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Introduction

Gromov—Witten theory became a major tool in enumerative geometry because
the Gromov—Witten invariants (GW-invariants for short) give in some cases the
number of curves in projective varieties, satisfying certain incidence conditions.
However, it is usually quite difficult to explicitly compute these invariants, and
therefore it is useful to know their behavior under ‘modifications’ of the variety
we start with; typical examples are the blow-up or the symplectic connected sum.

In the present paper we are dealing with group actions. The starting point
of this study was the question: given a projective variety and a group acting on
it, is there any relationship between the GW-invariants of this variety and those
of its quotient for the group action? In this form, it is rather hopeless to answer
the question, so that it eventually became: given a projective variety X with a
very ample line bundle Ox (1) — X and a connected, linearly reductive group G
whose action on X is linearized in Ox(1), is there any relationship between the
GW-invariants of X and those of its invariant quotient X /G, under the additional
assumption that G acts freely on the G-semi-stable locus of X7 Certainly, such
an assumption makes the geometric invariant theory on X trivial because in this
case X* — X /G is simply a principal G-bundle. We shall see however, that this
assumption appears quite naturally in the context, and even so we will have to
face rather complicated situations.

The strategy adopted to attack the question above is the following: the G-
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action on X induces one on the space of stable maps to X and two maps in the
same G-orbit, with image contained in the semi-stable locus of X, induce the
same map into the quotient. The first idea which comes to mind is to compare
the invariant quotient, for this action, of the moduli space of stable maps to X
with the moduli space of stable maps to the quotient X /G. For a reason which
will become clear in a moment, this strategy is correct only in genus zero, for in
higher genera changes are needed.

Let me present more precisely the setting of the problem: the group G and
the variety X are as above, and A € Hy(X;Z) is a homology class which can
be represented by a morphism C — X% with C' a smooth projective curve of
genus g; we let A := ¢, A € Hy (X //G;Z) be the push-forward for the projection
¢ X*® — X //G. What we would like to compute are the GW-invariants of X /G
corresponding to the class A.

For making clear the logic of the article, I shall start with a naive comparison
of the expected dimensions of the moduli spaces of stable maps involved here (the
precise meaning of the notations will be given later on):

D = exp.dim M, (X /G, A) = (3 —dim X )G)(g — 1) + e1 (X JG) - A + k,

D — dim G:= exp.dim .M, (X, A) /G
=@B—-dimX)(g—1)+c1(X) - A+ k—dimG,

and therefore

(%) D—(D—dimG) = g-dimG.

From this computation we deduce that in general the space M, (X /G, A) is larger
than M, (X, A)//G, the only exception happening in genus zero. Very shortly,
the explanation for this phenomenon is that the projective line is the only one
smooth curve which has the property that the trivial principal G-bundle over it is
rigid. In higher genera, the trivial principal G-bundle can be deformed in ’several
directions’, whose number agrees with the difference (x) above. This is the reason
why for computing higher genus invariants of X we will need to consider maps
into a larger variety X whose construction, in the case when G is a torus, is given
in lemma 6.1.

The article is organized as follows: the first section recalls some basic facts
about stable maps and their moduli spaces, the reference being [9].

In section 2 we describe the G-semi-stable points of the moduli space of stable
maps M, (X, A). The results obtained in this section hold in full generality, no
matter what the G-action on X looks like. We obtain the sufficient result (theorem
2.5) which says that a map with image contained in the semi-stable locus of X
is G-semi-stable as a point of M, (X, A) and a necessary result (corollary 2.4)
which says that a stable map representing a G-semi-stable point of M, x(X, A)
does not have its image contained in the unstable locus of X.

Section 3 characterizes the semi-stable points of M, (X, A) from a symplectic
point of view, which will be useful later on in section 6 where we will give an
algebro-geometric construction of the space of maps needed for defining certain
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‘Hamiltonian invariants’. We compute an explicit formula for the moment map on
the space of stable maps which corresponds to a C*-action (proposition 3.5), and
using it we give (theorem 3.7) a second proof for theorem 2.5.

Finally, section 4 closes the first part of the article giving a partial answer to the
initial problem, that of comparing the genus zero GW-invariants of X and X //G.
Theorem 4.2 states, under certain transversality assumptions which are technical
in nature, that if G acts freely on the semi-stable locus of X, A is a spherical class
for which a representative may be found to lie entirely in the stable locus X and
A denotes the push-forward class in X //G, then

GW)';’/’;G’A(dl, Cag) = GWE (aiC, ).
In this equality the a;’s are the classes on X determined by the a;’s on X /G
via the rational quotient map (essentially by pull-back), and ¢ denotes the class
of a rational slice for X --» X //G. We conclude the section with some explicit
computations.

Sections 5, 6 and 7 grew out from the attempt at understanding from an al-
gebraic point of view the Hamiltonian invariants defined in [6] and [14], in the
case of torus actions. Maybe I should say a word about the origin of this inter-
est: on one hand, in sections 2 and 3 we have tried to develop the algebraic tools
needed for computing the GW-invariants of a quotient variety while, on the other
hand, the papers [6] and [14] bring into the scene some new invariants, constructed
using real-analytic methods, which are associated to Hamiltonian group actions
on symplectic manifolds. For particular choices of certain parameters, these ones
should compute the GW-invariants of the Marsden—Weinstein quotient of the sym-
plectic variety on which the group acts. Since in the case of projective varieties
the symplectic reduction and the geometric invariant quotient basically agree, it
was natural to try relating the two constructions: the algebro-geometric and the
real-analytic one.

It turns out that the construction of these ‘Hamiltonian invariants’ fits well in
the frame of the previous sections. We identify (proposition 6.2) the moduli spaces
introduced in [6, 14] with the space of stable maps into the variety X := P x @y X,
where P — (Pic’C)" x C denotes a Poincaré bundle parameterizing principal
G = (C*)"-bundles over the curve C, so that the real-analytic and the algebraic
points of view actually coincide.

In the last section we prove (theorem 7.2), under the same transversality as-
sumptions as in theorem 4.2, the conjecture formulated in [6] which states that for
certain choices of the parameters these Hamiltonian invariants of X coincide with
Gromov—Witten invariants on the quotient X //G.

Acknowledgements. I thank both referees for their remarks which have helped
me to improve the presentation of this article and also for pointing out errors in
the original manuscript.
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1. Some preparatory material

In this section I shall recall from [9] the definition of a stable map, the construction
of the space M%k(X ,A) as a projective scheme and the description of an ample
line bundle on it.

In the whole paper X denotes a complex projective, irreducible variety and
Ox (1) — X denotes a very ample line bundle on it; let X < P" be the embedding
given by the linear system of Ox (1).

Definition 1.1. A stable map [(C, z,u)] to X consists of the following data:

(i) a connected, reduced, complete algebraic curve (C, z) with & distinct marked
points z = (z1,...,xx). The singularities of C' are at most ordinary double points
and the markings lie in the smooth locus of C;

(ii) the equivalence class of a morphism u : (C,z) — X. Two morphism
u: (C,z) » X and v : (C',2') — X are equivalent if there exists an isomorphism
7 :C — C" such that y(z;) =2’ for j =1,...,k and u = v’ o;

(iii) the stability means that the automorphism group of the map (C,z,u) is
finite.

By abuse of language, we shall often call a stable map and denote it by (C, z, u),
the morphism « : (C,z) — X itself (satisfying (i) +(iii)) and not the equivalence
class defined by it.

A stable map [(C, z,u)] is said to represent the 2-homology class A € Hy(X;Z)
if u,[C] = A. Composing such a map with the inclusion X < P, one obtains a
stable map to P” which represents an integral multiple d of the class ¢ of a line
in P". In the sequel we shall briefly recall the construction of the moduli space
Mg’k(]P’T, d) of stable maps of genus g, with k£ marked points, representing the class
dl € Hy(P";Z). The moduli space M, (X, A) will be a closed subscheme of it.

It is immediate that the stability condition is equivalent to the fact that the
line bundle L(¢ gz ) = wo(z1 + -+ +21) @ u*Ox(3) — C is ample, and a combi-
natorial argument proves that there is an integer f > 1 having the property that
for any stable map (C,z,u) to P of genus g and with & marked points, repre-

senting the class d¢ € Ho(P";Z), the line bundle L?Cg; w = C' is very ample and

HY(C, L?c{m u)) = 0. Fix such an integer f once for all. For any k-pointed, genus
g stable map (C, z, u) representing the class d¢ one gets an embedding

uy = (L, ) s € — P (HOC. LY, ))) x P =PV x BT =,

into a product of two projective spaces. The dimension of the projective spaces

P (H o, L%c . u))v> is independent of the choice of the stable map with the prop-

erties mentioned above and is given by a Riemann-Roch formula. Notice that C' is
determined as a subvariety of Y up to a PGI(N + 1)-action and that the Hilbert
polynomial P of C inside Y does not depend on the choice of the stable map
(C,z,u). Denoting by H := Hilb¥ the Hilbert scheme of closed subschemes of YV’
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whose Hilbert polynomial is P, to each stable map (C, z, u) one associates a point
in H x Y* as follows:

(C,z,u) — (uy«C uy (z1),...,uy (zk)).

The natural PGI(N + 1)-action on P induces an action on H x Y* and two
stable maps (C12,2; 5,u1,2) are isomorphic if and only if they are in the same
PGI(N+1)-orbit. The stability condition translates into the fact that the stabilizer
of any stable map under this action is finite.

It is proved in [9] that there is a certain subscheme S of H x Y* such that
M, ,(P",d) = S/PGI(N + 1). One of the main results obtained in that paper is
that M, ,(P",d) is a separated and proper scheme, projective over C. Following
[9], we are going to describe an ample line bundle on M, x(P",d). The Hilbert
scheme H is projective, an embedding of it into a projective space being obtained
as follows: £ := Opn (1) K Opr (1) — Y is a very ample line bundle and for large
enough integral values of [, the restriction homomorphism

k k
. 770 14(0) 0 ING) 0 1 1
W= H(Y,. L)) & P H (Y. L)Y — HO(Y,0c ® L) & P L.,
j=1 j=1
is surjective at each point (C,z1,...,7;) € Hx Y. For distinguishing between the
different direct summands of W, we have used upper indices for the same vector

space H°(Y, L!). Moreover, under the same assumption that / is large enough, the
dimension

k
dimH(Y,0c @ LYo @@L, =P1) +k=q+k
j=1

is independent of the point (C,z1,...,2,) € H x Y*.
It is proved in [7] that the map

H x Yk — Grq+k(WV),

k
(Cz) — [H'(Y,0coL)o@PL,

J=1

is a closed immersion. Composing it with the usual projective embedding of the
Grassmann variety, one obtains the projective embedding of H x Y*:

q+k
nykﬁp(/\wvy

k
(Coz) + det | | H'(Y,0c® L) e @)L,

Jj=1

\
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The induced ample line bundle on H x Y* is
det O := det (Q i (LZ)E’“) : (1.1)

where @ — Grq (H (Y, Cl)v) is the universal quotient bundle. The fibre of Qy

at a point (C,z) € H x Y*is Qpcp) = H(Y,0c ® L') & @é‘:l Eéj. Since Oy
is invariant under the PGI(N + 1)-action, det Qy is also. It is proved in [9] that
det Q, descends to an ample line bundle on M, (X, A) = S/PGI(N +1).

2. The semi-stable points on M, ;(X, A)

Here is the setup: G is a connected, linearly reductive, complex algebraic group
which acts on the complex, irreducible, projective variety X, and we choose a
very ample line bundle Ox (1) — X which is G-linearized. This action naturally
induces one on the space of stable maps by

G x M%k(X, A) — Mg,k(Xa A),

(9, [(C, z, w)]) = [(C, 2, gu),

where gu : C — X is defined by (gu)(p) := g - u(p) for all p € C. In order to
compute the geometric invariant quotient of M%k(X ,A), we need a linearization
of the action in an ample line bundle.

