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c© 2002 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

On the Haefliger–Hirsch–Wu invariants for embeddings
and immersions

Arkadi Skopenkov∗

Abstract. We prove beyond the metastable dimension the PL cases of the classical theorems
due to Haefliger, Harris, Hirsch and Weber) on the deleted product criteria for embeddings and
immersions. The isotopy and regular homotopy versions of the above theorems are also improved.
We show by examples that they cannot be improved further. These results have many interesting
corollaries, e.g.

1) Any closed homologically 2-connected smooth 7-manifold smoothly embeds in R11.
2) If p ≤ q and m ≥ 3q

2
+ p + 2 then the set of PL embeddings Sp × Sq → Rm up to PL

isotopy is in 1–1 correspondence with πq(Vm−q,p+1)⊕ πp(Vm−p,q+1).
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1. Introduction and main results

Denote CAT = DIFF or PL (we omit CAT if a statement holds in both categories).
For m ≥ n + 3 let Embm

CAT (N) be the set of CAT embeddings N → Rm up to
CAT isotopy. Let

Ñ = {(x, y) ∈ N ×N | x 6= y}
be the deleted product of N . Let Z2 act on Ñ and on Sm−1 by exchanging factors
and antipodes, respectively. For an embedding f : N → Rm define a map

f̃ : Ñ → Sm−1 by f̃(x, y) =
fx− fy

|fx− fy| .

The equivariant homotopy class α(f) of f̃ in the set πm−1
eq (Ñ) of equivariant maps

Ñ → Sm−1 is clearly an isotopy invariant. Thus is defined the Haefliger–Wu
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(deleted product) invariant

α = αm
CAT (N) : Emb m

CAT (N) → πm−1
eq (Ñ)

[Wu59, Hae61, Gro86, 2.1.E]. The main purpose of this paper is to obtain new
results on surjectivity and injectivity of α, i.e. on the classical problems on em-
beddability and isotopy in Rm. The set πm−1

eq (Ñ) can be effectively calculated
[CoFl60, beginning of §2, Hae62B, Hae63, 1.7.1, Bau75, Ada93, 7.1], see also §§5,6
below. Our starting point was the following classical result.

Theorem 1.1α [Hae63, Th. 1’, Web67, Th. 1 and 1’]. If N is either a polyhedron
or a closed smooth n-manifold, then

αm(N) is bijective for 2m ≥ 3n + 4 and surjective for 2m ≥ 3n + 3.

The ‘metastable’ dimension restrictions as in Theorem 1.1α were present also
in the PL cases of the classical theorems on embeddings of highly-connected (gen-
eralized) manifolds and of Poincaré complexes [PWZ61, Irw65, Hud67, Hud69,
§11, BoHa70, 1.6, Wal70, §11, Boe71, 4.2, BrMi99, BrMi00]. In these results the
dimension restrictions can be weakened to m ≥ n+3. As for Theorem 1.1α, these
restrictions were known to be sharp not only in the smooth case, but also for
polyhedra.

Example 1.2. i) The maps α3l(S2l−1tS2l−1) and α3l
DIFF (S2l−1) are not injective

[Hae62A, Hae62T, Zee62].
ii) The map αm

PL(N) is not injective for n + 2 ≤ m ≤ 3n+3
2 and N = (Sn ∨

Sn) t S2m−2n−3.
s) The map αm(SntSn) is not surjective, if m ≥ n+3 and Σ∞ : πn(Sm−n−1) →

πS
2n+1−m is not epimorphic [Hae62T, Zee62].

ss) The map α6k+1
DIFF (S2k×S2k) is not surjective [follows from BoHa70, Boe71].

e) The map αn+3
DIFF (N) is not surjective for n ∈ {8, 9, 10, 16} and some homo-

topy n-sphere N [HLS65, Lev65, cf. Ree90, §2, MaTh95, pp. 407–408].
ee) The map αm

PL(N) is not surjective for max{4, n} ≤ m ≤ 3n+2
2 and some

n-polyhedron N [MaSe67, SeSp92, FKT94, SSS98].

Example 1.2 (and Examples 1.4 and 1.10 below) are true for each set of the
parameters m,n, k, l satisfying to the conditions in the statement. Examples 1.2.ii
and 1.2.ss are proved in §7. Examples 1.2.e and 1.2.ee have a stronger property:

(∗) there exists an equivariant map Ñ → Sm−1 but N does not embed into Rm.
Links and knots give many other examples of non-injectivity and non-surjectivity

of α, e.g. any CAT non-trivial knot Sn → Rm demonstrates non-injectivity of
αm

CAT (Sn) (note that from a link example by gluing an arc joining connected com-
ponents we can obtain highly connected polyhedral example). The more surprising
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is our first main result, which asserts that the metastable dimension restrictions
can be weakened to m ≥ n + 3 for the PL case of Theorem 1.1α and closed
highly-connected PL n-manifolds:

Theorem 1.3α. If N is a closed d-connected (for d = 1, just homologically 1-
connected) PL n-manifold and m ≥ n + 3, then

αm
PL(N) is bijective for 2m ≥ 3n + 3− d and surjective for 2m ≥ 3n + 2− d.

(Let us made some remarks not used in the sequel. In Theorem 1.3α the
surjectivity is not interesting for m < 5n+6

4 . Indeed, 5n+6
4 > 3n+2−d

2 implies
that d > n

2 − 1 and n ≥ 6, hence N is a homotopy sphere, so N ∼= Sn, and
the surjectivity in Theorem 1.3α is trivial. But our proof is not simplified for
m ≥ 5n+6

4 , and it can also be considered as a step towards the analogue of Theorem
1.3α for embeddings into manifolds. Analogous remark should be made for the
injectivity in Theorem 1.3α. Note that our proof of Theorem 1.3α does not give
relative and approximative versions, which are true for Theorem 1.1α [Hae63,
1.7.2, Web67, Theorems 3 and 7, ReSk98].)

For d ≤ 2 Theorem 1.3α was proved in [Sko97]. Although we use some ideas
of [Sko97], the proof of Theorem 1.3α in the present paper follows a distinct route
via immersions. Our second main result is an extension beyond the metastable
range of the Harris PL version of the Haefliger–Hirsch classification of immersions
(the precise statements are given below).

By [Hae68, Hud70T], the same (3n− 2m + 2)-connectedness assumption as in
the surjectivity part of Theorem 1.3α (2m ≥ 3n + 2 − d ⇔ d ≥ 3n − 2m + 2) is
unnecessary in [Hud67] (where, roughly speaking, it was proved that a homotopy
equivalence between PL manifolds is homotopic to a PL embedding). So it was
natural to expect that the connectedness assumption is unnecessary in Theorem
1.3α. However, our third main result is that this connectedness assumption is
essential.

Example 1.4. i) α6k(Sp × S4k−1) is not injective for p < k.
s) αm(S1×Sn−1) is not surjective, if m−n is odd ≥ 3 and Σ∞ : πn−1(Sm−n) →

πS
2n−m−1 is not epimorphic, e.g.

n 7 10 13 14 15 22

m 10 = 3n−1
2 13 = 3n−4

2 18 = 3n−3
2 19 = 3n−4

2 22 = 3n−1
2 31 = 3n−5

2

Examples 1.4.i and 1.4.s show that αm
PL(N) can fail to be injective for 2m =

3n − 3d and to be surjective for d = 0, 2m ≤ 3n − 1. They are constructed in §7
using linking coefficient (in fact, stronger results are proved there). Using more
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advanced the Hudson–Habegger invariant we prove in [Sko] that the dimension
restriction in Theorem 1.3α is even sharp: α6k+1(S1 × S4k−1) is not injective,
which shows that αm

PL can fail to be injective for 2m = 3n− d + 2.
Now we list some new corollaries of Theorem 1.3α. Throughout this paper the

equality between sets denotes a 1-1 correspondence.

Corollary 1.5. If p ≤ q and m ≥ 3q
2 + p + 2 (m ≥ 3(p+q)

2 + 2 for CAT=DIFF),
then

Emb m(Sp × Sq) = πq(Vm−q,p+1)⊕ πp(Vm−p,q+1).

If s ≥ 3, n = p1 + · · · + ps, p1 ≤ · · · ≤ ps and m ≥ 2n − p1 − p2 + 3 (for
s = 3 and CAT=DIFF assume also that m ≥ 3n

2 + 2), then

Emb m(Sp1 × · · · × Sps) = ⊕s
i=1πn−pi

(Vm−n+pi,pi+1).

Note that πp(Vm−p,q+1) = 0 for m ≥ 2p + q + 2 (which is automatic for
m ≥ 3(p+q)

2 + 2). Also note that in Corollary 1.5 m ≥ 3n
2 + 2 is automatic for

s ≥ 4. For calculations of πq(Vab) see [Pae54]. Corollary 7.2 gives the following
table of values of |Embm(S1 × Sq)| for m ≥ 3q+6

2 (m ≥ 3q+7
2 for CAT=DIFF).

m ≥ 2q + 3 2q + 2 2q + 1 2q 2q − 1 2q − 2 2q − 3

|Emb |, q even 1 ∞ 2 4 4 24 1

|Emb |, q odd 1 2 ∞ 4 48 2 1

Corollary 1.5 is known for either p = 0 or p1 = 0 [Hae62T, Zee62] and for
either m ≥ 2q + p + 1 or m ≥ 2n − p1 + 1 (in particular, for p2 ≤ 2) [Hud63,
HaHi63, Hud69, §11]. Otherwise it is new even for either m ≥ 3(p+q)

2 + 2 or
m ≥ 3n

2 + 2. See also [Zee63, Kat69, Lev69, BoHa70, Boe71, MiRe71]. Corollary
1.5 follows from Torus Lemmas 6.1 and 6.2 (because if s ≥ 3 and p1 ≤ · · · ≤ ps,
then m ≥ 2n− p1 − p2 + 3 implies that m ≥ 3n+4−p1

2 ).
From Theorem 1.3α and the smoothing theory [Hae67, 1.6, Hae, 11.1] it follows:

Corollary 1.6. Let N be a closed d-connected (for d = 1, just homologically
1-connected) smooth n-manifold and m ≥ n + 3.

s) If m ≥ 3n+2−d
2 , then for each Φ ∈ πm−1

eq (Ñ) there is a PL embedding f :
N → Rm smooth outside a point and such that α(f) = Φ. A complete obstruction
to smoothing of f lies in Cm−n

n−1 .
i) If m ≥ 3n+3−d

2 , then each two smooth embeddings f, g : N → Rm such that
α(f) = α(g) can be joined by a PL isotopy, which is smooth outside a point. A
complete obstruction to smoothing of such a PL isotopy lies in Cm−n

n .
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Corollary 1.7. If N is a homologically 1-connected closed smooth n-manifold,
then αm

DIFF (N) is injective for (m,n) = (12q−2, 8q−2) and surjective for (m,n) =
(12q − 1, 8q − 1).

Recall that a closed manifold N (or a pair (N, ∂N)) is called homologically d-
connected, if N is connected and Hi(N) = 0 for each i = 1, . . . , d (or Hi(N, ∂N) =
0 for each i = 0, . . . , k). Throughout this paper we omit Z-coefficients from the
notation of (co)homology groups. We use the agreement that 0-connectedness is
equivalent to homological 0-connectedness and to connectedness, and that (ho-
mological) k-connectedness for k < 0 is an empty condition. Recall that Ck

n =
Embn+k

DIFF (Sn).
Corollary 1.7 follows from Corollary 1.6 and C4q

8q−2 = 0 [Hae66A, 8.15] (there
is a misprint in [Hae66A, 8.15]: C3k

4k−2 = 0 should be C4k
8k−2 = 0).

The case d = 1 of Theorem 1.3α can be applied to replace ‘connectedness’ by
‘homological connectedness’ in [BoHa70, 1.6, Boe71, 4.2, Hud69, §11, Sko97, 1.3
and 1.4]:

The results [Sko97, Corollaries 1.5 and 1.6] were proved in the paper J. Vrabec,
Knotting a k-connected closed PL m-manifold in R2m−k, Trans. Amer. Math.
Soc., 233 (1977), 137–165.

Corollary 1.8. s) A homologically (l − 2)-connected closed PL (for l = 4q, also
smooth) (2l − 1)-manifold N embeds PL (for l = 4q, also smoothly) in R3l−1 if
and only if W̄l(N) = 0.

i) Emb3l+1
PL (N) = Hl(N, Z(l)) for l > 1 and a homologically (l − 1)-connected

closed PL 2l-manifold N .

Note that |Embm
PL(N)| = 1 for a homology n-sphere N and m ≥ n+3 [Sch77].

Corollary 1.9. 1) Every closed homologically 2-connected smooth 7-manifold
smoothly embeds in R11.

2) Every closed non-orientable PL 6-manifold N such that w̄2(N) = w̄3(N) = 0
PL embeds into R10.

Corollary 1.9.1 follows from Corollary 1.8.s and [Mas62, Sko97, discussion after
Theorem 1.1]. Corollary 1.9.2 follows from Theorem 1.3α and [Bau75, Theorem
45, case m = 7].

Now we state main results on immersions and embeddings of compact manifolds
with (non-empty) boundary. Recall some definitions from [LiSi69, §3]. A PL map
h : N → Rm from a polyhedron N is called a PL immersion, if it is locally injective,
i.e. there is an ε > 0 such that hx 6= hy when dist(x, y) < ε. For m ≥ n + 3,
every embedding Dn → Rm is flat, so this definition coincides with the usual one
for PL manifolds [HaPo64]. Two immersions h0, h1 : N → Rm are called regular
concordant, if there is an immersion H : N×I → Rm×I such that H(x, 0) = h0(x)
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and H(x, 1) = h1(x). Denote by Immm
CAT (N) the set of CAT immersions N → Rm

up to CAT regular concordance. Two immersions h0, h1 : N → Rm are regular
homotopic, if there is an homotopy H : N × I → Rm× I between h0(x) and h1(x)
which is an immersion itself. For m ≥ n + 3 regular concordance implies regular
homotopy [Hae66A, 4.1, Hae, 9.2, Hud70A, cf. Mel] (this remark is not used in this
paper). Two embeddings f0, f1 : N → Rm are concordant, if there is an embedding
F : N × I → Rm × I such that F (x, 0) = f0(x) and F (x, 1) = f1(x). Denote by
Embm

CAT (N) the set of CAT embeddings N → Rm up to CAT concordance. For
m ≥ n + 3 concordance implies isotopy [Lic65, Hud70A], so this new definition
agrees with the previous one.

For a sufficiently small neighborhood O∆ of the diagonal ∆ in N × N , let
SN = O∆−∆. The reason for using such a notation is that for a smooth manifold
N , the space SN has the same equivariant homotopy type as the space of unit
tangent vectors. When N is a polyhedron, the equivariant homotopy type of SN
does not depend on O∆, provided that it is sufficiently small. For an immersion
h : N → Rm, the map h̃ is well-defined on SN . Define the Haefliger–Hirsch
invariant

β = βm
CAT (N) : Imm m

CAT (N) → πm−1
eq (SN) by β(h) = [h̃] ∈ πm−1

eq (SN).

By Theorem 5.2, α and β are indeed concordance invariants for m ≥ n + 2.

Theorem 1.1 (continuation). β) [HaHi62, §4] If N is a closed smooth n-
manifold, then

βm
DIFF (N) is bijective for 2m ≥ 3n + 2 and surjective for 2m ≥ 3n + 1.

