), the diffeomorphism hl being

defined as in (2.1).

Proof. All the statements of the lemma, except 5), have been established in the
preceding arguments. Property 5) is a direct implication of property 4). ¤

Proposition 2.3. For a form ω which satisfies the relative Calabi property, any
compact leaf component F of the foliation Fω defines a non-trivial element in the
homology Hn−1(M,∂M ;R).

Proof. Suppose that the cycle (F, ∂F ) actually, is homologous (cobordant) to zero
in (M,∂M). Let (W,∂W ) be the appropriate null-cobordism with ∂W = F ∪∂F G.
Here G ⊂ ∂W is the portion of the boundary contained in ∂M and ∂F = ∂G.

Without loss of generality, we may assume that ∂F ⊂ ∂M◦
ω,2ε: indeed, if

∂F ⊂ ∂M◦
ω, then one can find ε small enough, so that ∂F does not intersect the

2ε-ellipsoids centered at points of S∂
ω. For this choice of ε, construct Ω as in Lemma

2.2.
If a non-singular F is such that ∂F ∩ S∂

ω 6= φ, then there exists a near-by
homologous leaf F ′ which does not intersect S∂

ω and the following argument applies
to F = F ′.

Since d Ω = 0, by the Stokes’ Theorem, we get
∫

F
Ω =

∫
G

Ω. Because
ω ∧ Ω > 0 in M◦

ω, Ω|F > 0 and the left-hand side of the previous equality is
strictly positive. At the same time, since Ω|∂M = d(ϕ ·Ψ) for an (n− 2)-form Ψ,
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and since the function ϕ is supported in the 2ε-ellipsoids,
∫

G
Ω =

∫
∂G

ϕ · Ψ = 0.
The contradiction proves the proposition. ¤

Now, for a given Calabi 1-form ω, we would like to make a few observations
concerning the freedom to choose a closed (n− 1)-form Ω with the properties de-
scribed in Theorem A and Lemma 2.2. In particular, we are concerned with the
degrees of freedom to choose the periods of Ω. An interesting related question is:
“For a given form ω, is it possible to construct Ω with rational (integral) periods?”
We do not know how to tackle this problem, in a sense, a problem of “quantiza-
tion” of the appropriate ∗g-operator. However, once Ω has been constructed, it
is possible to change its periods in a controlled and discrete way. Of course, it is
always possible to replace Ω with Ω′ = rΩ, where r is a positive real number.

Consider the cone of cycles in H1(M ;Z) represented by finite unions of ω-
positive loops. Denote this set by H+

ω . The set H+
ω is closed under the Z+-

linear combinations of its elements: disjoint unions of ω-positive loops realize the
appropriate operations in H1(M ;Z).

If ω has a positive period along a loop γ, then there exists a function f on M
with support in a small neighborhood of γ and such that γ is (ω + df)-positive.
Hence, given a disjoint union of loops γr, subject to the condition

∫
γr

ω > 0, there
is a representative ω′ in the cohomology class of ω, so that all the γr’s become ω′-
positive. Consider elements [γ] of H1(M ;Z) which satisfy the positivity condition
[ω]? [γ] > 0. They form a cone (a semi-group) H+

[ω]
containing H+

ω . One can pick a

basis of H1(M ;Z) lying in H+
[ω]

and represented by a few loops γr (r ranges from 1
to the first Betti number of M). Using the previous remarks, there exists a closed
form ω′ cohomologous to ω, for which H+

ω′ contains the Z+-cone spanned by the
basic elements {γr}. Therefore, as ω ranges in its cohomology class, the cones H+

ω

change and include positive cones as large as the “half-space” H+
[ω]

, spanned by a

bases of H1(M ;Z). Of course, for some ω’s, H+
ω can be very small, even empty

(this can not happen for Calabi forms).

The natural intersection pairing ◦ : H1(M ;Z) ⊗Z Hn−1(M,∂M ;Z) → Z re-
stricts to the pairing

◦ : H+
ω ⊗Z+

Hn−1(M,∂M ;Z) → Z.

Let us fix a basis {Σ1, . . . ,Σr} in the torsion-free group Hn−1(M,∂M ;Z). One
can realize Σk’s by embedded smooth hypersurfaces.

Proposition 2.4. Given a positive number s and a closed (n−1)-form Ω with the
properties 1), 2) and 5) of Lemma 2.2 (equivalently, with the properties described
in Theorem A) and an element γ ∈ H+

ω , one can change Ω to a new form Ω′, still
possessing the same properties and such that∫

Σk

Ω′ =
∫
Σk

Ω + s(γ ◦ Σk), 1 ≤ k ≤ r.
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Also one can replace Ω with q · Ω (q > 0), while preserving its desired properties.

Proof. By general position argument, one can assume that all the ω-positive loops
{γl}, comprising γ, are transversal to all the hypersurfaces {Σk}. Moreover, the
γl’s can be surrounded by ω-positive tubes hl : S1×Dn−1 → Ul ⊂ M , so that each
t-loop hl(∼, a), a ∈ Dn−1, is also transversal to the Σk’s. In fact, the trivialization
h−1

l of the tube Ul can be chosen so that Ul∩Σk =
⋃

hl(tkj
×Dn−1) for all the k’s

and some tkj
∈ S1. Furthermore, the tubes {Ul} can be constructed thin enough

in order for the disks (Ul ∩ Σk)j = hl(tkj
×Dn−1) to be disjoint.

With this choice of the trivializations, one can construct a t-independent (and
thus closed) (n − 1)-form Ωl which is supported in Ul and such that, for each
intersection point (i.e. for each triple (l, k, j)),∫

(Ul∩Σk)j

Ωl =
∫

Dn−1
h∗l (Ωl) = ±s.

The sign here equals to the orientations-induced sign of the intersection of γl with
Σk at the appropriate point. Clearly, replacing the original Ω with Ω + Ωl only
reinforces the positivity property ω ∧ Ω > 0 in M◦

ω. Of course, this modification
of Ω calls for a change of the related metrics gλ,µ in Theorem A. ¤

Example. Consider the map and the form shown in Figure 1a. The free abelian
group H1(M ;Z) of rank 3 is generated by the meridian a and the longitude b of the
lower “torus” together with the longitude c of the upper “torus”. As the picture
suggests, b and c can be chosen to be ω-positive. Moreover, one can see that, for
any integer n, the class b + na is also realizable by an ω-positive loop. In order
to construct such a representative, one follows b in the positive direction until it
reaches the intersection point with a. Just before the intersection, one adds a short
ω-positive spiral na to b (as in the Dehn’s twist). Thus, any integral combination
pb + qc + na with p ≥ 0, q ≥ 0 and such that n 6= 0 implies p > 0, belongs to the
cone H+

ω . In fact, with a bit more effort one can check that H+
ω is comprised of

such elements. The set H+
[ω]

is defined by the inequality {pb + qc + na| p + q > 0}
(with p, q not necessarily positive) and evidently, contains H+

ω .
The group H1(M,∂M ;Z) of rank 3 is generated by the loops a, b and an arc d,

Poincaré-dual to the loop c. The intersections of these generators with a typical
ω-positive loop γ = pb + qc + na are: γ ◦ a = p, γ ◦ b = −n, γ ◦ a = q.