The linearized G-action on X extends to a linearized action on

Opr(1) = P" =P (HO(X, Ox(l))v)

such that X is invariant. We have already mentioned in the previous section that
M, (X, A) is a closed subscheme of M, (P, d) and on this last one we have
described an ample line bundle. Our next task is to linearize the G-action in it.
Using the notations of the previous section, M, x(P",d) = S/PGI(N+1), where
S is some subscheme of HxY*. On HxY* there are two actions: the first one is the
PGI(N +1)-action on H and the second one is the G-action induced by that on the
factor P" in Y = PV xP". Since the PGI(N +1) and the G-actions on Y commute,
the induced actions on H x Y* commute also. For this reason, G-semi-stable
points on M, x(P", d) will be the images of G-semi-stable points of S; therefore it
is enough to describe the linearized G-action on det Qp — H X Y*. Since G acts
on L — Y, it acts also on H(Y, L!) by (95), = gS4-1, for all § € HO(Y, Ch
and all y € Y. The dual action on HO(Y, Ll)v is given by (g,%) — ¢33, where
q+k
(g%, 8) := (X,¢715). The induced action on /\ WY is now obvious because

W=H(Y, L) & @, HO(Y, ).
For finding the G-semi-stable points we shall use the Hilbert—-Mumford crite-
rion. Given A : C* — G a one parameter subgroup of G (a 1-PS for short), there
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is a (finite) direct sum decomposition corresponding to the characters of C*:
H(Y, L") = @ HOY, L),
mEZ
MtH)S =t™S VteC* VS e HYY, LY.
We want to find out when the point

q+k

k v q+k
N\ B, 0c 0 )o@ L eIP’(/\WV>

j=1

is A-semi-stable, so we have to study the C*-orbit of a representative of this point
qtk

in /\ WY,

Let 01, ..., 04 be a basis of Homc (HO(C’, £H©O), (C) and 71, ..., T, be generators
of Hom(ﬁfvj,(C), j =1,..., k. Notice that the choice of the 7;’s is equivalent to
the choice of representatives ', € CN x C™* of z; = (w1,2j2) € Y because
Ly, = Opn-1(1)y,, ® Opr(1)g,,. Using the epimorphism

k k
W= H(Y,£H® & @ HO(Y, £H)V 2% 5O, £y o @D L, — 0,

j=1 j=1

Ol,...,0q,T1,-..,Tk can be extended to linear functionals on W
81,...,84: H(v,£H® — C
(8;,8) := (0j,1.8) j=1,....,q VS e H(Y,LH)O

and

T,..., T H(Y, LY — C

(T;,8) == (15,8(z;)) j=1,....k ¥SeHY,LH.
The T;’s represent just the evaluations of the homogeneous polynomial S at the
points x; representing ;.
Let us remark that the linear functionals 8; act only on H°(Y, £))(®) and eval-

uate identically to zero on the other copies HO(Y, £, j # 0. A similar remark

is valid for the T;’s: they evaluate identically to zero on H°(Y, EZ)(jl), g # .
The semi-stability condition reads

ATHE WV

04T S A ASGATLA -~ ATx
which is equivalent to the existence of Si,...,Sqik, ST, .-, S;-s-k € W such that
0 # }iH(l)O\(t)-(Sl AN ASGATIA - ANTk) ST A A Sqtk)s

2.1
O#tlirgoO\(t)-(SlA--~A8qAT1/\~--/\‘J'k),S£/\--~/\S;+k>. 21)
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Each vector S, S;- is the sum of 1 4+ k vectors corresponding to the direct sum
decomposition of W. Moreover, as pointed out before, each of the §;’s and T;’s
evaluate non-zero only on vectors in a certain component of W. Consequently, for
this last condition to be satisfied, one may assume that

S1,81 ... S S e HO(Y, LN and  Syiy, 5Ly, € HO(Y, LYY j=1,... k.

q+J

Since the C*-action of the 1-PS X of G induces the decomposition H°(Y, L)
= Omez HO(Y, L), we can further assume that

S; € HO(y,£H\9, s;eHO(Y,cl)ﬁgg for j=1,...,q
and

Sers € H(Y,LHD 8 e HOY, YY)  for j=1,... k.

Mats? at
We are now going to compute the first condition in (2.1):

) (St A ASGATY A ATi), St Ao Sqg A Sqsr Ave A Sysr)

= (81 A ASGATLA - ATy,
AETDSTA - AXNETDSG ANET)S g1 A AANETY) S k)

= (81 A ASGATLA--- ATy,
ETS A AT S A LTS A AT RS )
_yatk o k
=t 2= (8 Ao ASq St A+ ASy) - TTh—y(Tjs Sqrs)
k
=t ZI5 M (g A A T 1551 A+ A% Sy) - H;?:l Sqri ().
Doing the computations corresponding to the second condition in (2.1) we find the

Proposition 2.1. The point [(C,z,u)] € M, (X, A) is G-semi-stable if and only
if for any 1-PS XA : C* — G there are sections

1,50 ey Sy St St Shats s Sarks Sty € HO(Y, LY

satisfying the properties:
q+k
(i) A()S; =t™18; for j=1,...,q+k with »_m; > 0;
j=1
, q+k
A(6)S) =t"™8; for j=1,...,q+k with »_m/; < 0;
j=1
(i) {0551, ...,258,} and {2251, ...,45.5,} are bases for H°(C, L!);
(111) Sq_:,_j(.i?j), S‘;"’J(xi) 75 0 fOTj = 1, ey k.
The point [(C,z,u)] € My (X, A) is G-stable if the same holds, but with strict
inequalities in (i).
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The shortcoming of this proposition is being too algebraic and therefore difficult
to check in practice. For this reason we shall try to find necessary conditions on
one hand and sufficient conditions on the other hand for it. Let us start with the
necessary conditions. An easy consequence of the proposition above is the

Corollary 2.2. If the point [(C,z,u)] € My (X, A) is G-semi-stable, then for all
1-PS A : C* — G there are sections

S; € H(Y, LYy, j=1,...,q
satisfying the properties:
(i) {251,058} is a basis for HO(C, L!);

(ii) the set {m;};=1.._ 4 contains simultaneously positive and negative integers.

Proof. For a fixed 1-PS of G, there are two possibilities in the previous proposition:
either all the m;’s vanish for j = 1,..., ¢ and we are done, or it is not so. Assume
that all m; >0 for j = 1,...,q. Because the sum Zi:ﬁk m’; <0, it follows that
there must exist a my_;, < 0. We know that S|, (¥4+r) # 0 and therefore the
restriction ZZS(;+h # 0. Because {2/51,...,1.5,} is a basis of H°(C, L"), one can
write 7, S; 4 as a non-zero linear combination of these vectors. Now all we have
to do is to replace a section from the set {S1,...,.S,} which appears in this linear
combination with Sy . O

The next proposition gives a geometrical restriction which must be satisfied by
the G-semi-stable maps in M, (X, A).

Proposition 2.3. If (C,z,u) € M, (X, A) is a stable map which is G-semi-
stable, then for each 1-PS X\ : C* — G there is an irreducible component Cs of C
such that the image of the map

u‘c(s 205 — X

is not contained in the A-unstable locus of X.

Proof. The line bundle £! — Y is again very ample and its associated linear system
gives an embedding

L Opr-1(1)
! !

y &L pr-1_p (mov,eh")

The G-action on £! — Y induces one on Opr-1(1) — PE~1. For a stable map
(C,z,u) which is G-semi-stable and A : C* — G a 1-PS of G, corollary 2.2 ensures
the existence of sections S; € H°(Y, £'),,,, whose restrictions to C' give a basis of
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HO(C, £Y); in particular, they are linearly independent. Because of the direct sum
decomposition

HO(Y, L) = @ HO(Y, LY,

meZ

these sections can be completed with sections

Syr1 € HO(Y, L) ., Sre HOY, LY,

Mq+17°

to a basis of H(Y,£!). This basis defines coordinates on H°(Y, £y’ =~ CcRin
which the A-action is diagonal.

Claim. There exists an irreducible component Cs of C having the property that
among {51, ..., Sy} there are two sections S; € HO(Y, L"), and S;» € HO(Y, Cl)mj,
such that mj <0 and m; > 0 and their restriction to Cs is non-zero.

We know already that there are two sections S, and S; such that m, < 0 and
m, > 0, and their restriction to C' is nonzero. Let C, and C; respectively two
irreducible components of C' on which these two sections do not vanish. Because C'
is connected, there is a chain of irreducible components Cy, C3, ..., C, connecting
these two components. Since {Si,...,S5,} is a basis of H(C,£!) and £! — C is
very ample, it follows that there are sections S, 3,53+, .., Ser With the property
that: S, 3 does not vanish at a (certain) point in Co, NCpg, Sg, does not vanish at a
(certain) point in CgNCy, ..., Sy, does not vanish at a (certain) point in C, N C..
Notice that S,s does not vanish on C, and Cjs, Sz, does not vanish on Cg and
C, and so on. Let mqag,mgy,... denote the weights of the sections Sag, Sgy, - - -
respectively. If mqag > 0, then the component C, satisfies the requirement of the
claim. If it is not the case, we look at the chain Cg, ..., Cr whose length is one less
than the length of C,,...,C;. Because at the end C; the weight m., is positive,
an induction argument on the length of the connecting chain shows that it must
exist an irreducible component Cs of the chain Cy, ..., having the property of
the claim.

Let us look now at the image of a point p € Cs inside P~!: a representative
p' € CE of it will have non-zero coordinates with both positive and negative
weights (for the A action), so p is in the A-semi-stable locus of Y. Since obviously
Y =PV x X* we deduce that u(p) is in the A\-semi-stable locus of X. O

In the case of a torus action, this proposition implies the

Corollary 2.4. Suppose that a torus T acts on X. If (C,z,u) € M, (X, A) is a
T-semi-stable point and C is irreducible, then the image of u is not contained in
the T-unstable locus of X.
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Proof. By the Hilbert—Mumford criterion,
Xg= () X
A 1-PSofT

Since C' is assumed irreducible, proposition 2.3 implies that for any 1-PS A of G,
the image of u intersects the A-unstable locus of X in finitely many points; denote
by CY(\) the Zariski open subset of C' consisting of points which are mapped by
u into the A-semi-stable locus of X. Because in a torus there are countably many
one-parameter subgroups,

c+ U @©=c'o).

A 1-PSof T
0

In what follows we want to prove a weakened converse of proposition 2.3 which
is useful when the unstable locus XUstable(( (1)) has large codimension in X.
In this case it is reasonable to think that ‘many’ curves in X won’t meet this locus
at all.
Theorem 2.5. A stable map [(C,z,u)] € M, (X, A) having the property that
Image (u: C — X) C X*(0x(1))
is a G-semi-stable point of M, (X, A).

Proof. The geometric invariant quotient X=X J/G is a projective subvariety of
Pr =P"//G. This last geometric quotient can be described as

P* = Proj (Z HO(P, opr(n))g> .

Let’s denote by ¢ : (P")* — P’ the quotient map. There is an invertible sheaf
M — Pr such that ¢*M = Opr(mg)|@pry= for some mg > 0 (see [13], Theorem
1.10). Tt has the additional property that for large enough values of n,

o~ ¢*
HOPT, M™) = HO(P", Opr (n1mo))°

The assumption that the image of the stable map is contained in the semi-stable
locus of X implies the existence of the commutative diagram

(C,Q) L) Xss
a N\ g
X.
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Remark 2.6. The map u : (C,z) — X is still stable. Indeed, problems appear
only if @ contracts some P'-components, without enough special points on them,
which are not contracted by u. If Cs denotes such a P'-component of C,

degu*csOX(mo) =degy, o, M =0,
so that u must be constant on Cy. This contradicts the stability of w.

The group G acts on Y = PY x PT trivially on the first factor and consequently
its invariant quotient is Y := PV x P". The quotient map v : Y5(£) — Y is just
¥ = (idp~, @). Let us define the line bundle

M = Opn(mo) R M — Y.
It has the property that
VM = Opn (mo) K ¢" M = (Opn (mg) B Opr (mO))|YSS = L")y
and it can be easily checked that

~ P*
HO(Y, M) = HO(Y, £7)C

for large n. There is again a commutative diagram

(C, E)L yss — PN (Pr)ss

\ lw:(idw@)
Uy

Y = PN x Pr.

