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Abstract. In this paper we construct and study a natural invariant measure for a birational
self-map of the complex projective plane. Our main hypothesis—that the birational map be
“separating”—is a condition on the indeterminacy set of the map. We prove that the measure
is mixing and that it has distinct Lyapunov exponents. Under a further hypothesis on the
indeterminacy set we show that the measure is hyperbolic in the sense of Pesin theory. In this
case, we also prove that saddle periodic points are dense in the support of the measure.
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1. Introduction

In this paper and its predecessors [Dil1, Dil2] we develop an account of the dy-
namics of a birational map f+ : P2 ª. The general idea, inspired by similar work
[BS], [Bri], [FS1] in multi-variable complex dynamics, is to combine techniques
from pluripotential and smooth ergodic theory to construct and then study sev-
eral measure theoretic objects naturally associated with f+. The difficulty in our
context is the presence of the indeterminacy set I+ consisting of points at which
f+ is ill-defined. Points of indeterminacy make potential theoretic constructions
harder to accomplish and smooth ergodic theory more difficult to apply.

To proceed, let Θ be the Fubini–Study Kähler form on P2 and d > 1 be
the algebraic degree of f+—i.e. the degree of the polynomials that define f in
homogeneous coordinates. We showed in [Dil1] that there exist positive closed
(1, 1) currents

µ+ = lim
n→∞

1
dn

fn∗
+ Θ, µ− = lim

n→∞
1
dn

fn∗
− Θ

associated with a birational map f+ and its inverse f−, provided that deg fn
+ = dn

for all n ≥ 0. Here we consider the measure µ = µ+ ∧ µ−. It is important
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to stress that the currents µ+ and µ− are quite singular, especially at points of
indeterminacy. In order to finesse the “multiplication” of µ+ by µ−, we require that
our birational maps be separating. That is, if I+ =

⋃
n≥0 fn−(I+) is the closure of

the backward orbit of the indeterminacy set of f+, and I− is the corresponding
set for f−, then we insist that I+ ∩ I− = ∅.

The currents µ+ and µ− have the invariance properties f∗+µ+ = d ·µ+, f∗−µ− =
d · µ−. We show here that

Theorem 1.1. The measure µ is f+-invariant.

The proof of this theorem is less immediate than one might hope. The key
point is to show that µ attaches no mass to points of indeterminacy and, more
generally, to the critical set of f+. After establishing invariance, we adapt a proof
of Bedford and Smillie [BS] to show that

Theorem 1.2. µ is mixing with respect to f+.

Since mixing implies ergodicity, and the extended indeterminacy sets I+ and
I− are essentially invariant, this theorem has the consequence that at least one of
the sets I+ or I− is µ-negligible.

The central results in this paper concern the Lyapunov exponents of f+. Sup-
pose for a moment that we are in the more general situation of a measurable,
invertible and a.e. differentiable map h : X ª of a compact two dimensional man-
ifold and that ν is a probability measure that is ergodic with respect to h. Then
under the hypothesis that the the derivatives of h and h−1 are log integrable with
respect to ν, Oseledec’s Theorem guarantees the existence of two real numbers
χ−, χ+ that describe the growth rates of typical vectors under backward and for-
ward iteration. That is, for ν a.e. point p ∈ X and a generic vector v ∈ TpX, we
have

lim
n→∞

1
n

log ‖hn
∗v‖ = χ+,

and similarly for h−1 and χ−. Oseledec’s Theorem applies, in particular, if h is
an outright diffeomorphism. Here, we prove

Theorem 1.3. If f+ : P2 ª is birational and separating, then log+ ‖Df+‖ is µ
integrable. In particular, f+ satisfies the hypothesis of Oseledec’s Theorem.

By log+(·), we mean max{log(·), 0}. An important ingredient in the proof of
Theorem 1.3 is a rather technical result (Theorem 5.3) concerning regularity of
local potentials for µ+. If f+ were holomorphic (i.e. I+ = ∅) instead of birational,
the analogue for our regularity result would be that local potentials for µ+ are
Hölder continuous.

Lyapunov exponents are most meaningful when they are non-zero. The final
result of this paper gives a simple criterion sufficient to guarantee that Lyapunov
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exponents of a separating birational map are non-zero.

Theorem 1.4. If f+ : P2 ª is a degree d > 1 separating birational map and
µ(I+) = 0, then χ+ ≥ log d/4.

Combined with the remark following Theorem 1.2, this implies that at least
one of the Lyapunov exponents of a separating birational map is non-zero. Results
similar to Theorem 1.4 have been obtained by Bedford and Smillie [BS] for polyno-
mial diffeomorphisms of C2 and by Briend and Duval [Bri], [BD] for holomorphic
maps of Pn. The nearest precedent for the proof of Theorem 1.4 that we give here
is Briend’s thesis [Bri]. In particular, we appropriate his use of Lyapunov charts
and coverings by balls of small µ mass.

If µ(I+) = µ(I−) = 0, then Theorem 1.4 tells us that µ is (non-uniformly)
hyperbolic—i.e. neither Lyapunov exponent vanishes. In this case, we adapt a
standard proof of the closing lemma for uniformly hyperbolic maps to show

Theorem 1.5. If f : P2 ª is a degree d > 1 separating birational map such that
µ(I+) = µ(I−) = 0, then supp µ lies in the closure of the saddle periodic points
of f .

We remark that it is not difficult to produce examples of separating birational
maps. Any polynomial diffeomorphism of C2 extends to P2 as a birational map for
which I+ and I− are single (distinct) points. Hence a polynomial diffeomorphism
of C2 is separating. Such a map remains separating if one pre- or post-composes
with an automorphism of P2 close to the identity. More generally, if the f−–orbit
of each point in I+ converges to an f−–attracting cycle, then f+ is separating
and µ(I+) = 0. We refer the reader to the final section of [Dil1] for more specific
examples.

This paper is organized as follows.

• Section 2 provides the necessary background on birational maps and pluripo-
tential theory.

• Section 3 introduces the measure µ and contains the proof of Theorem 1.1.
Many thanks to Eric Bedford for helping us with the pluripotential theory
in this section.

• Section 4 contains the proof Theorem 1.2.
• Section 5 contains the proof of Theorem 1.3, including the regularity result

for local potentials for µ+.
• Section 6 reviews the pertinent facts about Lyapunov exponents and Lya-

punov charts. In particular, it states Oseledec’s Theorem (suitably tailored
to the present context).

• Section 7 contains the proof of Theorem 1.4.
• Section 8 contains the proof Theorem 1.5
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2. Birational maps and pluripotential theory: background

Let π : C3 \ {0} → P2 denote the usual projection sending lines through 0 to
points. Where a metric is implied but not specified in what follows, we assume
the Euclidean metric on C3 and the Fubini–Study metric on P2. Recall that any
homogeneous polynomial map f̃ : C3 → C3 naturally induces a map f : P2 →
P2 satisfying π ◦ f̃ = f ◦ π. Suppose that the coordinates of f̃ have no non-
constant common factors. Then we refer to the induced map f as a rational map
of (algebraic) degree d

def= deg f̃ . If f̃(p̃) = 0 for some p̃ 6= 0, then f(π(p̃)) cannot
be defined continuously. We refer to π(p̃) as a point of indeterminacy for f and
denote the set of all such points by I. It is not hard to show that I is always finite.

Throughout this paper, we will let f+ : P2 ª denote a birational map of
algebraic degree d > 1. That f+ is birational means that there exists an algebraic
curve V and another rational map f− : P2 → P2 such that f+ ◦ f− = f− ◦ f+ = id
on P2 \ V . It turns out that the degree of f− is also d.

We will distinguish objects corresponding to f+ from those corresponding to
f− using + and − sub/superscripts. For instance, we denote the critical set of f+

by C+ and remark that this set is an algebraic curve of degree 3d − 3 counting
multiplicity.

Proposition 2.1. The following statements are true for any birational map f+ :
P2 → P2.

