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c© 2002 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

Algebraic convergence of function groups

Gero Kleineidam and Juan Souto

Abstract. We give a sufficient condition for a sequence of convex cocompact hyperbolic struc-
tures on a fixed compression body to have an algebraically convergent subsequence. This extends
a result of Otal. Further if the manifold is a handlebody we show that certain laminations play
a similar role in deformation space as binding curves in Teichmüller theory.
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1. Introduction

A compression body N is a compact 3-manifold which is the connected sum along
the boundary on a closed ball of solid tori and trivial interval bundles over closed
surfaces of genus at least 2. Throughout the paper, we only consider the case that
the fundamental group π1(N) splits as a non-trivial free product. Equivalently, we
rule out that N is a trivial interval bundle over a closed surface or a solid torus. In
particular, the boundary ∂N has a unique compressible component which is called
the exterior boundary ∂eN . For more on the topology of compression bodies see
Bonahon [Bon83, Appendix B].

Using Klein-combination one can construct a convex cocompact representation
ρ0 of π1(N) into PSL2 C such that H3/ρ0(π1(N)) is homeomorphic to the interior
of the compression body N [MT98]. Such a representation is said to uniformize
N . The exterior boundary ∂eN is covered by a connected component of the dis-
continuity domain Ωρ0 ⊂ Ĉ, which is invariant under ρ0(π1(N)). Kleinian groups
having an invariant component of the discontinuity domain are called function
groups. The quotient of H3 by any convex cocompact function group is homeo-
morphic to the interior of a compression body. See Maskit [Mas88] for more on
function groups.

Due to a theorem of Marden [And98, MT98], every quasi-conformal deforma-
tion of ρ0 uniformizes N , too. By Ahlfors–Bers theory, QH(ρ0), the space of
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quasi-conformal deformations of ρ0 up to conjugation by an element of PSL2 C, is
parameterized by the Teichmüller space T (∂N). More precisely, there is a normal
covering, called the Ahlfors–Bers map

T (∂N) → QH(ρ0)

whose deck transformation group is the group of isotopy classes of diffeomorphisms
of N which are homotopic to the identity (see [MT98]). Note that the Teichmüller
space T (∂N) can be identified with T (∂eN) × T (∂1N) × · · · × T (∂kN) where
∂eN, ∂1N, . . . , ∂kN are the boundary components of N. As homeomorphisms of
N preserve ∂eN, the deck transformation group of the Ahlfors–Bers map acts on
T (∂eN).

The space QH(ρ0) is contained in the deformation space of π1(N), the space
of PSL2 C-conjugacy classes of discrete and faithful representations of π1(N) into
PSL2 C. The compact-open topology on it is the so-called algebraic topology. With
respect to this topology, QH(ρ0) is open in deformation space. For more on the
deformation theory of Kleinian groups, see [And98, MT98].

Since deformation space is not compact, it is an interesting question to deter-
mine when a divergent sequence in QH(ρ0) converges in deformation space.

Canary [Can91] showed that for all compact subsets K ⊂ T (∂eN) the image
under the Ahlfors–Bers map of K×T (∂1N)×· · ·×T (∂kN) has compact closure in
deformation space. The goal of this paper is to study sequences of quasi-conformal
deformations of ρ0 such that the corresponding sequences in T (∂eN) diverge.

Thurston [FLP79] compactified Teichmüller space via PML, the space of pro-
jective classes of measured laminations. Masur [Mas86] and Otal [Ota88] studied
the dynamics of the mapping class group of the compression body N on the space
of projective classes of measured laminations on the exterior boundary ∂eN and
described an open set O ⊂ PML on which the action is properly discontinuous.
The set O is called the Masur domain. Otal [Ota88] analyzed further geometric
properties of laminations in O. In particular, he proved that given a convex co-
compact representation uniformizing N , every lamination λ in the Masur domain
is realized by a pleated surface.

We will say that a sequence (ρi) in QH(ρ0) converges into the Masur domain if
it is parameterized under the Ahlfors–Bers map by a sequence (Se

i , S1
i , . . . , Sk

i )i⊂
T (∂N) such that (Se

i )i converges to a measured lamination λ ∈ O. We impose no
restrictions on the conformal structures on the incompressible boundary compo-
nents. By abuse, we will say that the sequence (ρi) ⊂ QH(ρ0) converges to λ ∈ O.

Conjecture (Thurston). Let ρ0 be a convex cocompact representation uniformiz-
ing a compression body N . If (ρi)i is a sequence in QH(ρ0) converging to a lami-
nation in the Masur domain, then it has a convergent subsequence in deformation
space.

Canary [Can93] proved the conjecture under the extra assumption that N is a
handlebody and that there is an identification of N with the trivial interval bundle
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over a surface Σ with boundary ∂Σ such that the lengths of the geodesics in the
free homotopy classes of ∂Σ remain bounded with respect to the representations ρi.

In case N is the connected sum along the boundary of two trivial bundles over
closed surfaces, Ohshika [Ohs97] gave a partial answer to the above conjecture.

Otal [Ota94] proved that the conjecture holds for handlebodies of genus two
and laminations with simply connected complementary regions. Such laminations
are also called minimal arational. We follow the strategy of Otal’s proof and show
for general compression bodies.

Theorem 1. Let ρ0 be a convex cocompact representation uniformizing a compres-
sion body N . If (ρi)i is a sequence in QH(ρ0) converging to a minimal arational
lamination in the Masur domain, then it has a convergent subsequence in defor-
mation space.

Further, we prove that laminations in the Masur domain play a similar role
for handlebodies as binding curves do in Teichmüller theory. This generalizes
Theorem 6.1 in Canary [Can93].

Theorem 2. Let N be a handlebody and λ a measured lamination in the Masur
domain. The set of convex cocompact representations ρ uniformizing N such that
lρ(λ), the length of λ with respect to ρ, is less than a constant C > 0 is precompact
in deformation space.

The proofs of Theorem 1 and Theorem 2 follow the same lines. We restrict
ourselves to a brief outline of the proof of Theorem 1.

Seeking for a contradiction, let (ρi) be a sequence in QH(ρ0) which converges
to a minimal arational lamination λ ∈ O but does not contain any convergent
subsequence in deformation space.

By Theorems of Thurston [FLP79] and Canary [Can91], convergence to λ im-
plies that there is a sequence of curves (γi) on ∂eN converging to λ in PML such
that the ratios of the translation lengths in H3 of ρi(γi) and ρ0(γi) tend to 0.

By a Theorem of Morgan and Shalen [MS84], divergence in deformation space
implies that a subsequence of (ρi), say the whole sequence, converges in an appro-
priate sense to a minimal and small action of π1(N) on an R-tree T . The lamination
λ is said to be realized in T if there is a continuous equivariant map from λ̃, the
lift of λ to H2, to T which is injective on each leaf of λ̃. Otal [Ota94] proved that if
λ is realized in T , then for every sequence of curves (γi) converging to λ in PML,
the ratios of the translation lengths in H3 of ρi(γi) and ρ0(γi) tend to ∞.

Hence, we obtain the desired contradiction by proving that every minimal ara-
tional lamination in the Masur domain is realized in every R-tree which admits a
minimal small action of π1(N). This was previously established by Otal [Ota94]
in the case of the handlebody of genus 2. He made use of a Theorem of Culler
and Vogtmann [CV91] which gives a geometric description of all small actions on
R-trees of the free group of rank 2. It is known that such a characterization is not
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possible in general, not even for free groups of higher rank [GL95].
Our approach is different. Suppose that a minimal arational lamination λ ∈ O

and an R-tree T that admits a small action of π1(N) are given. We show that there
is a measured lamination µ on the exterior boundary ∂eN and a morphism from
the dual tree Tµ to T such that the composition of the projection H2 → Tµ with
the morphism Tµ → T is monotone and non-constant on every leaf of λ̃. Due to
a result of Otal [Ota94], such a map can be homotoped to a realization of λ in T .