Because uy is an embedding, Uy is also. The 1-dimensional subvariety uyC of
Y has Hilbert polynomial:

P(n) = hO(C, @ M™) — b (C, @ M™)
= hO(C, uy L) — hl(C, u L7M0) = P(nmy),

where P is the Hilbert polynomial of uy.C C Y. It is independent of (C,z,u) €

Mg,k(X , A) satisfying the hypothesis of the proposition.

Grothendieck proves in [7] that there is an integer k& > 0 such that for all n > k,
M?" is generated by its global sections and moreover, for any closed subscheme Z
of Y whose Hilbert polynomial is P there is an epimorphism

HY(Y,M") — H(Y,0, ® M) — 0.

Recall that for obtaining a projective embedding of Mg’k(}P”"7 d) we had to chose
a high enough power £! — Y. Since ¢*M = L™ |yss, we can chose from the
very beginning an integer | large enough such that ¢*M"™ = £} [yss With n >k
(I =nmy).
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The following three relations

HO(C,u} LY = HO(C,up M™)

HO(Y, M") — H(C, 5 M™) — 0 (2.2)

~ P*

HO(Y, M) = HO(Y, £)¢
prove that there are G-invariant sections Sy, ...,S, € H°(Y, ﬁl)G such that the
restrictions {27, S1,...,2,S,} form a basis of HO(C, ul £"). The problem with the
marked points is easy: by hypothesis u(x1),...,u(z;) € X*(Ox(1)) and we may
consider their images 4, (z1),...,Uy (z) € Y. The number n was chosen large

enough to ensure that M™ is globally generated by its sections. Consequently,
we find Sgi1,...,Sg+k € HO(Y, M™) such that Syqj(z;) # 0 for j = 1,...,k.

-~ ¥
Since HO(Y, M™) = HO(Y, LZ)G, there are G-invariant sections Sq41,...,S¢4k €
HO(Y, Cl)G such that Sqi;(z;) #0for j=1,... k.

The g + k sections S1,...,S4,5¢+1,..,5¢+% now obviously satisfy the condi-
tions of the proposition 2.1. O

P
~

Corollary 2.7. If the stable map [(C, z,u)] has the property that Imageu C X(SO),
then [(C,z,u)] € My ,(X, A)?O). As usual, X, denotes the set of G-stable points
which have finite stabilizer.

Proof. There are two things to prove in this statement: the first one is that the
stabilizer of [(C, z,u)] in G is finite, and the second one is that this point is indeed
stable.

When k£ > 0, for any € z we have Stabg[(C, z,u)] C Stabgu(z), and therefore
the stabilizer of the map is indeed finite. Let us prove that it is so in general.
Consider a representative u : (C,z) — X of the point [(C,z,u)] and define H :=
Stabg[(C, z,u)]. Let’s assume that H is not finite. By definition, for any h € H,
there is an automorphism ~;, € Aut(C,z) having the property that hu = uvy,. In
particular, for all h € H, Image hu = Imageu. For { € C' an arbitrary point, u(¢)
has finite stabilizer in G' by assumption, and therefore dim H-u(¢) = dim H > 0.
Since H-u(¢) C Imagew which is one dimensional, we deduce that dim H = 1. Let
us look at the connected component of the identity H® of H: it is a connected
1-dimensional group and therefore isomorphic either to the multiplicative group
G, or to the additive group G,. In both cases tlirgo t-u(¢) € Image u will be fixed.

This contradicts the assumption that Imageu C X (SO).

We will show that the point [(C,z,u)] is G-stable using proposition 2.1. For a
1-PS X : C* — G, there are sections S; € HO(Y, L!),,, and S} € HO(Y, [,l)mll with
m} < 0 < my, and whose restriction to C is non-zero (this is because Imageu C
X®%). Using now (2.2), we complete S; and S] with G-invariant sections S;, S €
HO(Y, L") in order to fulfill the requirements of proposition 2.1. O
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3. The symplectic perspective of the problem

In order to have a geometrically clearer picture of what is going on, we shall
investigate the symplectic counterpart of the problem studied in the previous sec-
tion. It is well-known that the invariant quotient in algebraic geometry has a
very close analogue in symplectic geometry, namely the Marsden—Weinstein quo-
tient. More precisely, assume that a complex, algebraic, linearly reductive group
G acts on a projective variety X and the action is linearized in a very ample
line bundle Ox (1) — X. Let K be the maximal compact subgroup of G and
denote m : X — £ the moment map for the K-action, which takes values in
the dual of the Lie algebra of K. Assume also that the G-action on X is such
that X% = X€0)7 that is all the G-semi-stable points are stable and have finite
stabilizer. Under these assumptions we have the

Result. A point z € X is semi-stable if and only if Gz N'm™1(0) # (). Moreover,
the inclusion m~1(0)/K — X*/G is a homeomorphism.

Details and further references can be found in [10].

It is clear that the map m : M, (X, A) — M, which associates to a stable
map [(C,z,u)] its stabilized curve [(C*!, z°%)] is preserved by the G-action. In
order to ensure that the space M_,Lk exists, we shall assume that 2g —2+k > 0. It
is also clear that a point [(C,z,u)] € M, (X, A) is G-semi-stable if and only if it is
G-semi-stable when it is viewed as a point in the fibre M, 1 (X, A) X Spec CR[(Cot z50)]
of m, where kst zsty) denotes the function field of the corresponding point. This
remark justifies the following construction: for a quasi-stable curve C' of genus g,
that is a connected and projective curve whose singularities are at worst ordinary

double points, let us define

Mo (X, A) = {u:(C’ z) _)X’(C,w,u) is a stable map, }

|z] =k, u.C]=A

We should notice at this point that for defining this space we do not divide it out
by the reparametrisations of C' as we do in the case of stable maps (see definition
1.1), and this choice will eventually allow us to work with honest maps instead of
equivalence classes of maps.

Lemma 3.1. Mc (X, A) has a natural quasi-projective scheme structure.

Proof. We may assume as usual that X = P". Recall that a map (C, z,u) is sta-
ble if and only if Lic g u) = wo(z1 4 -+ + o) ® u*Opr(3) — C is ample. Also,
there is an integer f = f(g,k,r,d) > 0 with the property that L{C&’u) — C
is very ample. In this way, any stable map (C,z,u) gave rise to an embed-

ding C — P (HO(C, L{Cz u))v> into a space isomorphic to PV, where N +1 =
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dim H°(C, Lé) The ambiguity in the choice of this isomorphism is given by ele-

ments in PGI(N +1). In order to define the space M¢ (X, A) we shall use a fized

but otherwise arbitrary stable map (C,z,ug). Let us consider the fixed embedding
, v

cp (HO (87 ) ) =PV (3.1)

(Coz4,u0)

defined by the very ample line bundle O(1) := L{C 20,0 and let e be its degree

on C. For another stable map (C, z, u), the Hilbert Bolynomial of its graph I',, C
C xPris

P(n) =x(0r, @ Oc(n)®Op-(n)) =nle+d) + x(Tu) =n(d+e)+ (1 —g).

So each stable map (C, z, u) defines a point (I'y, z) € Hilb5, pr X (C' x IP’r)k. Using
the embedding jo : C — P¥, the graph I', can be viewed as a subvariety of
PN x PT = Y and its Hilbert polynomial with respect to the very ample line
bundle £ = Op~ (1) K Opr (1) — Y is P also.

Clearly, the same is true for any closed subscheme Z of C' x P": the Hilbert
polynomial inside C' x P with respect to O¢(1)KOpr (1) is the same as the Hilbert
polynomial of its image jg.Z inside Y with respect to £. So we obtain a closed
immersion

He = HilbE pr HilbY = H.

The ample line on H is det @ — H, where Q is the universal quotient bundle on
some Grassmann variety (see section 1). Remember that there is a subscheme
S of H x Y* corresponding to the locus of k-marked, genus g stable maps to P”
which represent d times the generator of Ho(P",Z). Let consider the commuting
diagram

Mo p(P7,d) :=He x (Cx P xpyye S———> 8

l

He x (C x Pr)f ————H x Y*.

Since Mo x(P",d) — He x (C % P)* is an immersion, Mc (P, d) is a quasi-
projective scheme. Its ample line bundle is determined by the restriction to S of
det Q;, — H xY*. The space Mec i (P", d) is quasi-projective, being an open subset
of MCJC(PT, d) U

Remark 3.2. M¢ (X, A) is the Gromov compactification of Mc (X, A). It
is also projective if (C,z,) is a stable curve in the sense of Deligne-Mumford
(remember that we have used a fixed stable map (C,z,,up) for the embedding
jo : C — PN). In this case the intersection of the PGI(N + 1)-orbit of a stable
map in & — H x Y* with the image of Ho x (C x P")* — H x Y* consists
of finitely many points. Consequently, the map Mc i (P",d) — My, (P",d) is
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generically finite on its image. Because Mg,k(IF”",d) is projective, the conclusion
follows.

For the symplectic point of view it is convenient to consider M¢ (X, A) with its
reduced scheme structure, so that we look at it naively as being a quasi-projective
variety. The Zariski tangent space of M¢ (X, A) at a point (C,z,u) is

s € HY(C,u*TX) }

T(07£7U)Mc’k(X, A) - {(8,7)1,...,1Jk) v c TxC j: 1 k
il 3y

In the sequel we shall compute the Kihler form on M¢ (X, A) induced by its
projective embedding. We can see that the ample line Pundle det Q) — H x Y
introduced in section 1 and defined by (1.1) is det (p. E £') ® &7 (L")®*, where

E°L! L= Opn (1) ¥ Opr (1)
! !
E:(jt)aE) N r . L
Me (X, A) x C PN x P, with E(u,¢) := u()
pl
Me (X, A)
and o i
Me (X, 4) T2, (BY < P")", &V = (Jo, evy),

(C, Z, ’LL) — ((jO(x1)7 u(ml))7 R (jO(xk)v u(xk))) :
The Kéhler form on M¢ (X, A) induced by its projective embedding is —1/2mi x
[curvature of det((p.E L) ® v*(LH)¥*)]. For computing this curvature, we need

a Hermitian metric on £ and a Kéhler metric on the fibres of M¢ (X, A) x C L2,
Mc (X, A) ie. on C. The fibres of p will be all isometric, the Kéhler form on
them being

1.,
Vo 1= JoWa s €15 degOpn (1). (3.2)

This choice reflects the fact that for defining the space M¢ (X, A) we have re-
quired the maps (C,z,u) to have a fized domain of definition. On Opn~ (1) and
Opr (1) consider the Hermitian metrics whose curvatures are —2miw_,, and —2wiw,,
respectively, with w_, and w,. the corresponding Fubini-Study forms. There is an
induced Hermitian metric on £ = Opn (1) K Opr (1) and a fortiori on E L'

It is easy to see which is the expression of the curvature of ev* (ﬁl)&k at a point
(C, xz, u) S Mc,k(X, A)

k

k

1 ev™ 1Bk *

Q= - (R ) = 1D Vo), +1D (eV79r) ()
j=1 j=1

For computing the curvature of det(p,E" £!) the first thing to notice is that this
line bundle is actually the determinant of the derived direct image of E" !, since



Vol. 77 (2002) GW invariants and invariant quotients 161

by plE*El = 0 (see section 1). Consequently, we may apply the differential form of
the Atiyah-Singer index theorem for families which is proved in a series of papers
[3, 4, 5] by J.-M. Bismut, D. Freed, H. Gillet, Ch. Soulé. According to [5], theorem
0.1 page 51, if C' is a smooth curve, the curvature

{1 1= *iRdetP*E*d :/Td fiRTc - exp 7LRF*U .
2w c 2ms 2mi

Here RT¢ denotes the curvature of the relative tangent bundle of the projection
p (i.e. of T¢) corresponding to the Kéhler metric v, on C and RE'£' is the
curvature of the line bundle £ £! with respect to the Hermitian metric induced
by that on £!. Let v := (—1/2mi)R™¢; it is a real form of type (1,1) on C and
therefore v = hvy, with A : C — R a smooth function having the property that
fc h7y. = 2(1 — g). On the other hand,

1 T el — 1 — %
—%RE £ =IE (—%Rﬁ) =IE (w,y +w,) =l(er. + E*w,,).

The form €25 is the degree two term in

2

1 l
/ (1 + 57) (1 +Hl(ere + E'we) + 5 (€70 + E*ww)2> :
C

Making the computations we obtain:

2 ] :
0 5 [ (@0 + Bwn)+ g [ (v +Bro) an
C C
12

2 Jo
12

2 Je

l
(E*w,.)” +2eE*w,, Ny, + 5 /C E*w,. Ny

l
(E*wﬂw)2 —|—l2€/ E*w,. A + 5/ h-E*w,,. A7g.
c c
This proves the
Proposition 3.3. The curvature of the line bundle det (p, E L) ® ﬁ*(ﬁl)&k di-

vided by —2mi is Q = Oy + Qa. It represents the Kdhler form on Mc (X, A)
induced by the projective embedding described in lemma 3.1.