(1) I+ ⊂ C+, and every irreducible component of C+ contains a point of I+.
(2) Given any irreducible curve V ⊂ C+, f+(V ) is a single point in I−; likewise,

given any p− ∈ I−, f−1
+ (p−) is a component of C+.

(3) f+ : P2 \ C+ → P2 \ C− is a biholomorphism.

In particular, our assumption that d > 1 implies that the critical sets C+, C−
and indeterminacy sets I+, I− are always non-empty. Proofs of Proposition 2.1 and
of several of the following results can be found in [Dil1], [Dil2]. It is interesting to
note that the algebraic degrees of fn

+ do not necessarily grow as one would expect
them to (i.e. one might guess that deg fn

+ = dn = deg f̃n
+). We require an extra

hypothesis on I+ and I− to guarantee predictable degree growth.

Proposition 2.2. The following statements are equivalent for a birational map
f+ : P2 → P2 with inverse f−:

(1) deg(fn
+) = dn for all n;

(2) I+ ∩ fn
+(I−) = ∅ for all n.

(3) fn
−(I+) ∩ fm

+ (I−) = ∅ for all n,m ≥ 0;

Following Sibony [Sib], we call maps satisfying any of these equivalent con-
ditions algebraically stable. We will assume throughout this paper that all our
birational maps belong to this category (in fact, shortly, we require something
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stronger). An important dynamical consequence of this assumption is the exis-
tence of a so-called Green’s function G̃+ for f+. The following theorem was proved
in [Dil1] and in a very different fashion in [Fav]. However, Sibony [Sib] has given
a quite simple proof that holds for general rational maps.

Theorem 2.3. Let f̃+ be a homogeneous representative for f+. Then the limit

G̃+(p̃) = lim
n→∞

1
dn

log
∥∥∥f̃n

+(p̃)
∥∥∥

exists pointwise and in L1
loc. The function G̃+ is plurisubharmonic and satisfies

(1) G̃+(λp̃) = G̃+(p̃) + log |λ| for every λ ∈ C;
(2) G̃+ ◦ f̃+ = d · f̃+.

The Green’s function G̃+ is defined on C3 rather than on P2 and determined
only up to an additive constant (depending on the choice of f̃+). However, ddcG̃+

is a positive closed current independent of the additive constant, and it induces a
positive closed current µ+ on P2 as follows. Let U ⊂ P2 be open and σ : U → C3

be a section of π. Then µ+|U = ddc(G̃+◦σ). It is quite natural to define f∗+µ+|U =
ddc(G̃+ ◦ f̃+ ◦ σ), in which case it follows immediately that f∗+µ+ = d · µ+. An
additional fact about µ+ (see [FS1]) that we will need is that µ+ concentrates no
mass on any algebraic curve.

We remark that any plurisubharmonic function ũ : C3 → R∪{−∞} satisfying
ũ(λp̃) = ũ(p̃)+ c log |λ| for some c > 0 induces a positive closed (1, 1) current ν on
P2 in the same way that G̃+ does. It is not hard to see that 〈ν,Θ〉 = c, where Θ
is the Kähler form for the Fubini–Study metric on P2 appropriately normalized.
Fornæss and Sibony [FS1] showed that every positive closed (1, 1) current on P2

is induced by a homogeneous potential ũ. In particular Θ is induced by log ‖p̃‖,
so the first conclusion in Theorem 2.3 translates to the statement that

µ+ = lim
n→∞

1
dn

fn∗
+ Θ.

In fact, µ+ attracts a great many positive closed (1, 1) currents under pullback.

Theorem 2.4. Let T be a closed (1, 1) current on P2. Suppose that T has a
bounded local potential (i.e. T = ddcu, where ‖u‖∞ < ∞) on a neighborhood of
each superattracting periodic point (if any) of f+. Then

lim
n→∞

1
dn

fn∗
+ T = µ+.

The convergence takes place in the weak topology and is uniform among all T
whose support excludes a fixed neighborhood of all superattracting cycles.

We showed in [Dil2] that this theorem can be extended to certain ‘truncated’
currents. In order to state the more general theorem, we define the extended
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indeterminacy set of f+ to be the closure of the backward orbit of I+—that is

I+ =
∞⋃

n=0

fn−(I+).

We also recall the mass norm of a positive current T on an open set U :

MU [T ] = sup{〈T, ϕ〉 : suppϕ ⊂ U, ‖ϕ‖∞ ≤ 1}.
Of course convergence in mass norm is much stronger than convergence in the
usual weak topology on currents. A slightly weakened version of Theorem 3.4 in
[Dil2] goes as follows.

Theorem 2.5. Let T be a positive closed (1, 1) current on P2 and ψ : P2 → C
be a smooth function. Suppose that local potentials for T are continuous on a
neighborhood of I+ ∪ suppψ. Then

lim
n→∞

1
dn

fn
−∗(ψT ) =

(∫
P2

ψ T ∧ µ−
)

µ+.

Convergence takes place in the weak topology and is consistent with differentiation
in that the sequences

1
dn

∂fn
−∗(ψT ),

1
dn

ddcfn
−∗(ψT )

both tend to zero in the mass norm on P2.

Two points in the statement of this theorem merit explanation. The first is
that the right side of the first equation implies that we can reasonably define the
product T ∧ µ− as a measure. This is not obvious, but since the next section is
devoted to a similar issue, we defer further discussion of wedge products of positive
currents until then. The second point to explain is the use of fn

−∗ rather than fn∗
+

in both equations. While these notations are interchangeable in the setting of
diffeomorphisms, we do not intend them to be so here. As we have already noted,
it makes sense to pull back positive closed currents by pulling back their potentials.
For present purposes, it suffices to take

fn
−∗(ψT ) = lim

j→∞
fn
−∗(χjψT ) = lim

j→∞
(χj ◦ fn

+)fn
−∗(ψT )

where χj : P2 → [0, 1] is any sequence of smooth functions satisfying
• χj vanishes on a neighborhood of the critical set C+

n of fn
−;

• χj ≡ 1 on a set Kj that increases to P2 \ C+
n as j goes to ∞.

More detailed discussion of the relationship between f∗+ and f−∗ acting on positive
currents occurs in [Dil2]. Suffice it to note here that if ψ ≡ 1 is trivial, then
fn∗
+ T ≥ fn

−∗T . The case where T is the current of integration over C−n provides an
example where the inequality is strict.
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3. Invariant measure

A formal construction suggests that pluripotential theory ought to yield an in-
variant measure for algebraically stable birational maps. Since f+ is algebraically
stable if and only if f− is, we can apply Theorem 2.3 to construct currents µ+ and
µ− associated with f+ and f−, respectively. Then we set µ = µ+ ∧ µ−. It seems
reasonable to expect that

f+∗µ = f+∗µ
+ ∧ f+∗µ

− =
µ+

d
∧ dµ− = µ+ ∧ µ− = µ. (1)

However, for the same reason that one cannot always multiply a pair of distri-
butions together, it is not generally possible to form the wedge product of two
currents. Furthermore, even if one can make sense of the wedge product, it re-
mains to determine whether pushforward by f+ will distribute across the product
as is assumed in (1). Our goal in this section is to address these difficulties and
show that with a stronger hypothesis on f+, the construction of an invariant mea-
sure from µ+ and µ− succeeds.

Bedford and Taylor (see [BT]) originated an integration by parts method for
taking the wedge product of positive closed currents with locally bounded poten-
tials. If W ⊂ C2 is open, u : W → R is locally bounded and plurisubharmonic,
and T is a positive closed (1, 1) current on W , then the action of ddcu ∧ T on a
test function ϕ is given by

〈ddcu ∧ T, ϕ〉 = 〈T, u ddcϕ〉.
It turns out that this defines ddcu ∧ T as a positive measure. This can be seen
from the following theorem of Bedford and Taylor (see [BT]).

Theorem 3.1. Suppose that uj , vj : W → R are decreasing sequences of smooth
plurisubharmonic functions converging pointwise to locally bounded plurisubhar-
monic functions u, v. Then

lim
j→∞

ddcuj ∧ ddcvj = ddcu ∧ ddcv

weakly.