The existence of µ ensues from a detailed study of morphisms from dual trees
to T . This part is motivated by ideas of Skora [Sko96].

The paper is structured as follows: In section 2, we review some facts about
trees, laminations, and divergence of representations. In Section 3, we reduce
Theorem 1 and Theorem 2 to statements on realizations of laminations in R-trees.
Section 4 is devoted to the analysis of laminations on the exterior boundary of N .
The techniques are motivated by earlier work of Otal [Ota88]. In section 5, we
study morphisms from dual trees to R-trees which admit a minimal small action
of π1(N). In section 6, we construct the desired realizations using the results of
section 4 and section 5.

The authors would like to express their special gratitude to Professor Ursula
Hamenstädt and Professor Jean-Pierre Otal for their patience, their encourage-
ment and the fruitful discussions with them. There is no doubt that the present
paper would not have been possible without Otal’s fundamental work on this topic.
The first author wants to thank Professor Frédéric Paulin for his invitation to a
two-month-stay in Orsay.

We thank the referee for a careful reading and useful suggestions.

2. Preliminaries

In this section, we review some facts about trees, laminations and divergence of
representations.

Let N be a compression body. After the choice of a basepoint ? on the exterior
boundary ∂eN , we have a surjective homomorphism

ϕ : π1(∂eN, ?) → π1(N, ?)

which we call compression homomorphism. If there is no risk of confusion, we will
use the symbol γ for elements in π1(∂eN, ?) as well as for their images under ϕ.
Further for simplicity, we often write π1(∂eN) and π1(N).

Later it will be useful to view every action π1(N) y X of π1(N) on a space X
as a π1(∂eN)-action, too:

π1(∂eN)×X → X, (g, x) 7→ ϕ(g)x

All actions on metric spaces (X, dX) will be isometric. The translation length
of an isometry g of a metric space X is defined to be inf{dX(x, gx)|x ∈ X}. The
metric spaces we are going to work with are H2, H3 and R-trees.
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2.1. R-trees

An R-tree T is a path metric space such that any two points p, q can be joined by
a unique arc.

There is a classification of the isometries of an R-tree T . An isometry g : T → T
has either translation length lT (g) = 0 and has a fixed point or lT (g) > 0 and there
is a unique invariant geodesic line in T , the axis of g.

An action G y T is called minimal if there is no proper invariant subtree.
An action G y T is called small if the stabilizer of every non-degenerate arc is
virtually abelian. More about R-trees can be found in Kapovich [Kap00].

Morgan and Shalen [MS84] used R-trees to compactify the deformation space.
They use algebraic methods, for a more geometric approach see Bestvina [Bes88]
and Paulin [Pau88].

Compactness Theorem (Morgan–Shalen). Let G be a finitely generated group
containing a free group of rank 2 and let ρi : G → PSL2 C be a sequence of discrete
and faithful representations. Then after passing to a subsequence either

(1) (ρi) converges in the deformation space of G, or
(2) there is a minimal small action G y T on an R-tree and a sequence of

real numbers εi → 0 with

lim
i

εi lρi
(γ) = lT (γ)

for all γ ∈ G, where lρi
(γ) is the translation length of ρi(γ) in H3.

We remark that a minimal small action of such a group G on a tree is charac-
terized by the translation lengths of the elements of G [Kap00]. This allows us to
say that the sequence (ρi)i converges to the action G y T .

We will apply the Compactness Theorem to the case that G is the fundamental
group of a compression body.

2.2. Laminations

A lamination on a closed hyperbolic surface S is a compact subset of S which
can be decomposed as a disjoint union of simple geodesics, called leaves. The
sets of laminations with respect to two hyperbolic structures on the same surface
can be naturally identified (see [CB88]); so a lamination can be considered as a
topological object. A lamination is called minimal if every half-leaf is dense. Each
lamination can be decomposed as a union of finitely many connected minimal
laminations, called minimal components, and finitely many non-compact isolated
leaves. The set of laminations is compact with respect to the topology induced by
the Hausdorff distance. We will refer to this topology as the Hausdorff topology.
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A train-track τ in S is a finite union of rectangles with “long” horizontal sides
which are foliated by “short” vertical geodesic segments and which meet only at
non-degenerate segments contained in the vertical sides. The horizontal sides of
the rectangles are called rails, the vertical segments ties and the intersections of
two rectangles switches. A lamination is carried by τ if it is contained in τ and
transverse to the ties. If λ is carried by τ , then the set of laminations carried by
τ forms a neighbourhood of λ with respect to the Hausdorff topology [Ota96].

A measured lamination is a lamination with a transverse measure of full sup-
port. The support of a measured lamination is a finite union of minimal compo-
nents, in particular it does not contain any isolated non-compact leaf. A minimal
lamination is called minimal arational if its complementary regions are simply-
connected.

There is a topology on the setML of measured laminations which is induced by
the intersection form i : ML×ML→ R+ [Ota96, FLP79]. Rescaling the measure
provides an action of R+ on ML. The quotient with the quotient topology is the
space of projective measured laminations and is denoted PML. It is compact. If
a sequence of projective measured laminations converges to a projective measured
lamination λ in PML and to a lamination λH in the Hausdorff topology, then λ
– or more precisely the support of λ – is contained in λH.

The Teichmüller space of a closed surface S is denoted by T (S). Thurston
[Thu86] studied the length function on the space of measured laminations on S.
It is the unique continuous function

T (S)×ML −→ R+, (σ, λ) 7→ lσ(λ)

which extends the function that associates to a point σ ∈ T (S) and to a weighted
simple closed geodesic a · γ, a > 0, the length of γ in σ multiplied by a.

The Teichmüller space T (S) can be compactified by the space PML of pro-
jective measured laminations on S [FLP79]. This compactification reflects the
geometric behaviour of divergent sequences in T (S). In particular, if a sequence
(Si) ⊂ T (S) converges to λ ∈ PML, then there is a sequence (γi) of simple closed
curves converging to λ in PML and such that

lSi
(γi)/lS0(γi) −→ 0 for i −→∞.

However this does not imply that the lengths lSi
(λ) tend to 0. Indeed, take an

element of T (S) and iterate a Dehn twist about a fixed curve γ on it. The resulting
sequence tends to γ, seen as an element of PML, but the length of γ is constant
during the sequence.

Given a hyperbolic structure on the compression body N , a pleated surface
is a length preserving map f : S → N from a hyperbolic surface S ∈ T (∂eN)
to N homotopic to the inclusion ∂eN ↪→ N and such that each point p ∈ S is
contained in a geodesic segment which is mapped isometrically. A lamination λ
on the exterior boundary ∂eN is realized by a pleated surface if there is a pleated
surface that maps each leaf of λ to a geodesic in N . Notice that a realization of
a lamination λ by a pleated surface induces a map from λ to the projectivized
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tangent bundle of N .
If ρ is a representation of π1(N) into PSL2 C uniformizing N and λ is a mea-

sured lamination on the exterior boundary that is realized by a pleated surface,
we can define lρ(λ), the length of λ with respect to ρ, to be its length with respect
to the hyperbolic structure of the pleated surface realizing λ.

See Otal [Ota96, Appendix] for more about laminations and measured lamina-
tions and Fathi–Laudenbach–Poénaru [FLP79] for a detailed exposition of
Thurston’s compactification of Teichmüller space. Pleated surfaces are discussed
in [Thu86, Ota88, Kap00].

