
Comment. Math. Helv. 76 (2001) 781–803
0010-2571/01/040781-23 $ 1.50+0.20/0
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Complexity of degenerations of modules
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Abstract. A module M over an associative algebra A over an algebraically closed field k is said
to degenerate to a module N if N belongs to the closure of the isomorphism class of M in the
algebraic variety of d-dimensional A-modules, d ∈ N. We associate a non-negative integer to a
degeneration M ≤deg N , its complexity, and study its properties.
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1. Introduction

Let k be an algebraically closed field, A a finite dimensional associative k-algebra
with a unit and modA the category of finite dimensional left A-modules. Let
Md(k) denote the k-algebra of the d× d-matrices with coefficients in k. We view
A as a quotient of a free associative algebra k〈X1, . . . , Xr〉 by a two-sided ideal
I. We define the affine variety modd

A(k) as the set of r-tuples (m1, . . . , mr) such
that mi ∈ Md(k) and ρ(m1, . . . , mr) is the zero matrix for any ρ ∈ I. The general
linear group Gld(k) acts on modd

A(k) by conjugation.
As an ordinary set, modd

A(k) is just the set Homk−alg(A, Md(k)) and hence
Gld(k)-orbits in modd

A(k) correspond bijectively to isomorphism classes of d-dimen-
sional left A-modules.

Let M and N be two d-dimensional A-modules. By definition, M degenerates
to N , noted M ≤deg N , if N lies in the closure of the Gld(k)-orbit of M in
modd

A(k), with respect to the Zariski topology. This defines a partial order on the
set of isomorphism classes of d-dimensional A-modules.

Denote by Q the quiver

Q = 1
a1−→←−
b1

2
a2−→←−
b2

3 · · ·

with vertex set Q0 = N \ {0} and arrows ai : i → i + 1, bi : i + 1 → i for every
i ∈ Q0.
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We call a representation

T = N1

α1−→←−
β1

N2 · · ·Ni

αi−→←−
βi

Ni+1 · · ·

of Q in modA, the category of finite dimensional A-modules, an exact tube if the
sequence

0 → Ni

(βi−1
αi

)
−−−−→ Ni−1 ⊕Ni+1

(−αi−1,βi)−−−−−−−→ Ni → 0

or equivalently the square

Ni
αi //

βi−1

²²

Ni+1

βi

²²
Ni−1

αi−1 // Ni

is exact for all i ≥ 1. Here we set N0 = 0. Note that Ni is an A-module, that
αi, βi are A-linear and that αi is injective, βi is surjective, for all i ≥ 1. We say
that T is an (M,N)-tube if there is a natural number h such that

(i) N1
∼→
A

N ,

(ii) Nh+j+1
∼→
A

Nh+j ⊕M , for all j ∈ N.

We call the smallest such number h the complexity cpl(T ) of the tube.
Let T be an (M,N)-tube. Note that the sequence

0 → Nk
αk−−→ Nk+1

β1···βk−−−−→ N1 → 0

is exact for any k. As Nk+1 is isomorphic to Nk ⊕M for k ≥ cpl(T ), there is an
exact sequence

0 → Nk −→ Nk ⊕M −→ N → 0,

and therefore M degenerates to N [5].
Conversely, whenever M degenerates to N , there exists an (M,N)-tube: In-

deed, the third author showed in [7] that there is a short exact sequence

0 → Z
(f

g )
−−→ Z ⊕M → N → 0, (1.1)

and in [6] he associated an exact tube Tf,g with such a sequence (see also Section
4). In fact, Tf,g is the cokernel of the injection ϕ : X → X ′ between the following
representations of Q:

X :

ϕ

²²

Z
1

//

ϕ1

²²

Z
foo

1
//

ϕ2

²²

· · ·
foo

1
// Z

foo
1

//

ϕi

²²

Z
foo · · ·

ϕi+1

²²
X ′ : Z ⊕M (

f 0
g 0
0 1

)// Z ⊕M2
(1 0)oo (

f 0
g 0
0 1

) // · · ·
(1 0)oo (

f 0
g 0
0 1

)// Z ⊕M i
(1 0)oo (

f 0
g 0
0 1

)// Z ⊕M i+1
(1 0)oo · · ·
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with ϕi = (f i, gf i−1, . . . , g)t : Z → Z ⊕ M i. Both X and X ′ are almost exact
tubes: they satisfy all requirements except those related to a1 and b1. The only
condition left to be checked for Tf,g is the exactness of the bottom row in the
commutative diagram (Figure 1) with exact columns. This is done by diagram
chasing.

0

²²

0

²²

0

²²
Z

1 //

(f
g)

²²

Z
f //(

f2

g f
g

)
²²

Z

(f
g)

²²
Z ⊕M

Â Ä (
f 0
g 0
0 1

) //

²²

Z ⊕M2

( 1 0 0
0 1 0 )

// //

²²

Z ⊕M

²²
0 // N1

²²

α1
// N2

²²

β1

// N1

²²

// 0

0 0 0

Figure 1

By construction, N1 = coker ϕ1 is isomorphic to N . Using Fitting’s lemma in
order to replace Z by a direct summand if necessary in the exact sequence (1.1),
we may assume that f is nilpotent, say fh = 0. Then ϕh+j has the form ϕh+j =
(0, . . . , 0, gfh−1, . . . , g)t : Z → Z ⊕Mh+j , and its cokernel Nh+j is isomorphic to
M j ⊕ Nh for j ≥ 0. We conclude that Tf,g is an (M,N)-tube of complexity at
most h. In fact, Tf,g is an (M,N)-tube even if f is not nilpotent (compare with
Proposition 4.2).