Though examples indicate that the integration by parts construction cannot
be used to defined the wedge product of arbitrary positive closed currents, one
need not restrict oneself to positive closed currents with locally bounded poten-
tials. Indeed, Fornæss and Sibony [FS2] have shown that the integration by parts
construction and Theorem 3.1 succeed when the unboundedness loci of u and v
do not coincide too much. The precise condition they discovered is as follows. Let
Mu denote the smallest closed set such that p /∈ Mu implies that uj is bounded
on a neighborhood of p. Let Mv be the corresponding set for v. Then the wedge
product ddcu∧ddcv is admissible provided that Mu∩Mv lies in the pseudoconvex
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envelope of its complement in W . In particular, things go well if at any point in
W , at least one of the functions u or v is locally bounded.

Definition 3.2. We say that a birational map f+ : P2 → P2 is separating if
I+ ∩ I− = ∅.

In particular, f+ is algebraically stable if it is separating. The following theorem
is proved (in greater generality) in [Dil1].

Theorem 3.3. The Green function G̃+ for a separating birational map is contin-
uous on π−1(P2 \ I+).

In particular, local potentials for µ+ are bounded near any point in P2 \ I+.
Clearly, (P2 \I+)∪(P2 \I−) = P2 for a separating birational map, so we see from
the discussion above that the wedge product µ = µ+ ∧µ− is admissible for such a
map. In order to show that µ is also invariant, we will need a couple of preliminary
lemmas. We thank Eric Bedford for pointing these out to us and explaining their
proofs.

Lemma 3.4. Suppose that u and v are plurisubharmonic functions defined on the
unit polydisk ∆2, and that u is continuous. Then ddcu ∧ ddcv has no atoms.

Proof. It is enough to show that ddcu ∧ ddcv attaches no mass to the origin.
After subtracting off a constant, we can assume that u(0, 0) = 0 and set ω(r) =
sup|x|,|y|<r |u(x, y)|. We choose a smooth compactly supported function ψ : ∆2 →
[0, 1] such that ψ = 1 on ∆2/2, and we set ψr(x, y) = ψ(x/r, y/r) for r > 0. Let
θ = ddc ‖(x, y)‖2. Then since ddcu ∧ ddcv is positive, we have

ddcu ∧ ddcv(0) ≤ lim inf
r→0

∫
∆2

ψr ddcu ∧ ddcv

= lim inf
r→0

∫
∆2

u ddcψr ∧ ddcv

= lim inf
r→0

‖u ddcψr‖∞ Mr∆2 [ddcv]

≤ lim inf
r→0

Cω(r)
r2

∫
r∆2

θ ∧ ddcv

But the last line is bounded above by O(ω(r)) because of a consequence of Jensen’s
formula that we will use repeatedly in this paper (see e.g. [Dem], Consequence 4.4):

Fact 3.5. Suppose that T is a positive closed (1, 1) current defined on a neighbor-
hood of 0 ∈ C2. Then

1
r2

∫
B0(r)

T ∧ θ



762 J. Diller CMH

is an increasing function of r.

Since ω(r) tends to 0 with r, we are done. ¤

Lemma 3.6. Suppose that u and v are plurisubharmonic functions on the unit
polydisk ∆2 = {|x|, |y| < 1}. Assume that u is continuous and that its restriction
to the x axis is harmonic. Assume that the restriction of v to the x axis is locally
integrable (i.e. not identically −∞). Then ddcu ∧ ddcv concentrates no mass on
the x axis.

Proof. Since the conclusion is true if and only if it holds for every open subset of
the x-axis, we can assume without loss of generality that the restriction of v to
the x-axis is negative and (globally) integrable. By subtracting off u(x, 0), we can
assume that u(x, y) vanishes on the x axis. To prove the lemma, it will suffice to
show that ddcu ∧ ddcv places no mass on the disk D = {(x, 0) : |x| < 1/4}.

Let ψ : ∆ → [0, 1] be a smooth, compactly supported function such that
ψ(z) = 1 if |z| ≤ 1/2. Let ψr(z) = ψ(z/r), and let

ω(r) = sup{u(x, y) : |x| < 1
2
, |y| < r}.

Then

∫
D

ddcu ∧ ddcv = lim
r→0

∫
|x|<1/4
|y|<r

ddcu ∧ ddcv

≤ lim
r→0

∫
|x|<1/2
|y|<2r

ψ2r(y)ψ1/2(x) ddcu ∧ ddcv

= lim
r→0

∫
|x|<1/2
|y|<2r

u ddc[ψ2r(y)ψ1/2(x)] ∧ ddcv. (2)

We shall have to deal separately with each of the integrals that arises from ex-
panding

ddc[ψ2r(y)ψ1/2(x)] = ψ1/2(x) ddcψ2r(y) + ψ2r ddcψ1/2(x)
+ dψ2r(y) ∧ dcψ1/2(x) + dψ1/2(x) ∧ dcψ2r(y). (3)

Consider the part of the integral corresponding to the first term in equation (3).
In the following computation, we take advantage repeatedly of the fact that ψ
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appears as a function of only one of the variables x and y.

lim
r→0

∫
|x|<1/2
|y|<2r

uψ1/2(x) ddcψ2r(y) ∧ ddcv

≤ lim
r→0

ω(r)
r2

‖ddcψ‖∞
∫

|x|<1/2
|y|<2r

ddcv ∧ dy ∧ dȳ

2i

≤ lim
r→0

Cω(r)
r2

∫
|x|<1
|y|<4r

ψ4r(y)ψ(x) ddcv ∧ dy ∧ dȳ

2i

= lim
r→0

Cω(r)
r2

∫
|x|<1
|y|<4r

vψ4r(y) ddcψ(x) ∧ dy ∧ dȳ

2i

≤ lim
r→0

Cω(r)
r2

∫
|x|<1

∫
|y|<4r

|v(x, y)| dy ∧ dȳ

2i
∧ dx ∧ dx̄

2i
. (4)

But for almost every x ∈ ∆, we have that

lim
r→0

1
16πr2

∫
|y|<4r

|v(x, y)| dy ∧ dȳ

2i
↘ |v(x, 0)|.

Therefore, we can invoke the Lebesgue dominated convergence theorem and the
fact that ω(r) → 0 with r to conclude that the limit in (4) is zero. This takes
care of the contribution to (2) from the first term on the right side of (3). The
contribution from the second term can be handled in a similar fashion.

We can apply Schwarz’s inequality to the contribution from the third term on
the right side of (3).

lim
r→0

∣∣∣∣∣∣∣∣
∫

|x|<1/2
|y|<2r

u dψ2r(y) ∧ dcψ1/2(x) ∧ ddcv

∣∣∣∣∣∣∣∣

≤ lim
r→0




∫
|x|<1/2
|y|<2r

|u| dψ2r(y) ∧ dcψ2r(y) ∧ ddcv




1/2

×




∫
|x|<1/2
|y|<2r

|u| dψ1/2(x) ∧ dcψ1/2(x) ∧ ddcv




1/2

.

By the same reasoning employed for the first term, we can show that each of the
integrals in the last line behaves like O(ω(r)) as r tends to zero. In particular, the
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contribution to (2) from the third term in (3) vanishes. An identical argument
shows that the contribution from the fourth term vanishes as well. ¤

Theorem 3.7. The measure µ = µ− ∧ µ+ for a separating birational map has no
atoms and puts no mass on C+ or C−.

Proof. As we noted above, we can find a neighborhood U = U(p) of any given
point p ∈ P2 such that either G̃+ or G̃− is continuous on π−1(U). Switching to
local coordinates, we can assume that U = ∆2 is the unit polydisk, p = (0, 0) and
σ : ∆2 → C3 is a holomorphic section. Since µ± = ddcG̃± ◦ σ, Lemma 3.4 shows
that p is not an atom for µ.