2.3. Dual trees

For a measured lamination µ on a surface S, we denote by µ̃ its lift to H2. If µ
does not have atoms, the semidistance on H2 induced by integrating the transverse
measure µ̃ along paths is continuous with respect to the usual topology of H2. The
support of an atom is a closed geodesic, therefore it is possible to avoid atoms by
replacing closed leaves in µ by annuli foliated by parallel closed curves. Denote by
Fµ the measured partial foliation that we obtain by this process and by F̃µ the lift
of Fµ to H2. The quotient of H2 under the semi-distance induced by Fµ depends
only on µ, it is denoted Tµ, and the projection πFµ

: H2 → Tµ is continuous. Tµ is
an R-tree, called the dual tree of µ. The fundamental group of the surface S acts
on Tµ and the action is small and minimal. Dual trees are discussed in detail by
Otal [Ota96] and Kapovich [Kap00].

Using dual trees, Skora [Sko96] established a 1-1-correspondence between min-
imal small actions of the fundamental group of a closed surface S and measured
laminations on S.

Theorem (Skora). Let π1(S) y T be a minimal and small action of π1(S) on an
R-tree T , then there is a unique µ ∈ML and an equivariant isometry Tµ → T .

Skora’s ideas will be used in section 5 where we study certain maps from trees
dual to laminations on the exterior boundary of a compression body N to a given
R-tree with a minimal small action of π1(N).

3. Main Theorems

The goal of this section is to reduce Theorem 1 and Theorem 2 to a property
of minimal small actions of the fundamental group of a compression body N on
R-trees.

A simple closed curve m on the exterior boundary ∂eN which is homotopically
trivial in N but not in ∂eN is called a meridian. Note that by Dehn’s Lemma



Vol. 77 (2002) Algebraic convergence of function groups 251

[Jac80] every meridian bounds an embedded disk in N . Recall that we use the
symbol γ for elements in π1(∂eN) as well as for their images under the compression
homomorphism ϕ : π1(∂eN) → π1(N).

A meridian may be seen as an element of PML, too. The set of projective
classes of weighted multicurves of meridians in PML will be denoted by M and
its closure in PML by M ′ (see Otal [Ota88]).

N is a small compression body if it is the connected sum along the boundary of
either two trivial interval bundles over closed surfaces or an interval bundle over
a closed surface and a solid torus. For a small compression body, set

O := {λ ∈ PML| i(λ, µ) > 0 for all µ ∈ PML such that
there is ν ∈ M ′ with i(µ, ν) = 0}

If N is not a small compression body, set

O := {λ ∈ PML| i(λ, µ) > 0 for all µ ∈ M ′}

The set O is called the Masur domain and is open by continuity of the intersection
form and compactness of PML. We will say that λ ∈ ML is in O (resp. M ′) if
its projective class is in O (resp. M ′).

Otal [Ota88] proved (see also Ohshika [Ohs])

Theorem on pleated surfaces (Otal). Let N be a compression body with a
convex cocompact hyperbolic structure. Every lamination λ ⊂ ∂eN containing the
support of a measured lamination in the Masur domain is realized by a pleated
surface in N .

Moreover, the induced map from λ to the projectivized tangent bundle of N is
a homeomorphism onto its image Pλ.

The image in Pλ of a leaf of λ is the trace of a geodesic and is equally called a
leaf. Denote by P̃λ the preimage of Pλ in the projectivized tangent bundle of H3.
The following definition is due to Otal [Ota94]:

Definition. Let N be a compression body with a convex cocompact hyperbolic
structure and π1(N) y T an action on an R-tree T . A lamination λ ⊂ ∂eN is
realized in T if there is a continuous π1(N)-equivariant map

Φ: P̃λ → T

which is injective when restricted to any leaf.

As λ is mapped homeomorphically onto P̃λ, this definition is equivalent to the
definition of realization given in the introduction.

The following Theorem was proved by Otal [Ota94] in the case that N is a
handlebody, but a careful checking of the proof shows that it holds for compression
bodies as well.
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Continuity Theorem (Otal). Let (ρi) be a sequence in the deformation space
of π1(N) converging to a non-trivial minimal small action π1(N) y T and (γi)
a sequence of simple closed curves on ∂eN converging in PML to a minimal
arational measured lamination λ in O which is realized in T . Then for all N > 0
there is iN > 0 such that

lρi
(γi) ≥ N lρ0(γi) for all i ≥ iN

where lρ(γ) denotes the translation length of ρ(ϕ(γ)) in H3.

Remark. It seems to be a delicate issue to extend the theorem to all sequences of
curves (γi) converging in PML to an arbitrary lamination λ in O which is realized
in the tree T .

On the other hand, the conclusion of the theorem is valid for an arbitrary
sequence of curves (γi) provided every Hausdorff limit of (γi) is realized in T .
Indeed, the latter condition is the only one used in the proof of the theorem, and
it is weaker than the one stated in the theorem (see [Ota94]).

In the last section we will prove

Theorem 3. Let π1(N) y T be a non-trivial minimal small action on an R-tree
T and λ a minimal arational measured lamination in the Masur domain, then λ
is realized in T .

Next we reduce Theorem 1 to Theorem 3 (see Otal [Ota94]).

Theorem 1. Let ρ0 be a convex cocompact representation uniformizing a compres-
sion body N . If (ρi)i is a sequence in QH(ρ0) converging to a minimal arational
lamination in the Masur domain, then it has a convergent subsequence in defor-
mation space.

Proof. Seeking a contradiction, suppose that (ρi)i converges to a minimal and small
action π1(N) y T on an R-tree. By definition, there is a sequence (Se

i , S1
i , . . . , Sk

i )⊂
T (∂N) which is mapped to (ρi) under the Ahlfors–Bers map and such that the
sequence (Se

i ) ⊂ T (∂eN) converges to λ. Then there is a sequence (γi) of simple
closed curves on the exterior boundary ∂eN converging to λ in PML with

lSe
i
(γi)/lSe

0
(γi) −→ 0 for i −→∞. (1)

On the other hand, for all A > 0 there is some iA such that lSe
i
(m) > A for all

i ≥ iA and all meridians m. Then by a Theorem due to Canary [Can91] there is
K > 0 such that for all i ≥ iA

lρi
(γi) ≤ K lSe

i
(γi) (2)

where lρi
(γi) is the translation length of ρi(ϕ(γi)) in H3. Combining equation (1)

and equation (2) we deduce with the same arguments as Canary [Can93] in the
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handlebody case that

lρi
(γi)/lρ0(γi) −→ 0 for i −→∞.

By the Continuity Theorem, λ is not realized in T , contradicting Theorem 3. ¤

In the case that N is a handlebody we will show in section 6

Corollary 3. Let N be a handlebody and π1(N) y T be a non-trivial minimal
small action on an R-tree T . At least one minimal component of every measured
lamination in the Masur domain is realized in T .

We reduce Theorem 2 to Corollary 3.

Theorem 2. Let N be a handlebody and λ a measured lamination in the Masur
domain. The set of convex cocompact representations ρ uniformizing N such that
lρ(λ), the length of λ with respect to ρ, is less than a constant C > 0 is precompact
in deformation space.