β∂) [HaHi62, Rem. in §5] If N is a compact smooth n-manifold with boundary
and the pair (N, ∂N) is homologically d-connected, then

βm
DIFF (N) is bijective for 2m ≥ 3n + 1− d and surjective for 2m ≥ 3n− d.

α∂) [Hae63, 6.4] If N is a compact smooth n-manifold with boundary and an
(n− d− 1)-dimensional spine, then

αm
DIFF (N) is bijective for 2m ≥ 3n + 1− d and surjective for 2m ≥ 3n− d.

For a compact connected n-manifold with boundary, the property of having an
(n− d− 1)-dimensional spine is close to d-connectedness. Indeed, such a manifold
with this property has boundary and is homologically d-connected. On the other
hand, every such manifold N for which (N, ∂N) is d-connected, π1(∂N) = 0,
d+3 ≤ n and (n, d) 6∈ {(5, 2), (4, 1)}, has an (n−d− 1)-dimensional spine [Wal64,
Theorem 5.5, Hor69, Lemma 5.1 and Remark 5.2].

The following is our second main result.
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Theorem 1.3 (continuation). β) If N is an n-polyhedron, then

βm
PL(N) is bijective for 2m ≥ 3n + 3 and surjective for 2m ≥ 3n + 2.

β∂) If m ≥ n + 2 and N is a compact PL n-manifold with boundary and an
(n− d− 1)-dimensional spine, then

βm
PL(N) is bijective for 2m ≥ 3n + 2− d and surjective for 2m ≥ 3n + 1− d.

α∂) The same as (β∂) with β replaced by α.

Example 1.10. i) The map βm
DIFF (S4k−1) is not injective for 4k+2 ≤ m ≤ 6k−1.

ii) The map β3l+1
PL (S2l) is not injective.

s) The map βm
PL(N) is not surjective for max{5, n} ≤ m ≤ 3n+1

2 and some
n-polyhedron N .

The dimension restrictions are sharp in the injectivity of Theorem 1.1β, in the
injectivity of Theorem 1.3β and in the surjectivity of Theorem 1.3β by Example
1.10 (which is deduced from known examples in §4). Theorems 1.3β∂ and 1.3α∂
were conjectured in [Har69, discussion after Corollary 5]. Theorem 1.3β under a
bit stronger dimension restrictions was proved in [Har69, Corollary 1, Theorem
2, footnote on p. 3] and essentially proved in [Web67, §6]. But Theorem 1.3β
is interesting not only because it improves known results, but also for its proof
(§4). This proof, in contrast to that of Theorem 1.3α, does give the approximative
relative version: if N is an n-polyhedron, 2m ≥ 3n+1, g : N → Rm is a PL map,
A ⊂ N a subpolyhedron such that g|A is a PL immersion and Φ : SN → Sm−1 an
equivariant extension of g̃ : SA → Sm−1, then there is a PL immersion h : N →
Rm, arbitrarily close to g and such that h = g on A and h̃ 'eq Φ on SN rel SA.
See also Corollary 5.3 and 5.4.

A possible candidate to an obstruction for embeddability and isotopy in the
case when the deleted product obstruction fails to be complete is the deleted G-
product obstruction. For a subgroup G ⊂ Sr let

ÑG = {(x1, . . . , xr) ∈ Nr | xi 6= xσ(i) for each σ ∈ G, i = 1, . . . , r}

be the deleted G-product of N . The group G obviously acts on ÑG. For an em-
bedding f : N → Rm the map f̃G : ÑG → R̃m

G is defined by f̃G(x1, . . . , xr) =
(fx1, . . . , fxr). Clearly, the map f̃G is G-equivariant. Thus the existence of a
G-equivariant map Φ : ÑG → R̃m

G is the deleted G-product necessary condition
for embeddability N → Rm. Similarly one can define the deleted G-product neces-
sary condition for immersability, the G-Haefliger–Wu and the G-Haefliger–Hirsch
isotopy invariants αG and βG.

This approach worked well in the link theory (the simplest example is classifi-
cation of ‘higher-dimensional Borromean rings’ [Hae62T, §3, Mas90, Proposition
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8.3] demonstrating non-injectivity of αm by means of αm
S3

). In contrast to that,
Examples 1.2.i, 1.2.ii, 1.10.i and 1.10.ii (and the example of [Sko]) demonstrate
non-injectivity of αG and βG (for each G): in their formulations α or β can be
replaced by αG or βG (for each G). This follows by the construction of these exam-
ples (§4, §7). Clearly, if α or β is not surjective, then so is αG or βG, respectively
(for each G). Under the conditions of Examples 1.2.e and 1.2.ee, (∗) is true even
if we replace Z2-equivariant map Ñ → Sm−1 by G-equivariant map ÑG → R̃m

G.
These results were announced in [Sko98’, Sko98”, ReSk99, §4, ReSk99’,§4,

Sko99]. Previous versions of the present paper were entitled as [Sko98’]. I would
like to acknowledge A. Haefliger for sending me a copy of [Hae], S. Melikhov and
I. Izmestiev for many remarks, A. Melnichenko for a nice surprise, M. M.Postnikov
for useful discussions, the referee for his comments and A. Kuligin for preparing
computer versions of most figures.

2. Plan of the proof and related results

The proof of Theorems 1.3α and 1.3α∂ consists of two steps: construction of an
immersion (Theorem 1.3β∂) and modification of the immersion to an embedding
[see also ReSk99, §11]. The first step could be replaced by reference to Theorem
1.1β∂ for the case when N is smooth outside a point (and, in the injectivity part,
when given embeddings f0 and f1 such that α(f0) = α(f1) are smooth outside a
point). This section is devoted to the plan of the second step. We also present the
plan of the whole paper and notation which is used throughout the paper.

We state several classical results and their generalizations, which are of inde-
pendent interest and which imply Theorems 1.3α and 1.3α∂. These results also
imply Theorems 1.1α and 1.1α∂ in the PL case, thus providing new short proofs.
First let us introduce some definitions. We say that α/βm(N) is surjective, if for
each immersion h : N → Rm and an equivariant map Φ : Ñ → Sm−1 such that
Φ 'eq h̃ on SN there is a regular homotopy from h to an embedding f : N → Rm

such that f̃ 'eq Φ. We say that α/βm(N) is injective, if for each embeddings
f0, f1 : N → Rm, an equivariant homotopy ϕ : Ñ × I → Sm−1 from f̃0 to f̃1 and
a regular homotopy

H : N×I → Rm from f0 to f1 such that H̃|SN×diag I 'eq ϕ|SN×I rel SN×{0, 1},
there is a regular homotopy from H to a concordance between f0 and f1. Note
that neither the surjectivity of α/β nor the injectivity of α/β are properties of
maps α or β, but no confusion would arise.

Theorem 2.1. α/β) [Hae63, Th. 2’, Web67, Th. 8] If N is either an n-polyhedron
or a smooth n-manifold, then

α/βm(N) is injective for 2m ≥ 3n + 4 and is surjective for 2m ≥ 3n + 3.
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α/β∂) [Hae63, 6.4, Har69, Cor. 5.(ii) and Rem. after Cor. 5]. If N is a
non-closed n-manifold, possessing an (n− d− 1)-dimensional spine, then

α/βm(N) is injective for 2m ≥ 3n + 1− 3d and is surjective for 2m ≥ 3n− 3d.

Clearly, the surjectivity of α/β and the surjectivity of β imply the surjectivity
of α. Thus Theorem 1.1α (Theorem 1.3α∂) essentially follows from Theorems
1.1β and 2.1.α/β (from Theorems 1.3β∂ and 2.1.α/β∂). Some extra remarks are
required for the injectivity [Hae63, cf. Web67, Sko97], but we omit details.

Note that α/βm
PL(N) is not surjective for 2m = 3n + 2 and some n-polyhedron

N . Indeed, αm
PL(N) is not surjective by Example 1.2.ee, but βm

PL(N) is by Theorem
1.3β. Note that the ‘almost-embedding’ g : N → Rm from [SSS98] is an immersion,
but it does not necessarily have the property g̃ 'eq Φ on SN .

Let us introduce some more definitions, which would allow us to give formal
proof of Theorem 1.3α. We identify B̊m and Rm. For a map f : N → Bm denote

Σ(f) = Cl{x ∈ N : |f−1fx| > 1}.

A map f : N → Bm of a PL manifold (a polyhedron) N is a quasi-embedding,
if Σ(f) is contained in a n-ball Bn ⊂ N (in a regular neighborhood of a point,
respectively) and fΣ(f) ⊂ B̊m. Two embeddings f0, f1 : N → Bm are PL quasi-
concordant, if there is a PL quasi-embedding F : N × I → Bm × I = Bm+1 such
that F (x, 0) = f0(x) and F (x, 1) = f1(x).

For a triangulation T of a polyhedron N let

T̃ = ∪{σ × τ ∈ T × T | σ ∩ τ = ∅}

be the simplicial deleted product of T . By [Hu60], T̃ is an equivariant deformation
retract of Ñ (but we will not confuse Ñ and T̃ , because e.g. for B ⊂ N , the
space T̃ − B̃ is not necessarily an equivariant deformation retract of Ñ − B̃).
Therefore if f : N → Bm is a quasi-embedding, then there exists an equivariant
map Ñ → Sm−1. Analogous result holds for ÑG and αG (for each G). See also
Theorem 5.2.

We say that the map αm(N) is quasi-surjective, if for each equivariant map
Φ : Ñ → Sm−1 there is a quasi-embedding f : N → Rm such that f̃ 'eq Φ on
Ñ−B̃n. We say that the map αm(N) is quasi-injective, if each embeddings f0, f1 :
N → Rm such that f̃0 'eq f̃1 are quasi-concordant. Note that neither quasi-
surjectivity nor quasi-injectivity is a property of α, but no confusion could arise.
The definition of quasi-surjectivity (quasi-injectivity) of α/βm(N) is obtained from
the definition of surjectivity (injectivity) of α/βm(N) by replacing ‘embedding’ by
‘quasi-embedding’ and ‘f̃ 'eq Φ’ by ‘f̃ 'eq Φ on Ñ−B̃n’ (by replacing ‘concordant’
by ‘quasi-concordant’). Note that neither the quasi-surjectivity of α (α/β) nor the
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quasi-injectivity of α (α/β) are properties of maps α or β, but no confusion would
arise.

Theorem 2.2. Let N be a closed PL n-manifold and d ≥ 0.
q) If N is d-connected and m ≥ n + 2, then

αm
PL(N) is quasi-injective for 2m ≥ 3n + 2− d

and quasi-surjective for 2m ≥ 3n + 1− d.

q/β) If N is d-connected, then

α/βm
PL(N) is quasi-injective for 2m ≥ 3n + 2− 2d

and quasi-surjective for 2m ≥ 3n + 1− 2d.

αq) Suppose that N is homologically d-connected and m ≥ n + 3. If 2m ≥
3n + 3− d and αm

PL(N) is quasi-injective, then it is injective. If 2m ≥ 3n + 2− d
and αm

PL(N) is quasi-surjective, then it is surjective.

Theorem 1.3α follows from Theorems 2.2.q and 2.2.αq. Note that Theorem
1.3α does not follow merely from Theorems 1.3α∂ and 2.2.αq: the given embedding
f : N −Bn → Rm can be extended over N , but the extension is not necessarily a
quasi-embedding. Note that Theorems 2.2.q and 2.2.αq give an improvement of the
PL case of Theorem 2.1.α/β beyond the metastable range, but only in a weaker
form, i.e. the homotopy from f to h is not regular (this homotopy is through
immersions, but is an immersion itself only outside a point). For 2m ≥ 3n + 2− d
(2m ≥ 3n + 3 − d) the quasi-surjectivity (quasi-injectivity) in Theorem 2.2.q is
covered by the surjectivity (injectivity) in Theorem 1.3α.

Theorem 2.3. Let N be a closed PL n-manifold, smooth outside a point.
q) If N is d-connected, m ≥ n + 2 and d ≥ 1, then αm

PL(N) is quasi-surjective
for 2m ≥ 3n − d and is quasi-injective on the subset of smooth quasi-embeddings
for 2m ≥ 3n + 1− d.

α) If N is homologically 2-connected and m ≥ n+3, then αm
PL(N) is surjective

for 2m ≥ 3n and is injective on the subset of smooth embeddings for 2m ≥ 3n+1.

Theorem 2.3.q is proved analogously to Theorem 2.2.q (see §3), using Theorem
1.1β∂ on smooth immersions instead of Theorem 1.3β∂ on PL immersions, which
for d ≥ 1 allows to relax the dimension assumption. Theorem 2.3.α follows from
Theorems 2.3.q and 2.2.αq.

Theorem 2.2.αq follows from Theorem 2.4 below, which was essentially proved
in [Hir65, cf. Sko97, Theorem 2.1.2] (in order to prove the surjectivity of Theorem
2.2.αq, before applying Theorem 2.4 we take a triangulation T of N such that Bn
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is contained in an only simplex of T and recall that T̃ is an equivariant deformation
retract of Ñ).

Theorem 2.4. Let N be a homologically d-connected PL n-manifold (either closed
or non-closed) and m ≥ max(3n+2−d

2 , n + 3). If g : N → Bm is a proper quasi-
embedding, then there is an embedding f : N → Bm such that f = g on N − B̊n.

For polyhedra N ⊃ Z ⊃ Y the notation R(Z, Y ) means ‘a sufficiently small
regular neighborhood of Z rel Y in N ’, when first appears, and ‘the regular neigh-
borhood of Z rel Y in N ’, after the first appearance. Also, R(Z) = R(Z, ∅). The
notation RM (Z, Y ), RM (Z) has the same meaning, only N is replaced to M .

Proof of Theorem 2.4. We may assume that N is connected, because we shall
apply Theorem 2.4 only for d ≥ 0 or because we can take a connected component
of N , containing Σ(g). Let M = Bm − Int RBm(g(N − B̊n), g∂Bn). Since N
is homologically (3n − 2m + 2)-connected, by Alexander and Poincaré duality
theorems we have

Hi(M) ∼= Hm−1−i(Bm−M,∂Bm−M)∼=Hm−1−i(N−B̊n, ∂N)∼=Hn−m+1+i(N)=0

for i ≤ 2n − m + 1. Since m − n ≥ 3, it follows that M is simply connected.
Therefore by the Hurewicz Isomorphism Theorem we have that M is (2n−m+1)-
connected. Hence by [Irw65], the embedding g : ∂Bn → ∂M extends to an
embedding f : Bn → M . Extending f as g outside Bn we complete the proof. ¤

The plan of the paper is as follows. In §3 we prove the surjectivity of Theorems
2.2.q, 2.2.q/β, 2.1.α/β and 2.1.α/β∂ for PL case using Theorem 1.3β∂ (or Theorem
1.1β∂, if N is smooth outside a point) and Disjunction Theorem 3.1. We also
prove there Disjunction Theorem 3.1, which is one of our main tools. In §4 we
prove Immersion Theorem 4.1 (using Disjunction Theorem 3.1) and deduce from
it Theorems 1.3β and 1.3β∂. We also deduce there from known results Example
1.10. In §5 we prove Cylinder Lemma 5.1 and use it to prove the injectivity in
Theorems 2.2.q, 2.2.q/β, 2.1.α/β and 2.1.α/β∂. We also deduce there Corollaries
5.2, 5.3, 5.4 and Pseudo-Isotopy Theorem 5.5, which are of independent interest.
In §6 we prove Torus Lemmas 6.1 and 6.2, which imply Corollary 1.5 and are
used in construction of Example 1.4. In §7 we prove Decomposition Lemma 7.1,
Example 1.4 and Example 7.4, and deduce from known results Examples 1.2.ii and
1.2.ss.