In particular, µ places no mass on I+ and no mass on any singular point of C−.
To finish the proof, we need only show that µ places no mass on a neighborhood
of each regular point of C+ \ I+ and C− \ I−. Take a regular point p ∈ C+ \ I+,
for instance. Let V be the irreducible component of C+ containing p. Since G̃− is
continuous near π−1(I+), we have from Proposition 2.1 that G̃− is not identically
equal to −∞ on V . That is, local potentials for µ− are locally integrable on V . On
the other hand, f+(V ) is a point p− ∈ I−, and G̃+ is continuous in a neighborhood
of p−. We apply the formula G̃+ ◦ f+ = (deg f+)G̃+ to conclude that G̃+ is
continuous on a neighborhood of π−1(V \ I+). Therefore, local potentials for µ+

are continuous on a neighborhood of p. Moreover, let σ : U → C3 be a section
defined on a neighborhood of p. Then the local potential G̃+ ◦ σ for µ+ satisfies

G̃+ ◦ σ(q) =
1

deg f+
G̃+ ◦ f̃+ ◦ σ(q) =

1
deg f+

(G̃+(p̃−)) + log |λ(q)|

for all q ∈ V ∩U , some holomorphic function λ : V ∩U → C∗, and some p̃− ∈ C3

(independent of q) such that π(p̃−) = p−. It follows that local potentials for µ+

are harmonic on U ∩ V . We can take U to be a small polydisk about p such that
V ∩U is identified with the x-axis. Lemma 3.6 now applies to finish the proof. ¤

Proof of Theorem 1.1. Recall from Proposition 2.1 that f+ : P2 \ C+ → P2 \ C−
is a biholomorphism. Therefore if E ⊂ P2 \ C−, equation (1) holds rigorously. We
need only consider further the case where E ⊂ C−. By the previous theorem, we
have that µ(E) = 0. Furthermore, under any reasonable definition, f−1

+ (E) will
be a subset of C+. Hence, µ(f−1

+ (E)) = 0, too. ¤

4. Mixing

A birational mapping f+ : P2 → P2 is said to be mixing with respect to an
invariant measure µ if for any measurable subsets A,B ⊂ P2, we have

lim
n→∞µ(fn

+(A) ∩B) = µ(A) ∩ µ(B).
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Bedford and Smillie [BS] showed that polynomial diffeomorphisms of P2 are mixing
with respect to the measure µ = µ+ ∧ µ−. We now generalize their result to
separating birational maps. The main idea of the proof appears in [BS]. It is,
however, somewhat more delicate to make this idea succeed at the present level of
generality. As at the end of Section 2 we let C+

n denote the critical set of fn
+.

Proof of Theorem 1.2. Since µ is a Borel measure, it is enough (see [KH]) to show
that for any two smooth functions ψ,ϕ : P2 → C we have

lim
n→∞

∫
P2

ϕ · (ψ ◦ fn
+) dµ =

(∫
P2

ϕdµ

) (∫
P2

ψ dµ

)
.

Even though ψ◦fn
+ might be discontinuous at points in I+

n , the first integral makes
sense because µ does not charge C+

n ⊃ I+
n .

Clearly we lose no generality by assuming that ψ and ϕ take values only in the
interval [0, 1] and that ϕ is supported in a coordinate polydisk D. We can also
assume that D ∩ I− = ∅. To see this, note that because f+ is separating we can
write ϕ = ϕ+ + ϕ− where suppϕ+ ∩ I− and suppϕ− ∩ I+ are empty. Then by
invariance of µ, we can write∫

P2
ϕ · (ψ ◦ fn

+) dµ =
∫
P2

ϕ+ · (ψ ◦ fn
+) dµ +

∫
P2

ψ · (ϕ− ◦ fn
−) dµ.

and deal with the first and second integrals separately. The arguments that fol-
low address only the first integral, but those needed for the second integral are
completely analogous.

We choose a local potential g− for µ− on a neighborhood of D in such a way
that g− vanishes at every z ∈ I+

n ∩D (this can be arranged, since I+
n is finite, by

adding on an appropriate pluriharmonic function). We let

ω−(r) = max{|g−(z)| : z ∈ BI+
n

(r)},
and note that lim

r→0
ω−(r) = 0 by Theorem 3.3.

We choose smooth functions χj : P2 → [0, 1] such that χj vanishes in a neigh-
borhood of C+

n and that supp (1 − χj) decreases to C+
n as j increases. For suffi-

ciently small r we choose smooth, compactly supported functions ρr : D → [0, 1]
as follows. Let ρ : B0(1) → [0, 1] be a smooth, compactly supported and radially
symmetric function satisfying ρ ≡ 1 on B0(1/2). Using local coordinates on D, we
then set

ρr(z) =
∑

w∈D∩I+
n

ρ

(
z − w

r

)
.

In what follows we will repeatedly use the fact that if T is a positive closed
(1, 1) current on P2, and η is a continuous function with absolute value less than
one everywhere, then

|〈T, η ddcρr〉|, |〈T, η dρr ∧ dcρr〉| ≤ C

r2
|〈T, ρ2r θ〉|,
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where θ = ddc||z||2 is the (local) Euclidean Kähler form on D, and C depends on
ρ but not on η or r.

To prove Theorem 4, we need to know that

Lemma 4.1.∫
P2

ϕ · (ψ ◦ fn
+) dµ = lim

r→0
〈µ+, g−(1− ρr) ddc[ϕ · (ψ ◦ fn

+)]〉. (5)

In particular, the limit on the right side exists and is independent of ρ.

Assuming this lemma holds, the proof of the theorem proceeds as follows. We
expand

ddc[ϕ · (ψ ◦ fn
+)] = ϕddc(ψ ◦ fn

+) + dϕ ∧ dc(ψ ◦ fn
+)

+d(ψ ◦ fn
+) ∧ dcϕ + (ψ ◦ fn

+) ddcϕ,
(6)

and deal with the right side of (5) after distributing with respect to this decom-
position. Taking advantage of invariance and the fact that µ+ does not charge
algebraic curves, we rewrite and bound

|〈µ+, g−(1− ρr)ϕddc(ψ ◦ fn
+)〉|

= lim
j→∞

1
dn
|〈fn

−∗µ
+, χjg

−(1− ρr)ϕddc(ψ ◦ fn
+)〉|

= lim
j→∞

1
dn
|〈ddcfn

−∗(ψµ+), χj(1− ρr)g−ϕ〉|

≤ lim
j→∞

M
[

1
dn

ddcfn
−∗(ψµ+)

] ∥∥χj(1− ρr)g−ϕ
∥∥
∞

≤ CM
[

1
dn

ddcfn
−∗(ψµ+)

]

which, by Theorem 2.5, vanishes uniformly in r as n increases. The parts of (5)
corresponding to the second and third terms on the right side of equation (6)
vanish for similar reasons. Therefore, the only relevant term is the fourth one,
which can be rewritten as

lim
r→0

〈µ+, g−(1− ρr)(ψ ◦ fn
+) ddcϕ〉

= lim
r→0

lim
j→∞

1
dn
〈fn

+∗µ
+, χjg

−(1− ρr)(ψ ◦ fn
+) ddcϕ〉

= lim
r→0

lim
j→∞

1
dn
〈fn

+∗(ψµ+), χjg
−(1− ρr) ddcϕ〉

=
1
dn
〈fn

+∗(ψµ+), g− ddcϕ〉,
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since fn
+∗(ψµ+) does not charge C+

n or I+
n . We conclude that

lim
n→∞

∫
P2

ϕ · (ψ ◦ fn
+) dµ = lim

n→∞
1
dn
〈fn

+∗(ψµ+), g− ddcϕ〉
= 〈µ+ ∧ µ−, ψ〉〈µ+, g− ddcϕ〉
= 〈µ, ψ〉〈µ+ ∧ ddcg−, ϕ〉
=

∫
ψ dµ ·

∫
ϕdµ,

as desired. The second equality follows from Theorem 2.5. ¤

Proof of Lemma 4.1. By definition of µ and Theorem 3.7, we have∫
P2

ϕ · (ψ ◦ fn
+) dµ = lim

r→0

∫
P2

(1− ρr) · ϕ · (ψ ◦ fn
+) dµ

= lim
r→0

〈µ+, g− ddc[(1− ρr) · ϕ · (ψ ◦ fn
+)]〉

= lim
r→0

〈µ+, g−(1− ρr) ddc[ϕ · (ψ ◦ fn
+)]〉

− 〈µ+, g−ϕ · (ψ ◦ fn
+) ddcρr)〉

+ 〈µ+, g− dc[ϕ · (ψ ◦ fn
+)] ∧ dρr〉

+ 〈µ+, g− dcρr ∧ d[ϕ · (ψ ◦ fn
+)]〉.