Proof. Suppose again that there is a sequence (ρi) of convex cocompact representa-
tions uniformizing N with lρi

(λ) < C that converges to some non-trivial minimal
small action π1(N) y T on an R-tree. The length of any minimal component λ0

of λ is also bounded by C for all i.
By Otal’s Theorem on pleated surfaces, the lamination λ is realized by a pleated

surface in H3/ρi(π1(N)) for all i. Hence in each neighbourhood of λ0 with respect
to the Hausdorff topology we find a simple closed curve γi with lρi

(γi) < C lρ0(γi).
By a diagonal argument, we can assume that the sequence (γi) converges to λ0

in the Hausdorff topology.
The Continuity Theorem applies to this sequence by the remark after it; thus,

the lamination λ0 cannot be realized in T . As λ0 was arbitrary this contradicts
Corollary 3. ¤

4. Laminations on the exterior boundary

Let ρ0 : π1(N) → PSL2 C be a convex cocompact representation uniformizing the
compression body N . The image of ρ0 is a function group. Following Otal’s
[Ota88] notation, S′ ⊂ Ĉ denotes the invariant component of the discontinuity
domain of the action of ρ0(π1(N)). It is a normal planar covering of the exterior
boundary ∂eN with deck transformation group ρ0(π1(N)). Since ρ0(π1(N)) is a
function group, the limit set Λρ0 of the action of ρ0(π1(N)) on Ĉ coincides with
the boundary of S′ in Ĉ [Mas88].
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4.1. Treelike structure of S′

We recall that a meridian is a simple closed curve which is nullhomotopic in N but
not in ∂eN . By Dehn’s Lemma, a meridian bounds an embedded disk in N . So,
every maximal disjoint union of non-parallel meridians cuts N into smaller pieces.
On the level of groups, this means that π1(N) is a graph of groups whose edge
groups are trivial and correspond to the meridians. The universal cover of the
graph is a tree and there is a π1(N)-equivariant map from S′ to the tree. Such a
map maps geodesics in S′ to paths in the tree. In general, the paths can be fairly
arbitrary, in particular not monotone.

Definition. Let m be a meridian. An m-wave is an arc on ∂eN with endpoints
on m which is homotopic in N relative endpoints, but not in ∂eN to a subarc of m.

For example, if two meridians intersect, then each of them contains a wave with
respect to the other.

Definition. A curve γ : R → ∂eN (resp. γ : R+ → ∂eN) is in tight position
with respect to m if γ does not contain m-waves and the image under γ of every
unbounded interval intersects m.

Lemma 1. If γ : R+ → ∂eN is a curve which is in tight position with respect to a
meridian m, then every lift of γ to S′ has a well-defined endpoint in the limit set
Λρ0 of the action of ρ0(π1(N)) on Ĉ.

Proof. Let γ′ : R+ → S′ be a lift of γ to S′. There is a sequence (mi(γ′)) of
lifts of m which are intersected by γ′ and indexed by the ordering in γ′. Observe
that every lift of m to S′ separates S′ and denote by Ki the closure in Ĉ of the
connected component of Ĉ − mi(γ′) that does not contain m0(γ′). Since γ is in
tight position with respect to m, Ki+1 is contained in the interior of Ki for all i
and the diameter of Ki tends to zero (compare [Ota88, 1.9, 1.14]). ¤

The following lemma establishes a kind of continuity for the map which asso-
ciates to lifts of curves γ : R+ → ∂eN which are in tight position with respect to
a common meridian their endpoints in Λρ0 ⊂ Ĉ. Notation as in the proof of the
last lemma.

Lemma 2. For j = 1, . . . ,∞ let γj : R+ → ∂eN be curves which are all in tight
position with respect to a meridian m. Let m0 and γ′j be lifts of m and γj to S′

with m0 = m0(γ′j) for all j = 1, . . . ,∞. Then the endpoints of γ′j converge to the
endpoint of γ′∞ if and only if for all i there is j0 such that for all j ≥ j0

mi(γ′j) = mi(γ′∞) ¤
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So far, we considered general curves on ∂eN , we now turn our attention to
laminations.

Definition. A lamination is in tight position with respect to a meridian m if every
half-leaf is.

Notice that a minimal lamination λ is in tight position with respect to a merid-
ian m if and only if some half-leaf in λ is since every half-leaf is dense. On the
other hand, if a lamination consists of several minimal components each being
in tight position with respect to a meridian, it is not clear if there is a common
meridian with respect to which all components are in tight position. We prove

Lemma 3. Let µ be a measured lamination with the property that every component
is in tight position with respect to some meridian. Then there is a meridian m
intersecting µ and such that µ does not contain any m-wave.

Proof. Let µ1 be a component of µ and let m1 be a meridian with respect to
which µ1 is in tight position. We claim that the set of those homotopy classes of
m1-waves (rel m1) that are represented by a subsegment of a leaf of µ is a finite
number Nm1(µ). For this, remark that there are leaves l2, . . . , lk which are dense in
µ−µ1. This implies that every m1-wave in µ can be represented, up to homotopy
(rel m1), by a segment in one of the leaves l2, . . . , lk. Recall that each of the leaves
l2, . . . , lk is in tight position with respect to some meridian. It follows from lemma
1 that there are, up to homotopy, only finitely many m1-waves in l2, . . . , lk. We
have proved that Nm1(µ) < ∞.

We will inductively reduce this number until we obtain a meridian m with
Nm(µ) = 0. We assume that Nm1(µ) > 0; hence, there is an m1-wave [a, b]
contained in one of the leaves l2, . . . , lk such that (a, b) ∩m1 = ∅. By surgery of
m1 along [a, b] we obtain meridians m2,m

′
2 with the following properties:

(i) µ1 is in tight position with respect to one of the meridians m2,m
′
2, say

with respect to m2, and
(ii) Nm2(µ) ≤ Nm1(µ)− 1.

If µ contains m2-waves, we repeat the process with m2. After finitely many steps,
we are done. ¤

We finish this section with two results of Otal [Ota88]. In the next subsection,
we give complete proofs of more precise statements in the case that N is a han-
dlebody. So, we skip the proofs even though Otal’s thèse d’Etat is unfortunately
unpublished.

Lemma 4. [Ota88, 1.3] Every minimal component of a lamination λ ∈ O is in
tight position with respect to some meridian. ¤

Definition 1. A leaf l : R → ∂eN of a lamination on ∂eN is called homoclinic if
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there are two sequences xi, yi ∈ R and a lift l′ of l to S′ such that |xi − yi| → ∞
but the distances between l′(xi) and l′(yi) are bounded in S′.

Otal proved (see the proof of [Ota88, 2.10])

Lemma 5. A lamination λ in the Masur-domain is not contained in a lamination
with a homoclinic leaf. ¤

4.2. The handlebody case

This subsection is devoted to a more detailed analysis of laminations on the bound-
ary of the handlebody. As remarked above, the proofs are inspired by the argu-
ments in [Ota88].

Notice that it is a topological property for a lamination to be an element of O.
Denote by M ′

top the set of those laminations in PML which have same support as
laminations in M ′. The main result of this section is the next Proposition which
is a slightly stronger version of Lemma 5 in the handlebody case.

Proposition 1. If N is a handlebody and µ ⊂ ∂eN is a lamination containing a
homoclinic leaf, then every minimal component of µ is an element of M ′

top.

On the other hand, every Hausdorff-limit of meridians contains a leaf which is
homoclinic (see Casson-Long [CL85] or Otal [Ota88]).

Corollary 1. Every minimal component of a Hausdorff-limit of meridians on the
boundary of a handlebody is an element of M ′

top. ¤

The proof of Proposition 1 occupies the rest of this section. First, we give three
lemmas which help to identify a lamination as an element of M ′

top.
If µ ⊂ ∂eN is a minimal lamination, we denote the smallest compact subsurface

of ∂eN containing µ by S(µ). It is unique up to isotopy.

Lemma 6. [Ota88, 1.3.2] If µ is a minimal lamination on the boundary of a han-
dlebody N and ∂eN − S(µ) is compressible, then µ ∈ M ′

top.

Proof. By Dehn’s Lemma [Jac80], ∂eN − S(µ) contains a meridian which bounds
a disk in N . If the disk is separating, it cuts N into two handlebodies and µ is
contained in one of them, hence there is also a non-separating meridian disjoint
from µ. So we assume that m is non-separating. Cut ∂eN along m and join the
two resulting boundary components by an embedded arc κ. The boundary of a
regular neighbourhood of m ∪ κ in ∂eN is a meridian. Since κ can be chosen as
close to µ as wanted, we deduce µ ∈ M ′

top. ¤
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The proof of Lemma 6 fails to generalize to laminations on the boundary of a
general compression body and constitutes the main difference between the han-
dlebody case and the general case in the present context.