We define the complexity of a degeneration M ≤deg N to be

cpl(M,N) = min cpl(T ),

where T ranges over all (M,N)-tubes. This seems to be a good way to measure
how “complicated” a degeneration is.

Indeed, we will prove in Sections 3 and 4 that a degeneration M ≤deg N is of
complexity 1 if and only if there exists a non-split exact sequence

0 → N ′ → M → N ′′ → 0

with N
∼−→ N ′ ⊕ N ′′. So these are the “simplest” degenerations. In particular,

any degeneration to an indecomposable N must have complexity at least 2.
It is quite difficult to compute the complexity of a degeneration. The construc-
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tion described before gives an estimate from above: if

0 → Z
(f

g )
−−→ Z ⊕M → N → 0

is an exact sequence and fh = 0, then cpl(M,N) ≤ h. Conversely, it is easy to
show that

cpl(M,N) ≥ ``(M)
``(N)

− 1,

where ``(X) is the Loewy length of X; i.e., the smallest number r for which
(radA)r ·X = 0 (see Proposition 3.5). Both bounds are sharp, but in general the
complexity differs from both.

The complexity of a degeneration M ≤deg N obtained from two degenerations
M ≤deg P ≤deg N seems to be quite unrelated to the sum of the complexities of
M ≤deg P and P ≤deg N . For instance, if we take non-split exact sequences

0 → Ai → Bi → Ci → 0, i = 1, . . . , r,

then there is a sequence of degenerations
r⊕

i=1

Bi ≤deg

(
r−1⊕
i=1

Bi

)
⊕Ar ⊕ Cr ≤deg . . . ≤deg

(
s⊕

i=1

Bi

)
⊕

r⊕
i=s+1

(Ai ⊕ Ci)

≤deg . . . ≤deg

r⊕
i=1

(Ai ⊕ Ci),

but the complexity of
r⊕

i=1

Bi ≤deg

r⊕
i=1

(Ai ⊕ Ci)

is 1. On the other hand, we give an example of a chain of degenerations M ≤deg

P ≤deg N in Section 5.1 for which cpl(M,P )+ cpl(P,N) < cpl(M,N). By Propo-
sition 5.1, a minimal degeneration can have arbitrarily high complexity. A degen-
eration M ≤deg N is called minimal if M is not isomorphic to N and moreover
M ≤deg P ≤deg N implies that P is isomorphic to either M or N .

2. Degenerations, bimodules and exact tubes

The following construction is explained in detail in [7] (compare also [2] and [3],
pp. 176–177): If M ≤deg N is a degeneration, there exists a discrete valuation
k-algebra R with maximal ideal m and residue class field k and an A-R-bimodule
Y, which is free of rank d over R, such that

i) Y/m · Y ∼→
A

N

ii) Y contains R⊗k M as an A-R-submodule.
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These data are related to mapping a curve c to mod d
A(k) in such a way that its

image lies generically in the orbit of M and intersects the orbit of N . Assuming c
to be non-singular and passing to the completion, we may assume that R = k[[t]].
The representation T = (Ni, αi, βi) defined by the setting

Ni = Y/(ti) · Y

and letting αi : Ni → Ni+1 and βi : Ni+1 → Ni be induced by multiplication by
t and the identity, respectively, is easily seen to be an exact tube, and by [7] it is
moreover an (M,N)-tube.

This construction associating an exact tube with a bimodule is an equivalence:

Proposition 2.1. The category T of exact tubes is equivalent to the category
modf A-k[[t]] of A-k[[t]]-bimodules which are free of finite rank over k[[t]].

Proof. We just describe a quasi-inverse functor. For an exact tube T = (Ni, αi, βi)
we set

Y = lim←− (Ni, βi),

and we put

t · (n1, n2, . . .) = (0, α1(n1), α2(n2), . . .)

for any infinite sequence (n1, n2, . . .) with ni ∈ Ni and βi(ni) = ni−1 representing
an element of Y. As T is an exact tube, this defines an A-k[[t]]-bimodule structure
on Y. As t acts without torsion, Y is free as a k[[t]]-module, and its rank equals
dimk N1, since clearly Y/(t) · Y is isomorphic to N1. ¤

We give a direct construction of the bimodule corresponding to Tf,g for an
exact sequence

0 → Z
(f

g )
−−→ Z ⊕M → N → 0 (2.1)

with a nilpotent map f . Set

Yf,g = k[[t]]⊗k M ⊕ Z

as an A-module and define the action of t on Z by

t · (0, z) = (1⊗ g(z), f(z)).

Clearly, this action of t is torsion free, and Yf,g/(t)Yf,g is isomorphic to N , so
that Yf,g actually belongs to modf A-k[[t]]. It is easy to see that the exact tube
associated with Yf,g is Tf,g.