(7)

Our task is to show that the last three terms vanish with r. The second term is
most easily eliminated.

lim
r→0

|〈µ+, g−ϕ · (ψ ◦ fn
+) ddcρr)〉| ≤ lim

r→0
Cω−(r)

〈µ+, ρ2rθ〉
r2

≤ lim
r→0

Cω−(r) = 0.

The third and fourth terms in (7) are equal, so we deal only with the third. We
break this term up further.

|〈µ+, g− dc(ϕ · ψ ◦ fn
+) ∧ dρr〉| ≤ |〈µ+, g−(ψ ◦ fn

+) dcϕ ∧ dρr〉|
+ |〈µ+, g−ϕdc(ψ ◦ fn

+) ∧ dρr〉|. (8)

To deal with the first term in this new decomposition, we apply Schwarz’s inequal-
ity.

|〈µ+, g−(ψ ◦ fn
+) dcϕ ∧ dρr〉|

≤ |〈µ+, (g−(ψ ◦ fn
+))2 dρr ∧ dcρr〉|1/2|〈µ+, dϕ ∧ dcϕ〉|1/2

≤ Cω−(r)
( 〈µ+, ρ2rθ〉

r2

)1/2

≤ Cω−(r)

which tends to zero with r. It remains only to address the second term on the
right side of (8). We apply Schwarz’s inequality again and take advantage of the
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fact that µ+ does not charge curves to compute

|〈µ+, g−ϕdc(ψ ◦ fn
+) ∧ dρr〉|

≤ |〈µ+, (1− ρr/2) d(ψ ◦ fn
+) ∧ dc(ψ ◦ fn

+)〉|1/2|〈µ+, (g−ϕ)2 dρr ∧ dcρr〉|1/2

≤ Cω−(r) lim
j→∞

|〈µ+, χj(1− ρr/2) d(ψ ◦ fn
+) ∧ dc(ψ ◦ fn

+)〉|1/2

=
Cω−(r)

dn/2
lim

j→∞
|〈µ+, (χj ◦ fn

−)(1− ρr/2 ◦ fn
−) dψ ∧ dcψ〉|1/2

≤ Cω−(r)
dn/2

.

Since the last quantity vanishes with r, we are done. ¤

Corollary 4.2. If f+ : P2 → P2 is a separating birational map, then either
suppµ ⊂ I+ or µ(I+) = 0. In particular, either µ(I+) = 0 or µ(I−) = 0.

Proof. By the previous theorem f+ is ergodic with respect to µ. By definition
of I+, we have f+(I+) = I+ (modulo I+, which has measure zero). Therefore,
µ(I+) is either zero or one. In the latter case, we conclude from the fact that I+

is closed that suppµ ⊂ I+. Finally, I+ ∩ I− = ∅ by hypothesis, so at least one of
the two sets must have measure zero. ¤

5. Log integrability of the derivative

In what follows (see the introduction to Section 6) it will be crucial to know
that log+ ‖Df+‖ and log+ ‖Df−‖ are µ integrable functions. In order to establish
integrability we will prove a strengthened continuity result for the Green’s function
G̃+.

Fix a homogeneous map f̃+ inducing f+. Given p ∈ P2 and p̃ ∈ π−1(p), note

that the quantity Γ(p) = log
‖f̃+(p̃)‖
‖p̃‖d depends on p but not on p̃. Multiplying f̃+

by a constant if necessary, we can assume Γ ≤ 0 on all of P2. It is not difficult to
verify that

G̃+(p̃) = log ‖p̃‖ +
∞∑

n=0

Γ ◦ fn
+(p)

dn
. (9)

Further significance of Γ stems from the following propositions proved in [Dil1].

Proposition 5.1. There is a constant C such that for any p, q ∈ P2 \ I+.

dist(f+(p), f+(q)) ≤ Cemax{−Γ(p),−Γ(q)}dist(p, q),

Proposition 5.2. There are constants C1, C2 depending only on f+ such that

C1 + C2 log dist(p, I+) ≤ Γ(p),
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In particular, Γ is bounded below on any compact subset of P2 \ I+.

It follows (see Lemma 6.4 in [Dil1]) from Proposition 5.1 that there exists C > 0
such that for any p ∈ P2 we have dist(fn

+(p), I+) ≥ Cn dist(p, I+). It follows from
Proposition 5.2 that

‖dΓ(p)‖ =

∥∥∥∥∥d
‖f(p̃)‖
‖p̃‖d

∥∥∥∥∥ e−Γ(p) ≤ C(dist(p, I+))−k, (10)

where the first two d’s denote exterior differentiation. We will make use of both
these observations to prove the following upper bound on the modulus of continuity
of the Green’s function.

Theorem 5.3. Fix a compact set K ⊂⊂ P2 \ I+. Then there exist constants
r, k > 0 such that

∣∣∣∣G̃+

(
p̃

‖p̃‖
)
− G̃+

(
q̃

‖q̃‖
)∣∣∣∣ ≤ ek

√
| log dist(π(p̃),π(q̃))|,

for every p̃, q̃ ∈ π−1(K) such that dist(π(p̃), π(q̃)) ≤ r.

Remark 5.4. Note that if the square root were absent from the exponential in
this theorem, then the conclusion would be that the Green’s function is Hölder
continuous.

Proof. Let p = π(p̃) and q = π(q̃) denote the corresponding points in P2. Set
rn = dist(fn

+(p), fn
+(q)) and Rn = dist(fn

+(K), I+). By the first observation in the
preceding paragraph, we see that

Rn ≥ CnR0 (11)

for some constant C = C(f+) > 0. By (9) we have

|G̃+(p̃)− G̃+(q̃)| ≤
∞∑

n=0

|Γ ◦ fn
+(p)− Γ ◦ fn

+(q)|
dn

= Sinit + Stail, (12)

where Sinit and Stail denote the first n0 and remaining terms, respectively, in the
sum. The value of n0 will be determined in the course of our estimates below.

For terms in Stail we employ the crude upper bound

|Γ ◦ fn
+(p)− Γ ◦ fn

+(q)| ≤ max{−Γ ◦ fn
+(p),−Γ ◦ fn

+(q)}
≤ C1 + nC2,

where C1, C2 > 0 are constants depending on f+ and K. The second inequality
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follows from Proposition 5.2 and equation (11). Hence,

Stail ≤
∞∑

n=n0

C1 + nC2

dn

≤
∑

n0≤n≤10

C1 + nC2

dn
+

∞∑
n≥max{n0,10}

C1 + nC2

dn

≤ C

dn0
+

∞∑
n≥max{n0,10}

C

λn0
,

where λ = 10
11 and d > 1. We conclude that

Stail ≤ C

λn0
= Ce−kn0 , (13)

where C, k > 0 are constants depending only on f+ and K.

Lemma 5.5. Suppose that rj < Rj for all j < n. Then

rn ≤ Cn2
r0,

where C > 0 depends only on K and f+. Moreover, there exists a constant A =
A(f+,K) such that rj < Rj for all j < A

√| log r0|.

Proof. According to Proposition 5.1, we have

rn ≤ Crn−1

Rk
n−1

≤ · · · ≤ Cnr0

(Rn−1 . . . R0)k
.