Let us come back to the initial set-up: a complex, connected, linear algebraic
group G acts on a smooth, irreducible complex projective variety X and the action
is linearized in a very ample line bundle Ox (1) — X. In this case, using the linear
system associated to Ox (1), we may assume that G acts on C"*! and, by an
appropriate choice of coordinates, we are allowed to assume that the maximal
compact subgroup K of G is included in U(r + 1). There is an induced action
of G (so, a fortiori, of K) on Mc (X, A) defined by: g x (C,z,u) — (C,z, gu).

Because the K-action preserves the Fubini-Study form w,, and the maps E and v
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are obviously both K-equivariant, it follows that 2 is K-invariant also. Our next
goal is to determine the moment map corresponding to this Hamiltonian action.

We start by studying the case when G = C*; the induced S'-action on X gives
rise to a vector field £ on X having the property that L;w = 0 and L¢J = 0
because S' acts on X by isometries. The vector field J¢ does not preserve w in
general but still preserves the complex structure of X. In fact the vector field
J& corresponds to the (holomorphic) action of R% < C*. The moment map
m : X — R corresponding to the action is S'-invariant and

dmw(sz) = W(fzva ng) = ”‘EwHQa

so that m is increasing along the flow lines of J¢.
Let us denote by V the vector field on M¢ (X, A) determined by the (holo-
morphic) St-action on M¢ x(X, A). At a point (C,z,u),

Vg = (WE0,...,0) € H(C,u*'TX) x T,,,C x ... T,,C.

Lemma 3.4. The function
\I’ . MCJC(X, A) E— R,

k
l
\I/::lQe/(mOE)'yc+l2/(mOE)E*ww+—/h(mOE)’yc—i—lE moev;
c c 2Jc

j=1

is a moment map for the S'-action.

Proof. Because E,ev;, m,w,, are all Linvariant, it follows that ¥ is also. For
proving that ¥ is a moment map, we need to show that its differential is the same
as the contraction of the Kéhler form © on M¢ (X, A) with the vector field V. It
what follows, the symbol “1” will always denote the contraction of a differential
form with a vector field.

The contraction V J (v,)
V is zero.

V. (ev;ww) = ev; ((er*V) . wpr) = ev; (gevj-(~) _ ww’r)

= eV} (dmey,()) = d(m o ev;).

V / E*w,. Ay, :/ VI (E*w, A7) :/ VI E'w,)Avs-
c c c

At a point p € C,

VP . (E*wpr )p =FE" (E*VP = Wpr 7u(p)) =FE (Eu(p) . Wpr 7u(p))

=E (§u<p) - Wpr ,u(m) = E*(dmy(p)) = d(mo E),,.

and consequently

VJ/CE*wprAvc:/Cd(moEM%:/Cd((WOE)%)
:d/c(moE)'yc.

». = 0 because the T, C x --- x T}, C-component of
J
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VJ/h~E*wPT/\'yC :/VJ(hoE*wPT/\'yc)
c c
:/h-(VJ E*ww)/\vc:/h-d(moE)/\vc
C C

(;)/Cd(h(moE)'yc)Zd/ch(mOE)'YC'

For writing equality (x), we have used that dh Ay, =d_ h Ay, =0.

v / (E*w,.)? = 2/ (V1 E'w,)AE*w,, = 2/ d(mo E)E*w,,
C c C

— 2/Cd((mOE)E*WW) =d (2/C(moE)E*ww>

All together, these equalities show that ¥ is indeed a moment map. O

Using the previous computations, one can derive easily the formula of the
moment map on Mg (X, A) for general group actions.

Proposition 3.5. Let m : X — ¥ be the moment map for the K-action on X.
Then the function
v Mcyk(X, A) — E*,

k
l
\IJ::ZQe/(moE)fyc+[2/(moE)E*wPT+§/ h(mo E)y, +1 g moev;
c c c

j=1
is the moment map for the K-action on Mc (X, A).

Proof. Because F,evj,w,,. are all K-invariant, and

PT
m(a-x) = Ad(a™')-m(z), Vre X, VacK,

it follows that this latter property holds for ¥ also. In order to check that the
formula gives indeed a moment map, we must show that

(d¥,a) =V, 10, Vact.

Here V, stays for the vector field on M¢ 1 (X, A) induced by the infinitesimal action
of a, and (, ) denotes the natural pairing between € and its dual. Since this relation
is linear in a on one hand, and ¢ is generated as a vector space by the tangent
vectors ay 1= %)\(ewﬂg:o for A: S' — K a 1-PS on the other hand, it is enough
to check the equality above for such a)’s.

For a fixed one parameter subgroup A, the pairing (¥, ay) is given by the same
formula as ¥, except that m is replaced with my := (m,ay); but the function my
defined in this way is nothing but the moment map corresponding to the induced
S'-action on X, and the lemma 3.4 implies that (¥, a,) equals the moment map
Uy on Mc (X, A) corresponding to the induced S'-action. But for this one we
do know already that d¥y =V,, 1 Q. O
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Remark 3.6. It is interesting to study the moment map for large e and I. We
should recall that e is defined in (3.1) as the degree of a certain very ample line
bundle on C' used to get a fixed embedding of C' into a projective space, while
[ is an integer large enough for obtaining a projective embedding of the Hilbert
scheme H (actually I does depend on e). Because X is compact, the moment map
m is bounded and therefore the last two terms in el%\ll are of order O(i) We will
show that the first term is of order O( ) Indeed, since maps u € M¢ (X, A) are
holomorphic, the pull-back v*w,,. > 0 as a form on C. This implies that

1/(mou)u*ww. < mmax, |m\/ _ dmax, |m]| O<1>,
e o e e

where d denotes, as usual, the degree of the composite map C' — X — P, which
is a constant.
The conclusion of this discussion is that for large e and [

;2 U~ /C(m o E)y,, (3.3)

so the zero set of ¥ will be close to the zeros of this second function. Notice that
the right hand side of (3.3) is the moment map corresponding to the Kéhler form

:/ E*w,. AN,
C
on ]\40%()(7 A)

At this point some care is required because 7., as it is defined by (3.2), does
depend on e. However, it is well-known (see [16]) that the sequence of such metrics
converges to a metric on C, which was still denoted ..

Recall that the smooth real-valued function h defined on C' is the “quotient”
Tc / Yo, Where R”c denotes the curvature of the tangent bundle of C' with respect
to the Kéhler form «.. This last form was defined in terms of a fized projective
embedding of C; in particular, it does not depend on [. For obtaining the projective
embedding of the Hilbert scheme we had to take large positive integral values for
[, and therefore we may assume that le + %h is a strictly positive function on
C'. Notice also that since u is holomorphic and w,, is a positive (1,1)-form, the
(1,1)-form v*w,, on C is still positive. Now we recover easily the

Theorem 3.7 (2.5). A stable map (C,z,u), with C smooth, having the property
that Image u C X ((’)X( ), defines a G-stable point in M, (X, A).

Proof. According to the Hilbert—-Mumford criterion, it is sufficient to prove the
statement for every 1-PS A : C* — G. For a fixed 1-PS X of G, the point (C, z,u)
is A-stable, if its C*-orbit meets the zero-level set of the function ¥y on M¢ (X, A).
Assume for instance that ¥y (C, z,u) < 0. By hypothesis, Image u C X C X5

so that under the R -action all the points u(p), p € C, meet the m;l(O)—level.
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As C is compact, we find » > 0, which depends on u, with the property that
mx (A(r)u(p)) > 0 for all p € C. Since

k

(le + ;h) (myou)y, + ZQ/C(mA o u)u*w,, JrlZmA(U(fj)),

j=1

U\ (Cyz,u) = /

C

for such a large r, the translated map A(r)u has the property that U, (C, z, A(r)u) >
0. A continuity argument proves that there is (a unique) ro with (C,z,rou) €
¥ 1(0). Tt is also clear from the hypothesis that (C,z,u) has finite stabilizer. [

For G = C* we can improve the result above, namely if v : (C,z) — X is a
morphism whose image is not contained in the unstable locus of X, then it defines
a stable point in Mc¢ (X, A) for a suitable linearization of the action. In view
of corollary 2.4, this result is optimal and completely characterizes the C*-stable
points of M¢ (X, A): a point (C, z, u) is stable if and only if u(C') is not contained
in the C*-unstable locus of X.

Let us prove this remark: we are going to show that for such a morphism wu,
TETDO\I'(ru) > 0 and 7ii}r_noo‘ll(ru) < 0. Since X* = X7, 0 € R is a regular

value of the moment map m : X — R, and there exists an 1 > 0 such that any
p € (—n,n) is regular for m. Consider a relatively compact open subset U. € C

such that u(U.) C Xfy), 1 —¢ < Ju. Ve <1 with

n
4(1 + maxx |m|)’

O<e<

Since u(U:) C X{y), we deduce that for r > 0, m(ru(p)) > n/2 for all p € U..
Writing C = U. U (C \ U.), we obtain that for such a large r,

%\p(m): /C(m o)y, + é/c(m o ru)(ru) w,,

k
1 1
—I-%/Ch(moru)'yc + E;m(ru(xj))

maxy |m)|
e

> —€) — —
> =(1—¢) 6m}&(xx|m| O(

— £(1 + max |m]) —o(w).
X e

NS N3

We can see that for e large enough, that is for suitable choice of the linearization
for the S'-action on M¢ (X, A), ¥(ru) is positive. A similar study applies in the
r — —oo limit.
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4. First application: comparison of invariants

In this section we shall use the results obtained so far, for comparing the genus
zero Gromov—Witten invariants of a projective manifold with those of its invariant
quotient for a group action. Before stating our result we introduce the following

Definition 4.1. Let f : M --» N be a rational map. We define f* : H*(N) —
H*(M) by f*a :=PDp(p«(Ts Ng*@)), where I'y C M x N denotes the closure
of the graph of f with the projections p and ¢ on M and N respectively and PD
stands for Poincaré-duality.

This is just another way to express the correspondence induced by f, and we
should keep in mind that f* is not a ring homomorphism in general.

Theorem 4.2. Consider a complex, connected, linearly reductive group G acting
on the irreducible projective variety X, and also a linearization of the action in a
very ample line bundle Ox (1) — X. Denote by ¢ € H2¥™E(X;Q) the class of a
rational transverse slice to X --» X. Let A € Hy(X;Z) be a class which can be
represented by a morphism P! — X5 and denote A the class of its image in X.

Suppose that the following conditions are satisfied:

(al) G acts freely on the G-semi-stable locus of X, so that the quotient map
X% — X /)G =: X is a principal G-bundle (according to [12], Corollaire 1);

(a2) Mo (X, A) is generically smooth and has the expected dimension;
e In the case when G is a complex torus, assume moreover that:

(a3) every irreducible component of Mg (X, A) contains a point represented by

a morphism P! — X5;

(ad) Mo (X, A) € Mor(X,A) is a dense open subset.
e For general reductive G, assume that both Mo (X, A) and Mo (X, A) are irre-
ducible.