Let us introduce some definitions (Figure 1). Throughout this paper we work
in the PL category and follow the notation of [RoSa72], unless the contrary is
explicitly stated. For A ⊂ N denote A∗ = A×N ∪N×A. For a map f : N → Bm

let
∆̃(f) = Cl N×N{(x, y) ∈ N ×N | x 6= y, fx = fy}.
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Clearly, the map f̃ : Ñ − ∆̃(f) → Sm−1 is well-defined by the formula f̃(x, y) =
fx−fy
|fx−fy| . Suppose that N is an n-polyhedron with a fixed triangulation T (or
with a fixed cell subdivision T in the sence of [RoSa72]). We denote by small
Greek letters simplices of T , unless otherwise indicated. We fix the product cell
subdivision of T × T and T × I. Denote TN = ∪{σ × τ | σ, τ ∈ T, σ ∩ τ 6= ∅}.
Clearly, for each immersion h : N → Rm there is a triangulation T of N such that
∆̃(h) ∩ TN = ∅.

Figure 1

We often use the same notation for an element and its equivalence class, but
no confusion should arise. By |x, y| we denote the distance between points x and
y. We consider the antipodal involution aq on Sq (unless the opposite is explicitly
stated). Two maps ϕ,ψ : X → Sm−1 are close, if ϕ(x) 6= −ψ(x) for each x ∈ X.
Clearly, close equivariant maps are equivariantly homotopic. The phrase ϕ 'eq ψ,
and hence by the equivariant Borsuk Homotopy Extension Theorem we can modify
ψ by a homotopy and assume further that ϕ = ψ’ is abbreviated to ‘ϕ 'eq ψ, even
ϕ = ψ’. We shall use the following essentially known result.

Theorem 2.5. For a polyhedral pair (Y,Θ) with an involution and an equivariant
map ψ : Θ → Sm denote by πm

eq(Y,Θ, ψ) the set of equivariant extensions Y → Sm

of ψ, up to equivariant homotopy rel Θ. Then

Σ : πm−1
eq (Y,Θ, ψ) → πm

eq(ΣY,ΣΘ,Σψ)

is a bijection for dimY ≤ 2m− 4 and a surjection for dim Y ≤ 2m− 3.
If p : X → Y is an equivariant onto map and the union of non-trivial preimages

of p is homotopy equivalent to an l-polyhedron, then

p∗ : πm
eq(Y,Θ, ψ) → πm

eq(X, p−1Θ, ψ ◦ p)
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is a bijection for l ≤ m− 2 and a surjection for l ≤ m− 1.

The proof of the first part (relative equivariant Suspension Theorem) is anal-
ogous to [CoFl60, Theorem 2.5, cf. Spa66, Chapter 8, §5, Theorem 11]. The
second part is proved using general position and the Borsuk Homotopy Extension
Theorem.

3. Modification of the immersion to a (quasi-)embedding

Disjunction Theorem 3.1. Let N be a polyhedron with fixed triangulation T ,
A a subcomplex of T ,
A∗ ⊂ E0 ⊂ E1 equivariant subcomplexes of T × T such that E1 − E0 ⊂ T̃ ,
Φ : E1 ∩ T̃ → Sm−1 an equivariant map,
h0 : N → Bm a PL map such that h−1

0 ∂Bm = A, ∆̃(h0)∩E0 = ∅ and h̃0 = Φ
on E0 ∩ T̃ .

Suppose that for each simplices σp, τ q, νn ∈ T such that p ≤ q, σ×τ ⊂ Cl(E1−
E0) and ν × τ ⊂ E1 we have p + q + n ≤ 2m− 3 and q ≤ m− 2.

Then there is a PL homotopy ht : N → Bm rel A such that ht(N − A) ⊂ B̊m

for each t,
(3.1.1) ∆̃(ht) ∩ E0 = ∅ for each t and ∆̃(h1) ∩ E1 = ∅,
(3.1.2) the homotopy h̃t from Φ = h̃0 to h̃1 on E0 ∩ T̃ extends to a homotopy

from Φ to h̃1 on E1 ∩ T̃ .

Disjunction Theorem 3.1 generalizes the surjectivity of the PL case of Theorem
2.1.α/β, [Sko97, Theorems 2.1.1 and 3.1] and the pre-limit version of [ReSk98,
Theorem 1.1, see also Mel]. Our proof of Disjunction Theorem 3.1 (below) extends
the method of [Web67, §5] as it was exposed in [ReSk99, §9] (the extension of
[SpTo91, Sko00] is in a different direction).

For many results of this paper we need the following simpler particular cases
of Disjunction Theorem 3.1. In the proof of the injectivity (the surjectivity, re-
spectively) in Theorems 2.1.α/β and 2.1.α/β∂ of the properties 3.1.1 and 3.1.2 we
need only that ∆̃(h1) ∩ E1 = ∅ (that ∆̃(h1) ∩ E1 = ∅ and h̃1 ' Φ on E1 ∩ T̃ ,
respectively). However, in the proof of Theorems 2.2.q, 2.2.q/β, 1.3β and 1.3β∂
we use the complete strength of 3.1.2 (in the proof of Theorem 1.3β∂ we apply
Disjunction Theorem 3.1 for N ∼= Sn and E1 = S̃n, then h̃1 ' Φ on S̃n for any em-
bedding h1 : Sn → Rm). Note that in Disjunction Theorem 3.1 we cannot enlarge
E0 to contain TN , even if ∆̃(h0) ∩ TN = ∅, because the dimension restrictions
need not be preserved under this enlargement.

In this paragraph assume that
⋃

τ∈T

τ × τ ⊂ E0. This case of Theorem 3.1 is

sufficient to prove the surjectivity (the injectivity) in Theorem 2.2.q for 2m ≥
3n + 2− d (2m ≥ 3n + 3− d) and m ≥ n + 3, which in turn is sufficient to prove



Vol. 77 (2002) On the Haefliger–Hirsch–Wu invariants 91

Theorem 1.3α without the improvement for d = 1. The condition E1 − E0 ⊂ T̃
can be dropped from Theorem 3.1 [Web67, §6, Sko98] (a minor mistake in [Sko98]
is corrected in [ReSk99, §10]). In Theorem 3.1 we may assume that ht is a C · ε-
homotopy, where ε = max{diam(fσ ∪ fτ) | σ× τ ⊂ Cl(E1 −E0)} and C depends
only on dimN . This is proved analogously to [ReSk98, §3] (since the required
inequality 2(p + q) ≤ 3m− 5 holds).

Proof of the quasi-surjectivity in Theorem 2.2.q. Take a map Φ : Ñ → Sm−1. Let
K be the (n− d− 1)-skeleton of the dual cell-subdivision to a triangulation T1 of
N . Apply Theorem 1.3β∂ (or Theorem 1.1β∂, if N is smooth outside a point) to
get a PL immersion h0 : R(K) → Rm such that h̃0 'eq Φ on S(R(K)). Extend h0

over N to obtain a map h0 : N → Rm. Take a new triangulation T of N in which
K is a subcomplex and such that for E0 = TN ∩K∗ we have

∆̃(h0) ∩ E0 = ∅ and h̃0 'eq Φ, even h̃0 = Φ on E0 ∩ Ñ .

Since n+2(n−1−d) ≤ 2m−3, we can apply Disjunction Theorem 3.1 to A = ∅,
E0 = TN ∩K∗ and E1 = K∗. Since ∆̃(h1) is closed, by 3.1.1 it follows that there
exists a new regular neighborhood R(K) ⊂ N−T

(d)
1 such that ∆̃(h1)∩R(K)∗ = ∅.

Hence
Cl(N −R(K)) = R(T (d)

1 ) and Σ(h1) ∩R(K) = ∅.
Since N is d-connected, by the Engulfing Lemma [Irw65, Theorems 2.1 and 2.3] it
follows that T

(d)
1 is contained in some PL n-ball in N . Therefore by the Uniqueness

of Regular Neighborhood Theorem, N −R(K) is also contained in some (possibly,
another) PL n-ball Bn ⊂ N . We have Σ(h1) ⊂ N − R(K) ⊂ Bn, hence h1 is a
quasi-embedding.

By 3.1.1 there is U = RN×N (K∗, T̃ ) ⊂ R(K)∗ such that ∆̃(ht) ∩ U ∩ TN = ∅
for each t (Figure 1). Since Cl(E1 − E0) ∩ U ⊂ E0, by 3.1.2 it follows that the
homotopy h̃t on (U ∩ TN) − diag N extends to a homotopy from Φ to h̃1 on
U − diag N . By the equivariant version of [Coh69, Theorem 3.1 and Addendum
3.4], U − diag N is a strong equivariant deformation retract of R(K)∗ − diag N .
Therefore

h̃1 'eq Φ on R(K)∗ − diag N ⊃ Ñ − ˜N −R(K) ⊃ Ñ − B̃n. ¤

Proof of the (quasi-)surjectivity in Theorems 2.2.q/β, 2.1.α/β and 2.1.α/β∂ for the
PL case. Take an immersion h0 : N → Rm and an equivariant map Φ : Ñ → Sm−1

such that h̃0 'eq Φ on SN . Fix a triangulation T of N such that

∆̃(h0) ∩ TN = ∅ and h̃0 'eq Φ, even h̃0 = Φ on TN − diag N.
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The quasi-surjectivity in Theorem 2.2.q/β is proved as in Theorem 2.2.q (K =
T (n−1−d) and T1 is the cell-subdivision dual to T ).

The surjectivity in Theorem 2.1.α/β for the PL case follows by applying Dis-
junction Theorem 3.1 to A = ∅, E0 = TN and E1 = N ×N .

In order to prove the surjectivity in Theorem 2.1.α/β∂ for the PL case, assume
that the (n−d−1)-spine K is a subcomplex of T . Since 3(n−1−d) ≤ 2m−3, we can
apply Disjunction Theorem 3.1 for A = ∅, E0 = TK and E1 = K×K. Since ∆̃(h1)
is closed, it follows that there exists R(K) such that ∆̃(h1)∩ (R(K)×R(K)) = ∅.
Hence h1|R(K) is an embedding. Analogously to the proof of Theorem 2.2.q,

replacing U by RN×N (K × K, T̃ ) ⊂ R(K) × R(K), we have that U − diag N

is an equivariant deformation retract of R̃(K), hence h̃1 'eq Φ on R̃(K). By
[Coh69, Theorem 3.1] there exists an isotopy gt : N → N between g0 = id and a
homeomorphism g1 : N → R(K). Therefore h1 ◦ g1 : N → Rm is an embedding
and

h̃1 ◦ g1 = h̃1 ◦ (g1 × g1) 'eq Φ ◦ (g1 × g1) 'eq Φ ◦ (g0 × g0) = Φ. ¤

Although Theorem 2.2.q does not follow from Theorem 1.3β∂, the former can
hardly be improved without improving the latter. Indeed, even if there are no
f -intersections of distant simplices, the intersections of close simplices are just as
bad and may form a (d + 1)-cycle.

Proof of Disjunction Theorem 3.1. Consider the case A = ∅ (the general case is
proved analogously). We may assume that h0 is in general position. It suffices to
prove Theorem 3.1 for Cl(E1 − E0) = σ × τ ∪ τ × σ ⊂ T̃ . Denote p = dim σ ≤
dim τ = q. By the dimension hypothesis it follows that 2p + q ≤ 2m− 3.

Construction of a homotopy ht satisfying to 3.1.1. We may assume that p+q ≥ m
(otherwise 3.1.1 holds for ht = h0 by general position). Therefore 2p+ q ≤ 2m− 3
implies that p ≤ m− 3. Let h = h0 and x = 2m− p− q − 3.

We begin with construction of certain balls Dm, Dp and Dq. Since hσ∩h∂τ =
h∂σ ∩ hτ = ∅, it follows that σ ∩ h−1hτ ⊂ σ̊ and τ ∩ h−1hσ ⊂ τ̊ . By general
position, dim(hσ ∩ hτ) ≤ p + q − m. Let Cσ ⊂ σ̊ be a general position trace
of σ ∩ h−1hτ under a sequence of collapses σ ↘ (a point in σ̊). Define similarly
Cτ ⊂ τ̊ . The polyhedra Cσ, Cτ are collapsible,

hσ ∩ hτ ⊂ hCσ ∪ hCτ and dimCσ,dim Cτ ≤ p + q −m + 1.

Since (p+q−m+1)+(2p−m)<p, by general position it follows that Cσ∩Σ(h|σ)=∅.
Let C ⊂ B̊m be a general position trace of hCσ ∪ hCτ under a sequence of

collapses Bm ↘ (a point in B̊m). The polyhedron C is collapsible, hσ ∩ hτ ⊂ C
and dimC ≤ p + q −m + 2. Hence by general position

C ∩ hN (x) = hCσ ∪ hCτ for x ≥ q and C ∩ hN (x) = hCσ for x < q.
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Therefore we can take PL balls Dm = RB̊m(C), Dp = Rσ̊(Cσ) and Dq = Rτ̊ (Cτ )
such that

(a) Dp = σ ∩ h−1Dm and h|Dp is a proper unknotted embedding into Dm.
(b) N (x) ∩ h−1Dm = RN(x)(Dp, ∂Dp) tRN(x)(Dq, ∂Dq). Note that

RN(x)(Dq, ∂Dq) = ∅ for x < q.

(c) σ ∩ h−1hτ ⊂ D̊p, τ ∩ h−1hσ ⊂ D̊q and hDq ⊂ Dm.
Now we construct a map h+ : Dq → Dm − hDp which is ‘the first approxima-

tion’ to h1|Dq . By (a), Dm−hDp ' Sm−p−1. By (c), h∂Dp∩hDq = h∂Dq∩hDp =
∅, so h̃ is well-defined on ∂(Dp ×Dq). We have

±Σp[h|∂Dq : ∂Dq→Dm−hDp] = [h̃|∂(Dp×Dq)]=[Φ|∂(Dp×Dq)]=0∈πp+q−1(Sm−1).

Here the first equality holds by [Web67, Proposition 1]. The second equality
holds since ∂(σ × τ) ⊂ E0 ∩ T̃ . The third equality holds since Φ is defined over
E1 ∩ T̃ ⊃ Dp×Dq. Since q− 1 ≤ 2(m− p− 1)− 2, by the Freudenthal Suspension
Theorem it follows that h|∂Dq is null-homotopic in Dm−hDp, i.e. the embedding
h|∂Dq extends to a map h+ : Dq → Dm − hDp.

Now we construct the homotopy ht in the case τ × τ 6⊂ E0. Take U =
R(Dq, ∂Dq) ⊂ h−1Dm. Set h1 to be h+ on Dq and h outside U . Then ex-
tend h1 over U to an arbitrary map whose image is in Dm. Join h0 and h1 by a
homotopy ht fixed outside U and mapping U to Dm.

Now we construct the homotopy ht in the case τ×τ ⊂ E0. Then p+2q ≤ 2m−3
and (since p+ q ≥ m) q ≤ m−3. Hence (a) holds also for Dq. Therefore by [PWZ
61, Irw65] from the map h+ we can obtain an embedding h1 : Dq → Dm − hDp

such that h1 = h on ∂Dq. Since q ≤ m− 3, by [Zee63-6, Corollary 1 to Theorem
9] it follows that there is an ambient isotopy gt : Dm → Dm rel ∂Dm carrying
h|Dq to h1. If N (x) = N (this case suffices to prove Theorem 1.3α), then by (b)
we can define the homotopy ht : N → Bm by setting

ht = gt ◦ h on V = U := RN(x)(Dq, ∂Dq) and ht = h outside U.