We will need the following truncated version of an exact tube:
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Definition 2.2. For m ≥ 1, an exact tube of height m is a representation in
modA

N1

α1−→←−
β1

N2 . . . Nm−1

αm−1−→←−
βm−1

Nm

of the full subquiver Qm of Q whose vertices are 1, 2, . . . , m, such that the square

Ni
αi //

βi−1

²²

Ni+1

βi

²²
Ni−1

αi−1 // Ni

is exact for i = 1, . . . m− 1. Again we set N0 = 0.

The category of exact tubes of height m is equivalent to the category of A-
k[t]/(tm)-bimodules which are free of finite rank over k[t]/(tm).

Obviously, an exact tube T restricts to an exact tube T≤m of height m for all
m. We will see in Section 4 that an M -extendible tube T = (Ni, αi, βi) of height
h ≥ 1 (see next definition) is always the restriction of an (M,N1)-tube.

Definition 2.3. A tube T = (Ni, αi, βi) of height h is called M -extendible if there
is a decomposition Nh = Z ⊕ Z ′ and an exact sequence

0 → Z
(a

b)−−→ Nh−1 ⊕M
(c d)−−−→ Z ′ → 0

such that a = βh−1|Z and c = prZ′ ◦αh−1, where prZ′ : Z⊕Z ′ → Z ′ is the natural
projection.

We end this section with some questions. We do not know how to describe the
full subcategory of modf A-k[[t]] corresponding to (M,N)-tubes. Conceivably,
its objects are just those bimodules Y which contain k[[t]]⊗k M as a subbimodule.
This would follow if we knew that any (M,N)-tube is of the form Yf,g for some
exact sequence (2.1).

3. Complexity

Definition 3.1. We call a map(
f

g

)
: Z → Z ⊕M

an (M,N)-monomorphism provided N is isomorphic to coker
(
f
g

)
.
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Recall that, for a degeneration M ≤deg N , we defined the complexity as

cpl(M,N) = min cpl(T ),

where T ranges over all (M,N)-tubes. There always are (M,N)-tubes with differ-
ent complexities. For instance, if (f, g)t : Z → Z⊕M is an (M,N)-monomorphism
and we set

f ′ =
(

0 1
f 0

)
: Z2 −→ Z2, g′ = (g 0) : Z2 −→ M,

the map (f ′, g′)t will be an (M,N)-monomorphism, too, and it is easy to see that

cpl(Tf ′,g′) = 2 cpl(Tf,g).

Theorem 3.2. Let h ≥ 1 be a natural number and M ≤deg N a degeneration.
The following conditions are equivalent:

(i) cpl(M,N) ≤ h
(ii) There is an exact sequence

0 −→ Z
(f

g)−−→ Z ⊕M −→ N −→ 0

such that cpl(Tf,g) ≤ h.

(iii) There exists an exact tube T = (Ni, αi, βi) of height 2h + 1 with N
∼−→
A

N1

and such that

Nh+j+1
∼−→
A

Nh+j ⊕M

for j = 0, . . . , h.
(iv) There exists an M -extendible exact tube T = (Ni, αi, βi) of height h with

N
∼−→
A

N1.

Proof. Most ingredients for the proof will be given in Section 4. Here we indicate
how they fit together: The implications (ii) ⇒ (i) ⇒ (iii) are obvious. The results
of Section 4 up to Proposition 4.6 give that (ii) implies (iv), and Proposition 4.8
shows (iv) ⇒ (ii). Finally, the implication (iii) ⇒ (ii) follows from Proposition 4.9
and the next lemma. ¤

Lemma 3.3. Let T = (Ni, αi, βi) be an (M,N)-tube, and assume that Nh+1
∼→

Nh ⊕M for some h ≥ 1. Then cpl (T ) ≤ h.

Proof. As T is an (M,N)-tube, there exists a natural number j ≥ h such that
Ni+1

∼→ Ni ⊕M for all i ≥ j. Take an integer i with h < i < j, and consider the
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two exact squares

Nh ⊕M
∼ // Nh+1

αi...αh+1 //

βh

²²

Ni+1
αj ...αi+1 //

βi

²²

Nj+1
∼ //

βj

²²

Nj ⊕M

Nh

αi−1...αh // Ni

αj−1...αi // Nj .

The big square splits, and therefore the two small squares split as well. We con-
clude that Ni+1 is isomorphic to Ni ⊕M . ¤

As N0 = 0, our theorem takes the following simpler form for h = 1, 2:

Corollary 3.4. Let M ≤deg N be a degeneration. Then
i) cpl(M,N) ≤ 1 if and only if N = Z⊕Z ′ and there exists an exact sequence

0 → Z → M → Z ′ → 0.

ii) cpl(M,N) ≤ 2 if and only if there exist two exact squares

Z
a //

²²

N

c

²²
M // Z ′

N //

c

²²

Z

a

²²
Z ′ // N

Proposition 3.5. For any degeneration M ≤deg N we have

cpl(M,N) ≥ ``(M)
``(N)

− 1,

where ``(X) denotes the Loewy length of X; i.e., the smallest integer r such that
(radA)rX = 0.