Then for any & € H*(Xk;Q) the following equality between the genus zero
Gromov—Witten invariants holds:

GW (@) = GWyli(au (X)),

where o € H*(X*; Q) is obtained from & using the correspondence induced by the

rational map X% --» Xk, and prigk : X* — X denotes the projection onto the first
component.

Before proceeding to the proof of the theorem, I would like to discuss

When are the hypothesis in theorem 4.2 satisfied? The condition (al) on G to
act freely on the semi-stable locus of X is necessary in order to ensure the equality
of the expected dimensions of the spaces of stable maps involved inhere. It is un-
likely to have any relations between the invariants if there are semi-stable points
in X with positive dimensional stabilizers. I have imposed the condition (a2) in
order to avoid the use of the virtual class, which could be a rather difficult task in
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the present context. Condition (a3) excludes the existence of irreducible compo-
nents of Mg (X, A) such that the images of all the corresponding morphisms cut
the unstable locus of X. Condition (a4) says that there should be no irreducible
component of Mo,k(f( ,A) such that all its points represent stable maps whose
domain of definition are trees of P!’s.

I would like now to enumerate some cases where the theorem above applies.

Lemma 4.3. Assuming (al), the requirements of 4.2 are satisfied in the following
cases:

(i) if G is a torus, when X is a convex variety and Txs is generated by G-
nvariant sections or,

(ii) for general G, when both X and X are homogeneous varieties.

We should recall that a projective variety X is called convex if for any morphism
v: Pl — X, HY (P, v*Tx) = 0. Standard examples of such varieties are those
whose tangent bundle is globally generated; homogeneous varieties are very special
instances of such objects. Theorem 2 in [9] says that for convex varieties, the
moduli spaces Mg (X, A) are generically smooth, and the singularities are of
finite quotient type.

Proof. (i) The first remark is that in these conditions X is a convex variety too:
this follows from the exact sequence

0— O(LieG) — TRY — Ty — 0

on X associated to the principal bundle X*% — X.

Since both X and X are convex, My (X, A) C Mo k(X,A) and Mo)k(f(, 121) C
Mo (X, A) are open and dense (see [9], theorem 2, page 56), so that (ad) is
fullfilled; convexity implies also that we are working in the expected dimension.
The only thing to check is condition (a3): since My (X, A) C Mg (X, A) is
dense, we may restrict our attention to stable maps whose domain is P'. Since
the evaluation map ev at the (k + 1)'" marked point on My 41(X, A) is sub-
mersive, any morphism P! — X can be ‘pulled away’ from the unstable locus of
X. Indeed, if Xunstable <, X has codimension at least two, the inverse image
evH(Xunstabley < AT 1 11(X, A) has the same property since ev is submersive,
so the direct image of this set has codimension at least one in Mg (X, A). In the
general case, let us write X'"stable — A J 7 with A = A; U--- U A, a union
of irreducible divisors and Z — X of codimension at least two. We have seen
that this later component does not cause any trouble, so let us study the first
one. The assumption on the class A implies that A - A, = 0, Yo = 1,...,s.
Let us focus now on an irreducible component of Mo7k(X ,A): since X is convex,
My (X, A) C Mo (X, A) is dense, and therefore it certainly contains a morphism
u: Pt — X representing A, but it might happen that its image is contained in A.
The submersivity of the evaluation map implies that we can deform u into a u’
whose image is not contained in A, and is also disjoint from Z. But in this case
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o' (PY) - A, > 0, with equality if and only if /(P )N A, =@ forall o = 1,...,s;
since A-A, =0, we deduce that ' is disjoint from XUunstable,
(ii) The statement is the content of the article [17]. O

Let us return now to the proof of theorem 4.2, and consider the following
commutative diagram:

Mop(X,A) — - v Xk
R’ | | b
1 o 1
— evX Y R o
Mop(X,A) -ty ¥ IV XE (4.1)
RII I : I.II
_ 4
o~ o~ X A
Mop(X,A) = w ¥ XF

The notations are as follows: V and W are respectively the images of the
morphisms evyX and ev;X, both with the reduced scheme structure. The group G
acts on X* in a diagonal fashion and the evaluation morphism evi( is G-equi-

variant. The invariant quotients of ngk(X ,A), V and X* are denoted respectively

—

Mg p(X,A), V and X*. Notice that V # () as soon as there are stable maps whose
image is contained in the G-semi-stable locus of X. The universality property

—

of quotients implies the existence of the rational map ev? . The quotient map

Xk -5 X* naturally factorizes through a rational map 1’ : X* --» X* whose
general fibre is isomorphic to G¥/G. If G was a torus, then r”” would have been

the quotient map for the induced G*/G-action on X*.

Proposition 4.4. Under the assumptions of theorem 4.2, the map
R": Mox(X,A)))G--> Mo (X, A)

is birational.

Proof. We start noticing that R” is generically injective on its image. Indeed, we
may restrict our attention to maps whose image is contained in X®%: for G a torus,
this is just the assumption (a3), while for general G, it follows from the assumption
of the irreducibility of the space of stable maps and the assumed existence of one
such map. If u1, us : P! — X are morphisms such that ¢ ou; = ¢ owus, it follows
from (al) that there is a morphism g : P! — G such that uz(¢) = g({)u1(¢) for all
¢ € P'. Since G is affine, the morphism g must be constant and therefore u; and
us represent the same point in Mg x(X, 4)//G.
Write
Mo (X, A) = JMok(X, A),
v
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as the union of its irreducible components. Assumption (a3) says that each com-
ponent Mg (X, A), contains a non-empty open subset Mg (X, A)% having the
property that its points represent stable maps defined on P!, with image com-
pletely contained in the G-semi-stable locus of X.

We know already that the maps R : Mg (X, A)% — Mo (X, A) are birational
on their image; let us denote Mo,k(f( ,A)l, the closures of these images. They
are distinct irreducible components of Mo,k(f( , fl), each of them having expected
dimension. In fact, for [(P!,z,u)] € Mg(X,A)S the composite [(P!,z,4)] €
Moyk(f(, A)U is a smooth point of MOJC(X, fl), this can be seen pulling back by u
the exact sequence

0— Ty — Txse — ¢"Ty — 0, (4.2)

on X, where T denoted the trivial sub-bundle generated by the infinitesimal action
of G.
For proving that R” is dominant, we have to show that if Mg (X, A), is an
irreducible component of Mo’k(f(, A), then p is one of the v’s coming from X.
Let us start with the case when G is a torus: ¢ : X% — Xisa principal bundle,
and therefore defines a class v € H'(X ;0% (G)). The Chern homomorphism
defines the class

ch(v) = (81,...,6,) € H*(X;Z)®", with r = rk(Q).

The assumption (ad) says that it is enough to restrict ourselves to morphisms
@ : P! — X: the topological type of the principal bundle 4* X% — P! is given by
the r-tuple of integers

({61, Ay, ..., (3,, A)) = (0,...,0).

The last equality holds because the class A is induced by the class A € H2 (X=:7).
Since Pic?(P!) = {1}, we deduce that 4*X* — P! is a holomorphically trivial
torus bundle, and consequently it has a section. This in turn implies that there is
a morphism u : P! — X*° such that & = ¢ o u.

When G is an arbitrary reductive group, let us consider the principal bundle

ev X% — MO,k)+1(X7A>7 (43)

where, as before, ev stays for the evaluation at the (k + 1)“‘ marked point. We
know that there is a morphism ug : P! — X representing the class A; for the
composed map g := ¢ o ug this means that the principal bundle 45X — P!
has a section, and consequently is holomorphically trivial. We shall look now at
(4.3) as being a family of principal bundles over P! parameterized by My (X, A)
having the property that the points corresponding to g are trivial principal bun-
dles. According to [15], theorem 4.2, the infinitesimal deformations of the trivial
principal bundle Py — P! are parameterized by

HY(P', Py xpaq 9) = HY(P!, Op1)®4mE =0, where g = Lie(G).
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This means that the trivial bundle over P! is rigid, so that there is a whole
Zariski open subset % C Moﬁk()@/ﬂl) having the property that for any v € %,
v* X% — P! is holomorphically trivial. Since our assumption is that HOJC()A( , /i)
is irreducible, we deduce that % is dense, and we can repeat word-by-word the
previous argument. We should notice again that the exact sequence (4.2) implies
that Mo’k(f( , 121) is generically smooth and has the expected dimension.

In both cases we must check that if v € Mo,k(X, fl) has the property that the
fibration v*X* — P! is trivial and u is a section, then indeed u,[P!] = A. This
can be seen as follows: denoting EG — BG the ‘universal’ G-fibration, we have
the diagram

Hy(X) 2 Hy(EG xg X™)
lc
0 — H3(X) — H2(EG xg X) — H3(BG) — 0,

and the class A is mapped into 0 € H>(BG), since the fibration v* X% — P! is
(topologically) trivial. The lower sequence is exact because BG is simply con-
nected, and consequently the class ¢(A) € Hy(EG xg X) actually lives in Hy(X).
Since the homomorphism ¢ is canonical, and for the morphism ug : P! — X% C X

we know that ug, [P!] = A, we deduce that ¢(A) = A. O

For the proof of theorem 4.2, we remark that if V. C M and W C N are
complete, irreducible subvarieties such that V N Dom(f) # () and the restriction
fv : V --» W is dominant, then for any a« € H*(N)

(f e, [V]) = deg(fv)(a, [W]),

where we set deg(fy) = 0 when dim V' > dim W. This claim follows from the fact
that (V X N) Ty =Ty,.

Proof (of theorem 4.2). We have seen in proposition 4.4 that
Mo,k(X’ A) = UMOJC(X’ A)Vv Mo,k(Xv A)//G = UMO,k(X7 A)V//G

and o o o o
Mor(X,A) = JMor(X,A),.

Moreover, RY : Mo (X, A),//G --» HOJC()A(,A)V are birational for all v. Let
V, C X% and W, c X* be respectively the images of the k-point evaluation maps
on Mo (X, A), and H07k(X, /1),, Then V, //G is the closure of the image of the
evaluation map on My (X, A),//G and there is a natural map 17/ : V,, /G --» W,
compatible with the other arrows in (4.1) which is dominant.

The class ¢ which appears in the statement of the theorem is just the class
of a “rational section” of the quotient ¢, that is ¢ := éZ for a general complete
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intersection Z — X which transversally intersects, in d points, the closures of the
general G-orbits in X. With this choice for Z, the rational map V,,N(Z x X*~1) --»
V. JJG is generically finite of degree d.

Consider & € H*(X*) and let o := ¢*@ for ¢ : X* --» X*. The discussion

preceding this proof applied to the composite V,, N (Z x X*¥~1) 5 )G A W,
shows that
(o, [V, N (Z x X 1)) = d - deg(x") (&, [W,]).

We can write therefore,

/ (evX)*OA[ _ deg(eVX)<d [W ]> _ M@k [V N (Z « kal)]>
Wo,k(X,A)V k e k ) v cfdeg(r’,,’) ) v *
= deg(evy, ){a, [V,] N (pr¥") ¢) = deg(ev¥, ) [V, ] N (prX) ¢)
— deg(evi,)(a U (prX") ¢, Vi) = /ﬁ (ev¥) (U (%) 0).
Mo k(X,A),

This finishes the case when deg(r)) # 0. When deg(r?) = 0 (that is r” is not
generically finite), both sides are zero. Summing these equalities after v we get
the conclusion. ]

Remark 4.5. Let us consider & = &1 ® -+ ® dy, € H*(X"’;Q) and denote re-
spectively a; = ¢*&; € H*(X;Q). The equality which appears in the theorem
reads

GW)‘?(’”“A(dl ®..®d) =GWeh((Ua ®...0m),

and this form is somewhat odd since the left-hand-side is symmetric in the &
entries (we consider cohomology classes of even degree), while the right-hand-side
is not symmetric in an obvious way. This means that we get relations among the
enumerative invariants of X,

GWRN (U ®.. 00 ®...0am)=CGWyim®.. (Vo ®...0 w),

for all j = 2,...,k, and the more complicated the group action, the less apparent
are these relations.