According to Proposition 2.4, the vector of the (a, b, d)-periods of Ω can be
changed by adding to it any vector of the form s(p,−n, q), s being a positive real
number. (Recall that here p = 0 calls for n = 0). ¤

Borrowing arguments from the proof of Proposition 2.4, one can establish the
following proposition, whose proof we postpone until the end of the next subsec-
tion. One can think of this proposition as a “taut” version of the rational Poincaré
duality (in dimensions 1 and n− 1).
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Proposition 2.5. Let M and ω be as in Theorem A and {γl} – any finite col-
lection of ω-positive loops. Assume that n = dimM > 2. Then there exists a
Riemannian metric on M , such that:

(1) ω is harmonic,
(2) {γl} are geodesics; furthermore, each γl is a core of an ω-positive tube Ul

which itself consists of geodesic loops γ′l of a fixed length (equal to
∫

γl
ω),

(3) any hypersurface (Σ, ∂Σ) ⊂ (M.∂M), which minimizes the volume in its
relative integral homology class, has only positive intersections with some of (actu-
ally, a big majority of) the geodesic loops γ′l. As a result, the cardinality of Σ∩ γ′l
equals |Σ ◦ γ′l |.

In fact, for any non-zero element [ω] ∈ Hn−1(M ;R), there exists a repre-
sentative closed 1-form ω, a set of ω-positive loops {γl} which form a basis in
H1(M ;Z)/Tor, and a metric on M , so that statements (1)–(3) above are valid.
In particular, there exists a metric in which a basis of Hn−1(M,∂M ;Z) is real-
ized by volume minimizing relative cycles (hypersurfaces with singularities) {Σk},
a basis in H1(M ;Z)/Tor – by geodesic loops and their mutual intersections have
the minimal cardinality prescribed by the homology intersection [Σk] ◦ [γl].

Constructing the family of metrics gλ,µ

Our next goal is to produce a Riemannian metric g on M , or rather a two-
parametric family of metrics gλ,µ (see Theorem A), so that Ω = ∗gω.

An 1-form ω, in the complement to its singular set Sω, defines an (n − 1)-
dimensional distribution Kω:

Kω,x = {v ∈ TxM | ω(v) = 0}.
If ω is closed, Kω is integrable and formed by hyperplanes, tangent to the foliation
Fω.

An (n − 1)-form Ω, in the complement to its singular set SΩ, defines a 1-
dimensional distribution KΩ:

KΩ,x = {v ∈ TxM | Ω(v ∧ w) = 0 for all w ∈ ∧n−2(TxM)} (2.6)

Being 1-dimensional, KΩ is integrable as well.
If, at x ∈ M , the form (ω ∧ Ω)x > 0, the subspaces Kω,x and KΩ,x are

transversal.
Let us consider the restrictions Ωω = Ω|Kω

and ωΩ = ω|KΩ
. If (ω ∧ Ω)x > 0,

then Ωω,x 6= 0 and ωΩ,x 6= 0.
Given a Riemannian metric g on an n-dimensional M , denote by Vn = Vn(g)

its volume form, by Vn−1
ω = Vn−1

ω (g) – the g-induced (n− 1)-volume form on the
bundle Kω and by V1

Ω = V1
Ω(g) – the g-induced 1-volume form on the bundle KΩ.

We shall compare Ωω with Vn−1
ω and ωΩ with V1

Ω. This comparison will depend
on a function h : M → R+ which will be constructed prior to the construction of
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the desired metric g. In turn, the choice of h will depend essentially on two real
positive parameters λ, µ. In what follows, we assume that 2µ < δ(ε), where ε, δ(ε)
have been chosen in the process of constructing the ω-subordinate cover U .

Here is a list of properties that characterize h and are illustrated in Figure 6:

(1) h is smooth in M◦
ω and its square h2 – in M .

(2) On the set M?
ω,2µ the function h is identically λ.

(3) In each of the ellipsoids Bµ,j , h coincides with the norm-function

‖ ω ‖E,j=
( n∑

i=1

a2
i x2

i

)1/2

in the euclidean metric gE,j .
(4) In each of the half-ellipsoids B+

µ,k, h coincides with the norm-function

‖ ω ‖E,k=
(
a2
1 +

n∑
i=2

a2
i x2

i

)1/2

in the euclidean metric gE,k. (2.7)

µλ
2µBµB

h

M

M

λ

h

B+
2B+a1| |

x1

µ µ

Figure 6

Lemma 2.5. Let h : M → R+ be as in (2.7). For any 1-form ω and an (n− 1)-
form Ω, so that
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1) ω ∧ Ω > 0 in M◦
ω and

2) Ω = ∗gE
(ω) in the µ-ellipsoids around S?

ω, there exists a Riemannian met-
ric g on M with the following properties:

(a) g, being restricted to the µ-ellipsoids, coincides there with the locally de-
fined euclidean metric gE,

(b) everywhere in M◦
ω the distributions Kω and KΩ are orthogonal,

(c) ωΩ = h · V1
Ω,

(d) Ωω = h · Vn−1
ω ,

(e) if KΩ is tangent to the boundary ∂M , then Kω is orthogonal to ∂M .

Proof. Since ω ∧ Ω > 0 in M◦
ω, Kω and KΩ are transversal. Furthermore, ωΩ =

ω|KΩ
and ωΩ = ω|KΩ

pick up the orientations of the corresponding subbundles.
The same is true for the forms V1

Ω = h−1 · ωΩ and Vn−1
ω = h−1 · Ωω. These

orientations, taken together, agree with the preferred orientation of TM .
It is a crucial observation that in Bµ,j the volume forms V1(gE,j |KΩ

) and
Vn−1(gE,j |Kω

), induced by the euclidean metric, coincide respectively, with the
forms h−1 · ωΩ and h−1 · Ωω. A similar conclusion is valid for the metrics gE,k in
the half-ellipsoids B+

k,µ.