Proof. Choose an (M,N)-tube T = (Ni, αi, βi) of complexity h = cpl(M,N).
Then M is a direct summand of Nh+1, and hence ``(M) ≤ ``(Nh+1). We claim
that, for all i ≥ 1,

``(Ni) ≤ i ``(N1).

In fact, for any exact sequence

0 → A → B → C → 0

the relation
``(B) ≤ ``(A) + ``(C)

holds true. Our claim follows by induction, considering the exact sequences

0 → Ni−1 → Ni → N1 → 0. ¤
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4. Exact tubes from monomorphisms

Throughout this section, (f, g)t : Z → Z ⊕M denotes an (M,N)-monomorphism.

Definition 4.1. We call two exact tubes T = (Ni, αi, βi) and T ′ = (N ′
i , α

′
i, β

′
i)

similar if Ni is isomorphic to N ′
i for all i ≥ 1.

So we do not ask for any compatibility with the maps in the tubes. Note
that the property of being an (M,N)-tube is preserved under similarity, and so is
complexity.

Proposition 4.2. There is a direct summand Z ′ of Z and an exact sequence

0 → Z ′
(f|

Z′
g|

Z′
)

−−−−→ Z ′ ⊕M → N → 0

such that f |Z′ is nilpotent and Tf,g is similar to Tf |Z′ ,g|Z′ . As a consequence, Tf,g

is an (M,N)-tube.

Proof. By Fitting’s lemma, there is a decomposition Z = Z ′ ⊕Z ′′ of Z as a direct
sum which is preserved under f and such that f ′ = f |Z′ is nilpotent and f ′′ = f |Z′′
is an automorphism of Z ′′. Set g′ = g|Z′ and g′′ = g|Z′′ . Obviously the maps(

f ′i 0 g′f ′i−1 · · · g′
0 f ′′i g′′f ′′i−1 · · · g′′

)t

: Z ′ ⊕ Z ′′ −→ Z ′ ⊕ Z ′′ ⊕M i

and
(f ′i g′f ′i−1 · · · g′)t : Z ′ −→ Z ′ ⊕M i

have isomorphic cokernels as (f ′′)i is an isomorphism for i ≥ 1. Since f ′ is nilpo-
tent, Tf ′,g′ is an (M,N)-tube. ¤

Remark 4.3. Suppose that fh = 0. As

ϕh+j = (0, . . . , 0, gfh−1, . . . , g)t : Z −→ Z ⊕Mh+j ,

for j ∈ N, the exact tube Tf,g has the following particularly simple form:

Nh+j = Z ⊕M j ⊕ Z ′, Nh+j+1 = Z ⊕M j+1 ⊕ Z ′,

αh+j =
(

f 0
g 0
0 1

)
: Z ⊕ (M j ⊕ Z ′) → Z ⊕M ⊕ (M j ⊕ Z ′),

βh+j = ( 1 0 0
0 k l ) : (Z ⊕M j)⊕M ⊕ Z ′ → (Z ⊕M j)⊕ Z ′,

for j ∈ N, where Z ′ is a cokernel of

ψ = (g ◦ (fh−1, . . . , f, 1))t : Z −→ Mh

and
(k, l) : M ⊕ Z ′ −→ Z ′
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is obtained from the commutative diagram

0 // Z
ϕh+1 //

f

²²

Z ⊕Mh+1 //

(1 0)

²²

Nh+1 = Z ⊕M ⊕ Z ′ //

( 1 0 0
0 k l )

²²

0

0 // Z ϕh

// Z ⊕Mh // Nh = Z ⊕ Z ′ // 0

with exact rows.

Our next goal is to show that, up to similarity, we may choose g ∈ rad(Z,M).
We start with an auxiliary result:

Lemma 4.4. The tube Tf,g is similar to Tf ′,g with f ′ = f −hg, where h : M → Z
is any homomorphism.

Proof. It suffices to check the identity ψi ◦ ϕ′i = ϕi, for i ≥ 1, where

ϕi = (f i, gf i−1, . . . , g)t : Z −→ Z ⊕M i,

ϕ′i = (f ′i, gf ′i−1
, . . . , g)t : Z −→ Z ⊕M i

and

ψi :=




1 h fh f2h ··· fi−1h

0 1 gh gfh ··· gfi−2h

0 0 1 gh
. . .

...
...
. . . . . . . . . . . . gfh

...
. . . . . . . . . gh

0 ··· ··· ··· 0 1




: Z ⊕M i → Z ⊕M i.

The key is the equation

fr = f ′r +
r−1∑
s=0

fs(hg)f ′r−1−s
, r ≥ 1,

which is proved by induction. ¤

Proposition 4.5. There exists a direct summand Z ′ of Z and an exact sequence

0 → Z ′
(f′

g′ )−−→ Z ′ ⊕M → N → 0 (4.1)

with g′ ∈ rad(Z ′,M) and such that Tf,g is similar to Tf ′,g′ .

Proof. If g ∈ rad(Z,M), there is nothing to be proved. Otherwise, we prove that
a sequence (4.1) exists such that Tf,g is similar to Tf ′,g′ and dimZ ′ < dim Z
and then proceed by induction on dimZ. We choose a non-zero direct summand
Z2 of Z for which g|Z2 is a section. Replacing Z by an isomorphic module if
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necessary, which leads to an isomorphic tube, we may assume that Z = Z1 ⊕ Z2,
M = M1 ⊕ Z2,

g =
(

q 0
0 1

)
and f =

(
a c
b d

)
.