But equation (11) then gives

rn ≤ Cn
1 r0

C
n(n+1)/2
2 Rkn

0

≤ Cn2
r0,

as desired. The last part of the lemma follows inductively from the first via the
estimate

rj ≤ Cj2
r0 ≤ BjR0 ≤ Rj ,

where we assume without loss of generality that C > 1 > B. ¤

We now return to the proof of Theorem 5.3, estimating Sinit under the as-
sumption that n0 is no larger than A

√| log r0|. We also assume that r0 < R0.
It then follows from Lemma 5.5 that rn < Rn for all n < n0. In particular, the
geodesic segment ` joining fn

+(p) to fn
+(q) will avoid I+ by a distance of at least

Rn/2. Thus by Lemma 5.5 and equation (11),

|Γ ◦ fn
+(p)− Γ ◦ fn

+(q)| ≤ max
t∈`

‖dΓ(t)‖ rn ≤ Crn

(
2

Rn

)k

≤ Cn2+1r0,
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for some C > 1 and all n < n0. We conclude that

Sinit =
n0−1∑
n=0

|Γ ◦ fn
+(p)− Γ ◦ fn

+(q)|
dn

≤
n0−1∑
n=0

Cn2+1r0

dn
≤ Cn2

0+1r0.

Now suppose in addition that r0 < 1/2. After possibly shrinking the constant A
in Lemma 5.5 and taking n0 to be the least integer larger than A

√| log r0|, we will

have Sinit < Cr
1/2
0 . From equation (13), we will further have Stail < e−B

√
| log r0|.

For small r0, the larger of these bounds is the one for Stail. Since r0 = dist(p, q),
we are done. ¤

Remark 5.6. The constants k and r0 in Theorem 5.3 depend on K (i.e. on the
distance R0 from K to I+). It is entirely possible, though somewhat messier, to
keep track of this dependence throughout the proof of the theorem and obtain
estimates that are completely explicit in terms of R0.

We are now ready for the

Proof of Theorem 1.3. It is enough to know that log+ ‖Df−‖ is locally integrable
near each point in P2. Near points p /∈ I+, log+ ‖Df−‖ is continuous. Since µ is
a Borel measure, local integrability near p is automatic.

It remains to verify local integrability near each point p in the finite set I+.
Without loss of generality, we work in local coordinates z such that p corresponds
to z = 0. It follows from Proposition 5.1 that

log+ ‖Df−(z)‖ ≤ A log
1
‖z‖ + B.

Therefore, we need only show that log ‖z‖ is µ integrable in a ball B0(1) of radius
one about 0. We estimate this integral by dividing the ball into shells.

∫
B0(1)

log
1
‖z‖ µ =

∞∑
j=0

∫
1

2j+1 <‖z‖< 1
2j

log
1
‖z‖ µ

≤
∞∑

j=0

(j + 1)(log 2)µ(B0(2−j)).
(14)

Let θ be the Euclidean Kähler form on B0(2), and choose a cutoff function
ψ : B0(2) → [0, 1]. That is, ψ is smooth, radially symmetric, and compactly
supported on B0(2), and ψ ≡ 1 on B0(1). We let ψj(z) = ψ(2jz), noting that the
C2 norm of ψj is 4j times that of ψ. Since θ is a strongly positive form (see [Kli]),
we have a constant C > 0 such that |〈T, ρ ddcψj〉| < C4j〈T, |ρ| θ〉 for any positive
closed (1, 1) current T and any continuous function ρ.

The map f+ is separating, so we lose no generality by assuming that I+∩B0(2)
is empty. Theorem 3.3 then implies that µ+ has a continuous local potential on
B0(2). That is, we choose a section σ : B0(2) ⊂ P2 → C3 \ {0} of the canonical
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projection π and define the local potential g+(z) = G̃+ ◦ σ(z)− G̃+ ◦ σ(0). Again
without losing generality, we assume that the C1 norm of log ‖σ‖ is uniformly
bounded. This combined with Theorem 5.3 gives us for each ‖z‖ < r ≤ 2 that

|g+(z)| = |G̃+ ◦ σ(z)− G̃+ ◦ σ(0)|
≤

∣∣∣∣G̃+

(
σ(z)
‖σ(z)‖

)
− G̃+

(
σ(0)
‖σ(0)‖

)∣∣∣∣ +
∣∣∣∣log

‖σ(z)‖
‖σ(0)‖

∣∣∣∣
≤ e−k

√
| log r| + Cr ≤ e−k

√
| log r|.

The first inequality follows from item 1 in Theorem 2.3. The integration by parts
definition of µ allows us to compute

µ(B0(2−j)) ≤
∫

B0(1)

ψj µ+ ∧ µ−

=
∫

B0(1)

g+ ddcψj ∧ µ−

≤ C ‖ψj‖C2 sup
B0(2−j+1)

|g+|
∫

B0(2−j+1)

θ ∧ µ−

≤ Ce−k
√

j 1
4−j

∫
B0(2−j+1)

θ ∧ µ−.

≤ Ce−k
√

j ,

for all j > 0 (the last inequality comes from Fact 3.5). Inserting this estimate into
(14), we obtain ∫

B0(1)

log
1
‖z‖ µ ≤

∞∑
j=0

Cje−k
√

j .

One can see that the last sum converges by comparing its terms with j−2 for j
large. This completes the proof. ¤

Corollary 5.7. If f+ is separating, then the functions log+
∥∥Df−1

±
∥∥ are also in-

tegrable.

Proof. Since µ is invariant and Df−1
+ ◦f+ = Df− at µ almost every point, we have∫

P2
log+

∥∥Df−1
+

∥∥ µ =
∫
P2

log+
∥∥Df−1

+ ◦ f+

∥∥ f−∗µ =
∫
P2

log+ ‖Df−‖ µ < ∞.

¤

6. Lyapunov exponents and Lyapunov charts

Since the quantities log+
∥∥Df±1

+

∥∥ are µ integrable, we can apply the well-known
(see the supplemental section in [KH]) multiplicative ergodic theorem of Oseledec.
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Taking into account the fact that our invariant measure is mixing, we immediately
deduce the following from Oseledec’s Theorem.

Theorem 6.1. Suppose that f+ : P2 → P2 is a separating birational map. There
exist numbers χ− ≤ χ+ such that at µ almost every point p ∈ P2

χ+ = lim
n→∞

1
n

log
∥∥Dfn

+(p)
∥∥ , χ− = − lim

n→∞
1
n

log
∥∥Dfn

−(p)
∥∥ .

If χ− = χ+, then

χ+ = χ− = ± lim
n→∞

1
n

log
∥∥Dfn

±(p) · v∥∥
for almost every point p ∈ P2 and any non-zero vector v ∈ TpP2. If χ+ > χ−, then
there exists a measurably varying, f+ invariant decomposition TpP2 = Es ⊕Eu at
µ almost every point of P2. Moreover, if v ∈ Es \ {0}, then

χ− = lim
n→∞

1
n

log
∥∥Dfn

+(p) · v∥∥ = − lim
n→∞

1
n

log
∥∥Dfn

−(p) · v∥∥ ,

and similarly for v ∈ Eu \ {0} and χ+. Finally, the sine of the angle between Es

and Eu is “tempered” in the sense that

lim
n→∞

1
n

log sin∠(Es
fn
±(p),E

u
fn
±(p)) = 0

at almost every point p.

The numbers χ+ and χ− are called the Lyapunov exponents of f+ with respect
to µ. The theory of non-uniform hyperbolicity (see [KH] for an introduction and
further references; I also learned a great deal from Briend’s thesis [Bri] which con-
tains a nice general exposition of these topics in a context similar to ours) was
developed by Pesin and others in order to explore the way in which Lyapunov
exponents influence the dynamics of a map. This theory begins with ([KH], Theo-
rem S.2.10) the fact that one can make a tempered, measurably varying choice of
coordinates on tangent spaces Tp so that Dpf+ has Lyapunov block form. That is,
in these coordinates Dpf+ acts, up to an error factor of eε, like a diagonal matrix
with entries of absolute value eχ+

, eχ− . Moreover, in the sense specified by the
following result ([KH], Theorem S.3.1), the infinitesimal choice of coordinates on
Tp can be used to select advantageous local coordinates on a neighborhood of p.