In constructing an appropriate g, we use the following simple extension prin-
ciple. Given an oriented k-bundle E → N over a manifold N with boundary ∂N ,
a k-form Θ > 0 in the fibers of E and a Riemannian metric g∂ in the bundle
E| → ∂N whose volume form V(g∂) coincides with the Θ over ∂N , there exists a
metric g in E which extends g∂ and whose volume form V(g) = Θ everywhere.

Indeed, one can extend g∂ to a metric g̃ on E → N . The corresponding volume
form V(g̃) is proportional to Θ with a functional coefficient of proportionally γ :
N → R+. Evidently, metric g = γ1/k · g̃ does the job.

Hence, there exists a metric gω in the bundle Kω over M◦
ω,µ with the volume

(n − 1)-form V(gω) = h−1 · Ωω. Similarly, there exists a metric gΩ in the bundle
KΩ over M◦

ω,µ with the volume 1-form V(gΩ) = h−1 · ωΩ. Moreover, by the
extension principle, one can assume that, along the boundaries of the µ-ellipsoids,
V(gω) = Vn−1(gE,j |Kω

) and V(gΩ) = V1(gE,j |KΩ
). A similar property holds

along the the boundaries of the half-ellipsoids.
Define g̃ on M?

ω,µ to be the orthogonal sum of gω and gΩ. Notice that Kω and
KΩ are orthogonal in the euclidean metrics around S?

ω. Since gω ⊕ gΩ coincides
with the euclidean metrics over the boundaries of the µ-ellipsoids, one can extend
it across the ellipsoids to a metric g, well-defined on M .

Let n be a vector field g-orthonormal to the boundary ∂M . The star operator
∗∂

g in ∂M is the contraction with n of the Star operator ∗g in M , being restricted
to ∂M . Therefore, Ω∂ = ∗∂

g (ω) = {n c ∗g (ω)}|∂M = {n cΩ}|∂M .
If KΩ is tangent to ∂M , then Kω is g-orthogonal to the boundary ∂M and

n must be in Kω. Recall that, when the form ω|∂M is non-singular, then we are
able to construct Ω with its kernel tangent to the boundary. In this case, we have
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orthogonal decompositions: 1) Kω = K∂
ω ⊕ {n}, where K∂

ω = Kω ∩ T (∂M); 2)
along the boundary, KΩ∂ = KΩ; and 3) T (∂M) = K∂

ω ⊕KΩ∂ .
By the very construction of Ω and n ∈ Kω, the form Ω∂ = ∗∂

g (ω) = {n cΩ}|∂M

is closed. This fact, together with the orthogonal decompositions above, establishes
the complete similarity between the settings in M and in its boundary. Therefore,
if ω|∂M is non-singular, any argument about ω and Ω carried before or after, will
apply to ω|∂M and Ω∂ in ∂M . ¤

Now we would like to clarify the meaning of the auxiliary function h – an
important ingredient in the construction of g.

Using the splitting Kω ⊕ KΩ of the tangent bundle, the (n − 1)-form V(gω)
extends from the subbundle Kω over M◦

ω to the form Ṽ(gω) = h−1 ·Ωω, defined on
TM◦

ω. Analogously, the 1-form V(gΩ) extends from the subbundle KΩ over M◦
ω

to the form Ṽ(gΩ) = h−1 · ωΩ defined on TM◦
ω. Notice that KṼ (gω) = Kω and

KṼ (gΩ) = KΩ, which uniquely characterize the extensions.

By the definition of the Hodge star-operator ∗g and the orthogonality of Kω

and KΩ, we have ∗g[Ṽ(gω)] = Ṽ(gΩ). Therefore, in M◦
ω,

∗g(ω) = ∗g(h · Ṽ(gΩ)) = h · ∗g(Ṽ(gΩ)) = h · Ṽ(gω) = Ω.

On the other hand, ∗g(ω) = Ω in the µ-ellipsoids. Consequently, ∗g(ω) = Ω
everywhere in M .

Since by Lemma 2.2, (1), d Ω = 0, this proves the harmonicity of ω and Ω in
the metric g = gλµ and hence statement (2) from Theorem A.

The point-wise norm ‖ω‖g : M◦
ω → R+ satisfies the identity

‖ω‖2g · Vn = ω ∧ ∗g(ω) = (h · Ṽ(gΩ))∧ (h · Ṽ(gω)) = h2 · Ṽ(gΩ))∧ (Ṽ(gω) = h2 · Vn.

Hence, h = ‖ω‖g = ‖Ω‖g everywhere in M . This retroactively motivates properties
(1)–(4) in the definition (2.7) of h.

Let Xω denote the gradient vector field on M , g-dual to ω. It is characterized
by the two properties:

1) In M◦
ω, Xω ∈ KΩ.

2) In M, ω(Xω) = h2.

Note that Xω along ∂M◦
ω,2ε is tangent to the boundary. For a positive sin-

gularity x ∈ S∂
ω,+ (i.e. a1 being positive), along B∂

2ε,k the vector field is directed
inwards M and for a negative singularity – outward. If ω|∂M is non-singular, then
Xω is tangent to the boundary everywhere.

The harmonicity of ω implies that the divergence of Xω is zero:

divXω = d{Xω c Vn(g)} = d{Xω c (h−2 · ω ∧ Ω)}
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and, since Xω cΩ = 0,

divXω = d{h−2 · (Xω cω) · Ω} = d Ω = 0.

Hence, the flow generated by Xω is the g-volume-preserving.
Let Lω denote the Lie derivative along the field Xω. Then

Lω(ω) = Xω c d ω + d(Xω cω) = d(h2).

Therefore, outside of the 2µ-ellipsoids, ω is invariant under the Xω-flow. In fact,
h2 can serve as a Lyapunov function for the Xω-flow. Note that inside of the
ellipsoids ω is not Xω-invariant. On the other hand, since d Ω = 0 and Xω ∈ KΩ,

Lω(Ω) = Xω c d Ω + d(XωcΩ) = 0,

which implies the Xω-invariance of Ω. In other words, Ω can serve as a smooth
invariant transversal measure for the singular 1-foliation FΩ. This proves claim
(2) from Theorem A⊥.

Now we are going to establish the near-minimality of the singular foliations
Fω, FΩ and to derive a few implications of this fact.

Let F be a finite union of compact non-singular Fω-leaves which do not intersect
the 2µ-ellipsoids around S?