Applying the preceding lemma for

h =
(

0 c
0 d

)
,

we obtain a monomorphism
(
f ′′

g

)
of the form(

f ′′

g

)
=

(
a 0
b 0
q 0
0 1

)
: Z1 ⊕ Z2 → Z1 ⊕ Z2 ⊕M1 ⊕ Z2.

Now we may take Z ′ = Z1, M = Z2 ⊕M1, f ′ = a and g′ =
(

b
q

)
. ¤

Proposition 4.6. Set h = cpl(Tf,g), and suppose that g ∈ rad(Z,M) and that f
is nilpotent. Then (Tf,g)≤h is M -extendible.

Proof. Our assumptions on f and g imply that, for some i, the restriction ψ|Z of
the composition

ψ =
(

ϕi 0
0 1Mh

)
: Z ⊕Mh → Z ⊕M i ⊕Mh

of the maps

Z ⊕Mh

(
f 0
g 0
0 1

)
−−−−−→ Z ⊕M1+h → · · ·

(
f 0
g 0
0 1

)
−−−−−→ Z ⊕M i+h

belongs to rad(Z,Z ⊕M i+h). By construction of Tf,g, the square

Z ⊕Mh
ψ //

πh

²²

Z ⊕M i ⊕Mh

πh+i

²²
Nh

αi+h−1···αh // Ni+h

is exact, where πj : Z ⊕M j → Nj is the projection to the cokernel of ϕj : Z →
Z ⊕ M j , and it splits, since h = cpl(Tf,g). Therefore, πh|Z is a section, and
replacing Nh by an isomorphic module, we may assume that

Nh = Z ⊕ Z ′, πh =
(

1 ∗ ∗
0 d ∗

)
: Z ⊕M ⊕Mh−1 −→ Z ⊕ Z ′,

where ∗ is an arbitrary map.
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Now consider the exact squares

Z ⊕Mh−1

(
f 0
g 0
0 1

)
//

πh−1

²²

Z ⊕M ⊕Mh−1

( 1 0 0
0 1 0 )

oo

πh=( 1 ∗ ∗
0 d ∗ )

²²
Nh−1

αh−1 //
Z ⊕ Z ′.

βh−1

oo

It is easy to see that the square

Z
g //

πh−1|Z
²²

M

d

²²
Nh−1

prz′◦αh−1 // Z ′

is exact as well. Moreover, we have

πh−1|Z = βh−1|Z . ¤

Next we recall a different construction for Tf,g, which has been presented for
the most part in [6]. From (f, g)t we obtain the commutative diagram (Figure 2)
with exact rows and (ki, li) = βi(ki+1, li+1) for i ≤ m− 1.

0 // Z
(f

g) //

km−1

²²

Z ⊕M
(k1,l1) //

(km,lm)

²²

N1 = N // 0

0 // Nm−1
αm−1 //

βm−2

²²

Nm

β1...βm−1 //

βm−1

²²

N1
// 0

0 // Nm−2
αm−2 // Nm−1

β1...βm−2 // N1
// 0

0 // N2
α2 //

β1

²²

N3
β1 β2 //

β2

²²

N1
// 0

0 // N1
α1 // N2

β1 // N1
// 0

Figure 2

The next step is always obtained by squeezing the push-out of the top sequence
by km between the two top rows.
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We claim that the exact tube (Ni, αi, βi) of height m thus obtained is isomor-
phic to the restriction (Tf,g)≤m of Tf,g.

By induction, we obtain the following series of exact squares:

Z
(f

g) //

²²

Z ⊕M

(
f 0
g 0
0 1

)
//

ψ1

²²

Z ⊕M2

ψ2

²²

Z ⊕Mm−1

(
f 0
g 0
0 1

)
//

ψm−1

²²

Z ⊕Mm

ψm

²²
0 // N1

α1 // N2 Nm−1
αm−1 // Nm

with ψi = (ki, li, αi−1li−1, . . . , αi−1 . . . α1l1) : Z ⊕M i → Ni.
Note that the composition of the first i maps of the top row is just ϕi : Z →

Z ⊕M i and that the sequence

0 → Z
ϕi−→ Z ⊕M i ψi−→ Ni → 0

is exact for i = 1, . . . , m. So Ni
∼→ coker ϕi, and the maps αi are the ones we

claim. As for βi, it suffices to show that

ψi ◦ (1 0) = βi ◦ ψi+1.

This follows easily from the explicit formulas for ψi, ψi+1, the equation

(ki, li) = βi(ki+1, li+1)

and the fact that (Ni, αi, βi) is an exact tube of height m. As a consequence we
have:

Remark 4.7. Let (f, g)t be an (M,N)-monomorphism and T ′ = (N ′
i , α′i, β′i) an

exact tube of height m. Then T ′ is isomorphic to (Tf,g)≤m if and only if there
exists an exact square

Z
(f

g) //

β′m−1◦k
²²

Z ⊕M

(k,l)

²²
N ′

m−1

α′m−1 // N ′
m

.