Another aspect of the problem is that it is possible to construct rather com-
plicated quotients X starting with ‘simple’ varieties X. Using this approach, one
may hope to get a better insight to the Gromov—Witten invariants of the quotients.

4.1. Some examples
The requirements in theorem 4.2 make its applications rather restricted, but we

shall see that there are several cases where the theory does apply, and relates the
enumerative invariants of apparently non-related objects.
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4.1.1. For ng,nq,...,n, > 1 integers and n := ng + ny + --- + n,, consider the
linearized (C*)P-action on P"*P*+1 given by

(C*)p % Cn+p+1 Cn+p+1’

(t1,- o tp) X (20,21, -, 2p) 1= (t1 . tp20, 8] P21, ., 1) 2p), with z; € C™ L

The unstable locus of P"*? is the union U?ZO{ZJ' = 0}, which has codimension

larger than two, and the stabilizer of any semi-stable point is { ?*v/1}, so that
the semi-stable locus coincides with the properly stable one. The corresponding
geometric quotient of P**P is P x P™ x ... x P", and the quotient map is

¢ : (PPHP)° — PO x P™ x .., x P,

d([20, 215 - - 5 2p]) = [20] X [71] X ... X [2p]-

Any stable map u : P! — (P"*?)° of degree d induces a stable map of multi-degree
(d,d,...,d) into the quotient. A rational slice to ¢ is just a general n-plane, so
that the class ( appearing in theorem 4.2 is just ( = H?, where H is the standard
generator of the cohomology ring of a projective space.

Consider the simplest case when ng = n; = 1. Say that we look at rational
curves of degree d in P* and a fortiori of bidegree (d,d) in the quotient, which is
P! x P!. The class ¢ = H in this case, and according to the result,

GWs ! (point x line x ... x line) = GWgi L (.0 (point X ... x point).
) N e’ I\

4d—2 times 4d—1 times

In more down-to-earth terms, the number of rational curves of bidegree (d,d) in
P! x P! passing through 4d — 1 general points equals the number of rational curves
of degree d in P3 passing through a point and another 4d — 2 general lines.

4.1.2. Given two integers m > n > 0, consider the linearized S, (C)-action on
Pl .= P (Hom(C™,C")) given by

S1,(C) x Hom(C™,C") — Hom(C™,C"), (g, A) — gA.

The SI,,(C)-semi-stable points of for this action is the set P(Hom(C™,C™))% of
homomorphisms whose rank is n. The stabilizer of the stable points is Z/nZ
but this does not represent any problem because PSI,(C) acts freely, its action
linearizes in O(n) and the corresponding semi-stable locus is the same as that of
the Si,,(C)-action. The quotient is the Grassmannian Gry,_,(C™) with quotient
map

¢: (PN — Gy (C™),

#([A]) =Ker A, VA e P(Hom(C™,C"))".
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There are morphisms P! — (]P’mn’l)Ss in each degree d > 0, an example being
¢ ...000
0 e ot

D @oo
0 ... 0¢<c¢to

The class induced in the Grassmannian is nd times the class of a line. The closure
of the inverse image of a point in Gr,,_,(C™) is a (n? — 1)-plane in P™"~1; this
can be seen easily looking at the inverse image of (€, 11,...,€n), where e1, ..., e
is the standard basis of C™. Consequently the rational slice { for the quotient
map is just a n(m — n)-plane in the projective space, whose class is H -1,

The pull-back of a Schubert cycle oy in the Grassmannian is ¢*oy = d(\) H* €
ARI(P™7=1)  for some integer d()\). If k = Z?:l |A;| — mnd —n(m —n) + 3, we
obtain the equality

GWE, (cmymalor @ ... @ 0x,)

[Co = C1] —

k
= H d()\J) : GW[?HL'!L717d<H‘>\1|+”2_1 ® . ® H‘Ak‘)
j=1

The question which comes to mind is how can be computed the numbers d(\)? If
{0} C Fy C --- C F,, = C™ is the standard flag of C™, then

oo ={[A] | dim(Ker AN Fyj-x;) 2 j, j=1,....,m—n}
and this is just a degeneration locus of the evaluation homomorphism

€:C" ® Opmn—1(—1) — C".

The degree of this subvariety of P™"~! is given by a determinantal formula which
can be found in [8], theorem 14.3 page 249. In the particular case when oy = oy,
k=1,...,n,is a special Schubert cycle, we need to compute the degree dj, of the
subvariety {[A] | dim(Ker ANF, _py1) > 1} = {[A] | g/, _,,, ([4]) is not injective}
C P™~1. According to [8], theorem 14.4 page 254, dj, is the coefficient of H* in

the development of 1/(1 — H)"~*+1 which is (}).

This example can be generalized: take m > m, > ... > m; > 0 integers and
let
G := Sl (C) x ... X Sl (C),

W := Hom(C™,C™) & Hom(C™»,C™»-1) & ... & Hom(C™2,C"™*).
We consider the linearized G-action on P(W) given by
GxW — W,
(Gps--r91) X (Apy ..o, A1) i= (gpAp, Gp—1Ap—1-Ap, ..., 141 ...  Ap).

The G-semi-stable locus of P(WW) is the set of p-tuples (A,,..., A1) with all the
A;’s surjective, and the stabilizer of these points is Z/m,Z x ... x Z/m4Z.
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Denoting d; := m — m;, the quotient for the action is
¢:P(W) — Fq,... 4, (W),
(Ap,..., A1) — (KerAp7...7Ker(A1 o Ap))7

where Fy, . a,(W) := {0 C Wy, C ... C Wy, C W} is the variety of flags of
dimensions d, < ... < d; in W.

5. Second application: Hamiltonian GW-invariants

The second application concerns the so-called Hamiltonian Gromov—Witten in-
variants which were recently introduced in [6, 14]. The purpose of this and the
next sections is to put into an algebro-geometric perspective the construction per-
formed in these preprints and to show how is that related to the problem studied
in this article, at least in the case of torus actions.

In what follows, K will denote the compact torus (S')" and G = K¢ = (C*)"
will be its complexification. We assume that G acts holomorphically on a projective
variety X and that the action is linearized in a very ample line bundle Ox (1) — X.
Then the maximal compact subgroup K will preserve a symplectic form on X
representing the first Chern class of Ox (1), and we get a Hamiltonian action on
X. The explicit formula for the corresponding moment map can be found in [10],
lemma 2.5 page 24.

In all the rest, C' denotes a smooth projective curve with a Kéhler metric on
it. As usual, EG — BG and EK — BK will stand for the universal G and K-
bundles; they are uniquely determined (up to homotopy) by the condition that are
contractible and G and K act freely on them, so that we may take EG = EK =: E.

The K-equivariant homology of X is defined as HX(X) := H.(F xx X) and
elements of it can be constructed as follows: one starts with a principal K-bundle
P — M over a closed ¥°°-manifold M of real dimension d together with a K-
equivariant map U : P — X. The d-dimensional equivariant homology class
defined by this data is the image of the fundamental class of M under

Hy(M) «— HX(P) — HX(X).

For every K-equivariant 2-homology class B € HI(X;Z) there is a closed Rie-
mann surface ¥ and a principal K-bundle P — ¥ together with a K-equivariant
map U : P — X representing the class B. Moreover, if ¥ is connected and
P, P! — ¥ represent the same class, then P and P’ are isomorphic as K-bundles.
In other words, the choice of an equivariant homology class uniquely determines
the topological type of the principal bundles, over a fized Riemann surface, which
can represent this homology class.

Given a principal K-bundle P — C, the complexified bundle P x i G will be
denoted P¢. The gauge groups of P and P¢ are respectively

GP)={f:C—(SY)"} and %°(P)={f:C— (C")"}.
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A base point (y € C will be fixed once for all. Corresponding to it we will consider
the based gauges 45(P) of P¢ which are the identity at (o. The full gauge group
is then the direct product of (C*)" with the based gauge group.

5.1. A-holomorphic maps

Now we turn to another ingredient used in the definition of the Hamiltonian GW-
invariants.

Definition 5.1.1. (i) Given a connection A € &7/(P) and a K-equivariant map
U : P — X, the operator d4U is defined as
TpP 3w — dUp(w) + f(A(w))U(p)7
where (a), is the tangent vector at x € X determined by a € Lie(K).
(ii) A K-equivariant map U : (P, A) — X is called A-holomorphic if 04U = 0,
where 1
04U := §(dAU + Jx odaU o Jg).

The notation Jo stands for the complex structure induced on the A-horizontal
spaces of P by the complex structure of C.

In more down to earth terms, a K-equivariant map U : (P,A) — X is A-
holomorphic if and only if

AU, (Jv) = JdU,(),

where ¥ and Jv denote respectively the A-horizontal liftings in p € P of the vectors
v,JveTC.

Definition 5.1.2. (Cf. [6] section 3.2.) Denote
Xp = {(U,A) € CR(P,X; B) x /(P) | 94U = 0}

the space of K-equivariant, A-holomorphic smooth maps which represent the class
B € HE(X).

Any K-equivariant map U : P — X induces a map 4 : C' — P Xg X. Then U
is A-holomorphic if and only if % is holomorphic. One has to be careful with the
(integrable) complex structure on P X g X which is induced by the connection A.
For vectors tangent to the fibres of P xx X — C the complex structure agrees
with that of X, while for v € TC' (in a local trivialization P = C x K),

Ipxpx(v) = Ju+E(A(Jv)) — JE(A(v)). (5.1)

In this formula and in all the rest of the paper, for a € Lie(K), £(a) will denote
the vector field on X induced by the infinitesimal K-action.

Clearly, the real gauges act on Xp but it turns out that the complex gauges
act also. The formula for it is given in the lemma below.
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Lemma 5.1.3. The complex gauges 9¢(P) act on Xp as fx (U, A) — (f-U, f-A),
where

(f-U)p) = (»)U(p) (5.2)

and
frA= A4 () +#(f 7S ) e (5.3)

Some explanation is in order: any a € Lie(G) = Lie(K) @ iLie(K) can be
uniquely written a = ag + ia;e, with ae,a;e € Lie(K). The % in the formula
represents the Hodge star operator on C.

Proof. It is clear that formula (5.2) just extends the action of the real gauges by
composition on the right. We shall prove the formula for the action of f on A by
finding a connection A’ on P which makes A’-holomorphic the map U’ := f - U.
For doing computations we use a local trivialization of P, so that P itself may be
assumed trivial (as long as the objects found in the end are globally defined).

In what follows, ¢ denotes a point on C'. By assumption P = C' x K and
U(¢,g7Y) = gu(¢), for some u : C — X. I want to find a connection A’ on P such
that 04U’ = 0. Since U’ is K-equivariant, it is enough to check this condition at
points (¢,1) € P. Because U is A-holomorphic,

dU(Cyl)(J’U — A(JU)) = JdU(C)l)(’U — A(U))
for v € T¢C, or equivalently
duc (Jv) + E(A(J)) o) = Jduc(v) + JE(A))u(o)- (5.4)
Formula (5.2) implies that
AU/ ) (Jo— A'(J0)) = F~1(Q)duc(Jv) — Qe AN g
+f_1(C)§(A/(JU))u(g)
and
JAU{, 1y (v = A'(v)) = f7H(Q)Jduc(v) — F7HO)TE(f ) ()
+f_1(C)J§(A/(U))u(<)-

For U’ to be A’-holomorphic it is necessary and sufficient that the difference of
these two quantities is zero. Imposing this condition, we find

0 = Jdue(v) — due(Jv) — JE(fF1df) (v V) uiey + 5((f_1df)(‘]v))u(€)
FIE(A (0)) ) — E(A (V) 0

)
= S —IEAD g —EA Do + I g
f df)(Jv))u(C) ((f df)( ))u(c)

£((
:g(A A/ JU)) u(@) ( ( ) A( )) u(¢)
+&((f 1df>( )iy~ FEF AN @), o)
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It remains to separate the Lie(K) and iLie(K) components of the last line.