ω. In general, F is a compact manifold with a boundary
∂F ⊂ ∂M◦

ω,2µ.
We shall compare its g = gλ,µ-induced (n − 1)-volume V (F ) with the volume

of any other (n− 1)-dimensional pseudo-manifold (Σ, ∂Σ) ↪→ (M,∂M), subject to
condition ∫

Σ
Ω =

∫
F

Ω. (2.8)

We are interested in situations where condition (2.8) is of a homological nature.
Since dΩ = 0, in particular, this happens when

∂Σ = ∂F and Σ , F are homologous modulo ∂F, or when

S∂
ω = φ (which implies Ω|∂M = 0) and Σ, F are homologous modulo ∂M. (2.9)

In any case, we notice that the form

Ω̃ = Ω−
∑

k

Ω+
k =

∑
j

Ωj + q · Ω†

(see (2.4)), as well as the form Ω̃† = q · Ω†, are cohomologous to Ω, thus re-
alizing the same class [Ω] ∈ Hn−1(M ;R) (recall that the forms Ωj ’s and Ω+

k ’s
are exact). At the same time, Ω̃|∂M = 0. Therefore, Ω̃ gives rise to an element
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[Ω̃] ∈ Hn−1(M ; ∂M ;R). Note that the difference between Ω and Ω̃ diminishes as
ε → 0. Furthermore, not only, the difference Ω − Ω̃ is exact, but there exists an
(n−2)-form Ψ, such that Ω−Ω̃ = dΨ and Ψ, being restricted to ∂M , is supported
in the disjoint union of the ellipsoids B∂

2ε,k’s. Therefore, for a relative cycle Σ,

∫
Σ

Ω =
∫
Σ

Ω̃ +
∫

∂Σ
Ψ.

Hence, if ∂Σ ∩ (tk B∂
2ε,k) = φ, then

∫
Σ Ω =

∫
Σ Ω̃. Since one can isotope Σ so

that ∂Σ will miss the ellipsoids B∂
2ε,k’s, any Σ can be isotoped to a Σ′ for which∫

Σ′ Ω =
∫
Σ′ Ω̃. Using that Ω̃|∂M = 0, the correspondence Σ ⇒ ∫

Σ Ω is a well-
defined functional on Hn−1(M ; ∂M ;Z) and thus, on Hn−1(M ; ∂M ;R). Therefore,∫
Σ Ω =

∫
F

Ω is a well-defined homological condition imposed on a relative cycle
Σ, despite the fact that Ω|∂M is not identically zero.

Recall that F is comprised of Fω-leaves; hence,

V (F ) =
∫

F

Ṽ(gω) =
∫

F

h−1 · Ω.

Since h = λ identically in M?
ω,2µ and F ⊂ M?

ω,2µ, we get V (F ) = λ−1
∫

F
Ω. By

(2.8),

V (F ) = λ−1
∫
Σ

Ω.

We divide Σ into two parts: Σ?
µ = Σ∩M?

ω,2µ, belonging to the exterior of the 2µ-
ellipsoids, and its complement ΣS

µ , lying in their interiors. In the new notations,

V (F ) = λ−1
∫
Σ?

µ

Ω + λ−1
∫
ΣS

µ

Ω. (2.10)

We shall estimate separately the two terms in the right-hand side of (2.10). First,

λ−1
∫
Σ?

µ

Ω =
∫
Σ?

µ

h−1Ω =
∫
Σ?

µ

Ṽ(gω).

If the hyperplane TxΣ, tangent to Σ at x, is distinct from Kω,x, then the g-induced
volume of an infinitesimal (n − 1)-parallelepiped in TxΣ is strictly smaller than
the volume of its orthogonal projection on Kω,x. The volume of the projection
is captured by evaluating Ṽ(gω) on the parallelepiped. Therefore,

∫
Σ?

µ
Ṽ(gω) ≤

V (Σ?
µ), implying

λ−1
∫
Σ?

µ

Ω ≤ V (Σ?
µ). (2.11)
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Now we estimate the contribution of the second term in (2.8):

∣∣∣∣λ−1
∫
ΣS

µ

Ω
∣∣∣∣ ≤ λ−1

∫
ΣS

µ

‖Ω‖Σ dmΣ,

where dmΣ denotes the g-induced measure on Σ and ‖Ω‖Σ – the point-wise norm
of Ω, restricted to Σ, in the metric g|Σ. Recall that ‖Ω‖ = ‖ω‖ = h ≤ λ. Since
‖Ω‖Σ ≤ ‖Ω‖, we get:

∣∣∣∣λ−1
∫
ΣS

µ

Ω
∣∣∣∣ ≤

∫
ΣS

µ

dmΣ = V (ΣS
µ).

Therefore,
V (F ) ≤ V (Σ?

µ) + V (ΣS
µ) = V (Σ).

This proves statement (1) from Theorem B.

The proof of statement (4) from Theorem A consists of practically the same
argument: for a given compactly supported in M?

ω,2µ perturbation L′ of an Fω-leaf
L, one compares the volumes of compact domains L′ \ L and L \ L′ which share
the same boundary and are cobordant modulo this boundary.

In order to prove (2) and (3) from Theorem B, we need to make a more careful
comparison of the volumes of the cycle F (built of leaf components) and a generic
cycle Σ, subject to the homological constraint

∫
Σ Ω =

∫
F

Ω :

V (F ) =
∫
Σ?

µ

λ−1Ω +
∫
ΣS

µ

λ−1Ω =
∫
Σ?

µ

cos θ dmΣ +
∫
ΣS

µ

λ−1Ω,

where θ denotes the angle in the metric g between the oriented line KΩ and the
normal to Σ. Now, if V (Σ) = V (F ), from the formula above we get:

V (Σ?
µ)−

∫
Σ?

µ

cos θ d mΣ =
∫
ΣS

µ

λ−1Ω − V (ΣS
µ) (2.12)

Since h ≤ λ, it follows that ‖λ−1Ω‖Σ ≤ ‖λ−1Ω‖ = λ−1h ≤ 1. Therefore, the right-
hand side of (2.12) is non-positive. On the other hand, the left-hand side clearly
is non-negative. Furthermore, if somewhere in Σ?

µ, a portion of Σ is transversal
to the foliation Fω, the left-hand side of (2.12) must be positive. Hence (2.12)
implies that such a minimal Σ has to “follow” the leaves in Σ?

µ and can diverge
from them only in the 2µ-ellipsoids. (In particular, if a connected Σ as above has a
non-empty intersection with a leaf L, which misses the closed 2µ-ellipsoids around
S?

ω, then Σ = L and L must be closed in M .)
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It also follows from the vanishing of the two sides of (2.12) that, for a volume-
minimizing Σ, we must have V (ΣS

µ) = λ−1
∫
ΣS

µ
Ω and V (Σ?

µ) = λ−1
∫
Σ?

µ
Ω. This

proves claim (2) from Theorem B.