By Lemma 4, every component of a measured lamination in O is in tight
position with respect to some meridian. On the other hand we have

Lemma 7. Let µ be a minimal arational lamination on the boundary of a handle-
body. If µ is not in tight position with respect to any meridian, then
µ ∈ M ′

top.

Proof. Let m be a meridian and l a leaf of µ. As seen before, if l contains only
finitely many homotopy classes (relm) of m-waves, then we can find a meridian
m0 with respect to which l is in tight position. The minimality of µ then implies
that µ is in tight position with respect to m0.

If l contains infinitely many homotopy classes (relm) of m-waves, it is homo-
clinic. So, we find sequences (xi), (yi) ⊂ R such that l(xi), l(yi) ∈ m and the
segments l[xi, yi] are m-waves. We may suppose that l(xi) and l(yi) converge. Fix
a transverse measure on µ. For all ε > 0 we can find i, j such that the measure
of the small subsegments [l(xi), l(xj)] ⊂ m and [l(yi), l(yj)] ⊂ m is less than ε.
The union of these two segments and the m-waves l[xi, yi] and l[xj , yj ] is a com-
pressible curve. By the Loop Theorem [Jac80], we find nearby a meridian mε with
i(µ,mε) < 2ε. Taking limits we obtain a lamination ν ∈ M ′ with i(µ, ν) = 0 which
implies that µ and ν have same support as µ is minimal arational. ¤

We now consider the case that µ is only minimal. If some component of ∂S(µ)
is a meridian, Lemma 6 shows that µ ∈ M ′

top. If this is not the case, a relative
version of the proof of Lemma 7 yields the following Lemma which is essentially a
special case of Theorem 1.6 in Otal [Ota88].

Lemma 8. If a minimal lamination µ on the boundary of a handlebody is not in
tight position with respect to any meridian, then S(µ) is compressible and µ ∈
M ′

top. ¤

We deduce from Lemma 8 and Lemma 6

Corollary 2. If a minimal component of a lamination µ on the boundary of a
handlebody is not in tight position with respect to any meridian, then every minimal
component of µ is in M ′

top. ¤

Proof of Proposition 1. A similar argument as in the proof of Lemma 7 shows that
every ε-neighbourhood of a homoclinic leaf l : R → ∂eN in µ contains a meridian.
Lemma 6 implies that every minimal component disjoint from the closure of l is
in M ′

top.
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From now on, we assume that l is dense in µ. So µ has one or two minimal
components. If one of them is not in tight position with respect to some meridian,
we are done by Corollary 2. Assume that they are in tight position with respect
to some meridian. Since a homoclinic leaf is not in tight position with respect to
any meridian, the leaf l must be isolated and non-closed. Further, every lift l′ of l
to S′ has endpoints in the limit set Λρ0 ⊂ Ĉ which coincide since l is homoclinic.
If µ contains two minimal components, then every meridian with respect to which
one is in tight position intersects the other. Thus, Lemma 3 provides a meridian
m with respect to which every minimal component of µ is in tight position.

In particular, we find x0 < y0 ∈ R such that the segment l[x0, y0] is an m-wave
and such that the half-leaves l|{t≤x0} and l|{t≥y0} are in tight position with respect
to m. Let x0 > x1 > x2 > . . . and y0 < y1 < y2 < . . . be the sequences of all
points with l(xi) ∈ l ∩m and l(yi) ∈ l ∩m. We have for all i < j:

(1) The segment l[xi, yi] is an m-wave,
(2) the tangent vectors d

dt l|yi
and − d

dt l|xi
point to the same side of m, and

(3) the curves l[xi, xj ] and l[yi, yj ] represent the same element in π1(N,D)
where D is a disk with ∂D = m.

We will first treat the case that µ has only one minimal component µ0. For every
train track τ carrying µ = µ0 ∪ l we will construct a simple closed curve in M ′

carried by τ . As l is not contained in the support of any measured lamination this
will prove that µ0 ∈ M ′

top.
Suppose first that d(l(xi), l(yi)) ≥ ε > 0 for all i. After refining τ , we may

assume that every component of τ ∩ m is shorter than ε. If two points a, b are
contained in the same component of τ ∩m we denote by [a, b] the subsegment of
this component bounded by a and b. There are i < j such that one of the following
two cases occurs.

Case I:

(1) Each of the pairs {l(xi), l(xj)} and {l(yi), l(yj)} is contained in a compo-
nent of τ ∩m,

(2) the tangent vectors − d
dt l|xi

and − d
dt l|xj

point to the same side of m, and
(3) there is no k ∈ {i + 1, . . . , j − 1} such that l(xk) or l(yk) belongs to

[l(xi), l(xj)].
Case II:

(1) Each of the pairs {l(xi), l(yj)} and {l(yi), l(xj)} is contained in a compo-
nent of τ ∩m,

(2) the tangent vectors − d
dt l|xi

and d
dt l|yj

point to the same side of m, and
(3) there is no k ∈ {i + 1, . . . , j − 1} such that l(xk) or l(yk) belongs to

[l(xi), l(yj)].
Both cases are represented in Figure 1.

If Case I holds, there is no k such that l(xk) and l(yk) belong to [l(yi), l(yj)]
because d(l(xk), l(yk)) ≥ ε. Together with the fact that lifts of l to S′ do not
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intersect and can be compactified to Jordan curves in Ĉ this implies that there is
no k ∈ {i+1, . . . , j− 1} such that l(xk) or l(yk) lies in [l(yi), l(yj)]. So, the curves

γa = l[xi, xj ] ∪ [l(xi), l(xj)], ηa = l[yi, yj ] ∪ [l(yi), l(yj)]

are homotopic to simple closed geodesics carried by τ . They belong to M ′ since a
boundary component of a regular neighbourhood of γa ∪ ηa ∪ l[xi, yi] is a meridian
disjoint from γa and ηa.

In Case II, we deduce as in Case I that there is no k ∈ {i + 1, . . . , j − 1} such
that l(xk) or l(yk) belongs to [l(yi), l(xj)]. As above this implies that the curve

γb = l[xi, xj ] ∪ [l(xj), l(yi)] ∪ l[yi, yj ] ∪ [l(yj), l(xi)]

is homotopic to a simple closed geodesic carried by τ and belongs to M ′ because it
is disjoint from the boundary component of a neighbourhood of γb∪ l[xi, yi] which
is a meridian.

The arguments are valid for any train track τ . We conclude that the minimal
component of µ is in M ′

top if d(l(xi), l(yi)) ≥ ε > 0 for all i.
Continuing with the assumption that µ contains only one minimal component

µ0, suppose that inf d(l(xi), l(yi)) = 0. In particular, l contains m-waves whose
endpoints are close and we cannot directly apply the same arguments as before.
Fix i such that l(xi), l(yi) are contained in the same component of τ ∩m. If there
is no j > i with l(xj), l(yj) ∈ [l(xi), l(yi)] we finish the proof by Lemma 6 as
l[xi, yi] ∪ [l(xi), l(yi)] is compressible and disjoint from µ0. Otherwise, let j > i
be minimal for the property that l(xj) and l(yj) belong to [l(xi), l(yi)]. Figure 2
represents the four possible cases.