Theorem 6.2. Suppose f+ : P2 → P2 is a separating birational map, and let
χ+, χ−,Es,Eu be as above. For any ε > 0 there exists a set Λ ⊂ suppµ of full
measure, a tempered function δ : Λ → (0, 1], and a collection of holomorphic
embeddings ψp : B0(δ(p)) → P2 such that

(1) ψp(0) = p;
(2) δ is ε-slowly varying–i.e. e−ε < δ(f+(p))/δ(p) < eε for every p ∈ Λ;
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(3) There exists a constant K > 0 and a measurable, ε-slowly varying function
A : Λ → R+ such that

K−1dist(ψp(x), ψp(y)) < ‖x− y‖ < A(p) dist(ψp(x), ψp(y)).

(4) If fp = ψ−1
f+(p) ◦ f+ ◦ ψp, then fp and D0fp are ε close in the C1 distance

on B0(δ(p));
(5) D0fp has Lyapunov block form.

We will call the maps ψp Lyapunov charts and the points p ∈ Λ regular. Since
Λ is of full measure, we can (and will) assume that p ∈ Λ implies that fn(p) ∈ Λ
for all n ∈ Z. The proof of Theorem 6.2 is given for C1+α diffeomorphisms in
[KH], and it applies almost directly to the case of separating birational maps.
The only additional technicality in our setting is that the C2 norm of f+ becomes
unbounded near points of indeterminacy. This affects the definition of δ, and in
particular, the conclusion that we can choose a slowly varying δ. However, one
can show that the log of the C2 norm of f+ is integrable in the same way that
we proved integrability of log ‖Df+‖ in the previous section. Further inspection
of the proof in [KH] reveals that this integrability suffices to overcome the extra
difficulty.

Corollary 6.3. The Lyapunov exponents for a separating birational map f+ sat-
isfy χ− ≤ 0 ≤ χ+.

Proof. Suppose that both exponents are negative, and apply Theorem 6.2 with
ε << |χ+|. Consider a Lyapunov chart ψp : B0(δ(p)) → P2 about a point p ∈ Λ.
Then fp maps B0(δ(p)) into B0(δ(f+(p))), contracting by a factor of at least
eχ++ε. Likewise ff+(p), f

f2
+(p)

, etc, will further contract images of the ball by the
same factor so that successive images will eventually decrease to {0}. By item 3.
of Theorem 6.2, we conclude that the radius of fn

+(ψpB0(δ(p)) tends to zero as n
increases. In particular, iterates of f+ form a normal family in a neighborhood of
p. This implies (see [Dil1]) that p /∈ suppµ+, and therefore, that p /∈ Λ ⊂ suppµ.

¤

7. Lower estimate for Lyapunov exponents

The goal of this section is to prove Theorem 1.4. Before we start, we state an
immediate consequence of Theorem 1.4 and Corollary 4.2.

Corollary 7.1. The measure µ associated with a separating birational map has at
least one non-zero Lyapunov exponent. Moreover, either µ is a hyperbolic measure
(i.e. neither exponent vanishes) or suppµ ⊂ I+ ∪ I−.
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For purposes of this section and the next, we fix some notation. Given an
ε > 0, we apply Theorem 6.2 to f+. Let t be a number between 0 and 1. Since the
resulting Lyapunov charts vary measurably, we can find compact subsets Λt ⊂ Λ
of measure 1−t such that µ(Λt) > 1−t and the Lyapunov charts vary continuously
on Λt in the C1 topology. In particular, the function δ admits a positive lower
bound δt on Λt and the function A admits an upper bound At.

In proving Theorem 1.4, we take t = 1/2. The set I+ is µ negligible by
hypothesis and closed by definition, so we can certainly assume that Λ1/2 is disjoint
from I+. By shrinking δ if necessary, we can further arrange that dist(Λ1/2, I+) >
2Kδ1/2. This and Theorem 6.2 guarantees that the image ψp(B0(δ1/2)) of the
Pesin chart about each p ∈ Λ1/2 avoids I+ by a positive distance independent of
p. We proceed in a series of lemmas.

Lemma 7.2. There exists a constant C and for each p ∈ Λ1/2 a local potential g+
p

for µ+ on ψp(B0(δ1/2)) such that
∥∥g+

p

∥∥
∞ < C.

Proof. By construction of Λ1/2 and Theorem 3.3, the Green’s function G̃+ is uni-
formly continuous over the set

⋃
p∈Λ1/2

ψp(B0(δ1/2)). Fix p ∈ Λ1/2 and choose a
section σ : ψp(B0(δ1/2)) → C3 \ {0} such that ‖σ(p)‖ = 1 and the image of σ
is contained in the complex hyperplane tangent to the unit sphere at σ(p)—e.g.
if σ(p) = (0, 0, 1), then the first two components of σ give affine coordinates on
ψp(B0(δ1/2)). Because the images of the Lyapunov charts are uniformly small, the
image of σ is also contained in a spherical shell {1 ≤ ‖p̃‖ ≤ C} for some constant
C independent of p. The proof is concluded by taking g+

p = G̃+ ◦ σ. ¤

Since f+ can be conjugated near any point in Λ1/2 to within ε of a non-singular
matrix, we see that fn

+(I−) ∩ Λ1/2 = ∅ for every n. In particular, the sets Sn =
fn
−(Λ1/2) ∩ Λ1/2 are well-defined and compact for every n ∈ N.

Lemma 7.3. There exist constants C,N > 0 such that for every n ≥ N :
(1) µ(Sn) > 1/8;
(2) for every r < δ1/2 and any n > N , there exists points p1, . . . , pk ∈ Sn such

that k < C/r4 and Sn ⊂
⋃k

j=1 ψpj
(B0(r)).

Proof. The first assertion follows from the fact that µ is mixing for f−. Given
r < δ1/2 consider the collection of open sets of the form ψp(B0(r)) where p is
any point in Sn. By Theorem 6.2, each of these open sets contains a round ball
Bp(r/A1/2). Since Sn is compact, we can choose finitely many points p1, . . . , pk

so that the balls Bp(r/5A1/2) centered at these points cover Sn. Moreover, by
a well-known argument (see the proof in 1.6 of [Ste]), we can discard some of
these balls (i.e. re-index and shrink k) so that the remaining balls are mutually
disjoint but that when we expand their radii by a factor of five, the expanded balls
Bpj

(r/A1/2) again cover Sn. The former (disjointness) property guarantees that
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k < C/r4 for some absolute constant C determined by the volume of P2. The
latter property guarantees that Sn ⊂

⋃k
j=1 ψpj

(B0(r)), as desired. ¤

To continue the proof of Theorem 1.4, we fix a point p ∈ Sn and consider the
map fn

p : B0(δ1/2) → B0(δ1/2) defined as a composition

fn
p = f

fn−1
+ (p)

◦ . . . fp

of maps specified in Theorem 6.2. This map is, of course, not defined everywhere
on B0(δ1/2). However, if χ+ is the largest Lyapunov exponent of f+, then Theorem

6.2 guarantees that fn
p (z) ∈ B0(δ1/2) whenever ||z|| ≤ rn

def= (1−ε)ne−n(χ++ε)δ1/2.
Capitalizing on this observation, we set

Bn,p = ψp(B0(rn/2KA1/2))

and try to estimate µ(Bn,p).

Lemma 7.4. There exists a constant C independent of p and n and a local poten-
tial g+ for µ+ on Bp(rn/A1/2) such that ‖g+‖∞ < C/dn.

Proof. It follows from Theorem 6.2 that Bp(rn/A1/2) ⊂ ψp(B0(rn)). Hence from
the discussion above, we have that fn

+(Bp(rn/A1/2)) ⊂ ψfn
+(p)(B0(δ1/2)). More-

over, fn
+(p) ∈ Sn by definition. Thus we can use the potentials given by Lemma

7.2 to define a potential g+
fn
+(p) ◦ fn

+ for fn∗
+ µ+ = dnµ+ on Bp(rn/A1/2). This

potential is uniformly bounded above, independent of p and n, so we can divide
by dn to obtain the desired potential g+ for µ+. ¤

Lemma 7.5. Let Θ be the Fubini–Study Kähler form on P2. There is a constant
C such that for every p ∈ P2 and r > 0,

1
r2

∫
Bp(r)

Θ ∧ µ− < C.