Proposition 4.8. Any M -extendible exact tube T = (Ni, αi, βi) of height m

with N1
∼→
A

N is the restriction of the exact tube Tf,g to Qm for some (M,N)-

monomorphism (f, g)t.

Proof. Let

0 → Z
(a

b )−−→ Nm−1 ⊕M
(c d)−−−→ Z ′ → 0
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be an exact sequence with Nm = Z ⊕ Z ′, a = βm−1|Z and c = prZ′ ◦ αm−1. The
square

Nm = Z ⊕ Z ′

(
c′a c′a′
b 0
0 1

)
//

(a,a′)=βm−1

²²

Z ⊕M ⊕ Z ′(
1 0 0
0 −d ca′

)
²²

Nm−1

(c′
c )=αm−1 // Nm = Z ⊕ Z ′

is exact. Setting

Nm+1 = Z ⊕M ⊕ Z ′, αm =


 c′a c′a′

b 0
0 1


 , βm =

(
1 0 0
0 −d ca′

)

we may extend T to an exact tube of height m + 1. By construction, the map(
c′a
b

)
: Z −→ Z ⊕M

is an (M,N)-monomorphism, and the square

Z
(c′a

b )
//

(1
0)

²²

Z ⊕M(
1 0
0 1
0 0

)
²²

Nm = Z ⊕ Z ′
αm // Nm+1 = Z ⊕M ⊕ Z ′

is exact with (
1
0

)
= βm ◦


 1

0
0


 .

The result now follows from Remark 4.7. ¤

Proposition 4.9. Let T = (Ni, αi, βi) be an exact tube of height h+m, for some
h ≥ 1 and m ≥ 1. Suppose that

Nh+j+1
∼−→
A

Nh+j ⊕M

for j ∈ {0, . . . , m− 1}. Then there is an (M,N)-monomorphism(
f

g

)
: Nh+m−1 −→ Nh+m−1 ⊕M

such that the restrictions T≤m and (Tf,g)≤m are isomorphic.

Proof. We wish to choose (
f

g

)
= χ ◦ αh+m−1
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for a suitable isomorphism χ : Nh+m → Nh+m−1 ⊕M and to apply Remark 4.7
to the diagram

Nh+m−1

β=βm−1...βh+m−2

²²

αh+m−1 // Nh+m

βm...βh+m−1

²²

∼
χ

// Nh+m−1 ⊕M

uukkkkkkkkkkkkkkkk

Nm−1 αm−1
// Nm

.

In order to do this, we only need to construct a section

s : Nh+m−1 −→ Nh+m

satisfying
βm−1βm · · ·βh+m−1s = ββh+m−1s = β.

By our hypothesis, the square

Nh+1
α //

βh

²²

Nh+m

βh+m−1

²²
Nh

α′ // Nh+m−1

splits, where α = αh+m−1 . . . αh+1 and α′ = αh+m−2 . . . αh. Choose a maximal
direct summand A of Nh+m for which βh+m−1|A is a section. Replacing T by an
isomorphic exact tube, we may assume that we have

βh+m−1 =
(

1 0 0
0 γ δ

)
: A⊕B ⊕M −→ A⊕B,

α′ =
(

ε 0
0 1

)
: C ⊕B −→ A⊕B

for some maps γ, δ, ε. Setting

s =


 1 0

0 1
0 0


 : A⊕B −→ A⊕B ⊕M,

we obtain

1A⊕B − βh+m−1s =
(

0 0
0 1− γ

)
: A⊕B −→ A⊕B,

which factors through α′. But the sequence

0 −→ Nh
α′−→ Nh+m−1

β−→ Nm−1 −→ 0

is exact, which implies β = ββh+m−1s as required. ¤
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5. Examples

All our examples are representations of quivers with relations. Let Q be a quiver
with vertex set Q0 = {1, . . . , n}, I an admissible two-sided ideal in the quiver
algebra kQ, d = (d1, . . . dn) a vector in Nn, and denote by

Rep(Q, I, d)

the affine algebraic variety of representations X of (Q, I) with X(i) = kdi , i ∈ Q0.
The dimension vector of X in Rep(Q, I, d) is d. The group G(d) =

∏n
i=1 GL(di)

acts on Rep(Q, I, d) by

(g ·X)(α) = gj ◦X(α) ◦ g−1
i

for an arrow α : i → j and g = (g1, . . . , gn) ∈ G(d).
If we view M,N in Rep(Q, I, d) as modules over kQ/I of dimension d =∑n

i=1 di, then M degenerates to N if and only if the representation N belongs
to the closure of the orbit G(d) · M of M in Rep(Q, I, d) [1]. This allows us to
work with the smaller group G(d).

5.1. We begin with an example of a degeneration whose complexity is easy to
compute: Choose a natural number n ≥ 2 and let ~An be the equioriented quiver
with underlying graph An:

~An = 1
γ1←− 2 ←− · · · ←− n− 1

γn−1←− n.

Denote by Xi the indecomposable representation of ~An given by

Xi(j) =

{
k j ≤ i,

0 j > i,

Xi(γj) =

{
1 j < i,

0 j ≥ i.