With F as in Theorem B being fixed, our next task is to estimate the variation
of the volume for any finite union F̃ of compact leaf components, such that

∫
F̃

Ω =∫
F

Ω. Such an F̃ can penetrate inside the 2µ-ellipsoids, where it could fail to be a
volume-minimizing hypersurface. Therefore, we shall concentrate on the behavior
of the volume V (F̃S

µ ) =
∫

F̃ S
µ

h−1Ω as function of µ and λ.
Recall that, among a variety of choices, the construction of Ω depended on a

choice of a parameter ε > 0. For µ < δ(ε)/2, in the ellipsoid Bµ,j , Ω = ∗gE,j
(ω),

where ω is described by (1.1). Similarly, in B+
µ,k , Ω = ∗gE,k

(ω), where ω is
given by (1.3). Everywhere in {B2µ,j} and {B+

2µ,k} the metric gλ,µ is conformly
equivalent to the euclidean metric gE . In {Bµ,j} and {B+

µ,k}, the two metrics
coincide, while in the shells {B2µ,j \ Bµ,j}, {B+

2µ,k \ B+
µ,k} the conformal factor

gλ,µ/gE = h−1‖ω‖E ≤ 1, provided λ ≥ 2µ (cf. (2.7) and Figure 6).
Therefore, when λ ≥ 2µ,

V (F̃S
µ ) =

∫
F̃ S

µ

h−1Ω ≤ VE(F̃S
µ ),

where VE(∼) stands for the euclidean volume.
For a given F , there exists a universal and λµ-independent constant κF , such

that, for any F̃ homologous to F , the intersection of F̃ with each of the 2µ-ellipsoids
consists not more than of κF components of the foliation. To see it, let us install
a measuring device at each of the singularities. The device is an arc γ?

j (or two),
transversal to the foliation in the ellipsoid (if the Morse index of the singularity
is 1 or n − 1, then one needs two arcs). The arc(s) starts and terminates at the
boundary of the ellipsoid and pierces every leaf component lying in the ellipsoid.
For example, one can take an arc entering the singularity along the stable disk
and exiting it through the unstable one. By the Calabi property, one can complete
γ?

j to an ω-positive loop γj . This loop is the measuring device we need. On one
hand, the intersection number of F̃ with γj is positive and exceeds the number
of components of the F̃ in the ellipsoid. On the other hand, since F̃ and F are
homologous, F̃ ◦ γj = F ◦ γj . Hence, pick κF = maxj {F ◦ γj}.

With this choice of κF , VE(F̃S
µ ) ≤ K̃ · µn−1, where K̃ > κF ·A and A denotes

the maximal euclidean volume of Fω-leaf components in the µ-ellipsoid, divided
by µn−1.

Now, since

V (F ) =
∫

F

λ−1Ω =
∫

F̃

λ−1Ω =
∫

F̃ ?
µ

λ−1Ω +
∫

F̃ S
µ

λ−1Ω
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and
V (F̃ ) =

∫
F̃

h−1Ω =
∫

F̃ ?
µ

λ−1Ω +
∫

F̃ S
µ

h−1Ω,

for a constant K̃ (depending on F , not on F̃ ), we get:

|V (F̃ )− V (F )| =
∣∣∣∣
∫

F̃ S
µ

(h−1 − λ−1)Ω
∣∣∣∣ ≤

∣∣∣∣
∫

F̃ S
µ

h−1Ω
∣∣∣∣ = V (F̃S

µ ) ≤ K̃ · µn−1.

This proves claim (3) of Theorem B and, finally, completes the proof of the
Theorem B as a whole. ¤

At the same time, these calculations and estimates imply statements (1)–(3) of
Proposition 1.6. Indeed, by the very construction of the metrics gλ,µ, V (M?

ω,2µ) =
λ−2

∫
M?

ω,2µ

ω ∧ Ω and, since

V (M \M?
ω,2µ ) ≥ VE

(∐
j

Bµ,j ∪
∐
k

B+
µ,k

)
= c · µn,

(c being a universal constant), as λ → ∞, the volume of the 2µ-ellipsoids ap-
proaches the volume V (M) as ∼ λ−2. Moreover, as λ grows, the Riemannian
metric gλ,µ uniformly declines in M?

ω,2µ and stabilizes in the µ-ellipsoids. There-
fore, when λ → ∞, the spaces {M, gλ,µ} converge, in the Gromov’s sense, to a
compact metric space which topologically is a bouquet of a few spheres and hemi-
spheres. The spheres are indexed by the singularities of ω and the hemispheres –
by the singularities of ω|∂M . The limit metric on the spheres depends only on the
Morse types of the singularities and on the choice of the auxiliary function h.

On the other hand, for a fixed λ, as µ → 0, the volume of the 2µ-ellipsoids
declines at the rate ∼ µn – the coefficients of h−2 · ω ∧ Ω are bounded in the
ellipsoids. At the same time, V (F ) = λ−1

∫
F

Ω. Therefore,

lim
µ→0

V (M) = λ−2
∫

M

ω ∧ Ω

and, for any F̃ as above,

lim
µ→0

V (F̃ ) = λ−1
∫

F

Ω.

This ends the proof of Proposition 1.6. ¤

Now we are in the position to prove Theorems A⊥, B⊥ and Corollary 1.5.
The arguments are very similar to the ones used in proving Theorems A, B and
Proposition 1.6. The only crucial difference is that, prior to dealing with the 1-
foliation FΩ, we can be more flexible with the choice of Ω – unlike ω, it is not a
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given, but rather handmade contraption. In particular, if n > 2, given any finite
collection of ω-positive loops {γr}, by Lemma 2.1, it is possible to construct an
ω-subordinate cover U = {Ul}, so that each loop γr is surrounded by an ω-positive
tube Vr ⊂ Ur which does not intersect the rest of the elements from U . Moreover,
the trivialization of Vr can be chosen to agree with the foliation Fω – the (n− 1)-
disks, normal to γr, are contained in the leaves of Fω. In such a trivialization of
Vr, the FΩ-leaves are the longitudes of the solid torus hr : S1 ×Dn−1 ≈ Vr, the
form ω = (h−1

r )∗(dt) and Ω = (h−1
r )∗(du1 ∧ · · · ∧ dun−1), where {t, u1, . . . , un−1}

are the standard coordinates in S1 × Dn−1. With this choice of ω and Ω, the
corresponding metric g = gω⊕ gΩ is the standard flat metric in the flat solid torus
S1 ×Dn−1 and all the longitudes are geodesics.