In general (i.e. without the assumption N (x) = N , when Dp and Dq can lie in the
same connected component of h−1Dm) take

V = R(RN(x)(Dq, ∂Dq)) ∩ h−1Dm and U = R(V, h−1(Bm − D̊m))

(Figure 2). Then Cl(U − V ) ∩N (x) = ∅. Set ht = gt ◦ h on V and ht = h outside
U . Since gt = id on ∂Dm, the map ht is thus well-defined and could be extended
over U − V so that ht(h−1Dm) ⊂ Dm.

Now we check 3.1.1. By (c),

h1σ ∩ h1τ ⊂ h1D
p ∩ h1D

q = ∅, so ∆̃(h1) ∩ σ × τ = ∅.
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If, to the contrary, ∆̃(ht) ∩ E0 6= ∅ for some t, then there is a pair ν × µ ⊂ E0

such that ν × µ ∩ (∆̃(ht)− ∆̃(h0)) 6= ∅. Recall that in both cases τ × τ ⊂ E0 and
τ × τ 6⊂ E0 above ht is fixed outside U and htU ⊂ Dm. Therefore we may assume
that µ∩U 6= ∅ and ν ∩ h−1Dm 6= ∅. Since µ∩U 6= ∅, it follows that µ ⊃ τ , hence
ν × τ ⊂ E0, therefore ν ⊂ N (x) by our dimension assumption. Then by (b) and
ν ∩ h−1Dm 6= ∅ it follows that either ν ⊃ σ or ν ⊃ τ . Since µ ⊃ τ , ν × µ ⊂ E0

but σ × τ 6⊂ E0 , it follows that in fact ν ⊃ τ . Hence τ × τ ⊂ E0 (in the first
case this is already a contradiction) and µ ⊂ N (x). Since ht moves V isotopically
and Cl(V − U) ∩ N (x) = ∅, it follows that ht moves R(ν ∪ µ) isotopically. So
∆̃(ht) ∩ ν × µ = ∅. This contradiction shows that ∆̃(ht) ∩ E0 = ∅.

Let
E = (E0 ∩ T̃ ) ∪ (σ × τ − D̊p × D̊q) ∪ (τ × σ − D̊q × D̊p).

By the Borsuk Homotopy Extension Theorem, there is an extension Φ′ : E1 →
Sm−1 of h̃|E such that the homotopy h̃t from Φ = h̃0 to h̃1 on E extends to a
homotopy from Φ to Φ′ on E1∩ T̃ . Therefore now it suffices to prove the Theorem
assuming that ∆(h0) ∩ E1 = ∅.

Figure 2

Proof of Theorem 3.1 assuming that ∆(h0) ∩ E1 = ∅. We use the notation and
assumptions from the first paragraph of the proof. Let h = h0 and x = m− 2.
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We begin with a construction of certain balls Dm, Dp and Dq. By general
position, we can take points Cσ ∈ σ̊ and Cτ ∈ τ̊ so that the restrictions of h to
Rσ(Cσ) and Rτ (Cτ ) are flat embeddings. Join points hCσ and hCτ by an arc
C ⊂ B̊m such that C ∩ hN (x) = {hCσ, hCτ}. We have p ≤ q ≤ m − 2, and the
balls Dm, Dp and Dq are constructed as above and have the properties (a) and
(b), whereas (a) holds even for Dp replaced by Dq (note that x ≥ q).

Now we construct the homotopy ht as in the first part depending on some
element y ∈ πq(Sm−p−1). Suppose that h+ : Dp tDq → Dm is a map such that
h+ = h on Dp t ∂Dq and h+Dp ∩ h+Dq = ∅. Define a map

dhh+ : Sq = Dq
⋃

∂Dq=∂Dq

+

Dq
+ → Dm − hDp by dhh+ |Dq = h and dhh+ |Dq

+
= h+.

By (a), Dm − hDp ' Sm−p−1, hence [dhh+ ] ∈ πq(Sm−p−1). For each y ∈
πq(Sm−p−1) we can construct a map h+ such that dhh+ = y. Then analogously
to the first part we can construct a homotopy ht such that h1|Dq is homotopic to
h+|Dq in Dm − h1D

p and 3.1.1 holds. (The only difference is construction of ht

in the case τ × τ ⊂ E0 and q = m − 2, which is though not used in the proof of
Theorem 1.3α. In this case we may assume that p + q ≥ m − 1, otherwise 3.1.2
holds by general position. Since p + 2q ≤ 2m − 3, it follows that p = 1. Then
analogously to [MaRo86, Proposition 7.1] we may assume that h+ is an embedding,
ambiently isotopic to the standard one, so the required isotopy gt is constructed
without use of [PWZ61, Irw65].)

Now we choose y so that 3.1.2 holds. For any maps ϕ0, ϕ1 : Dp ×Dq → Sm−1

and a homotopy

ϕt : ∂(Dp ×Dq) → Sm−1 from ϕ0|∂(Dp×Dq) to ϕ1|∂(Dp×Dq)

define a map Hϕ0ϕtϕ1 : ∂(Dp ×Dq × I) → Sm−1 by

Hϕ0ϕtϕ1 |Dp×Dq×0 = ϕ0, Hϕ0ϕtϕ1 |∂(Dp×Dq)×t = ϕt and Hϕ0ϕtϕ1 |Dp×Dq×1 = ϕ1.

Then

[H
Φh̃th̃1

] = [H
ΦΦth̃

] + [H
h̃h̃th̃1

] = [H
ΦΦth̃

]± Σp[dhh1 ] ∈ πp+q(Sm−1).

Here by Φ, h̃ and h̃1 are denoted the restrictions of these maps onto Dp × Dq;
by Φt = Φ and h̃t are denoted the restrictions of these maps to ∂(Dp × Dq).
The second equality holds by [Web67, lemme 1] (the hypothesis m − p ≥ 3 in
[Web67] can clearly be replaced to (a)). Since q ≤ 2(m − p − 1) − 1, by the
Freudenthal Suspension Theorem it follows that we can take y ∈ πq(Sm−p−1) so
that [H

ΦΦth̃
]± Σpy = 0. Then [H

Φh̃th̃1
] = 0, i.e the homotopy h̃t on ∂(Dp ×Dq)

extends to a homotopy from Φ to h̃1 on Dp ×Dq. Then 3.1.1 and 3.1.2 hold. ¤
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4. Construction of an immersion

A possible approach to the proof of Theorem 1.3β∂ is to mimick the proof of the
smooth case [HaHi62], see [ReSk99, §11] for the details. But this idea does not
work because the PL Stiefel manifold V PL

mn (which is the space of PL embeddings
Sn−1 → Sm−1) is not a subset of the equivariant Stiefel manifold V eq

mn (which is the
space of equivariant maps Sn−1 → Sm−1). Neither it is obvious (and is possibly
false) that V PL

mn ∩ V eq
mn is a deformation retract of V PL

mn . Even if this problem can
be fixed, the proof of Theorem 1.3β∂ in the present paper (based on a different
idea) is shorter even than the proof of the results on homotopy groups of V PL

mn

[Hae67, Hae, Mil75], necessary to carry out the above approach.

Immersion Theorem 4.1. Let N be an n-polyhedron with a triangulation T ,
m ≥ n + 2 and Φ : TN − diag N → Sm−1 an equivariant map. Then there exist a
PL map h : N → Rm and a collection {ν+ = R(ν, ∂ν)}ν∈T such that

h is nondegenerate (i.e. h|σ is an embedding for each σ ∈ T ),
h|ν+ is an embedding whenever dim ν ≥ 3n− 2m + 2 and
h̃ 'eq Φ on

⋃
dim ν≥3n−2m+2

ν̃+.

Proof of Theorems 1.3β and 1.3β∂. In order to prove the surjectivity, take Φ ∈
πm−1

eq (SN) and a triangulation T of N . First we prove the surjectivity in Theorem
1.3β. Since 2m ≥ 3n+2, we have m ≥ n+2, so we can apply Immersion Theorem
4.1 to get a map h and a collection {ν+}. Since h|ν+ is an embedding for each ν,
it follows that h is an immersion. Since SN 'eq

⋃
ν∈T

ν̃+, it follows that β(h) = Φ.

Now we prove the surjectivity in Theorem 1.3β∂. Take a triangulation T of
N . We may assume that the (n− d− 1)-spine K is contained in the dual skeleton
of T (d). Apply Immersion Theorem 4.1 to get a map h and a collection {ν+}.
Since 3n− 2m + 2 ≤ d + 1, it follows that R(K) ⊂ ⋃

dim ν>d

ν+, hence h|R(K) is an

immersion. Since S(R(K)) ⊂ ⋃
dim ν>d

ν̃+, it follows that h̃ 'eq Φ on S(R(K)). If

gt : N → N is an isotopy between g0 = id and a homeomorphism g1 : N → R(K),
then h ◦ g1 : N → Rm is an immersion and

h̃ ◦ g1 = h̃ ◦ (g1 × g1) 'eq Φ ◦ (g1 × g1) 'eq Φ ◦ (g0 × g0) = Φ on SN.

The injectivity is reduced to the boundary version of the surjectivity (which is
proved analogously) in the same way as in §5 (using Cylinder Lemma 5.1.β). ¤

Our proof of Immersion Theorem 4.1 uses Disjunction Theorem 3.1 and induc-
tion on simplices. Our idea is in a sense similar both to [Hir59] and to [Web67, §6,
Har69, proof of Theorem 2]. The method of [Web67, Har69] was actually designed
for the proof of Theorem 1.1α and thus is not optimal: the result of [Web67,
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Har69] concerning the existence of an immersion has the dimension restriction
2m ≥ 3n + 3 instead of 2m ≥ 3n + 2 as in Theorem 1.3β. The proofs [Web67,
Har69] can be perhaps modified to work for 2m ≥ 3n + 2 (at least to obtain some
immersion h, i.e. without the property h̃ 'eq Φ on SN).

Beginning of the proof of Immersion Theorem 4.1. Order simplices of T with
respect to increasing of dimension. By ‘<’ we denote the corresponding order
relation and by ‘⊂’ a proper face (thus ν ⊃ η ⇒ dim ν > dim η ⇒ ν > η). By
downward induction on η we may assume that for an r-simplex η ∈ T such that
r ≥ 3n−2m+2 there exists a nondegenerate PL map H : N → Rm and a collection
{ν+ = R(ν, ∂ν)}ν∈T such that

(a) H|ν+ is an embedding for each ν > η;
(b) H̃ 'eq Φ on E :=

⋃
ν>η

ν̃+.

The induction base η = {the last simplex of T} is proved by taking H to
be a map, linear on simplices of T , and ν+ = stT ν for each ν. Thus we may
additionally assume by induction that

(c) for each k-simplex ν ≤ η there exist homeomorphisms (compatible with
each other for distinct ν)

lk ν ∗ ν ∼= ν+ and Sm−k−1 ∗Hν ∼= RRm(Hν,H∂ν)

such that H(lk ν) ⊂ Sm−k−1 and H|lk ν∗ν = H|lk ν ∗H|ν .
The above make sense because H is nondegenerate and so H|ν is an embedding.

In this proof we identify X and Y with the subsets X ∗ ∅ and ∅ ∗ Y of X ∗ Y .
We also identify lk η with the image of lk η under the above homeomorphism. We
recommend the reader to read this proof for the particular case when N a PL
manifold (this case is sufficient for the proof of Theorem 1.3β and hence of 1.3α).
For this case lk η below is homeomorphic to Sn−r−1.

By (c) we can take a PL ball Bm−r−1 ⊂ Sm−r−1 containing H lk η and denote
h0 = H|lk η : lk η → Bm−r−1 (Figure 3). We have dim lk η ≤ n− r − 1. Denote

Lν = ν+ ∩ lk η and E0 =
⋃
ν⊃η

Lν × Lν .

By (a) and (b)

∆̃(h0) ∩ E0 = ∅ and Φ 'eq H̃, even Φ = H̃ on E.

Cone Lemma 4.2. Let X be a polyhedron. Denote cX = X×[0,1]
X×1 and identify

X = X× 0 ⊂ cX. Fix a triangulation T of X and let cT be the cone triangulation
of cX.
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Figure 3

(4.2.1) There is an equivariant surjective map p : c̃T → ΣT̃ whose only non-
trivial preimages are those of the vertices of the suspension and are c × X and
X × c. This map is natural on the inclusion, i.e. for a subcomplex T1 of T we
have pT1 = pT |c̃T1

.

(4.2.2) If h : X → Bm−1 is an embedding and ch : cX → cBm−1 ⊂ Bm is the
cone map, then the map c̃h : c̃T → Sm−1 is well-defined and close to (Σh̃) ◦ p.

(4.2.3) Hi
eq(c̃X, c̃T ∪ θ) = 0 for each i, where Lν are subcomplexes of T and

θ = ∪ν c̃Lν .

Proof of 4.2.1 and 4.2.2. For each ([x, s], [y, t]) ∈ c̃T either s = 0 or t = 0
(Figure 4). Let p([x, s], [y, t]) = [(x, y), s − t]. It is easy to check that p is well-
defined, surjective, equivariant and natural on the inclusion. The p-preimage of a
point [(x, y), s] ∈ ΣT̃ is not a unique point if and only if s = ±1. Such non-trivial
preimages p−1[T̃ × 1] and p−1[T̃ × {−1}] are c×X and X × c, respectively.

If ([x, s], [y, t]) ∈ c̃T , then (x, y) ∈ T̃ , hence hx 6= hy, so ch[x, s] 6= ch[y, t].
Therefore c̃h is well-defined on p−1ΣT̃ |L. Let u, v = u−v

|u−v| . We have

Σh̃ ◦ p([x, s], [y, t]) = Σh̃[(x, y), s− t] = [h̃(x, y), s− t] = [hx, hy, s− t]

and c̃h([x, s], [y, t]) = [hx, s], [hy, t]. For s > t (s < t) these two points both lie in
the open northern (southern) hemisphere, for s = t they even coincide. So they
are indeed not antipodal. ¤

The proof of 4.2.2 shows that in 4.2.2 we can replace the map ch by any map
H : cX → cBm−1 such that Hc = c and HX ⊂ Bm−1.
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Figure 4

Proof of 4.2.3. We tacitly consider equivariant cohomology groups. Consider two
restriction homomorphisms Hi(c̃X) r→ Hi(c̃T ∪ θ)

r1→ Hi(c̃T ). From the exact
sequence of the pair (c̃X, c̃T ∪ θ) we obtain that it suffices to prove that r is an
isomorphism. Since c̃T is an equivariant deformation retract of c̃X, it follows that
r1 ◦ r = id. Thus it suffices to prove that r1 is an isomorphism. Consider the
Mayer–Vietoris sequence

. . .
s1⊕s2→ Hi−1(c̃T ∩θ) δ→ Hi(c̃T ∪θ)

r1⊕r2→ Hi(c̃T )⊕Hi(θ)
s1⊕s2→ Hi(c̃T ∩θ) → . . . .