By the choice of i, j and the fact that lifts of l to S′ do not intersect and can
be compactified to Jordan curves in Ĉ, the Cases I and II can be treated as above.
The same argument shows in Case III that a boundary component of a regular
neighbourhood of

l[xi, xj ] ∪ [l(xj), l(xi)] ∪ l[xi, yi] ∪ l[yi, yj ] ∪ [l(yj), l(yi)]
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is homotopic to a simple closed geodesic carried by τ . It is even a meridian
since the segments l[xi, xj ] and l[yi, yj ] represent the same element in π1(N,D).
Similary, in Case IV, the curve γd which is the concatenation of the segments
l[xi, xj ], [l(xj), l(yi)], l[yi, xi], [l(xi), l(yj)], l[yj , yi] and l[yi, xi] is homotopic to a
meridian carried by τ . As before, we conclude that the minimal component of µ
is in M ′

top.
The remaining case that µ has two minimal components can be reduced to the

discussion of Case I because there is obviously some ε > 0 such that d(l(xi), l(yj)) ≥
ε > 0 for all i, j. Notice that each of the curves γa and ηa constructed above ap-
proximates one of the minimal components of µ and is in M ′. This implies that
both minimal components of µ are in M ′

top. ¤

5. Morphisms

This chapter is the central part of the proofs of Theorem 3 and Corollary 3. A
large part is inspired by ideas of Skora [Sko96].

N is again a compression body and ρ0 is a convex cocompact representation of
π1(N) which uniformizes N .

Definition. Let T ′, T be R-trees. A morphism from T ′ to T is a map

Φ : T ′ −→ T

with the property that every non-degenerate arc [p, q] ⊂ T ′ contains a non-
degenerate subarc [p, r] ⊂ [p, q] which is mapped isometrically onto Φ[p, r] ⊂ T .

A morphism is said to fold at a point p ∈ T and p is a folding point, if there are
non-degenerate arcs [p, q], [p, q′] ⊂ T ′, [p, q] ∩ [p, q′] = {p} with Φ[p, q] = Φ[p, q′].

5.1. Morphisms from dual trees

In section 2, we discussed trees which are dual to measured laminations. If µ ∈
ML, the dual tree Tµ can be seen as the leaf space of a measured partial foliation
Fµ enlarging µ and we denote the projection by πFµ

: H2 → Tµ. A morphism from
a dual tree Tµ to another tree T is said to fold only at complementary regions if
the only folding points are projections of complementary regions of F̃µ ⊂ H2.

The existence of such morphisms is fundamental in the proof of Skora’s The-
orem. The following theorem is essentially a special case of the main result in
[MO93] (see also [Ota96, chapter 8]).

Theorem (Morgan–Otal). Let (α1, . . . , α3g−3) be a collection of simple closed
curves which define a pants decomposition of a closed surface S and let π1(S) y T
be an action on an R-tree T . Then there is a measured lamination µ ∈ ML and



Vol. 77 (2002) Algebraic convergence of function groups 261

an equivariant morphism

Φ : Tµ −→ T

with lT (αi) = lTµ
(αi) for all i. Moreover, Φ folds only at complementary regions.

Remark. Notice that if lT (αi) > 0, then Φ maps the axis of αi in Tµ isometrically
to the axis of αi in T [Kap00].

The second step in the proof of Skora’s Theorem is to study equivariant mor-
phisms from dual trees Tµ, µ ∈ML, to a tree with a minimal small action of the
fundamental group of a closed surface which fold only at complementary regions.
Skora proves that such a morphism is an isometry, and in particular µ is unique.
In the present situation, the actions we will consider are not even effective because
they factor through the compression homomorphism ϕ : π1(∂eN) → π1(N). We
prove

Proposition 2. Let N be a compression body with exterior boundary surface ∂eN .
Let π1(N) y T be a minimal small action and let µ be a measured lamination on
∂eN such that there is an equivariant morphism Φ : Tµ −→ T that folds only at
complementary regions. Then µ is not in the Masur domain O.

Moreover, if N is a handlebody, then every minimal component of µ is an
element of M ′

top.

Proof. If some component of µ is not in tight position with respect to any merid-
ian, then µ /∈ O by Lemma 4. Moreover, if N is a handlebody we are done by
Corollary 2.

We assume from now on that every component of µ is in tight position with
respect to some meridian. Then by Lemma 3, there is a meridian m intersecting
µ such that µ does not contain any m-wave. By definition, every component of µ
intersecting m is in tight position with respect to m.

We will show that we can extend µ to a lamination with a homoclinic leaf. In
this case, Lemma 5 shows that µ /∈ O. Moreover, Proposition 1 proves that every
component of µ is in M ′

top if N is a handlebody.

Lemma 9. Φ folds along m: for a lift m̃ of m to H2 there are segments Ĩ1, Ĩ2 ⊂ m̃
intersecting in a single point ?̃ such that Φ maps πFµ

(Ĩ1) and πFµ
(Ĩ2) isometrically

onto a non-degenerate segment J in T .

Proof. Let x be a point on a lift m̃ of m to H2. The geodesic m̃ is invariant under
some m ∈ π1(∂eN) which is trivial in π1(N). By equivariance

Φ(πFµ
(mx)) = Φ(πFµ

(x))
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The morphism Φ folds the non-degenerate segment [πFµ
(x), πFµ

(mx)] only finitely
many times. So we can find small segments Ĩ1, Ĩ2 ⊂ (x,mx) such as in the state-
ment. ¤

Remark. Note that the claim is true for every meridian which intersects µ.

We continue with the proof of Proposition 2 and choose a transverse orientation
on m. For a point x ∈ m ∩ µ we use the symbol µ+

x for the half-leaf of µ starting
at x with positive direction. By definition, µ+

x is in tight position with respect to
m. The following Proposition will be proved at the end of this section.

Proposition 3. For every pair of intervals (I1, I2) as in Lemma 9, there are zi ∈
Ii ∩ µ (i = 1, 2) such that the lifts to S′ of µ+

z1
and µ+

z2
have the same endpoints

in the limit set Λρ0 of ρ0(π1(N)) in Ĉ.

We fix a pair of intervals (Ĩ0
1 , Ĩ0

2 ) as in Lemma 9. As Φ folds only at comple-
mentary regions, the point ?̃ lies in a complementary region C? of F̃µ. After the
collapse of Fµ to µ, C? can be seen as a complementary region of µ̃, too. There
are two well determined boundary leaves µ̃1, µ̃2 of C? with µ̃i ∩ Ĩ0

i 6= ∅. They are
different because separated by the complementary region C?. Up to reversing the
orientation, we may assume that µ̃+

1 and µ̃+
2 are not asymptotic. Next we show

that the endpoints in Λρ0 of their projections to S′ are equal.
We choose a sequence of nested intervals (Ĩk

1 , Ĩk
2 )k∈N as in Lemma 9 such that

i(Ĩk
1 , F̃µ) = i(Ĩk

2 , F̃µ) > 0 tends to zero. By Proposition 3, for every k ∈ N and
i = 1, 2 we get zk

i ∈ Ik
i ∩ µ such that the lifts to S′ of µ+

zk
1

and µ+
zk
2

have the same
endpoint in the limit set Λρ0 .

Since for i = 1, 2 and k −→ ∞ the sequence i(Ĩk
i , F̃µ) tends to zero, the

sequence (µ+
zk

i

)k∈N tends to µ+
i , the projection to ∂eN of the boundary half-leaf

µ̃+
i . By Lemma 2, the lifts of µ+

1 and µ+
2 to S′ have the same endpoint in Λρ0 .

Now let l be the geodesic in H2 joining the endpoints in ∂H2 of µ̃+
1 and µ̃+

2 . The
projection to ∂eN of µ̃∪l is a geodesic lamination µl and l projects to a homoclinic
leaf, since the endpoints of the projection to S′ coincide. So, µ is contained in a
lamination with a homoclinic leaf. This finishes the proof of Proposition 2. ¤

The rest of this section is devoted to the proof of Proposition 3.