Then M = Xn has a filtration

M = Xn ⊃ Xn−1 ⊃ · · · ⊃ X2 ⊃ X1,

and it is well-known that M degenerates to the associated graded module

N =
n⊕

i=1

Xi/Xi−1,

where we set X0 = 0. We wish to compute the complexity cpl(M,N), thereby
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showing again that M actually degenerates to N . Set

Z =
n−1⊕
i=1

Xi,

f =




0 0
ι2

. . .

. . . . . .
ιn−1 0


 : Z −→ Z and

g = (0 · · · 0 ιn) : Z −→ M = Xn,

where ιi : Xi−1 → Xi is the inclusion. It is easy to check that (f, g)t is an
(M,N)-monomorphism. Moreover, fn−1 = 0, and thus

cpl(M,N) ≤ n− 1.

On the other hand, the Loewy lengths of M and N are n and 1, respectively,
which implies

cpl(M,N) ≥ ``(M)
``(N)

− 1 = n− 1

by Proposition 3.5. This example shows that there are degenerations of arbitrary
complexity.

Note that for n = 4 we obtain the following chain of degenerations:

M = k
1← k

1← k
1← k ≤deg P = k

1← k
0← k

1← k

≤deg N = k
0← k

0← k
0← k.

The complexities are

cpl(M,P ) = 1 = cpl(P,N) and
cpl(M,N) = 3 > cpl(M,P ) + cpl(P,N).

Comparing with the example given in the introduction, we see that cpl(M,P ) +
cpl(P,N) can be either smaller or greater than cpl(M,N) for a chain

M ≤deg P ≤deg N.

5.2. Next we give an example of a minimal degeneration of arbitrary complexity:
Let Q be the quiver

Q = 1 α //2 βbb ,

choose a natural number n ≥ 2, and let I be the ideal generated by βn. Define M
and N to be the representations of dimension vector (1, n) given by

M(α) = e1 =

( 1
0
...
0

)
, N(α) = e2 =

( 0
1
...
0

)



798 R. Aehle, Ch. Riedtmann and G. Zwara CMH

and

M(β) = N(β) = Jn, respectively,

where e1, . . . , en is the standard basis of kn and Jm is the Jordan block

Jm =




0 0
1

. . .

. . . . . .
0 1 0




in Mm(k), for m ∈ N.

Proposition 5.1. There is a degeneration M ≤deg N , which is minimal, and
cpl(M,N) = n.

Proof. Denote by Z the indecomposable representation with dimension vector
(0, n), given by Z(β) = Jn, and let (f, g)t : Z −→ Z ⊕M be given by

f = (0, Jn), g = (0, 1).

It is easy to see that (f, g)t is an (M,N)-monomorphism, so M degenerates to N .
Moreover, we have fn = 0, and therefore cpl(M,N) ≤ n. As

dim EndM = 1 and dim EndN = 2,

the orbit of N has codimension 1 in the closure of the orbit of M , which implies
that the degeneration is minimal.

Suppose cpl(M,N) ≤ n− 1, and choose an (M,N)-tube T = (Ni, αi, βi) with
Nn

∼−→ Nn−1 ⊕ M . Let ψn : Nn → M be the surjection obtained from this
decomposition.

Claim. For i = 1, . . . , n, there exists a surjection

ψi : Ni −→ M (i),

where M (i) has dimension vector (1, i) and is given by

M (i)(α) = (1, 0, . . . , 0)t, M (i)(β) = Ji.

Using the claim for i = 1, we obtain a surjection ψ1 : N1 = N −→ M (1), which
is impossible.

We prove the claim by descending induction on i. Observe that any map from
N to M (i) factors through the socle socM (i) and that M (i)/socM (i) ∼→ M (i−1).
Writing this factorization for ψi ◦ αi−1 · · ·α1, we obtain ψi−1 : Ni−1 → M (i−1)

from the following commutative diagram with exact rows:
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0 // N

²²

αi−1···α1 // Ni

ψi

²²

βi−1 // Ni−1

ψi−1

²²

// 0

0 // socM (i) // M (i) // M (i−1) // 0.

As ψi is surjective, ψi−1 is as well. ¤

A version of this argument implies the following result, which we will not use:

cpl(M,Mi) =
[
n− 1
i− 1

]
+ 1, i ≥ 2.

The representation Mi is given by

Mi(α) = ei, Mi(β) = Jn.

5.3. We now exhibit a degeneration M ≤deg N of complexity 2 with the property
that f2 6= 0 for all (M,N)-monomorphisms (f, g)t. Therefore the complexity can
be strictly less than the “index of nilpotence of M and N”; i.e., the number

min{r : fr = 0},
where the minimum is taken over all (M,N)-monomorphisms (f, g)t. We stay
with the same quiver Q, and we choose I to be generated by β3; i.e., we set n = 3
in the preceding example. Note that kQ/I is representation-finite: it admits 29
indecomposables [4].

We let M and N be given by

M(α) = e2, N(α) = e3, M(β) = N(β) = J3,

where e1, e2, e3 is the standard basis of k3. Choose

Z ′ = 0 //k3 J3ee

f ′ = (0, J3) : Z ′ −→ Z ′ and
g′ = (0, 1) : Z ′ −→ M.