Since c̃Lν equivariantly deformationally retracts to c̃T |Lν
and these retractions

are natural on the inclusion, they agree on the intersections, so θ equivariantly
deformationally retracts to c̃T ∩ θ. Therefore s2 is an isomorphism. Hence δ = 0
and the projection ker(s1 ⊕ s2) = im(r1 ⊕ r2) → Hi(c̃T ) is an isomorphism. Thus
r1 is an epimorphism. Since δ = 0, it follows that r1 ⊕ r2 is a monomorphism, so
r1 is an isomorphism. ¤

Continuation of the proof of Immersion Theorem 4.1: construction of H1 and
{ν+

1 }. We recommend the reader to read the proof first for the particular case
r = 0. Take a triangulation Tη of lk η in which all ν∩lk η and Lν are subcomplexes.
Denote by T+

η the join triangulation of η+. By an isotopy of Rm we can modify
Bm−r−1 to a standard ball. Since the join η+ = η ∗ lk η is homeomorphic to the
iteration of r + 1 cones, by (c) we can apply Cone Lemma 4.2.1 r + 1 times to



100 A. Skopenkov CMH

obtain an equivariant surjective map p : T̃+
η → Σr+1T̃η. By applying 4.2.2 r + 1

times we have that

H̃ 'eq p∗Σr+1h̃0 on Θ := p−1Σr+1
⋃
ν⊃η

T̃η|Lν
.

For r = 0 we have

Θ =
⋃
ν⊃η

(c̃Tη|Lν
∪ c× Lν ∪ Lν × c) =

⋃
ν⊃η

c̃Tη|Lν
= T̃+

η ∩ E

because ∪νLν = lk η. Analogously Θ = T̃+
η ∩ E for arbitrary r.

By the equivariant Borsuk Homotopy Extension Theorem Φ is homotopic to
an equivariant extension

Φ′ : T̃+
η → Sm−1 of p∗Σr+1h̃0 : Θ → Sm−1.

Since n ≤ m− 2, by applying r + 1 times Theorem 2.5 we obtain that the map

p∗Σr+1 : πm−r−2
eq (T̃η, E0 ∩ T̃η, h̃0) → πm−1

eq (T̃+
η ,Θ,Φ′|Θ)

is surjective. The preimage of Φ′ under this map is an equivariant extension

ϕ : T̃η → Sm−r−2 of h̃0 : E0 ∩ T̃η → Sm−r−2.

Since r ≥ 3n− 2m + 2, we have 3(n− r− 1) ≤ 2(m− r− 1)− 3, hence we can
apply Disjunction Theorem 3.1 to lk η, Tη, A = ∅, E0, E1 = lk η× lk η and Φ = ϕ.
We obtain a homotopy ht : lk η → Bm−r−1 from h0 to an embedding h1 such that
∆̃(ht) ∩ E0 = ∅ for each t.

By (c) we can identify

(η+, η, ∂η) with (c lk η ∗ ∂η, c ∗ ∂η, ∂η)

and (RRm(Hη,H∂η),Hη,H∂η) with (cSm−r−1 ∗H∂η, c ∗H∂η,H∂η).

Let ν+
1 = ν+ for ν 6= η and η+

1 = {[x, t] ⊂ c lk η | 1
2
≤ t ≤ 1} ∗ ∂η.

Define a map

Ht : c lk η → cSm−r−1 by Ht[x, s] =
{

[h2s(x), s] 0 ≤ s ≤ t
2

[ht(x), s] t
2 ≤ s ≤ 1

(Figure 5). Extend Ht to c lk η ∗ ∂η as a join with H|∂η and then to the rest of N
by H to obtain a map Ht : N → Rm.
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Figure 5

Completion of the proof of Immersion Theorem 4.1: verification of the properties
of H1 and {ν+

1 }. The map H1|η+
1

is an embedding as a join with an embedding

h1. If ν > η and ν 6⊃ η, then H1 = H on ν+, hence H1|ν+
1

is an embedding. Since

∆̃(ht)∩E0 = ∅, it follows that H1|ν+
1

is an embedding for each ν ⊃ η. Thus H1|ν+
1

is an embedding for each ν ≥ η.
If ν < η, then either ν ⊂ η or ν ∩ η̊+ = ∅, so H1|ν is an embedding. Thus H1

is nondegenerate.
If ν ≤ η, then H1|ν+ is a join both in the intersection with η+ by the construc-

tion of H1, and outside this interection by the inductive hypothesis, and these join
structures are compatible. Thus (c) holds for H and ν+ replaced by H1 and ν+

1 .

It remains to prove that H̃1 'eq Φ on E ∪ η̃+
1 . The triangulation T+

η induces
a join triangulation T1 of η+

1 . By Cone Lemma 4.3.3 it suffices to prove that
H̃1 'eq Φ on E ∪ T̃1. Clearly, H̃t is well-defined on E. We shall construct a
homotopy Φt : T̃1 → Sm−1 from Φ0 = Φ to Φ1 = H̃1 and then sew H̃t with Φt

to obtain the required homotopy Ψt between Ψ0 = Φ and Ψ1 = H̃1. Note that
H0 = H and Ht = cht|c lk η∗H|∂η = ht|lk η∗H|η on η+

1 . Denote by p : T̃1 → Σr+1T̃η

the new map given by application of Cone Lemma 4.2.1 r + 1 times and define
the new Θ as above. It is easy to check that the properties of p and Θ used below
(analogous to and using the properties of old p and Θ).

By the construction of ϕ we have p∗Σr+1ϕ ' Φ′ rel Θ. Therefore the linear
homotopy between close maps Φ = H̃0 and Φ′ = p∗Σr+1h̃0 on Θ extends to a
homotopy Φt, t ∈ [0, 1

3 ], between Φ0 = Φ and Φ1/3 = p∗Σr+1ϕ on T̃1.
By the construction of ht using 3.1.2 we obtain that there exists a homotopy

ϕt : T̃η → Sm−r−2 between ϕ0 = ϕ and ϕ1 = h̃1 extending the homotopy h̃t :
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E0 ∩ T̃η → Sm−r−2. For t ∈ [13 , 2
3 ] let Φt = p∗Σr+1ϕ3t−1. Then by Cone Lemma

4.2.2 Φt(x) is close to H̃3t−1(x) for t ∈ [13 , 2
3 ] and x ∈ Θ.

Finally, for t ∈ [23 , 1] let Φt be the linear homotopy between close (by Cone
Lemma 4.2.2) maps Φ2/3 = p∗Σr+1h̃1 and Φ1 = H̃1.

In order to sew H̃t and Φt take an ε > 0 such that H̃t is defined on the ε-
neighborhood OεE of E (or just extend H̃t to OεE). By compactness we may
assume that ε is so small that the maps H̃0 and Φt for t ∈ [0, 1

3 ], H̃3t−1 and Φt

for t ∈ [13 , 2
3 ], H̃1 and Φt for t ∈ [23 , 1] are close on T̃1 ∩ OεE. Let τ(x) = |x,E|

3ε .
Define a map

Ψ′
t : T̃1∩OεE → Rm−{0} by Ψ′

t =


3τΦ t

3τ
+ (1− 3τ)H̃0 t ≤ τ

3τΦq + (1− 3τ)H̃3q−1 τ ≤ t ≤ 1− τ

3τΦ1− 1−t
3τ

+ (1− 3τ)H̃1 t ≥ 1− τ

,

where q = 1+t−3τ
3(1−2τ)

(Figure 6). Note that in the above formula τ ≤ 1
3 and we

use the agreement that Ψ′
t = H̃t for τ = 0 and t ∈ {0, 1}. We omit x which is

the argument of Ψ′
t,Φt, H̃t and τ . It is easy to check that Ψ′

t is continuous (even
at points x ∈ E, for all of which τ(x) = 0). Then we can define the required
homotopy Ψt by

Ψt =
Ψ′

t

|Ψ′
t|

on T̃1 ∩OεE, Ψt = H̃t on E and Ψt = Φt on T̃1 −OεE. ¤

For the approximative relative version of Theorems 1.3β and 1.3β∂ stated in
§1, in the above proof we take sufficiently fine T and use the corresponding approx-
imative relative version of Immersion Theorem 4.1, which is proved analogously
(we start with taking H very close to g and ν+ so small that (c) holds).

Proof of Example 1.10. Example 1.10.i follows because there exists a smooth em-
bedding S4l−1 → Rm, which is not smoothly regular homotopic to the standard
inclusion [Hae66A, Remark 6.8].

Example 1.10.ii follows because β3l+1
DIFF (S2l) is surjective (by Theorem 1.1β) but

there exists a piecewise-smooth immersion S2l → R3l+1, which is not piecewise-
smoothly regularly homotopic to a smooth immersion [Hae67, 5.4, Theorem 5.6].

In order to construct Example 1.10.s take an (n − 1)-polyhedron K from Ex-
ample 1.2.ee with the property (∗) of §1. Then N = cK does not PL immerse in
Rm, but πm−1

eq (SN) 6= ∅, even πm−1
eq (Ñ) 6= ∅, by Cone Lemma 4.2.1. Example

1.10.s is true also for m = n = 4, which follows from [MaSe67, Theorem 2]. ¤

We conjecture that α/β
3n
2 +1

PL (Sn) is not surjective. An evidence for this conjec-
ture is as follows. By Example 1.10.ii, the restriction 2m ≥ 3n + 3 is sharp in the
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Figure 6

injectivity part of Theorem 1.3β even for closed PL manifolds. The only point in
the proof of the injectivity in Theorem 1.3β for closed PL manifolds, which would
not go for 2m = 3n+2, is the application of a partial case of the Disjunction The-
orem 3.1. Therefore this partial case is false, and this partial case is very similar

to the surjectivity of α/β
3n
2 +1

PL (Sn).
We conjecture that if N is an n-polyhedron and m > n, then the map f 7→ ∆f

defines a 1–1 correspondence between the set of PL immersions N → Rm up to PL
regular homotopy and the set of PL bundle monomorphisms Φ : TN → Rm up to
homotopy through PL bundle monomorphisms, cf. [Lee69]. Here TN is sufficiently
small neighborhood of the diagonal in N×N (not to be confused with the previous
notation for TN). For a map f : N → Rm the map ∆f : N × N → Rm can be
defined by the formula ∆f(x, y) = fx− fy. The reason for using such a notation
is that ∆f is a ‘finite difference, approximating df ’. The map Φ : TN → Rm is a
PL bundle monomorphism, if the restriction of Φ onto each fiber (of the projection
onto the first factor) is a PL embedding. A similar conjecture can be stated for
the classification of TOP immersions of locally contractible compacta.

We conjecture that in the proof of Immersion Theorem 4.1 we may require
that (c) holds for each ν, not only for ν ≤ η. To check this improved property
(c’) for H1 and {ν+

1 }, constructed in the proof, observe that (c’) for m ≥ n + 3
follows from (c) and (a) by the Unknotting Cones Theorem [Lic65, Corollary on
p. 71]. For m = n + 2 we have 3n− 2m + 2 = n− 2. So for dim ν = n (c’) holds
since ν+ = ν, for dim ν = n − 2 (c’) is not violated during the constructions of
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H1 for distinct (n− 2)-simplices ν (since the corresponding ν+ may be chosen to
have disjoint interiors), and for dim ν = 1 (c’) could follow from a version of the
Unknotting Cones Theorem. Or else for m = n + 2 preservation of (c’) for ν > η
could follow from corresponding improvement of Disjunction Theorem 3.1.

5. Deleted product of cylinder and applications

Denote ΣX = X×[−1,1]
X×1,X×(−1)

. Embed X as X × 0 into ΣX.

Cylinder Lemma 5.1. (5.1.α) For a polyhedron N there is an equivariant sur-
jective map p : Ñ × I → Σ(Ñ × I) whose only non-trivial preimages are those of
the vertices of the suspension and are homotopy equivalent to N ×N .

Moreover, if H : N × I → Rm × I ⊂ Rm+1 is a level-preserving map, E ⊂eq

N × I × N × I and ϕ : Ñ × diag I → Sm−1 is an equivariant homotopy between
H̃|N×0 and H̃|N×1 such that ∆̃(H)∩E = ∅ and ϕ = H̃ on E ∩ (Ñ × diag I), then
Φ := Σϕ ◦ p 'eq H̃ on E ∩ Ñ × I.

(5.1.β) The same as above replacing Ñ by SN , Ñ × I by S(N × I) and N ×N
by N .

Proof of 5.1.α [cf. Web67, 7.1, Sko97, 3.3, Sko00, 3.1]. Take a metric on N such
that diamN < 1. Define the map p by

p(x, s, y, t) =
[(

x, y,
s + t

2

)
,

s− t

max{|x, y|, |s− t|}
]
.

See [Sko97, Figure 1 and idea of proof of Lemma 3.3], cf. Figure 7.a. It is easy to see
that p is well-defined, equivariant and surjective. Clearly, the non-trivial preimages
of p are those of the vertices of the suspension. They retract deformationally to
N × 0×N × 1 and to N × 1×N × 0, so they are homotopy equivalent to N ×N .
Observe that Φ(x, t, y, t) = ϕ(x, y, t), hence Φ = H̃ on E ∩ (Ñ × diag I). Since H
preserves levels, it follows that for s < t (s > t) and (x, s, y, t) ∈ E, both Φ(x, s, y, t)
and H̃(x, s, y, t) are in the northern (southern) open hemisphere. Therefore Φ and
H̃ are close on E ∩ Ñ × I. Hence Φ 'eq H̃ on E ∩ Ñ × I. ¤

Proof of 5.1.β. Take a small ε > 0 such that

S(N × I) 'eq {(x, s, y, t) ∈ Ñ × I : |x, y|+ |s− t| = ε}.

Define the map

p : S(N × I) → Σ(SN × I) by p(x, s, y, t) =
[(

x, y,
s + t

2

)
,
s− t

ε

]



Vol. 77 (2002) On the Haefliger–Hirsch–Wu invariants 105

Figure 7

(Figure 7.b). It is easy to see that p well-defined and to verify the properties of p
(the non-trivial preimages are N± = {(x, s, x, s± ε) ∈ S(N × I)} ∼= N × I ' N).

¤

Proof of the quasi-injectivity in Theorem 2.2.q. Take PL embeddings f0, f1 : N →
Rm and an equivariant homotopy ϕ : Ñ × I → Sm−1 from f̃0 to f̃1. Take the
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linear homotopy G : N × I → Rm × I between f0 and f1 and a triangulation T1

of N × I. Let E = (N × {0, 1})∗. Since

G̃ = ϕ on E ∩ Ñ × diag I = Ñ × 0× 0 ∪ Ñ × 1× 1,

we can apply Cylinder Lemma 5.1.α to obtain an equivariant map Φ : Ñ × I →
Sm such that Φ 'eq G̃ on E ∩ Ñ × I. Let K be the union of N × {0, 1} and
the (n − d)-skeleton of the dual cell-subdivision to T1. We may assume that
K∩(T (d)

1 ∩N×0)× 1
2 = ∅. Apply boundary version of the surjectivity in Theorem

1.3β∂ [cf. Sko97, Theorems 1.1.b and 3.1] (or Theorem 1.1β∂, if N , f0 and f1 are
smooth outside a point) to obtain a PL immersion h0 : R(K) → Rm× I such that

h0(x, 0) = f0(x), h0(x, 1) = f1(x) and h̃0 'eq Φ on Ñ×0×0∪Ñ×1×1∪S(R(K)).