5.2. Skora’s argument

We use the same notation as above, Φ: Tµ → T is the morphism of Proposition 2,
Fµ is an enlargement of µ, m is a meridian with i(m,µ) > 0 and such that every
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component of µ intersected by m is in tight position with respect to it and Ĩ1, Ĩ2, ?̃
are as in Lemma 9. Denote the projections to the surface ∂eN by I1, I2, ?. Recall
that ?̃ is in a complementary region C? of F̃µ ⊂ H2.

Fix a transverse orientation on m. Take the oriented first return maps of Fµ

[Ota96, Sko96]
Ai : Ii ∩ Fµ → Ii ∩ Fµ for i = 1, 2.

Ai induces an interval exchange transformation on πFµ
(Ĩi) ⊂ Tµ. Conjugating

A1, A2 by Φ one obtains two interval exchange transformations B1, B2 on J =
(Φ ◦ πFµ

)(Ĩ1) = (Φ ◦ πFµ
)(Ĩ2) ⊂ T [Sko96].

Let C denote the free semi-group generated by two letters c1, c2 and B the
semi-group generated by the maps B1, B2. There is an obvious homomorphism

θ : C −→ B, c = cε1 · . . . · cεn
7−→ θ(c) = Bεn

◦ . . . ◦Bε1 .

The set of boundary leaves of F̃µ is countable [Ota96]. A point z ∈ T such
that none of its preimages under Φ is represented by a boundary leaf of F̃µ is
called regular. If z ∈ J is a regular point, we denote by z̃i for i = 1, 2 the point
Ĩi ∩ (Φ ◦ πFµ

)−1(z). The projection of z̃i to ∂eN is denoted zi.
A regular point z ∈ J and a letter cε ∈ {c1, c2} determine a closed curve

γz,ε ⊂ ∂eN which is the concatenation of
(1) the subsegment of Iε from ? to zε,
(2) the subsegment of the half-leaf of Fµ from zε to Aεzε in positive direction,

and
(3) the subsegment of Iε from Aεzε to ?.

Let z ∈ J be regular such that for all B ∈ B, Bz is regular, too. For c =
cε1 · . . . · cεn

∈ C we define the closed curve ωz(c) in ∂eN to be the concatenation
of the curves γε1,z, γε2,Bε1z, . . . , γεn,Bεn−1◦...◦Bε1 (z), that is

ωz(c) = γε1,z ∗ γε2,Bε1z ∗ . . . ∗ γεn,Bεn−1◦...◦Bε1 (z) . (3)

Recall that Fµ is obtained from µ by blowing up closed leaves of µ to fibered
collars. After collapsing the collars back to closed leaves of µ, we denote the image
of the curve ωz(c) by ωz(c) as well. After a small homotopy near m this curve and
m can be made transverse. Moreover, it is in tight position with respect to m.

The element in π1(∂eN, ?) represented by ωz(c) will be denoted [ωz(c)]. The
map [ωz(·)] : C → π1(∂eN, ?) is injective because ?̃ is in a complementary region
[Sko96]. It is not a homomorphism but we have the following equation, which
follows from the definition:

[ωz(a · b)] = [ωz(a)] ∗ [ωθ(a)z(b)] for all a, b ∈ C. (4)

The action of ϕ([ωz(c)]) ∈ π1(N) on the tree T is related to the interval exchange
map θ(c) by (see [Sko96])

θ(c) = ϕ([ωz(c)]) on a small neighbourhood of z in J. (5)
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Lemma 10. For every pair of intervals (I1, I2) as in Lemma 9 and every k there
is a regular point zk ∈ J and ak

1 = ck
1 · . . . , ak

2 = ck
2 · . . . ∈ C such that the curves

ωzk(ak
1), ωzk(ak

2) represent the same element in π1(N, ?).

The proof of this Lemma is essentially the proof of Proposition 3.1 in [Sko96].
We refer to it for a more detailed exposition.

Proof. Let z ∈ J be regular such that for all B ∈ B, Bz is regular, too. We fix
k ∈ N. Let Ck

n ⊂ C denote the words of length n in the letters ck
1 = c1 · . . . · c1 and

ck
2 = c2 · . . . · c2. Cardinality of Ck

n is 2n. As in [Sko96], the cardinality of the sets
θ(Ck

n)(z) only grows polynomially in n. So, for fixed k there is a sequence of sets
(Dk

n)n, with Dk
n ⊂ Ck

n such that:

(1) for fixed n any two elements of θ(Dk
n) map z to the same point in J and

(2) the cardinality of Dk
n has exponential growth in n.

We fix dk
n ∈ Dk

n. For fixed n, k the elements of the set (θ(dk
n))−1◦θ(Dk

n) are interval
exchange maps on J which fix a common segment around z.

By smallness of the action π1(N) y T and equation (5), the set ϕ([ωz(Dk
n)] ∗

[ωz(dk
n)]−1) is contained in a cyclic subgroup Zk

n ⊂ π1(N) [Sko96]. The subgroups
can be chosen to satisfy

Zk
n ⊂ Zk

n+1 ⊂ . . .

but such a sequence stabilizes and we find a cyclic subgroup Zk ⊂ π1(N) such
that for all n

ϕ([ωz(Dk
n)] ∗ [ωz(dk

n)]−1) ⊂ Zk

As in [Sko96], the cardinality of ϕ([ωz(Dk
n)]∗ [ωz(dk

n)]−1) has at most linear growth
in n. So there is n depending on k and there are different words bk

1 , bk
2 ∈ Dk

n ⊂ Ck
n

with
ϕ([ωz(bk

1)]) = ϕ([ωz(bk
2)])

The words bk
1 , bk

2 ∈ Ck
n are different but may coincide at the beginning. Without

loss of generality we can assume that

bk
1 = αk · ck

1 · . . . = αk · ak
1

bk
2 = αk · ck

2 · . . . = αk · ak
2

with αk being a word in ck
1 , ck

2 of length less than n. By equation (4)

[ωz(bk
1)] = [ωz(αk)] ∗ [ωθ(αk)z(a

k
1)]

[ωz(bk
2)] = [ωz(αk)] ∗ [ωθ(αk)z(a

k
2)]

We set zk = θ(αk)z and we are done. ¤
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Recall that we have fixed a transverse orientation on m and that for a point
x ∈ m ∩ µ the half-leaf µ+

x of µ starting at x with positive direction is in tight
position with respect to m.

Proof of Proposition 3. Notation as in Lemma 10. For i = 1, 2 let z̃k
i ∈ Ĩi ∩ F̃µ be

the unique point which is mapped to zk ∈ J by Φ ◦ πFµ
and zk

i the projection to
∂eN . After collapsing the collars of Fµ back to closed leaves of µ we denote the
images of zk

i by zk
i again (compare above).

In the proof of Lemma 1, we defined the sequence (mj) of lifts of m to S′ for
curves which are in tight position with respect to a common meridian. The curves
ωzk(ak

1) and ωzk(ak
2) provided by Lemma 10 are in tight position with respect to

the meridian m. Since they represent the same element in π1(N, ?)

mj(ωzk(ak
1)) = mj(ωzk(ak

2)) for all j, k (6)

By construction of the curves ωzk(ak
i ), we have (i = 1, 2)

mj(ωzk(ak
i )) = mj(µ+

zk
i

) for all k and j = 1, . . . , k (7)

Equations (6) and (7) imply

mj(µ+
zk
1
) = mj(µ+

zk
2
) for all k and j = 1, . . . , k

By compactness of Ii ∩ µ, we can suppose that the sequence (zk
i )k converges to

some zi ∈ Ii ∩ µ. By Lemma 2, the lifts of µ+
z1

and µ+
z2

to S′ have the same
endpoint in the limit set Λρ0 . ¤

6. Realizations

Let N be a compression body with a convex cocompact hyperbolic structure.
Recall that every lamination λ in O is realized by a pleated surface with respect
to ρ0 and that the induced map from λ to the projectivized tangent bundle of N
is a homeomorphism onto its image Pλ.