E((FH ) (JIv)) = JE((f1Af)(v))
E((71Ne(Jv) +i(f 1 df)ae(Jv)) — EGE(S 1A )e(v) — (F1df)ae(v))
(1) e(Jv) + (F71df)ae(v) — JE((f 1S )e(v) = (f 1A f)ie(Jv)).

Inserting this into the previous relation, we obtain

0 =¢(A(Jv) = A'(Jv) + (f1df)e(Jv) + (F1df)ine(v))
—JE(A(v) = A'(0) + (Fdf)e(v) — (F1df)ie( ).

For A’ defined by

A=A+ (F1df)e— (f1df)ieo J,

the last equality is satisfied. Notice that in general this is the only possible choice
for A’ since the vectors £ and J¢ are linearly independent in most cases.

Using local normal coordinates on C, it follows that for any 1-form o € QF,
aoJ = —(xq). O

Remark 5.1.4. (i) It follows from formula (5.3) that the ¢§(P)-action on Xp is
free.

(ii) Any f: C — (C*)" is of the form f(¢) = R(¢)®(¢), with R : C' — R” and
¢ :C — (SY)". Formula (5.3) becomes

f-A=A+¢p tdp—ixd(logR). (5.5)

The form ¢~ 'dy is closed, but not necessarily exact; it is exact if and only if
@« : m(C) — (m1(S1))" is the zero homomorphism, or equivalently ¢ = exp(if)
for some 0 : C' — R". However it always defines an integral 1-cohomology class
and conversely, any integral 1-cohomology class can be represented in this form.
Using the Hodge decomposition of 2}, this discussion implies that the pointed
complex gauge equivalence classes of connections in P are parameterized by

H'(C,R")/H'(C,Z"),

where H!(C,R") denotes the space of harmonic R"-valued 1-forms on C. This
quotient is just the 7" power of the familiar Picard variety of C, when H'(C,R")
is given the complex structure defined by the Hodge-star of C.

(iii) In the genus zero case, i.e. C = P!, all gauges admit a globally defined
logarithm. Therefore all connections are gauge equivalent, which is the same saying
that in a given topological principal bundle P — P! there is only one equivalence
class of holomorphic structures.
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5.2. Short digression on the Picard variety

All the statements in this section should be well known, but we are recalling them
in order to fix the notations. As I have already mentioned, the quotient

H'(C,R")/H(C,Z") = (H'(C,R)/H"(C,Z))" = (Pil°C)"

is the 7" power of the Picard variety of C, when H'(C,R") is regarded as a
complex vector space with complex structure given by the Hodge-star of C. It is
a projective torus which parameterizes topologically trivial, holomorphic principal
(C*)"-bundles over C'. We are somewhat sloppy at this point, because the r copies
of the C*’s are labeled in our case, so we can talk about the first copy, the second
one, and so forth. Otherwise, the (C*)"-bundles over C' would be parameterized
by Sym" ((Pic°C)") := (Pic°C)" /&,.

Let

P — (Pic’C) x C

be a universal principal (C*)"-bundle. It has the property that for any point
7 € (Pic’C)", the restriction (P¢)_ — C represents the point 7. We shall be
interested in describing a connection in this bundle which induces its holomorphic
structure.

Let us start with the
Lemma 5.2.1. For any a € H'(C;Z"), there is a unique o, : C — (SY)" such
that 0o (Co) = 1 and ¢, dp, = a. (The point o € C was fized from the beginning).

Proof. Clearly, we may assume that » = 1. The uniqueness part is immediate.
For the existence part, notice that if « is exact, i.e. a = df for 0 : C — R,
then ¢ := exp (i(6 — 6(p))) does the job. Homotopy classes of maps C' — R are
parameterized by Homz(H(C;Z);Z) = H'(C;Z), so for « € H'(C;Z) there exists
¢ : C — S such ¢'(¢o) = 1 and [(¢') " 'dy¢'] = [o] € HY(C;Z). By the discussion
above, there exists g : C' — S such that ¢ (o) = 1 and ¢y 'dpy = a—(¢) g
Now ¢ := pg¢’ will be convenient. O

Remark 5.2.2. The map
H' (C;Z") 5 av— o € € (C, (Sl)T)

is a morphism of groups i.e. Yo¥g = Yats.

Fix once for all a real connection Ag in the smooth (C*)"-bundle P¢ — C i.e.
one coming from a connection in the real (S')"-bundle.
Lemma 5.2.3. (i) On H'(C;R") x C, there is a natural, closed R"-valued 1-form
X which is defined by

X(a,0)(a,v) == A(v) for (a,v) € T(ac)(H(C;R) x O).
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(ii) The (real) connection A := Ao + x defines a holomorphic structure on the
bundle pri, P¢ — H'(C;R") x C.

Proof. The curvature of A is F 4 = pr,Fa, + dy. For a € H'(C;R") and v € TC,
dx((a,0),(0,v)) = a(v), and dx evaluates zero on other pairs of vectors.

It is easy to see that for any 1-form a on C' and any tangent vector v to C,
(*a)(Jv) = a(v). This implies that the connection A defines indeed a holomorphic
structure in pry P¢ because its curvature is a (1,1)-form on H'(C;R") x C. O

Proposition 5.2.4. (i) The group H*(C;Z") acts holomorphically, by real gauges,
on pri, P¢ by
H'(C;Z") x (H'(C;R") x P°) — H'(C;R") x P,
o x (A,p) == (A +a, Ry, p)
(ii) The holomorphic principal bundle
P (Ao) := pre.P°/HY(C;Z7) — (PicC)" x C

is a universal principal (C*)"-bundle which parameterizes holomorphic bundles
over C having fized topological type defined by Aq. It also comes with the connec-
tion induced by A.

Proof. (i) Remark 5.2.2 implies that the formula above is indeed an action. It is also
holomorphic because H*(C; Z") preserves the connection A; indeed, A+a = p, A.
(ii) The statement is a direct consequence of 5.1.4. O

We should say that we have worked with complex principal bundles throughout
this section because the accent was put on their holomorphic structure. But P£(Ap)
is the complexification of a real (S')"-bundle P,(4g) — (Pic’°C)" x C and the
connection A comes from a connection in P.(Ag), because the connection A,
fixed from the beginning, was real and the action on pr{, P¢ was done by real
gauges.

6. Moduli spaces

In this section we shall see that the spaces introduced in [6] and [14] for defining
invariants of Hamiltonian group actions have nice algebraic interpretations.
The authors of [6] introduce (a perturbation of)

Sex(X;B) = {(UA) € Xp | *Fa +moU =0} x (P¥),/4(P) (6.1)
and

Sox(X;B) == Scr(X; B)/G*. (6.2)
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In the definition above m : X — R" is the moment map corresponding to the
(S1)"-action and (P*), is the open set in P* consisting of k points which project
to k distinct points of C'. The group actions are as follows:

f X ((U, A) X (pl7 e ,pk)) = (f . U, f . A) X (Rf(pl)plv ey Rf(pk)pk)

and
(9155 98) X [(U,A) X (pl,...7pk)] = [(U,A) X (Rglph...,ngpk)],

for f € 9(P) and g1,...,9x € K = (S*)". The letter ‘R’ denotes the right action
of G on the principal bundle. The expected dimension of this space is

2D := exp.dimg Sc 1 (X; B) = 2(1 — g)(n — r) + 2¢5(X) - B + 2k, (6.3)

where cX(X) denote the K-equivariant first Chern class of X.
The space Sc (X, A) can also be expressed as the infinite dimensional invariant
quotient as

Scx(X,B) = (xSB x (PC)’;/gC(P)) / G*. (6.4)

The notation X%; C Xp stands for the set of so-called stable pairs and ¢°(P) acts
on Xp as described in lemma 5.1.3.

For the present purposes, it will be more convenient to use this second descrip-
tion. Since ¥°(P) = %5(P) x G and the actions of ¥¢(P) and G* on Xp commute,
Sc.x(X; B) can be constructed in a different way: first take the quotient for the
free 45(P) x G*-action (which is finite dimensional) and after make the invariant
quotient for the remaining G-action.

K-equivariant maps U : P — X and G-equivariant maps U¢ : P° — X will be
used interchangeably. That there is no harm in doing so follows from the fact that
any K-equivariant U defines (in the obvious way) a G-equivariant U¢; conversely,
any such U*¢ defines a corresponding U composing it with the inclusion j : P — P°¢.

Lemma 6.1. (i) The variety X defined by
X = 'P;(Ao) Xaq X = Pr(Ao) XK )(7

carries a natural structure of a complex projective variety. Its complex dimension
is dim X = gr + dim X + 1, where g is the genus of C and r = dim G.

(ii) Any K-equivariant, A-holomorphic map U : P — X, with A € </(P),
which represents an equivariant 2-homology class B € HQK(:X,Z) defines a holo-
morphic map u : C — X which represents a class B € Hg(}(; Z) depending on B

only. If m: X — (PicOQ)T x C' is the natural projection, m,.B = 06 [C]. Moreover,
(X)) - B =ci(T¥") - B, where T¥' denotes the m-relative tangent bundle.

(iii) Consider an A-holomorphic, K -equivariant map U : P — X and g €
G5(P). Then U and gU define the same map C — X.
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Proof. (i) X has a holomorphic structure because P¢(Ay) — (Pic’C)" x C is a
holomorphic bundle, according to lemma 5.2.3. That it is also a projective variety
follows from the fact that the Picard torus is projective.

(ii) Remark 5.1.4 implies that given U : (P, A) — X there is a unique f4 €
9§ (P) (depending on A) such that

fa - A = harmonic part of A — Ay =: h(A — Ay) € HY(C;R").
The composed map

({h(A—Ao)}Xidp)XfAU

P H'(C;R") x PxX —— P.(Ag) x X (6.5)
W
is K-equivariant and therefore defines

:C — Po(Ag) xrg X = X.

Since faU : P — X is fqA-holomorphic, it follows that this map is holomor-
phic. If p. € P (or in P°) denotes a point lying over ( € C, the explicit formula
for u is

¢ [[R(A = Ag),pel, (£aU) (o)), (6.6)

where the square brackets denote obvious equivalence classes.
Suppose that P = p*FE for a map p : C — BK. Then from the commutative
diagram

TE . x = (p,idx)"(E xx Tx) — E xx Tx

7l l (p,idx) l

C “ PxrX E xx X.

we can see that the homology class B depends only on the K-equivariant class B
and also that ¢f(X) - B = c1(T¥") - B.

(iii) Consider now U : P — X and g € 45(P), g = R- ¢ with ¢ : C — (S')"
and R: C — R". According to (5.5), gA = A+ p~tdy — i * d(log R), so

h(gA — Ag) = h(A — Ag) + h(p~'dy).

Notice that a, := h(p~dyp) is actually an integral R"-valued harmonic form and
according to lemma 5.2.1 there is a unique 9, € % (P) such that ¢;1d¢¢ =a,. 1
claim that fya = ¥, fag™', i.e. that (1, fag™1)(gA) = Ao+ h(gA — Ap). Indeed,

(Vo fag ) (gA) = Yp(faA) = V(Ao + h(A — Ap))
= AO + h(A — Ao) + ’L/}L;ld’(/hp
= Ag+ h(A— Ap) + a, = Ag + h(gA — Ag).

We are going to check now that U and gU induce the same (holomorphic) map
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C — X. Using formula (6.6), gU reads

¢ [[M(A = Ao) + ap,pcl, g (p¢) - (£aU)(p¢)]
= [[n(A = Ao) + ap, Ry, pcl, (faU)(pc)] (6.7)
= [[n(A = Ao), ], (faU)(p¢)]-
This finishes the proof of the lemma. O

The next proposition gives the algebro-geometric interpretation of the space
(6.2).

Proposition 6.2. There is a one-to-one map
c c 1:1 > D
(X5 x (P9))/(95(P) x GF) " M, (X; B),

where Mc (X; B) denotes the space of stable maps (Ciz) — X with k marked
points x € (C*), and representing the 2-homology class B. As usual, (C*), denotes
the complement in C* of the diagonals.