Extend h0 to a map N × I → Rm × I. Take a new triangulation T of N × I such
that K is a subcomplex of T and such that for E0 = (N×{0, 1})∗∪[K∗∩T (N×I)]
we have

∆̃(h0) ∩ E0 = ∅ and h̃0 'eq Φ, even h̃0 = Φ on E0 ∩ T̃ .

Since n + 1 + 2(n− d) ≤ 2(m + 1)− 3, we can apply Disjunction Theorem 3.1
for

N = N×I, A = N×{0, 1}, E0 = (N×{0, 1})∗∪ [K∗∩T (N×I)] and E1 = K∗.

Since ∆̃(h1) is closed, by 3.1.1 it follows that there exists

RN×I(K) ⊂ N × I − (T (d)
1 ∩N × 0)× 1

2
such that ∆̃(h1) ∩RN×I(K)∗ = ∅.

Hence V := N × I −RN×I(K) = RN×I

(
(T (d)

1 ∩N × 0)× 1
2

)
and Σ(h1) ⊂ V.

Since N×I is d-connected, by the Engulfing Lemma [Irw65, Theorems 2.1 and 2.3]
it follows that (T (d)

1 ∩N×0)× 1
2 is contained in some PL n-ball in N× I̊. Therefore

by the Uniqueness of Regular Neighborhood Theorem, V is also contained in some
(possibly, another) PL n-ball Bn ⊂ N × I̊. We have Σ(h1) ⊂ V ⊂ Bn, hence h1 is
a quasi-concordance. ¤

Proof of the (quasi-)injectivity in Theorems 2.2.q/β, 2.1.α/β and 2.1.α/β∂ for
the PL case. Take PL embeddings f0, f1 : N → Rm and an equivariant homotopy
ϕ : Ñ × I → Sm−1 from f̃0 to f̃1. Take a PL regular homotopy h0 : N × I → Rm

from f0 to f1 such that

h̃0 'eq ϕ on SN × diag I = SN × I rel SN × {0, 1}.
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Fix a triangulation T of N × I such that ∆̃(h0) ∩ T (N × I) = ∅. Extend the
map ϕ : SN × diag I → Sm−1 to Ñ × 0 × 0 as f̃0 and to Ñ × 1 × 1 as f̃1. Let
E = (N × {0, 1})∗ ∪ T (N × I). Then

h̃0 'eq ϕ, even h̃0 = ϕ on E∩(Ñ×diag I) = SN×diag I∪Ñ×0×0∪Ñ×1×1.

Therefore we can apply Cylinder Lemma 5.1.α to obtain an equivariant map Φ :
Ñ × I → Sm such that h̃0 'eq Φ, even h̃0 = Φ on E ∩ T̃ .

The quasi-injectivity in Theorem 2.2.q/β is now proved as in the proof of
Theorem 2.2.q (K = T (n−d) ∪N × {0, 1} and T1 is the cell-subdivision dual to T

such that K ∩ (T (d)
1 ∩N × 0)× 1

2 = ∅).
The injectivity in Theorem 2.1.α/β follows by applying Disjunction Theorem

3.1 to

N × I, A = N × {0, 1}, E0 = E and E1 = N × I ×N × I.

In order to prove the injectivity in Theorem 2.1.α/β∂, assume that the union
K of N × {0, 1} and the product of the (n − d − 1)-spine with the interval I is
a subcomplex of T . Since 3(n − d) ≤ 2(m + 1) − 3, we can apply Disjunction
Theorem 3.1 for

N×I, A = N×{0, 1}, E0 = (N×{0, 1})∗∪TK ⊂ E and E1 = (N×{0, 1})∗∪K×K.

Then the theorem follows because h1|RN×I(K) is an embedding for some RN×I(K)
such that

(RN×I(K), N × 0, N × 1) ∼= (N × I,N × 0, N × 1). ¤

Theorem 5.2 (5.2.α). If PL embeddings f0, f1 : N → Rm of an n-polyhedron N
are TOP quasi-concordant and m ≥ n + 2, then α(f0) = α(f1).

(5.2.β) If PL immersions h0, h1 : N → Rm of an n-polyhedron N are TOP
regular concordant and m ≥ n + 2, then β(h0) = β(h1).

Proof [cf. Sko00, Lemma 1.0]. We prove only 5.2.α (the proof of 5.2.β is analogous).
Take a TOP quasi-concordance F : N × I → Rm × I between f0 and f1. Take a
triangulation T of N such that Σ(F ) is contained in a star of some point of N .
Let T × I be the product cell-subdivision of N × I. Since F̃ (N ×N × 0× 1) and
F̃ (N ×N ×1×0) lie in the northern and in the southern open hemispheres of Sm,
it follows that the map F̃ : T̃ × I → Sm is homotopic rel T̃ × 0 × 0 ∪ T̃ × 1 × 1
to some map Φ : T̃ × I → Sm such that Φ(N ×N × 0× 1) and Φ(N ×N × 1× 0)
are the northern and in the southern poles of Sm, respectively.

Now we need a simplicial version of Cylinder Lemma 5.1.α. For each (x, s, y, t) ∈
T̃ × I we have either x 6= y or {s, t} = {0, 1}. Define a map

p : T̃ × I → Σ(T̃ × I) by p(x, s, y, t) =
[(

x, y,
s + t

2

)
, s− t

]
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(Figure 7.a). It is easy to check that p is equivariant surjective, that its only
non-trivial preimages are those of the vertices of the suspension and they are
N ×N × 0× 1 and N ×N × 1× 0. Hence there is a map Φ′ : Σ(T̃ × I) → Sm such
that Φ = Φ′ ◦ p. Analogously to Cylinder Lemma 5.1.α we have

Σ(f̃0 t f̃1) ◦ p 'eq F̃ on X := (N × {0, 1})∗ ∩ T̃ × I.

Moreover, we can check that X = p−1Σ(T̃ × {0, 1}). By the construction of the
homotopy Σ(f̃0 t f̃1) ◦ p 'eq F̃ 'eq Φ′ ◦ p on X we can see that

Σ(f̃0 t f̃1) 'eq Φ′, even Σ(f̃0 t f̃1) = Φ′ on pX = Σ(T × {0, 1}.

Since 2n + 1 ≤ 2(m− 1)− 1, by Theorem 2.5 the map

Σ : πm−1
eq (T̃ × I, T̃ × {0, 1}, f̃0 t f̃1) → πm

eq(Σ(T̃ × I), pX,Φ′|pX)

is surjective. Therefore there exists an equivariant homotopy ϕ : T̃ × I → Sm−1

between f̃0 and f̃1 (such that Σϕ 'eq Φ′, but this property is unnecessary). ¤

Note that the proof of Theorem 5.2.β works under the weaker assumption that
there is an immersion F : N×I → Rm+1 (not→ Rm×I) such that F (x, 0) = h0(x)
and F (x, 1) = h1(x). Therefore the restriction n ≤ m− 2 is sharp. Indeed, for the
two embeddings h0, h1 : S1 → R2 with different orientation, h̃0 6'eq h̃1 on SS1,
but the immersion F as above do exist.

Another motivation for Theorems 1.1β, 1.3β and 1.3β∂ is the following simple
corollary of 5.2.

Corollary 5.3. If N is TOP immersible in Rm and βm
PL(N) is surjective, then

N is PL immersible in Rm. Particularly, PL immersability of N into Rm does
not depend on the PL structure on N . If m ≥ n + 2, βm

PL(N) is injective and two
PL immersions N → Rm are TOP regular concordant, then they are PL regular
concordant.

Theorem 1.3 can analogously be applied to obtain smooth immersion from a
PL or TOP one (as well as to the corresponding results on regular homotopies,
embeddings and isotopies), but these applications (in contrast to Corollary 5.3)
are covered by known results.

Corollary 5.4 [cf. Hir66, Ros93, RSS95]. Suppose that N is either an n-polyhedron
or a smooth n-manifold, m ≥ n + 2 and αm(N) is surjective (see Theorems 1.1α,
1.1α∂ and 1.3α). If either cN TOP embeds into Rm+1 or (N × I TOP embeds in
Rm+1 and Hi(N) = 0 for i ≥ m− n), then N embeds into Rm.
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Proof. Suppose that N × I TOP embeds in Rm+1 and Hi(N) = 0 for i ≥ m− n.
Let T be a triangulation of N . Consider the maps

Emb m(N) α→ πm−1
eq (T̃ )

pr∗→ πm−1
eq (T̃ × I) Σ→ πm−1

eq (Σ(T̃ × I))
p∗→ πm

eq(T̃ × I),

where pr : T̃ ×I → T̃ is the projection and p is the map from the simplicial version
of Cylinder Lemma 5.1.α (formulated in the proof of Theorem 5.2). Clearly, pr∗

is an equivariant homotopy equivalence. Since dim T̃ ≤ 2n, by the equivariant
Suspension Theorem Σ is surjective for m ≥ n + 2. By the Künneth formula the
condition Hi(N) = 0 for i ≥ m−n implies that Hi(N ×N) = 0 for i ≥ m. Hence
any map N × N → Sm is null-homotopic. Therefore by the equivariant Borsuk
Homotopy Extension Theorem, any equivariant map Ñ × I → Sm is homotopic
to the one which factors through the compression of non-trivial preimages of p. So
p∗ is surjective. Since N × I embeds into Rm+1, it follows that πm

eq(T̃ × I) 6= ∅.
Since α is surjective, this implies that Embm(N) 6= ∅.

The case when cN TOP embeds into Rm+1 is proved analogously using Cone
Lemma 4.2 instead of Cylinder Lemma 5.1.α. ¤

The assumption on TOP embeddability in Corollary 5.4 can be relaxed to
quasi-embeddability, cf. [MaSe67].

Note that if N is a polyhedron, cN TOP embeds into Rm+1 and (cN, c) does
not contain topologically (Bm+1, 0), then there is an equivariant map ΣÑ → Sm.
For dimN ≤ m − 1 this is proved analogously to Corollary 5.4. The below proof
works without dimension restrictions. By Cone Lemma 4.2 and the equivariant
Borsuk Homotopy Extension Theorem, it suffices to prove that for an embedding
f : cN → Rm+1, the map f̃ |(c×N)t(N×c) is null-homotopic. There is an m-sphere
in Rm+1 such that the vertex fc and the base fN of the embedded cone are
contained in different connected components of the complement to this sphere.
Since (cN, c) does not contain topologically (Bm+1, 0), it follows that fcN does
not contain any neighborhood of fc in Rm+1. Therefore we may assume that
fc ∈ Rm × (0,+∞) and fN ∈ Rm × (−∞, 0). Then f̃(c×N) and f̃(N × c) are in
the northern and in the southern hemisphere of the unit sphere Sm, respectively,
and we are done.

The following Pseudo-Isotopy Theorem 5.5 confirms [ReSk98, Conjecture 1.9.c],
generalizes [Web67, Theorem 1’], improves [ReSk98, Theorem 1.2] and also pro-
vides a shorter proof of [ReSk98, Theorem 1.2] for 2m ≥ 3n+4. The introduction
and motivations can be found in [ReSk96, §9, CRS98, §4, ReSk98, §1]. For a map
g : N → Rm denote

Ñg = {(x, y) ∈ N×N | gx 6= gy} = Ñ−∆̃(g) and Map g =
N × I

{g−1x× 1}x∈g(N)
.

Pseudo-Isotopy Theorem 5.5. Let N be an n-polyhedron, g : N → Rm a PL
map and 2m ≥ 3n + 4.



110 A. Skopenkov CMH

a) If f : N → Rm is a PL embedding such that g̃ 'eq f̃ on Ñg, then f is PL
pseudo-isotopic to g (i.e. there is a PL homotopy ft : N → Rm from f0 = f to
f1 = g such that ft is an embedding for each 0 ≤ t < 1).

b) [cf. Mel] The following conditions are equivalent:
(I) g is isotopically approximable by embeddings (i.e. there exists a pseudo-

isotopy, arbitrary close to g, from an embedding f to g);
(A) g is approximable by embeddings;
(Φ) there exists an equivariant map Φ : Ñ → Sm−1 such that Φ|

Ñg 'eq g̃.

Proof. In Theorem 5.5.b (I) ⇒ (A) is clear, (A) ⇒ (Φ) is simple [ReSk98, Theorem
1.2, necessity] and (Φ) ⇒ (I) follows from [Web67, Theorem 1] and Theorem 5.5.a.
So let us prove Theorem 5.5.a. Apply Mapping Cylinder Lemma 5.6 to the linear
homotopy G between f and g. Then by [Sko97, Theorem 1.1.c] — the boundary
version of [Web67, Theorem 1] — it follows that there exists a PL embedding
F : Map g → Rm × I (a ‘pseudo-concordance’ from f to g) such that

F (x, 0) = f(x)× 0, F (g(x), 1) = g(x)× 1 and F (N × (0, 1)) ⊂ Rm × (0, 1)

[cf. Sko94, §4]. Since F is PL, we can find a small ε > 0 and modify F to achieve
F (x, t) ⊂ Rm × t for each t ≤ ε. Therefore by the Concordance Implies Isotopy
Theorem [Lic65, Hud70] we can modify F to achieve F (x, t) ⊂ Rm × t for each
ε ≤ t ≤ 1. So F become a pseudo-isotopy from f to g. ¤

Mapping Cylinder Lemma 5.6. Let N be an n-polyhedron, g, f : N → Rm a
PL map and a PL embedding such that f̃ 'eq g̃ on Ñg and G : Map g → Rm × I
a map such that

G(x, 0) = f(x)× 0, G(N × (0, 1)) ⊂ Rm × (0, 1)

and G|g(N) is a composition g(N) ⊂ Rm ∼= Rm × 1. Then G̃ is defined over

E := M̃ap g ∩ (p × p)(N × N × ∂(I × I)) and there exists an equivariant map
Ψ : M̃ap g → Sm such that Ψ 'eq G̃ on E.

Proof. Take a triangulation T of N in which g is simplicial, and the corresponding
triangulation of Map g. It suffices to prove the same result with the simplicial
deleted product of Map g, which we denote by M̃ap g. Let

M = T̃ × 0× I ∪ T̃ × I × 0 ∪ T̃ g × I × I ∪ N ×N × 0× 1 ∪ N ×N × 1× 0,

where T̃ g =
⋃

gσ∩gτ=∅
σ × τ . Let π : N × I → Map g be the projection. Since π

is a surjection, it follows that π × π : M → M̃ap g is a surjection. Therefore in
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order to construct the required map Ψ it suffices to construct an equivariant map
Ψ′ : M → Sm which assume constant value on each fiber of π×π and is such that

Ψ′ 'eq G̃ ◦ (π × π) on M ∩ (N ×N × ∂(I × I)).

Let ϕ : T̃ g × I → Sm−1 be an equivariant homotopy between f̃ and g̃ on T̃ g.
Extend ϕ to Y = T̃ × 0 × 0 ∪ T̃ g × diag I by f̃ . Take a metric on N such that
diamN < 1. Define a map

p : M → Σ(Ñ × I) by p(x, s, y, t) =

{ [(
x, y, min{s,t}

1−|s−t|
)
, 2(s− t)

]
2|s− t| ≤ 1[

Y, s−t
|s−t|

]
2|s− t| ≥ 1

.