Consider a leaf L of FΩ and its finite arc L′. The arc length of L′ is given by
integrating h−1ω along the arc. If the arc L′ is missing the 2µ-ellipsoids, its length
l(L′) = λ−1

∫
L′ ω. Let γ be any arc close to L′ and having the same ends. Since

ω is closed, λ−1
∫

L′ ω = λ−1
∫

γ
ω . By an argument, similar to the one we have

used to prove the intrinsic minimality of the foliation Fω|M◦
ω,2µ

, the latter integral
does not exceed the length l(γ). Thus, L′ is a geodesic arc. In a similar way, one
can prove that, if L is a closed leaf (a loop) in M◦

ω,2µ and γ – any loop such that∫
γ

ω =
∫

L
ω, then l(γ) ≥ l(L). The proof of statement (4) of Theorem A⊥ is very

similar to the one, connecting formula (2.10) with the conclusion of the proof of
Theorem A.

The arguments that prove (2) and (3) from Theorem B⊥ are an 1-dimensional
version of the arguments that led to formula (2.12) and its implications. This
completes the proof of Theorems A⊥, B⊥. ¤

The considerations above demonstrate that, given a finite collection of ω-
positive loops {γr}, there exists metric gλ,µ with the properties described in Theo-
rems A⊥, B⊥ and such that the γr’s are geodesics and closed leaves of FΩ. Jointly,
(with λ = 1), the two arguments prove Corollary 1.5. ¤

Now we are in position to sketch the proof of Proposition 2.5. The idea is to
build large bumps of metric, supported in the ω-positive tubes Ul surrounding the
given loops γl. The bumps will be constructed along the directions transversal to
the loops to make it very costly for a minimal hypersurface to cut through the
loops. This will minimize the average number of cuts among the geodesic loops
comprising Ul to the absolute homological necessity.

By Corollary 1.5, we can assume the existence of a metric g0 in which ω is
harmonic and the non-intersecting tubes Ul being comprised of ω-positive geodesic
loops γ′l of the fixed length

∫
γl

ω.
To simplify the notations, we drop the index l enumerating the tubes and

concentrate on a particular tube U with the core γ.
Denote by ΩU a closed (n − 1)-form supported in U and whose kernels are

tangent to the ω-positive longitudes of the tube. By adding the forms q · ΩU to
the previously built form Ω – the central ingredient in constructing g0 –, we will
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create a q-parameterized family of closed (n − 1)-forms Ωq = Ω + qΩU and the
corresponding family of metrics gq. For large q, all the normal to γ disks D (the
fibers of the tube U over γ) will be uniformly large in gq. At the same time,
in the metric gq, the longitudes of the solid torus U ≈ D × S1 remain to be
geodesics and their lengths do not change.

Let an oriented hypersurface Σq be the volume-minimizing cycle in its relative
homology class [Σ]. By [Fe], such a cycle can be realized by a pseudo-manifold
with the singular set at least of codimension 7. (Some of the components of such
minimal hypersurface Σq might occur with multiplicity greater than one.)

Clearly, each geodesic loop γ′ from U which hits Σq transversally, must hit it at
least d = [Σ] ◦ γ times, however, some loops might have more than |d| transversal
intersections with Σq. The algebraic intersection numbers can be interpreted as
local degrees of an obvious map π from the portion Σq ∩ U into the (n − 1)-disk
D – a typical fiber of U over γ. Let us exclude the π-critical value set from D
(this set of measure zero contains the π-image of the singular set of Σq). The
rest of D can be divided in two complementary sets: A, formed by regular values
with exactly |d| preimages, and B, formed by regular values with more than |d|
preimages. Proving that A is non-empty, will be a significant step in the proof of
the proposition. In fact, using the minimality of Σq we will show that, as q →∞,
the ratio of the gq-induced measure m(B) of B to the measure m(A) of A tends
to zero.

Indeed, since π is an orthogonal projection, the volume of ΣU
q := Σq ∩ U has

to exceed |d| · m(A) + (|d| + 1) · m(B). We shall compare this volume with the
volume of another cycle ∆q, homologous to Σq. It will be assembled of three parts,
the first of which is the portion Σ◦q of Σq outside of the tube U . The second part
consists of (properly oriented) |d| disjoint fibers {Di} of the disk bundle U → γ.
The third – of the (singular) cobordism Wq in ∂U between Σq ∩∂U and the union
of |d| spheres Si := Di ∩ ∂U .

The volume of ∆q is the sum of the corresponding three volumes: V (Σ◦q),
V (Wq) and |d| · V (D). Since V (Σq) ≤ V (∆q), one must have

|d| ·m(A) + (|d|+ 1) ·m(B) ≤ V (Wq) + |d| · V (D).

Note that the volume V (Wq) is bounded from above by the |d|-multiple of the
volume of ∂U and therefore is q-independent. Since m(A)+m(B) = V (D), we can
rewrite the inequality above as m(B) ≤ V (Wq), which provides a q-independent
upper bound for m(B).

Since limq→∞ V (D) = ∞, we conclude that limq→∞m(B)/V (D) must be zero.
Therefore, as q →∞, the vast majority of the geodesic loops from U will hit A and
will have the minimal possible number of intersections with the volume minimizing
cycles in the homology class [Σ]. The same conclusion is valid for any finite set of
homology classes {[Σk] ∈ Hn−1(M,∂M ;Z)}k.

In the argument leading to Proposition 2.4, we noticed that, for any non-
trivial class [ω] ∈ H1(M ;R), there exists a representative intrinsically harmonic
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form ω, such that one can find a basis in H1(M ;Z)/Tor represented by ω-positive
loops. Applying previous arguments to such loops and a generating set of elements
[Σk] ∈ Hn−1(M,∂M ;Z), shows the existence of a metric in which both bases are
realized by the volume-minimizing cycles (of dimensions 1 and (n− 1)) and their
mutual intersections have the minimal cardinalities consistent with the homology
intersection pairings. This proves the proposition. ¤

3. Absolute case

Definition 3.1. We say that a 1-form ω on M satisfies the absolute Calabi con-
dition, if through each point x ∈ M◦

ω, there exists an ω-positive path which is
closed or, alternatively, which starts and terminates at points of the boundary
∂M . Moreover, at the start and the end points the path is transversal to the
boundary.

For example, the form ω, created with the help of Figure 1b satisfies this def-
inition: just take a look at the Calabi graph Γω(M) in Figure 2b. For closed
manifolds, the relative and absolute Calabi properties coincide; however, in gen-
eral, the relative condition implies the absolute one.

The natural pairing ? : Hn−1(M ;Z) ⊗ Hn−1(M ;R) → R can be induced by
integrating a closed (n− 1)-form Ω over a closed pseudo-manifold Σ ↪→ M .