Proof. If we work in affine coordinates centered at p ∈ P2 and replace the Fubini–
Study Kähler form with the Euclidean Kähler form, then the left side of the desired
inequality is an increasing function of r (Fact 3.5). Moreover, the Euclidean and
Fubini–Study Kähler forms are strongly positive forms that are comparable near
the origin, so if r0 > 0 is small enough, there is a constant C = C(r0) independent
of p such that for all r < r0.

1
r2

∫
Bp(r)

Θ ∧ µ− ≤ C

r2
0

∫
Bp(r0)

Θ ∧ µ−.

On the other hand, we have the trivial bound

1
r2

∫
Bp(r)

Θ ∧ µ− <
1
r2
0

∫
P2

Θ ∧ µ−
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for all r ≥ r0. ¤

Let ηn : B0(rn/A) → [0, 1] be a sequence of smooth compactly supported
functions identically equal to one on B0(rn/2A1/2). From the definition of Bn,p

and Theorem 6.2 we have that ηn ≡ 1 on Bn,p. Clearly, we can arrange that
ddcηn ≤ CΘ/r2

n. Let g+ be the local potential given by Lemma 7.4. We estimate

µ(Bn,p) =
∫
Bn,p

µ+ ∧ µ− ≤
∫
P2

ηn ddcg+ ∧ µ−

=
∫
P2

g+ ddcηn ∧ µ− ≤ C ‖g+‖∞
r2
n

∫
Bp(rn/A1/2)

Θ ∧ µ−

≤ C/dn,

where the constant C is independent of p ∈ Sn and n. The second equality is
just the definition of wedge product of positive closed (1, 1) currents. The last
inequality follows from the previous two lemmas.

To complete the proof of Theorem 1.4, we observe that Bn,p ⊃ Bp(rn/2KA2
1/2).

Therefore we can apply Lemma 7.3 to choose points p1, . . . , pk ∈ Λ′n with k < C/r4
n

such that

µ

( k⋃
j=1

Bn,pj

)
>

1
8
,

where C1 and C2 are independent of n. From these last equations and our upper
bound for µ(Bn,p), we conclude that

1
8

<
∑

j

µ(Bn,pj
) ≤ C

r4
ndn

for every n. Letting n →∞ and expanding rn gives

χ+ ≥ log d

4(1− ε)
− ε.

Since ε > 0 is arbitrary, Theorem 1.4 is proved. ¤

8. Periodic points

If µ(I+) = µ(I−) = 0, then it follows from Theorem 1.4 that µ has one positive
and one negative Lyapunov exponent. Under these conditions, we will now show
that saddle periodic points are dense in suppµ, proving Theorem 1.5. We reuse
the notation ε,Λ,Λt, δt, At from the previous section.

The first step of the proof consists in showing that any point in suppµ can be
approximated by nearly periodic regular points.
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Lemma 8.1. Given p ∈ suppµ and ε1 > 0, there exists t > 0 such that for any
ε2 > 0, there exists q ∈ Λt and n ∈ N such that

• dist(p, q) < ε1.
• fn

+(q) ∈ ψq(B0(ε2)) ∩ Λt.

Proof. If t is small enough, the set Bp(ε1/2) ∩ Λt has positive measure. That is,
there exists p′ ∈ Λt such that Bp′(r) ∩ Λt has positive µ mass and is contained
in Bp(ε1/2) for all r > 0 small enough. Since µ is mixing, we can for any such
r find n ∈ N and q ∈ Bp′(r) ∩ Λt such that fn

+(q) ∈ Bp′(r) ∩ Λt as well. Hence
if r satisfies 2Atr < δt, we have fn

+(q) ∈ Bq(2r) ⊂ ψq(B0(2A(q)r)). Taking
r = min{ε1/4, ε2/2, δt/2At} therefore finishes the proof. ¤

Now apply this lemma with ε2 << ε1, ε. We will complete the proof of The-
orem 1.5 by exhibiting a saddle periodic point of period n whose orbit intersects
ψq(B0(Cε2)). The approach is similar to the proof of the closing lemma for hy-
perbolic maps (Theorem 6.4.15) given in [KH], but there is an extra complication
due to the fact that the Lyapunov charts can degenerate along the orbit of q. In
particular, our method would not suffice to prove a general closing lemma for f+;
it is important that the pseudo-orbit q, f+(q), f2

+(q), . . . , fn−1
+ (q), q be an actual

orbit except at the last step.
For each j = 1, . . . , n− 1, we set fj = ffj−1

+ (q), wherever the righthand side is

defined—in particular on Uj = B0(e−(χ++ε)δ(f j−1
+ (q))). Similarly, we take

fn = ψ−1
q ◦ f+ ◦ ψfn−1

+ (q) = ψ−1
q ◦ ψfn

+(q) ◦ ffn−1
+ (q),

which, for ε2 small enough, is defined on an open subset of C2 containing Un =
B0(e−(χ++2ε)δ(f j−1

+ (q))). We have for 0 ≤ j ≤ n that

‖fj −D0fj‖C1 < 2ε.

Additionally, if j < n then fj(0) = 0, and in the remaining case it is at least true
that ‖fn(0)‖ < ε2.

If U = U1 × · · · × Un, then fixed points of the map

F (x1, . . . , xn) def= (fn(xn), f1(x1), . . . , fn−1(xn−1))

from U into C2n correspond to periodic orbits ψq(x1), . . . , ψfn−1(q)(xn) of f+. To
find a fixed point, we write F = D0F + E, where E(0) = (fn(0),0, . . . ,0) and
in the product norm (this is essential, since we have no control on the size of n)
on C2n = (C2)n, we have ||E||C1 < 2ε. Moreover, the linear operator, D0F is a
shifted product of the D0fj ’s, so

∥∥(D0F − I)−1
∥∥ is bounded above by a constant

depending only on the minimal distance from the Lyapunov exponents of µ to
zero.

A point is fixed by F if and only if it is fixed by S
def= (DF0 − I)−1 ◦ E.

Moreover, the above observations show that S contracts the product metric by
a factor of 2Cε, where again, C depends only on the Lyapunov exponents of
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µ. We claim that S(U) ⊂ U for ε and ε2 taken small enough to invoke the
(proof of the) contraction mapping theorem. To see this, let Sj denote the jth
component of S. It is possible that the radius of Uj might decay as j increases
from 1 to n. Nevertheless, slow variation of δ ensures that the radius of Uj+1

is at least (1 − ε) times that of Uj . Therefore since xj ∈ Uj for j < n, we see
that ‖Sj+1(xj)‖ = ‖Sj+1(xj)− Sj+1(0)‖ = 2Cε ‖xj‖, so that Sj+1(xj) ∈ Uj+1.
Moreover, continuity of δ on Λt allows us to assume by shrinking ε2 that the radii of
Un and U1 are nearly equal. Hence xn ∈ Un implies that ‖fn(xn)‖ ≤ ε2+2Cε ‖xn‖
so that S1(xn) ∈ U1, too. Our claim is therefore justified.

Thus

‖Sn(0)‖ ≤
n∑

j=1

∥∥Sj(0)− Sj−1(0)
∥∥ ≤ ‖S(0)‖

n−1∑
j=0

(2Cε)j ≤ 2ε2

for ε small enough. In particular, X = limn→∞ Sn(0) exists, is a fixed point of
F , and lies within distance 2ε2 of the origin. The image q′ = ψ1(x1) of the first
coordinate of X is a periodic point of period (dividing) n close to q. Since its orbit
is contained in the Lyapunov charts about q, . . . , fn−1(q), we see easily that the
largest and smallest eigenvalues of Dq′f

n have magnitudes approximately enχ+

and enχ− , respectively, so that q′ is also a saddle point. This concludes the proof
of Theorem 1.5.
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