Then pM ⊂ ΣY , hence the map Ψ′ = Σϕ ◦ p is well-defined. Since

Ψ′|
T̃ g×1×1

= g̃ and Ψ′(x, 1, y, t) = Σϕ[(x, y, 1), 2(s− t)] = [g̃(x, y), 2(s− t)],

it follows that Ψ′ assume constant value on each fiber of π × π. Analogously to
Cylinder Lemma 5.1.α and Cone Lemma 4.2.2 we prove that

Ψ′ = G̃ ◦ (π × π) on T̃ × 0× 0 ∪ T̃ g × 1× 1

and these maps are close on the rest of M ∩ (N ×N × ∂(I × I)). Hence they are
indeed equivariantly homotopic. ¤

6. Knotted tori

Torus Lemma 6.1. For p ≤ q and m ≥ p+q+2 there are homomorphisms σ, γ,
ρ and maps τ , ω such that the diagram below (anti)commute, the homomorphisms
σ, γ, ρ and pr1 are isomorphisms under the dimension restrictions m ≥ A, where
A is shown near the notation of a map:

πq(Vm−q,p+1) −→
τ

Embm(Sp × Sq) −→
α

πm−1
eq ( ˜Sp × Sq)yρ 3q

2 +p+2

yω

yγ p+q+3

πq(V
eq
m−q,p+1) −−−−−−−→

σ 3q+p
2 +2

Πm−1
pq

pr1 q+2p+2←−−−−−−−− Πm−1
pq ⊕Πm−1

qp

Here the equivariant Stiefel manifold V eq
mn is the space of equivariant maps

Sn−1 → Sm−1. Define Πm−1
pq := πm−1

eq (Sp×S2q), where the involution on Sp×S2q

is ap×tq and tq : S2q → S2q is the symmetry with respect to Sq ⊂ S2q. The group
structure on Πm−1

pq is defined as follows. For equivariant maps ϕ,ψ : Sp × S2q →
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Sm−1 define the map ϕ + ψ : Sp × S2q → Sm−1 (the unity and the inverse of ϕ)
on x× S2q to be the ordinary sum of the restrictions of ϕ and ψ to x× S2q (the
ordinary unity and the ordinary inverse of the ϕ|x×S2q ).

Torus Lemma 6.1 generalizes, in particular, the following observation [MaRo86,
§3]. We have S̃q t Sq 'eq Sq×Sq tSq×Sq tSq tSq, where the involution on the
right-hand term exchanges antipodes on each copy of Sq and also the corresponding
points from the two copies of Sq × Sq. Therefore

πm−1
eq (S̃q t Sq) ∼= πm−1(Sq × Sq)

v∗q∼= πm−1(S2q) ∼= πS
2q+1−m

for m ≥ q+2. Here the map vq : Sq×Sq → Sq×Sq

Sq∨Sq
∼= S2q is the quotient map. We

can prove that the map v∗q is an isomorphism for m ≥ q + 3 using general position
and for m = q+2 using the cofibration exact sequence of the pair (Sq×Sq, Sq∨Sq)
and the existence of a retraction rq : Σ(Sq × Sq) → Σ(Sq ∨ Sq).

Proof of Torus Lemma 6.1. In order to define the map τ , recall that πq(Vm−q,p+1)
is isomorphic to a group of CAT maps Sq → Vm−q,p+1 up to CAT homotopy. The
latter maps can be considered as CAT maps ϕ : Sq×Sp → ∂Dm−q. Define a CAT
embedding τCAT (ϕ) as the composition

Sp × Sq ϕ×pr2→ ∂Dm−q × Sq ⊂ Dm−q × Sq ⊂ Rm.

Figure 8

There is an equivariant deformation retraction

˜Sp × Sq → adiag Sp × Sq × Sq
⋃

adiag Sp×adiag Sq

Sp × Sp × adiag Sq
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(Figure 8). Consider the involution (s, x, y) → (−s, y, x) on Sp×Sq×Sq. For m ≥
p+ q +2 the map idSp ×vq induces an isomorphism πm−1

eq (Sp×Sq ×Sq) ∼= Πm−1
pq .

For m ≥ p + q + 3 this is proved using general position and for m = p + q + 2
using the cofibration exact sequence of the pair (Sp×Sq×Sq, Sp× (Sq ∨Sq)) and
a retraction Σ(Sp × Sq × Sq) → Σ(Sp × (Sq ∨ Sq)) obtained from the retraction
idSp ×rq : Sp×Σ(Sq×Sq) → Sp×Σ(Sq ∨Sq) by shrinking to a point the product
of Sp with the vertex of the suspension. We also need to check that the involution
on Sq × Sq exchanging factors corresponds to tq.

Consider restrictions of an equivariant map ˜Sp × Sq → Sm−1 to adiag Sp ×
Sq × Sq and to Sp × Sp × adiag Sq (where adiag is antidiagonal). Define the map
γ to be a direct sum of compositions of such restrictions and the isomorphisms
(idSp ×vq)∗ and (idSq ×vp)∗. If dim(adiag Sp × adiag Sq) = p + q ≤ (m − 1) − 2,
then γ is an isomorphism by general position and the Borsuk Homotopy Extension
Theorem.

By general position, for 2p + q ≤ m − 2 we have Πm−1
qp = 0, hence pr1 is an

isomorphism. Let ω be the map corresponding under (idSp ×vq)∗ to the map

Sp × Sq × Sq → Sm−1 defined by (s, x, y) 7→ f̃((s, x), (−s, y)).

Clearly, the right-hand square of the diagram commutes.
Recall that ρ is the inclusion homomorphism. By [HaHi62], ρ is an isomor-

phisms for m ≥ 3q
2 + p + 2.

Define σ as a composition

πq(V
eq
m−q,p+1) = πm−q−1

eq (Sp × Sq) Σq

→ πm−1
eq (Σq(Sp × Sq))

pr∗→ Πm−1
pq

Here the involution on Sp × Sq is ap × idSq , the involutions on ΣqSq and on
Σq(Sp × Sq) are the ‘suspension’ involutions over idSq and ap × idSq ; the map

pr : Sp ×ΣqSq = Sp × Sq ×Dq

Sq × y, y ∈ ∂Dq
→ Sp × Sq ×Dq

Sp × Sq × y, y ∈ ∂Dq
= Σq(Sp × Sq)

is a quotient map. The ‘Sp-fiberwise’ group structures on πm−q−1
eq (Sp × Sq) and

on πm−1
eq (Σq(Sp × Sq)) are defined analogously to that on Πm−1

pq . It is easy to see
that σ is an isomorphism. Analogously to [Ker59] it is proved that the left-hand
square of the diagram (anti)commutes.

By the Equivariant Suspension Theorem, it follows that Σq is an isomorphism
for p+q ≤ 2(m−q−1)−2. The non-trivial preimages of pr are Sp×[Sq×y], y ∈ ∂Dq.
Their union is homeomorphic to Sp × ∂Dq. Since dim(Sp × ∂Dq) = p + q − 1,
by general position it follows that pr∗ is an isomorphism for p + q − 1 ≤ m − 3.
Therefore σ is an isomorphism for m ≥ 3q+p

2 + 2 ≥ p + q + 2. ¤

By Theorems 1.1α and 1.3α, the maps αDIFF and αPL are bijective for m ≥
3(q+p)

2 + 2 and m ≥ 3q
2 + p + 2, respectively. From the existence of τ and Torus
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Lemma 6.1 it follows that αDIFF is surjective for m ≥ max(3q
2 + p + 2, q + 2p + 2)

[cf. Boe71, BoHa70]. Note that some maps of Torus Lemma 6.1 are epimorphisms
under the weaker by one dimension restrictions than stated there.

The PL Stiefel manifold V PL
mn is the space of PL embeddings Sn−1 → Sm−1.

Replacing V → V PL, we can define analogously a map τPL : πq(V PL
m−q,p+1) →

Embm
PL(Sp × Sq).

It would be interesting to apply smoothing theory to prove the following con-
jectures:

Emb m
DIFF (Sp×Sq)=πq(Vm−q,p+1)⊕Cm−p−q

p+q for m≥max
(3q

2 +p+2, q+2p+2
)
,

where Cm−p−q
p+q = Embm

DIFF (Sp+q) (note that Cm−p−q
p+q = 0 for m ≥ 3(p+q)

2 + 2);
and

Emb3k+1
DIFF (Sk × Sk) = X ⊕Ck+1

2k for k ≥ 2, where X is Z∨Z for k even and is
either Z2 ∨ Z2 or Z2 ⊕ Z2 for k odd (for a group G we define G ∨ G = {(x, y) ∈
G⊕G | either x = 0 or y = 0}).

The classification of knotted tori, i.e. description of isotopy classes of embed-
dings Sp × Sq → Rm seems to be an interesting problem because it generalizes
an important classical theory of 2-componented links (of the same dimension)
[Hae66C], and just as the link theory, provides interesting examples and connec-
tions between geometric topology and homotopy theory. In particular, this classifi-
cation is a natural next step (after the link theory) towards understanding isotopy
classes of an arbitrary manifold in Rm (by the Handle Decomposition Theorem).

Torus Lemma 6.2. If s ≥ 3, p1 ≤ · · · ≤ ps, n = p1 + · · · + ps and N =
Sp1 × · · · × Sps , then the same assertion as in Torus Lemma 6.1 holds for the
following diagram:

πn−p1(Vm−n+p1,p1+1) −→
τ

Embm(N) −→
α

πm−1
eq (Ñ)yρ

3n−p1
2 +2

yω

yγ 2n−p1−p2+3

πn−p1(V
eq
m−n+p1,p1+1) −−−−−−−−→

σ 3n
2 −p1+2

Πm−1
p1,n−p1

pr1 2n−p2+2←−−−−−−−−− ⊕iΠm−1
pi,n−pi

Proof. Analogous to Torus Lemma 6.1. We shall only give definitions of τ and
σ and omit the details. The map τ is defined as follows. An element ϕ ∈
πn−p1(Vm−n+p1,p1+1) is represented by a map Sn−p1 × Sp1 → Sm−n+p1−1. Con-
sider the projections

pr 1 : N → Sp1 × Sp2+···+ps = Sp1 × Sn−p1 and pr 2 : N → Sp2 × · · · × Sps .

Analogously to the case s = 2, define an embedding τ(ϕ) as the composition

Sp1 × Sp2 × · · · × Sps
(ϕ◦pr1)×pr2→ ∂Dm−n+p1 × Sp2 × · · · × Sps ⊂ Rm.
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The map σ is defined analogously to the case s = 2 as a composition

πn−p1(V
eq
m−n+p1,p1+1)

= πm−n+p1−1
eq (Sp1 × Sn−p1) Σn−p1→ πm−1

eq (Σn−p1(Sp1 × Sn−p1))
pr∗→ Πm−1

p1,n−p1
.

Here the maps Σn−p1 and pr∗ are isomorphisms for 2m ≥ 3n − 2p1 + 4 and
m ≥ n + 2, respectively. ¤

We conjecture that α4
PL(N) is surjective for a closed 2-manifold (e.g. a torus)

N . Note that this is true for non-closed connected 2-manifolds. Since π3
eq(Ñ) ∼=

H1(N, Z2), this conjecture for orientable surfaces is implied by the following one:
If N is a closed orientable 2-surface, γ ⊂ N is a circle representing an element
[γ] ∈ H1(N, Z2), e : N2 → R4 is the standard embedding, hγ : N ∼= N is the
Dehn twist along γ, and d(e, e ◦ hγ) is the difference element [Hud69, §11], then
d(e, e ◦ hγ) = [γ]. Indeed, the latter conjecture implies that every element of
H1(N, Z2) is representable by a difference element d(e, f) for some embedding
f : N → R4. Similar conjecture can be stated for non-orientable 2-surfaces, using
local coefficients.

7. Construction of examples

Proof of Example 1.2.ss. Example 1.2.ss follows because α6k+1
PL (S2k×S2k) is bijec-

tive by Theorem 1.3α (or by [Boe71, Hae62B]) but there exists a PL embedding
S2k×S2k → R6k+1, non-isotopic to a smooth embedding [Hae62A, BoHa70, p. 165,
Boe71, 6.2]. ¤

Proof of Example 1.2.ii. Take a standard embedding f : Sn ∨ Sn → Sm. Then
Sm−f(Sn∨Sn) ' Sm−n−1∨Sm−n−1. Take a map ϕ : S2m−2n−3 → Sm−f(Sn∨
Sn) representing the Whitehead product of generators. If n = 1 and m = 3, then
ϕ is homotopic to an embedding by general position. If n > 1, then

2(2m− 2n− 3)−m + 1 ≤ m− n− 2 and m− (2m− 2n− 3) ≥ 3,

so ϕ is homotopic to an embedding by the Irwin Embedding Theorem. Define f on
S2m−2n−3 to be such an embedding. Since the homotopy class of ϕ is non-trivial,
it follows that f is not isotopic to the standard embedding g. Using ‘finger moves’
analogously to [SSS98] we construct a map F : N × I → Rm × I such that

F (x, 0)=(f(x), 0), F (x, 1)=(g(x), 1) and F ((Sn∨Sn)×I)∩F (S2m−2n−3×I)=∅.

Analogously to the proof of Theorem 5.2.α we obtain that αm
G (N)f = αm

G (N)g
(for each G). So αm

G (N) is not injective. ¤
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We conjecture that the non-trivial embedding f of Example 1.2.ii can be ob-
tained from the Borromean rings Sn t Sn t S2m−2n−3 ⊂ Rm [Hae62T, Mas90,
Proposition 8.3] by ‘wedging’ SntSn. We also conjecture that by joining SntSn

with a tube we obtain analogous example Sn t S2m−2n−3 → Rm (this is though
harder to prove: either we need to check that the linking coefficient of such a link
is [ιm−n−1, ιm−n−1] 6= 0 for m − n 6∈ {2, 4, 8}, or we need to apply the Hudson–
Habegger invariant [cf. Hae62T, §3, Sko]). Note that for 2m = 3n + 3 ≥ 12 by
joining all the three components of the Borromean rings by two tubes the cele-
brated DIFF non-trivial but PL trivial knots are obtained [Hae62A, Hae66A].

In this section we assume that m ≥ max{2p + q + 2, p + q + 3} (unless the
opposite is stated). So by Torus Lemma 6.1 we can identify πm−1

eq ( ˜Sp × Sq) with
Πm−1

pq and α with ω.

Decomposition Lemma 7.1. For m ≥ 2p + q + 2 and p ≥ 1 there is the fol-
lowing (anti)commutative diagram, in which the first and the third lines are exact
sequences of homomorphisms.

πq(Vm−q−1,p) −→
µ′′

πq(Vm−q,p+1) −→
ν′′

πq(Vm−q,1)yτp−1

yτ

y=

Embm−1
PL (Sp−1 × Sq) −→

µ′
Embm

PL(Sp × Sq) −→
ν′

πq(Sm−q−1)yαp−1

yα

yΣ∞

Πm−2
p−1,q −→

µ
Πm−1

pq −→
ν

πS
2q+1−m

.

Proof. Let ν′′ and µ′′ be the homomorphisms induced by the mappings of the well-
known bundle Vm−q−1,p → Vm−q,p+1 → Vm−q,1. For an embedding f : Sp×Sq →
Rm let ν′(f) be the linking coefficient of f(x×Sq) and f(−x×Sq) in Rm. Define
the map ν : Πm−1

pq → Πm−1
0q

∼= πS
2q−m+1 as ‘the restriction over ∗ × S2q’. Clearly,

the right-upper square of the diagram commutes. The right-bottom square of the
diagram (anti)commutes by [Ker59, Lemma 5.1].

By Sp = Dp
+

⋃
∂Dp

+
=Sp−1=∂Dp

−

Dp
− we denote the standard decomposition of Sp.