Here are the absolute versions of Theorems A and B.

Theorem C. Let M,λ, µ be as in Theorem A and let ω be a closed Morse-type
1-form satisfying the absolute Calabi condition. Then there exists a λµ-family of
Riemannian metrics gλ,µ, so that the following claims hold:

(1) All the metrics gλ,µ are conformally equivalent. For any µ′ ≤ µ, the metrics
gλ,µ and gλ,µ′ coincide on the complement to the µ-ellipsoids, centered on the
singularities of ω.

(2) The form ω is harmonic with respect to gλ,µ.
(3) The closed (n−1)-form Ω = ∗gλ,µ

(ω) is λ, µ-independent. The form Ω gives
rise to a non-trivial class [Ω] ∈ Hn−1(M ;R).

(4) All the leaves of the foliation Fω, outside of the µ-ellipsoids, are minimal
hypersurfaces in the metric gλ,µ.

Theorem D. Under assumptions and notations of Theorem C, the following
claims are valid:

(1) Let F be any finite union of compact leaf components of the foliation Fω,
represented by closed manifolds not intersecting the µ-ellipsoids around the singu-
larities. Then F minimizes the gλ,µ-induced (n−1)-volume V (F ) among all closed
pseudo-manifolds Σ ↪→ M , subject to the homological constraint [Ω]?[Σ] = [Ω]?[F ].



72 G. Katz CMH

In particular, F minimizes the volume in its homology class. This minimal volume
V (F ) = λ−1[Ω] ? [F ].

(2) Any closed pseudo-manifold Σ ↪→ M, of the volume V (F ) and such that
[Ω] ? [Σ] = [Ω] ? [F ], outside of the µ-ellipsoids, is comprised of compact leaves
of the foliation Fω, being restricted to the exterior of the ellipsoids. The volume
of the portion ΣS

µ of Σ, lying inside of the µ-ellipsoids, is given by the integral
λ−1

∫
ΣS

µ
Ω. When λ → +∞, it declines as ∼ λ−1; when µ → 0, it declines as

∼ µn−1.
(3) For any union F̃ of compact leaf components, represented by closed mani-

folds (possibly, with the Morse-type singularities) and homologous to F , the volume
variation |V (F̃ )− V (F )| ≤ K · µn−1, where K is a positive, λµ-independent con-
stant and λ ≥ µ.

Remark. Here the requirement on F, F̃ ,Σ to be closed is essential. For example,
take the form ω created in Figure 1b. Consider the leaf component of Fω repre-
sented by a short chord F of the boundary curve, where ∂M is shaped as letter
Z. Clearly, it defines a trivial relative cycle and is not a length-minimizing arc.

Theorems C and D, like Theorems A and B, have their “Poincaré-dual” analogs:

Theorem C⊥. Under the assumptions and notations of Theorem C, claims (1)–
(3) of Theorem A⊥ are valid.

Theorem D⊥. Under the assumptions and notations of Theorem C, the following
statements hold:

(1) Let L be any finite collection of compact closed FΩ-leaves that does not
intersect the µ-ellipsoids around the ω-singularities. Then L minimizes the gλ,µ-
induced length l(L) among all the 1-cycles Γ in M , subject to the homological
condition

∫
Γ ω =

∫
L

ω. In particular, L minimizes the length in its homology
class. The minimal length l(L) = λ−1

∫
L

ω.
(2) Any 1-cycle Γ of the length l(L) and such that

∫
Γ ω =

∫
L

ω, outside of
the µ-ellipsoids, is comprised of a number of compact leaf components of FΩ,
restricted to the exterior of the ellipsoids (outside of the ellipsoids, Γ consists of
geodesic arcs).

The length of the portion ΓS
µ of Γ, lying inside of the µ-ellipsoids, is given by

the integral λ−1
∫
ΓS

µ
ω. When λ → +∞, it declines as ∼ λ−1; when µ → 0, it

declines as ∼ µ.
(3) For any union L̃ of compact FΩ-leaf components, represented by closed

loops, and homologous to L, the length variation |l(L̃)− l(L)| ≤ K · µ, where K is
a positive, λµ-independent constant and λ ≥ µ.

(4) If ω|∂M = 0, then the same conclusions apply to any relative 1-cycles L,Γ,
subject to

∫
Γ ω =

∫
L

ω.
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Proof. Proofs of Theorems C, D and C⊥, D⊥ are slight modifications of the argu-
ments used in proving Theorems A, B and C⊥, D⊥. The only difference is that,
instead of using toroidal and half-toroidal ω-positive tubes as in (2.1) and (2.2), one
uses toroidal tubes together with cylindrical ω-positive tubes hl : [0, 1]×Dn−1 →
Ul ⊂ M that start and terminate at points of ∂M◦

ω. As a cylindrical tube transver-
sally approaches the boundary ∂M , it is cut by ∂M in a “slanted” fashion with
respect to the Fω-leaves as shown in Figure 7.

M

M

leaf

ω−posit
ive tu

be

Figure 7

The singularities of ω|∂M are treated as before: they contribute the half-
ellipsoids to the ω-subordinate cover U . ¤

Corollary 3.1. Fix ε > 0. Let f : Mn → R be a Morse function with no local
maxima and minima inside M and no critical points on the boundary ∂M =
∂M+

∐
∂M−. Assume that f(∂M+) > f(∂M−). Let a be any f-regular value in-

between f(∂M+) and f(∂M−). Let F be a closed (n− 1)-submanifold of f−1(a).
Then there exists a Riemannian metric g = gε on M , such that:
(1) f is harmonic with respect to g.
(2) The (n − 1)-form Ω = ∗g(df) is harmonic and represents a non-trivial

element [Ω] ∈ Hn−1(M ;R).
(3) F minimizes the g-induced volume among all absolute (n− 1)-cycles Σ ↪→

M , subject to the constraint [Ω]? [Σ] = [Ω]? [F ]. Thus, F is the volume-minimizing
cycle in its homology class. In particular, if F = f−1(a), then it realizes the
minimal volume among all constant level hypersurfaces F̃ = f−1(b), where b ranges
in-between f(∂M+) and f(∂M−). The volume variation among such F̃ ’s is smaller
than ε.

(4) For any c, the hypersurface f−1(c) is minimal outside of the ε-ellipsoids
centered on the critical points of f and the ε-half-ellipsoids centered on the critical
points of f : ∂M → R.