Then (f ′, g′)t is an (M,N)-monomorphism. As f ′2 factors through g′, the cokernel
N3 of the map

ϕ3 = (f ′3, g′f ′2, g′f ′, g′)t : Z ′ −→ Z ′ ⊕M3

used to define the tube Tf ′,g′ = (Ni, αi, βi) is isomorphic to the cokernel of

(f ′2, 0, g′f ′, g′)t : Z ′ −→ Z ′ ⊕M3

and thus isomorphic to M ⊕N2. By Lemma 3.3, we know that

cpl(M,N) ≤ 2.
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On the other hand, as N is indecomposable, the complexity must exceed 1, so

cpl(M,N) = 2.

Claim. For any (M,N)-monomorphism

(f, g)t : Z −→ Z ⊕M,

we have f2 6= 0.

First we show:

Lemma 5.2. For any (M,N)-monomorphism

(f, g)t : Z −→ Z ⊕M,

Z ′ is a direct summand of Z.

Proof. Consider the exact sequences

Σ′ : 0 −→ Z ′
(f′

g′ )−−→ Z ′ ⊕M
(k′,l′)−−−−→ N −→ 0

and

Σ : 0 −→ Z
(f

g )
−−→ Z ⊕M

(k,l)−−−→ N −→ 0.

It is easy to check that

dim Hom(Z ′,M) = dim Hom(Z ′, N) = 3,
dim EndM = dim Hom(M,N) = 2.

Therefore the sequence of vector spaces

0 −→ Hom(Z ′ ⊕M,Z) −→ Hom(Z ′ ⊕M, Z ⊕M) −→ Hom(Z ′ ⊕M,N) −→ 0

obtained from mapping Z ′⊕M into Σ is exact. In particular, (k′, l′) : Z ′⊕M → N
factors through (k, l) : Z⊕M → N , and hence we have the following commutative
diagram (Figure 3) with exact rows and columns.
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0 0

Σ : 0 // Z // Z ⊕M

OO

(k,l) // N

OO

// 0

0 // Z
(1
0) // Z ⊕ (Z ′ ⊕M)

OO

(0 1) // Z ′ ⊕M

(k′,l′)

OO

// 0

Z ′

( s
f ′

g′

)OO

Z ′

(f′
g′)

OO

0

OO

0

OO

Figure 3

So the middle column splits as well, and since by construction f ′, g′ lie in the
radical,

s : Z ′ −→ Z

must be a section. ¤

Let (f, g)t : Z → Z ⊕M be an (M,N)-monomorphism, suppose f2 = 0, and
consider the commutative diagram (Figure 4) with exact rows and columns.

0

²²

0

²²

0

²²
0 // ker f

²²

// M

(0
1)

²²

// X

²²

// 0

0 // Z

²²

(f
g) // Z ⊕M

(1,0)

²²

(k,l) // N

²²

// 0

0 // im f

²²

// Z

²²

// coker f

²²

// 0

0 0 0

Figure 4

Then X must be a quotient of M and a submodule of N , which is possible in
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exactly two ways:

(i) X = k
(0
1) //k2 J2ee

(ii) X = 0 //k 0bb

In the first case, we have

ker f = 0 //k 0bb ,

and our assumption f2 = 0 implies that dimZ(2) ≤ 2. But then Z cannot contain
Z ′ as a direct summand.

In the second case, we see that

ker f = k
(1
0) //k2 J2ee .

Now f2 = 0 implies that dimZ(2) ≤ 4. But then necessarily Z(βα) = 0, since Z ′

must be a direct summand of Z, and Z cannot contain ker f as a submodule.

5.4. As our last example, we find a degeneration M ≤deg N of complexity 2 for
which there exists an exact sequence

Σ : 0 −→ N
α1=(f

g)−−−−−→ N ⊕M
β1=(f,−l)−−−−−−→ N −→ 0.

So we have an exact tube

T = (N1 = N, N2 = N ⊕M, α1, β1)

of height 2. If this tube were the restriction of an (infinite) exact tube, the com-
plexity cpl(M,N) would have to equal 1. So the number 2h + 1 in condition (iii)
of our main theorem cannot be replaced by 2h.

Choose A = k[α, β]/(α2, β2), let M and N be 4-dimensional with

M(α) = N(α) =
(

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

)
, M(β) =

(
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

)
, N(β) =

(
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

)
,

and set

f =
(

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

)
, g =

(
0 0 0 0
0 1 0 0
1 0 0 0
0 0 0 1

)
, l =

(
1 0 0 0
0 0 0 0
0 0 1 0
0 1 0 0

)
.

It is easy to check that the sequence Σ obtained from these choices is exact. So
M degenerates to N . As N is indecomposable and f2 factors through g, the same
argument as in Section 5.3 implies that cpl(M,N) = 2.

This example has another surprising feature: For any degeneration M ≤deg N
we obtain

cpl(Mr, Nr) ≤ cpl(M,N), r ≥ 1,
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by taking for Mr ≤deg Nr the direct sum of r copies of an (M,N)-tube of minimal
complexity. In our example, we have

cpl(M2, N2) = 1 < cpl(M,N) = 2.

Indeed, M2 is a projective cover for N , and the kernel of an epimorphism M2 → N
is N again. So there is an exact sequence

0 −→ N −→ M2 −→ N −→ 0.
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