Analogously are defined Rm
± and Rm−1. By the Irwin–Zeeman Embedding and

Isotopy Theorem [Zee62, Irw65], for m ≥ 2p+q+2 any embedding f : Sp−1×Sq →
Sm−1 can be uniquely up to isotopy extended to an embedding f± : Dp

± × Sq →
Rm
± . Two embeddings f+ and f− define an embedding µ′(f) : Sp × Sq → Rm [cf.

Hud63]. Clearly, the left-upper square of the diagram commutes.
Let us define the map µ first for the case p = 1. For a map ϕ : S2q → Sm−2

define the map µϕ to be the equivariant extension of the composition D1×S2q pr→
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ΣS2q Σϕ→ Sm−1. In order to define the map µ for arbitrary p, replace

Πm−2
p−1,q and Πm−1

pq by πm−2
eq (Σq(Sp−1 × Sq)) and πm−1

eq (Σq(Sp × Sq)),

respectively (see the proof of Torus Lemma 6.1). For an equivariant map ϕ :
Σq(Sp−1 × Sq) → Sm−2 let µϕ be the composition

Σq(Sp × Sq) = Σq(ΣSp−1 × Sq)
Σq pr→ Σq+1(Sp−1 × Sq)

Σϕ→ ΣSm−2,

where pr is the map from the proof of Torus Lemma 6.1. Clearly, the definition
for arbitrary p agrees with that for p = 1. It is easy to check that both ν and µ
are homomorphisms.

Let us prove the commutativity of the left-bottom square. We prove this for
p = 1, for general case the proof is analogous. Take an embedding f : S0 × Sq →
Rm−1. We have µ′f(D1

± × Sq) ⊂ Rm
± . In this paragraph denote by Πm−1

pq the
space of equivariant maps Sp × Sq × Sq → Sm−1 with respect to the involution
(s, x, y) → (−s, y, x) on Sp×Sq×Sq; modify accordingly the definition of ω; denote
by µ′, ω and ω0 the maps of spaces (not of equivalence classes), corresponding to
µ′, ω and ω0. See the proof of Torus Lemma 6.1; recall that we identify α = ω and

isomorphic groups πm−2
eq ( ˜S0 × Sq) ∼= πS

2q−m+2. Let pr be the projection from the
definition of µ for the case p = 1. Observe that ωµ′f = ω0f on S0 × Sq × Sq. For
each y ∈ S1 × Sq × Sq the points (ωµ′f)y and (Σω0f ◦ pr)y are either both in the
upper or both in the lower open hemisphere of Sm−1. Hence ωµ′f 'eq Σω0f ◦ pr,
i.e. ωµ′ = µω0.

Let us prove the exactness at Πm−1
pq . Clearly, νµ = 0. On the other hand, if

Φ : Sp × S2q → Sm−1 is an equivariant map such that Φ|∗×S2q is null-homotopic,
then by the Borsuk Homotopy Extension Theorem, Φ is equivariantly homotopic
to a map which maps ∗ × S2q and ap(∗) × S2q to antipodal points of Sm−1. By
the equivariant Suspension Theorem, the latter map is in imµ, since p− 1 + 2q ≤
2(m− 2)− 1. So ker ν = im µ. ¤

Note that all the maps of Decomposition Lemma 7.1 except µ′ are defined for
m ≥ p + q + 3.

Proof of Example 1.4. Set q = n−1 ≤ m−4. Now Example 1.4.s is proved looking
at the right-bottom square of the diagram from Decomposition Lemma 7.1 and
using the surjectivity of ν′′ from Corollary 7.2 below. The specific examples can
be found using [Tod64, §14] (set l = m− n = m− q − 1 and k = 2q + 1−m).

Since p < k, we have m ≥ 2p + q + 2. Now Example 1.4.i is proved looking
at the right squares of the diagram from Decomposition Lemma 7.1 and using
Lemma 7.3 below. ¤

For a group G let G(k) = G[k] = G for k even, let G(k) = G/2G for k odd and
let G[k] be the subgroup of G formed by elements of order 2 for k odd. If G is
finite abelian, then G(k)

∼= G[k]
∼= G⊗ Z(k). Denote πS

l = 0 for l < 0.
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Corollary 7.2. Suppose that p = 1 and m ≥ q + 4. For the diagram of Decom-
position Lemma 7.1 we have

im ν = πS
2q−m+1,[m−q] and coim µ = πS

2q−m+2,(m−q)

(recall that we identify Πm−2
0q = πS

2q−m+2). So Πm−1
1q is adjoint to (πS

2q−m+2 ⊕
πS

2q−m+1)⊗Z(m−q), unless m = 2q + 1 and q is even, when Πm−1
1q

∼= Z2. If m− q

is even and 2m ≥ 3q + 4, then Πm−1
1q

∼= πS
2q−m+2 ⊕ πS

2q−m+1. If m − q is even,
then both ν′′ and ν′ are epimorphic.

Proof. Clearly, im ν consists of homotopy classes ϕ ∈ Πm−1
0q extendable to a map

D1×S2q → Sm−1. These ϕ, considered as maps ϕ : S2q → Sm−1 are exactly such
that am−1 ◦ ϕ ◦ tq ' ϕ. The latter condition is equivalent to (−1)mϕ = (−1)qϕ
(for m odd this follows by [Pos85, complement to lecture 6, (10), p. 264], since
h0 : π2q(Sm−1) → π2q(S2m−3) and 2q < 2m− 3). So im ν = ker(1− (−1)m−q).

In order to calculate kerµ denote by M the composition

S1 × ΣqSq pr→ Σq(S1 × Sq) ∼= Σq(ΣS0 × Sq)
Σq pr→ Σq+1(S0 × Sq),

where pr and pr are maps from the proof of Torus Lemma 6.1 (we use the same
notation pr for two distinct maps). Each map ψ : S2q → Sm−2 can be identified
with an equivariant map ψ : Σq(S0×Sq) → Sm−2. For each map ψ : S2q → Sm−2

we can construct an equivariant map h : ∂I2 × S2q → Sm−1 such that h|∂I×I×S2q

‘represents’ M ◦ ∗, h|I×0×S2q ‘represents’ Σψ ◦M and

h(s, 1, x, y) = −h(−s, 0, y, x) for (s, 1, x, y) ∈ I × 1× S2q.

Then h|I×1×S2q ‘represents’ ((−1)m+q+1Σψ) ◦M . Hence

h = Σ((1− (−1)m−q)ψ) ◦M, so µ((1− (−1)m−q)πS
2q−m+2) = 0.

It is easy to see that the above construction describes the entire kerµ.
Recall that Vm−q,2

∼= TSm−q−1. For m − q even we even have a section s :
Sm−q−1 → Vm−q,2 such that ν′′s∗ = id (note that the map τs∗ is a generalization of
[Zee62, Example] for q−r = 1). Therefore ν′′ is epimorphic, hence ν′ is epimorphic.
If 2m ≥ 3q + 4, then Σ∞ : πq(Sm−q−1) → πS

2q+1−m is an isomorphism. Hence
there is a section

ατs∗(Σ∞)−1 : πS
2q+1−m → Πm−1

1q , so Πm−1
1q

∼= πS
2q−m+2 ⊕ πS

2q−m+1. ¤

Lemma 7.3. (7.3.a) Πm−1
pq is finite if either p + q + 2 ≤ m ≤ 2q or p ≥ 1, q odd

≥ 3 and m = 2q + p + 1.
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(7.3.b) The image of the restriction homomorphism ν′′p : π4k−1(V2k+1,p+1) →
π4k−1(S2k) is infinite for p < 2k.

Proof. Let us prove (a) by induction on p. For the case p + q + 2 ≤ m ≤ 2q
the induction base is p = 0, when Πm−1

0q
∼= π2q(Sm−1) is indeed finite. For the

case m = 2q + p + 1, q odd ≥ 3 and p ≥ 1 the induction base is p = 1, when
Π2q+1

1q
∼= Z(q+2) is indeed finite by Corollary 7.2. The inductive step of (a) follows

by the induction hypothesis and Decomposition Lemma 7.1.
In order to prove (b) for p = 0 observe that the map ν0 is an isomorphism

and π4k−1(S2k) is infinite. Suppose that p ≥ 1 and there is an infinite set {xi} ∈
π4k−1(V2k+1,p) with distinct ν′′p−1-images. Consider the Serre fibration S2k+1−p →
V2k+1,p+1

ψ→ V2k+1,p and the following segment of its exact sequence:

π4k−1(V2k+1,p+1)
ψ∗→ π4k−1(V2k+1,p) → π4k−2(S2k−p).

Since π4k−2(S2k−p) is finite, by exactness it follows that the number of congruence
classes of π4k−1(V2k+1,p) modulo imψ∗ is finite. Therefore an infinite number of
xi (we may assume that all xi) lie in the same congruence class. By passing from
{xi} to {xi−x1} we may assume that this congruence class is the subgroup imψ∗
itself. Hence the inductive step follows from ν′′p = ν′′p−1ψ∗. ¤

For k even πk+l(Vk+2,2) ∼= πS
l ⊕ πS

l−1 because the tangent bundle Vk+2,2 →
Sk+1 has a section. Corollary 7.2 and Torus Lemma 6.1 imply that for k odd and
2 ≤ l ≤ k the group πk+l(Vk+2,2) is adjoint to (πS

l ⊕πS
l−1)⊗Z2 and πk+1(Vk+2,2) ∼=

Z2. Note that π2k+1(Vk+2,2) is not adjoint to (πS
k+1⊕πS

k )⊗Z2 for k odd by Lemma
7.3.b. Note that πq(Vn,p+1) is finite if either n ≤ q

2 + 1 or p + q+3
2 ≤ n ≤ q or

n ≥ q + p + 3 (by induction on p using the exact sequence of the above Serre
fibration). This yields another proof of Lemma 7.3.b. F. Cohen kindly informed
me that these remarks are known, although not in this explicit form.

Example 7.4. If l 6= 3, 7 is odd and Σ3 : π2l−1(Sl−1) → πS
l is epimorphic, then

α3l(S1 × S2l−1) is not injective.

π2l−1(Vl,1) −→
µ′′

π2l−1(Vl+1,2) −→
ν′′

π2l−1(Sl)y=

yτ

y=

π2l−1(Sl−1) −−→
τµ′′

Emb3l
PL(S1 × S2l−1) −→

ν′
π2l−1(Sl)yΣ3

yω

yΣ

πS
l −→

µ
Π3l−1

1,2l−1 −→
ν

πS
l+1

.
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Proof. The case l = 1 is obvious, so suppose that l > 1. By Decomposition Lemma
7.1 there exists (anti)commutative diagram as above. Since 3l ≥ 2 + (2l − 1) + 2,
it suffices to construct embeddings f, g : S1×S2l−1 → R3l such that ν′(f) 6= ν′(g)
but ωg = ωf . Let ϕ = [ιl, ιl] ∈ π2l−1(Sl). Recall that ϕ 6= 0 for l 6= 1, 3, 7 but
Σϕ = 0. Since l is odd, it follows that there is a section s : Sl → Vl+1,2 such that
ν′′s∗ = id. Let f = τs∗ϕ. We have ωf ∈ ker ν = imµ, hence there is y ∈ πS

l such
that µy = ωf . Since Σ3 is epimorphic, it follows that there is y′ ∈ π2l−1(Sl−1)
such that Σ∞y′ = y. Let g = τµ′′y′. Now the example follows from

ωf = µΣ3y′ = ωτµ′′y′ = ωg and ν′f = ϕ 6= 0 = ν′τµ′′y′ = ν′g. ¤

We conjecture that Σ3 : π2n−1(Sn−1) → π2n+2(Sn+2) = πS
n is epimorphic

for each integer n 6∈ {1, 2, 3, 7} (Triple Suspension Conjecture, cf. [Jam54] and
Example 7.4). This conjecture is true for n = 4s and for each n ≤ 30 by [Tod62,
§14 and addition to the Russian edition]. Indeed, for n ≥ 4, the EHP sequence

[Jam54] is π2n−1(Sn−1) Σ3

→ πS
n

H3→ πn(Vn+2,3)
P3→ π2n−2(Sn−1) Σ2

→ πS
n−1 (the last

homomorphism is Σ3 but it equals to Σ2 by stability). Recall that πn(Vn+2,3) is
0, Z2, Z2 ⊕ Z2 and Z4 according to n = 4s, 4s + 2, 4s + 1 and 4s − 1 [Pae54].
Since Σ2 above is an epimorphism for n 6= 2, 4, 8, it follows that Triple Suspension
Conjecture is equivalent to ‘P : πn(Vn+2,3) → π2n−2(Sn−1) is monomorphic for
n ≥ 4, n 6= 7’ and to ‘|πS

n−1| = vn|π2n−2(Sn−1)| for n = 5, 6 or n ≥ 9’ (or to the
same assertions for the 2-components). Here vn = 1, 2, 4 according to n = 4s + 1,
4s− 1 and 2s, respectively.

Note that im ν′ = im ν′′ = π2q−m+1,[m−q] for 2m ≥ 3q + 4. For m ≥ q + 4 and
m − q odd we have ker 2 ⊂ im ν′′ ⊂ im ν′ ⊂ ker 2Σ∞, where by 2 is denoted the
multiplication by 2. Indeed, from the exact sequence of the bundle Sm−q−2 →
Vm−q,2 → Sm−q−1 it follows that

ker(1− (−1)m−q) ⊂ im ν′′ ⊂ ker[(1− (−1)m−q)Σ∞].

Since ν′′ = ν′τ , it follows that im ν′′ ⊂ im ν′. If f : S1 × Sq → Rm is an
embedding, then the linking f(x × Sq t −x × Sq) is PL isotopic to the linking
f(−x×Sq tx×Sq). Therefore Σ∞(−1)m−qν′(f) = Σ∞ν′(f) i.e. ν′(f) ∈ ker[(1−
(−1)m−q)Σ∞]. Hence the above assertions on im ν′ and im ν′′ follow. By Lemma
7.3.b im ν′′ 6= πq(Sm−q−1)[m−q] for 2m ≤ 3q + 3.

Analogously to the proof of Example 1.4.s the results of the previous paragraph
show that

αm(S1 × Sq) is not surjective if m − q is odd ≥ 3 and Σ∞[1]πq(Sm−q−1)[1] →
πS

2q+1−m,[1] is not epimorphic.
Specific examples can be found using [Tod64, §14]. Note that if im Σ∞[m−q] 6⊃

πS
2q−m+1,[m−q], then by the Freudenthal Suspension Theorem either (q, l) =
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(6, 3), (14, 7) or q ≥ 2l + 1 and m = q + l + 1 ≤ 3q+1
2 (from the [l − 1]-version of

Triple Suspension Conjecture it follows that even q 6= 2l + 1 and m 6= 3q+1
2 ).

We conjecture that αm(Sp × Sq) is not surjective for (at least some) integers
a ≥ 0, b ≥ 0, c ∈ {0, 1, 2, 3}, 1 ≤ p ≤ 2c +8b− 1, k = (2a+1)24b+c 6∈ {2, 4, 8} and
m = q +k+1 such that Σ∞ : πq(Sm−q−1) → πS

2q+1−m is not epimorphic. Perhaps
this can be proved analogously to Example 1.4.s (note that ∂Dm−q would admit
p linearly independent vector fields and there would be a section s : Sm−q−1 →
Vm−q,p+1 such that ν′′s∗ = id).
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