(5) The f-gradient flow preserves both the g-induced volume and the form Ω.
Its trajectories outside of the ellipsoids are geodesics.
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Proof. Condition “f(∂M+) > f(∂M−)”, coupled with the fact that f has no local
maxima and minima inside M , implies the existence of an df -positive path γx

through any given point x ∈ M◦
df , such that γx starts and terminates at a point

in ∂M . Indeed, the ban on the critical points of indices 0 and n make it possible
to redirect γx, as it approaches a singularity y, from the set f−1(< f(y)) to the
ground higher than f(y).

Now we can apply Theorems C, D and C⊥, D⊥ to ω = df . For a given F ,
we choose µ to satisfy three conditions: 1) 2µ < δ(ε) < ε; 2) K · µn−1 < ε (cf.
Theorems C, D); 3) F ⊂ M◦

ω,2µ. ¤

4. Generalizations, questions and conjectures

Let Ci,j denote the cone in the euclidean space Ri+1 ×Rj+1, given by j‖x‖2 =
i‖y‖2, where x ∈ Ri+1, y ∈ Rj+1. Put f(x, y) = j‖x‖2 − i‖y‖2, so that f is a
Morse function of index j + 1 and f−1(0) = Ci,j is a linear cone over the product
Si × Sj of two spheres. It has been shown in [Si] that this cone is a minimal
hypersurface in the euclidean metric dg2

E = ‖x‖2 + ‖y‖2, provided i + j > 5 and
i · j > 5. Furthermore, Hardt and Simon proved [HS] that any area minimizing
hypercone in the euclidean space, smooth near infinity, gives rise to a family of
minimal hypersurfaces forming a foliation with the cone as the only singular leaf.

However, the Morse function f above is harmonic only when i = j. We do
not know whether there are other pairs (i, j), for which the Morse function f :
Ri+j+2 → R of index j+1 at the origin is harmonic and defines a minimal foliation
with respect to some Riemannian metric. If such a function exists, we shall call a
pair (n, j + 1) = (i + j + 2, j + 1) harmonic. For example, by [Si], any pair (2k, k)
is harmonic for k ≥ 4.

Even when, for a Calabi form ω, all the dimension-index pairs are harmonic, we
do not know how to prove the analogs of Theorems A, B, C, D: our constructions
seem to fail the minimality of the foliation Fω in the 2µ-shells surrounding the
ω-singularities.

Conjecture 4.1. If all the dimension-index pairs of ω-critical points are har-
monic, then the results of this paper, dealing with the foliation Fω, are valid “for
µ = 0”, in other words, all the leaves of the foliation Fω, in the appropriate met-
ric, become “true” minimal hypersurfaces (in contrast with the µ-controlled failure
of their minimality studied in the paper). In particular, under these assumptions,
the Calabi property insures both the harmonicity of the form ω and the minimality
of the Fω-leaves.

We suspect that the pairs (n, 1) and (n, n−1) can not be harmonic. Recall (cf.
Corollary 1.1) that forms with no critical points of indices 0, 1, n − 1, n are auto-
matically Calabi. Thus, any form with harmonic indices is probably automatically
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intrinsically harmonic.
The Morse-type nature of the ω-singularities does not seem to be important

for the validity of our arguments.

Conjecture 4.2. All the results of this paper are valid for closed 1-forms ω of
the Bott–Morse type, subject to the Calabi conditions described in Definition 0.2,
or in (0.2), or in Definition 3.1.

Note that the Calabi positive loop properties prevent the singular k-manifolds
of ω from carrying normal bundles of indices 0 or n− k.

Another line of questions that seem to require a detailed study is related to
more general boundary conditions. Recall that, in the presence of the relative
Calabi property (cf. Definition 0.2) and assuming that ω|∂M is non-singular, we
were able to synchronize the harmonicity of the forms and the near-minimality of
the foliations in M and in ∂M (cf. Theorem A, (5) and Theorem B, (4)).

Question 4.3. Are the analogs of Theorems A and B valid for a generic ω|∂M

with the Morse-type singularities? In particular, is the property (0.2) sufficient to
insure the harmonicity of ω and ω|∂M with respect to some metric on M?

The question seems to be of a delicate nature. It is possible that the positive
answer will require some new geometric property imposed on ∂M , a sort of ω-
convexity.

It is natural to ask to what extend Calabi’s characterization of intrinsically
harmonic 1-forms ω and the results of this paper on the ω-generated intrinsically
near-minimal foliations extend to closed forms ω of any degree k. In particu-
lar, one might search for appropriate k-dimensional analogs of Calabi’s positive
loop condition, in other words, for a geometric characterization of the intrinsic
harmonicity.

Recall that the rank of an exterior k-form ω : ΛkV → R is defined to be the
dimension of the space {w cω, w ∈ Λk−1V }. Denote by Kω ⊂ V the subspace
defined by the equations {v cω = 0}v∈V in Λk−1V ∗. It is easy to verify that
dimKω + rk(ω) = dim(V ). Also, if rk(ω) = k, then ω is a product of 1-forms.

For a closed k-form ω of a constant rank, by a theorem of Cartan, the kernels
Kω form an integrable distribution. As before, the appropriate foliation is denoted
by Fω. If at some point the rank drops, the foliation Fω develops singularities.

Definition 4.4. We say that a closed k-form ω of a rank ≤ k on a compact
oriented n-manifold M has an ω-positive cycle property, if for each leaf component
L of the (n−k)-dimensional singular foliation Fω, there exists a compact orientable
k-submanifold N , such that:
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(1) N intersects L transversally at a non-singular point of Fω.
(2) N is closed, or along its boundary ∂N ⊂ ∂M , N is transversal to ∂M .
(3) The restriction of ω on N is strictly positive (equivalently, N is transversal

to Fω).

It can be shown that, if such a cycle N can be conducted through one non-
singular point in L, then there exists an ω-positive cycle with properties (1)–(3)
through any other non-singular point of L.

Unlike the harmonic 1-forms which do satisfy the positive 1-cycle property,
we do not expect any harmonic k-form of rank k to satisfy the positive cycle
property automatically. To establish such a property could be challenging. The
first interesting case is provided by a harmonic 2-form of rank ≤ 2 (i.e. locally a
product of two exact 1-forms) on a 4-manifold.

It is very likely that the methods of this paper can establish the validity of

Conjecture 4.5. Let a closed k-form ω satisfy the following list of properties:
(1) ω has rank k on an open set M◦

ω ⊂ M ; the rank of ω drops on the singular
set Sω = M \M◦

ω.
(2) ω is exact in a neighborhood of Sω.
(3) ω is intrinsically harmonic in a neighborhood of Sω.
(4) ω possess the ω-positive cycle property.
Then ω is intrinsically harmonic everywhere and the foliation Fω is near-

minimal away from Sω.
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