By definition, the lamination λ ∈ O is realized in a tree T if there is a continuous
and equivariant map from P̃λ, the lift of Pλ to the projectivized tangent bundle
of H3, to the tree T which is injective when restricted to any leaf.

Since λ is mapped homeomorphically onto Pλ it suffices to find a continuous
and π1(∂eN)-equivariant map from λ̃, the lift of λ to H2, to the tree T which is
injective when restricted to any leaf. By abuse, if such a map exists we will also
say that λ is realized in T .

Theorem 3. Let π1(N) y T be a non-trivial minimal small action on an R-tree
T and λ a minimal arational measured lamination in the Masur domain, then λ
is realized in T .
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The idea of the proof is to show that there is a measured lamination µ on the
exterior boundary ∂eN and a morphism Φµ : Tµ → T such that the composition
of the projection H2 → Tµ with Φµ can be deformed to a realization of λ in T .

Proof. We choose a sequence of simple closed curves (γi)i converging to λ with
respect to the Hausdorff topology. By Morgan’s and Otal’s Theorem, for all i, there
is a measured lamination µi with i(µi, γi) = lTµi

(γi) = lT (γi) and a morphism

Φµi
: Tµi

→ T.

Now let us show that lT (γi) > 0 for large i. Up to choice of a subsequence, we may
assume that the supports of the laminations µi converge in the Hausdorff topology
to a lamination µH. By Proposition 2, the measured laminations µi are not in
the Masur domain O. This implies that the Hausdorff limit µH cannot contain a
lamination in O. In particular, the minimal arational lamination λ intersects µH.
So, for all but finitely many i, say for all, one has

lT (γi) = i(µi, γi) > 0. (8)

Remark that the morphism Φµi
maps isometrically the axis of every element in

the conjugacy class represented by γi.
For all i, we choose an enlargement Fµi

of µi in order to obtain a continuous and
equivariant projection πFµi

: H2 → Tµi
. We may assume that the enlargements

Fµi
converge in the Hausdorff topology to the lamination µH.

The map Φµi
◦πFµi

is continuous, equivariant and, by equation (8), it is mono-
tone on every lift of γi to H2. Here, a map from an interval to a tree is monotone
if the preimage of every point is at most a bounded interval [Ota96].

Lemma 11. There is a train track τ which carries λ such that, for large i, the
map Φµi

◦ πFµi
satisfies:

(i) It is constant on ties, and monotone and non-constant on the rails of every
lift R̃j ⊂ H2 of every rectangle Rj ⊂ τ .

(ii) The images of any two rectangles R̃j , R̃k ⊂ H2 which meet in vertical sides
intersect in exactly one point.

Proof. Since λ intersects µH, the construction in [Ota96, chapter 3] yields a train
track τ carrying λ such that, for large i, the projection πFµi

: H2 → Tµi
is constant

on ties, and monotone and non-constant on the rails of every lift R̃j ⊂ H2 of every
rectangle Rj ⊂ τ .

We may assume that τ carries λ minimally, i.e. for any two rectangles R̃j , R̃k ⊂
H2 which meet in vertical sides one has R̃j ∩ R̃k ∩ λ̃ 6= ∅. For large i, the train
track τ carries the curve γi minimally, too. We are going to show that for all such
i, the map Φµi

◦ πFµi
satisfies (i) and (ii).

Given a rectangle R̃j , there is a lift γ̃i ⊂ H2 of γi crossing R̃j ; hence, we can
homotope along ties the rails of R̃j into the lift γ̃i. As remarked above, the map
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Φµi
◦ πFµi

is monotone on γ̃i, and thus on the rails of R̃j . It is not constant
because πFµi

(R̃j) is a non-degenerate segment and Φµi
is a morphism. Property

(i) follows.
Given two rectangles R̃j , R̃k ⊂ H2 which meet in vertical sides there is a lift

γ̃i ⊂ H2 of γi with γ̃i ∩ R̃j ∩ R̃k 6= ∅. Again, since Φµi
◦ πFµi

is monotone on γ̃i,
property (ii) follows. ¤

For τ and i as in lemma 11, it follows from [Ota96, 3.1.5, 3.1.6] that the map
Φµi

◦ πFµi
can be homotoped to a realization in T of every lamination carried by

τ , in particular of λ. This concludes the proof of Theorem 3. ¤

In the particular case that N is a handlebody we obtain

Theorem 4. Let N be a handlebody and π1(N) y T a non-trivial minimal small
action on an R-tree T . Further let λ0 be a minimal component of a lamination λ
in the Masur domain.

Either λ0 is realized in T or there is a train track τ0 carrying λ0 and a contin-
uous and equivariant map Φ0 : τ̃0 → T that maps every connected component of τ̃0

to a point.

Proof. If λ0 is a simple closed geodesic, then there is nothing to prove. So suppose
it is not.

As above choose a sequence of simple closed curves (γi)i converging to λ0 with
respect to the Hausdorff topology. Again, for all i, there is a measured lamination
µi with i(µi, γi) = lTµi

(γi) = lT (γi) and a morphism

Φµi
: Tµi

→ T.

Suppose that the laminations µi converge in the Hausdorff topology to a lam-
ination µH. Every minimal component of µH is contained in the Hausdorff limit
of components of µi, thus by Proposition 2 in a Hausdorff limit of laminations
in M ′

top and so in a Hausdorff limit of meridians. By Corollary 1, every minimal
component of µH is an element of M ′

top.
So either λ0 is transverse to µH or disjoint from µH. In the first case we

conclude as in the proof of Theorem 3. If λ0 ∩ µH = ∅, choose a train track τ0

carrying λ0 and disjoint from µH. For i large enough, there is a partial foliation
Fµi

enlarging the measured lamination µi such that τ0 is also disjoint from Fµi
.

This implies that the image of every connected component of τ̃0 is mapped by
πFµi

to a point in Tµi
. Define Φ0 to be Φµi

◦ πFµi
. ¤
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Corollary 3. Let N be a handlebody and π1(N) y T be a non-trivial minimal
small action on an R-tree T . At least one minimal component of every measured
lamination in the Masur domain is realized in T .

Proof. Suppose the claim is false. By Theorem 4, every minimal component λj

(j = 1, . . . , k) of λ is carried by a train track τj and there is a continuous and
equivariant map Φj : τ̃j → T that maps every connected component of τ̃j to a
single point. After refining the train tracks, we may assume that they are pairwise
disjoint.

Since O is open there are simple closed curves ηj carried by τj such that the
multicurve η = η1 ∪ · · · ∪ ηk is in the Masur domain. By Morgan’s and Otal’s
Theorem, we find a measured lamination µ and a morphism Φµ : Tµ → T such
that 0 = lT (ηj) = lTµ

(ηj) = i(µ, ηj) for all j = 1, . . . , k. This contradicts the fact
that by Proposition 2 every minimal component of µ is an element of M ′

top whence
i(µ, η) > 0. ¤
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Invent. math. 94 (1988), 53–80.
[Sko96] R. K. Skora, Splittings of surfaces, J. Am. Math. Soc. 9 (2) (1996), 605–616.
[Thu86] W. P. Thurston, Hyperbolic Structures on 3-manifolds, I, II, III, preprint, 1986.

Gero Kleineidam
Universität Bonn
Mathematisches Institut
Beringstr. 1
D–53115 Bonn
Germany
e-mail: Gero.Kleineidam@math.uni-bonn.de

Juan Souto
Universität Bonn
Mathematisches Institut
Beringstr. 1
D–53115 Bonn
Germany
e-mail: souto@math.uni-bonn.de

(Received: November 30, 2000)

To access this journal online:
http://www.birkhauser.ch