Proof. Consider an A-holomorphic, K-equivariant map U : P — X together with
k marked points p € (PC)IZ and let z := 7 (p) € (C*),. Lemma 6.1 says that
this data induces a morphism C' — X and moreover, it does not depend on the
@5 (P)-orbit of (U, A). So we get a map
F: (X5 x (P9))/9(P) — Mci(X; B).
This map is clearly G*-invariant and therefore descends to the quotient
F:(Xpx (P)F)/(4(P) x GF) — Mc,.(X; B).

Because the composition 7@ = {7} x id¢, for some 7 € (Pic°C)", the map 4 is in
fact a representative for the corresponding stable map (see definition _11)

The map F is clearly surjective: given a point (@,z) € M¢c (X; B), consider
the diagram

@ (Pr(Ag) x X) = P—T=Po(Ag) x X 25 x

|,

C X

The composed map U := pry o U will be a K-equivariant, A-holomorphic map,
for A :=u*A (see 5.2.3 for the definition of A). As marked points in P, one may
take any p lying over z.

We have to prove that F is injective. Consider U : (P, A,p) — X and U’ :
(P,A’,p') — X which induce the same morphism @ : C — X. It follows from
definition (6.5) that necessarily h(faA — Ag) = h(far A’ — Ag) mod H'(C;Z"), so
that h(faA — farA’) = 0 mod H'(C;Z"). Remark 5.1.4 implies that f4 A and



Vol. 77 (2002) GW invariants and invariant quotients 183

farA” are in the same 4§ (P)-orbit and consequently A and A’ are also in the same
@5 (P)-orbit. Since @ is gauge invariant, we may assume that A = A’ and even
that A — A is a harmonic form.

The problem is reduced to the following: two maps U : (P, A,p) — X and
U': (P,A,p') — X which define the same (@,Z) must be equal. Formula (6.6)
says that

[[A — Ao, pc]. Ulpe), [pl] = [[A — Ao, pc], U'(po), [P'] Vo € P.
A moment’s thought shows that this imply U = U’ and [p] = [p']. |

Remark 6.3. An advantage of working with Mc (X; B) is that it has a natural
quasi-projective scheme structure. This was proved in lemma 3.1, where is also
described the construction of its compactification M ¢ 1 (X; B) in terms of stable
maps. Certainly, working within this algebraic frame has its own disadvantages:
the space of stable maps may be badly behaved or it may have wrong dimension;
an instance of a very unpleasant situation is when M¢ 1 (X; B) C Mc,(X; B) is
not dense.

When M ¢ ,(X; B) has larger dimension than the expected one, it seems pos-
sible to introduce a virtual class on M ¢ (X; B) using obstruction theory relative
tom : X — (Pic°C)" x C. This should correspond to the limit of the funda-
mental cycles of the moduli spaces of pseudo-holomorphic curves to (X,J) :=
Pr(Ao) Xk (X, J), with J a K-invariant, generic almost complex structure on X.
Unfortunately, for the moment, I can not make this statement more precise.

There is a natural G-action on X:
g x [[A,p],z] := [[A,p],9z] for [[A,p],z] € X =PI(Ao) xa¢ X

which is well-defined precisely because G is commutative. The G-action can be
linearized in the line bundle

L= ,Pﬁ(A()) Xaq OX(l) — X,
which is m-ample. For ¢ — (Pic’C)" x C sufficiently ample line bundle,
L=n""®L —X

is ample and the G-action linearizes again. In is rather clear that the set of G-
semi-stable points of X for this action is X% = P¢(A4g) xg X*. In particular, if
G acts freely on X®°, it will does the same on X®. The invariant quotient is, in
any case,

X/)/G = (Pi°C)" x C x X where X :=X//G.

The next lemma is useful to “visualize” better Mc ,(X; B).
Lemma 6.4. Assume that G acts freely on X* and let ¢ : X% — X be the

quotient map. Consider 4 € Mc i, (X; B) with Image (i) C PE(Ap), X X5, Then
(po )" X — C represents the point T € (Pic’C)".
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Proof. Notice that in the diagram

Pe(Ag), x X X

| |

C—a>7)TC(A0)T Xa X8 —¢>X7

Pi(Ag), x X = ¢*X*. Indeed, for ([p,m],x’) € ¢*X® there is a unique
p’ such that [p',2'] = [p,x], so we may identify ([p, m],x’) = (p/,2"). Conse-
quently, (¢pou)"X* = u*(P:(Ay), x X*) and we obtain a G-equivariant map
(pou)"X* — PE(Ap), which covers the identity of C. This one must be an
isomorphism. O

We should recall that for obtaining the moduli space Sc.x(X; B) we still need to
divide out the remaining G-action on M ¢ ,(X; B). For comparing the two points
of view, the real-analytic and the algebraic one, we shall use the results obtained

in section 3: the moment map corresponding to the G-action on X is the function
m defined by

'Pf(Ao) XX&X—M>]RT

——

X

It follows from remark 3.6 that the limit moment map on M¢ 1 (X; B) is
Ur— / mou € R"
c
and the invariant quotient is constructed dividing the zero level set by K = (S*)".

On the other hand, the zero level {*F4 +moU = 0} (modulo gauge) appearing
in the definition 6.1 can be written also as

Ur—>/mOU:f/FA:§€RT,
c c

where § represents the multi-degree of the (S')"-bundle P, which is a topologi-
cal invariant. We deduce that S x(X; B) defined by (6.2) and M¢ 1 (X; B)//G
should be birational because both of them are Marsden—Weinstein quotients of
Me i, (X; B). However, unless M ¢ 1 (X; B) is irreducible, this issue can be quite
tricky.

In the particular case when ¢ = 0, that is we consider bundles with multi-degree
(0,...,0), the real-analytic and the algebro-geometric constructions coincide.
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7. Hamiltonian invariants

Before stating the main result of this section, we need some notations. We define
the evaluation maps

Evy : X x (PO)Y/9¢(P) — XF,

(7.1)
(U, A), (1, o)) — (U(p1),...,U(pr))
and
EVy : X5 x (P9)Y/9¢(P) — XF, 2
(U, A), (1, p)] — (U(p1),...,U(pk))
and
Vi : Xp X (P7)/495(P) — (Pf(Ao) x X)", (73)

[(Ua A)vﬂ] — ([h(A - AO)’ RfA]_)L U(E))

Computation (6.7) shows that the last evaluation is well-defined. All of them are
G*-equivariant and the last map induces on Mc ;(X; B) the usual evaluation

evp : Mox(X; B) = X x (P)"/4¢(P) x GF — X*. (7.4)

The key for understanding the relationship between the analytic point of view and
the algebraic one developed in the present paper is the diagram

X35 % (P°), /%5 (P) C Xpx (P),/45(P)
quot out the free quot out the free
G-action (for k > 1) GF_action

Xy x (PO)kj9e(P) Xp x (P)s/95(P) x G*

l quot out the (not neces-

; roposition 6.2
sarily free) G*-action prop

Sci(X;B) «-» Mcy(X; B) /G e Mcx(X; B).
(7.5)
Since G/K(=RYL,) is contractible, K and G-equivariant cohomologies of X coin-
cide; we shall prefer G-equivariant classes. Recall that 2D denotes the expected
dimension of S¢ (X; B) and its formula is given by (6.3).
Definition 7.1. The Hamiltonian invariant introduced in [6, 14] is defined in

the following way: consider an equivariant cohomology class o € HE(X )®]C with

dega = 2D. Under the assumption that G* acts freely on X% x (Pc)ls/gc(P),
the pull-back defines a cohomology class on Sc x(X; B) denoted the same. The
invariant is

BGE (0) = / (Bve)"a. (7.6)

Scyk(X;B)



186 M. Halic CMH

I have to say that ® is defined this way only when S¢ ;(X; B) has the correct
dimension. For this reason the authors in [6, 14] work with perturbations of
Sc.x(X; B). In algebraic context, one should integrate over a m-relative virtual
cycle, as mentioned in remark 6.3.

It is conjectured in [6] that for special choices of a and B the invariant ® should
coincide with a Gromov—Witten invariant of X = X //G. More precisely,

Conjecture. Take o € H’C*;(X)®k and B € Hy(X;Z), with X := X//G and let
& € H*(X*) and B € H§ (X;Z) be respectively the classes defined by

X(LEXGXSS%EXGX.
Then ®XF () = GWEE (a).

Our goal is to prove this conjecture under the same transversality assumptions
as in theorem 4.2, when the invariant homology class B € H$ (X;Z) is induced
from X®%; the reason for this restriction was discussed in the end of the last section.
So we will deal with topologically trivial (C*)"-bundles over a smooth curve C.
For P¢ — (Pic’C)" x C the universal (C*)"-bundle (trivialized at a point ¢y € C),
we define X := P¢ x oy X.

Theorem 7.2. Let the torus G = (C*)" act on the irreducible projective variety X,
and consider a linearization of this action in the very ample line bundle Ox (1) —
X. Denote B € Hy(X;Z) a class which can be represented by a morphism C —
X5, where C is a smooth projective curve with Aut(C) = {id¢}, and let B €
HQ(X Z) be the class induced by the projection ¢ : X — X%/G = X. Suppose
that

(al) G acts freely on the G-semi-stable locus of X, so that X — X isa
principal G-bundle and denote B € Hy(X;7Z) the class induced as in lemma 6.1;

(a2) Mc x(X; B) is generically smooth and has the expected dimension;

(a3) every irreducible component of MC,I@(X§ B) contains a point represented
by a morphism C' — X% = P¢ x X (coyr X5

(ad) Mcp(X;B) C qu(X,B) is dense.
Then for any o € Hé;(X)@k,

Cik (A C.k
GWXE}(C“) = oy p(a),
where & € H*(X)®k is the class induced by «.

Proof. 1 start by explaining the guiding idea: we have learned in section 4 that
we should transfer the integrals on M ¢, 1(X; B) used for defining Gromov-Witten
invariants of X to integrals on M ¢ (X; B)//G because X //G = (chOC) xCxX.
All the evaluation maps involved for making these computations live on the right-
hand-side of (7.5). On the other hand, the invariant ® is defined using equivariant
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cohomology classes which are pulled-back to Sc x(X; B) by maps which live on
the left-hand-side of (7.5). So, loosely speaking, what we have to do is to pass
from the left to the right in (7.5).

For making this passage, we need to understand the relationship between the
various group actions and evaluation maps which appear in the context. On Xp X
(Pc)ﬁ/gg(P) there are two commuting actions. First, G C 4°(P) acts by constant
complex gauges

9 [(U, A),p] = [(9U, A), Rgp].

The map EVy is G-invariant for this action, while EV}, is G-equivariant for the
diagonal right action of G on the PS-factor of (PS x X )k
Secondly, G* acts on Xp x (PC)IOC/%OC(P) with quotient Mc (X; B):

(g1,---,0K) X [(U,A),(pl,...,pk)] = [(U,A),(Rglpl,...,ngpk)].

The evaluation map EV}, is G*-equivariant for the G-action on P¢ x X on both
terms.

Convention. In what follows, the symbol “~” will denote homotopy equivalence
and the letter “y” obvious inclusions. For understanding better the forthcom-
ing calculations, we should keep in mind that for integration purposes homotopy
equivalent spaces are equal.

Scr(X;B) ~ E* x (xSB x (PC)’;/%C(P)>
~ E* X (E Xa (%SB x (PC)’;/gg(P))) (7.7)
= E xg (Ek X b (3553 x (PC)’Z/%C(P))) .

The map
BV Xp x (PO)F/95(P) — (P x X)*

being G*-equivariant and G-invariant, induces
E xg (Ek X b (%B x (P)" /%(P))) > B xg Mox(X; B) (7.8)
E -
E x¢g (E’c Xk (P x X)k) — = > FE xg XF.
On the other hand,
E xg (Ek X Gk (Pfo)k) — > Exg Xk (7.9)

le

E xg (E* xgr X*) =BG x (EF xgr X*).
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The reason for the last equality is that G acts on P only and therefore the G-action
on E¥ x ox X* is trivial. The class a we start with lives in H, (X)®k; pulling it back
using ¢, we get the class @ € H,(X*). Relation (7.7) implies that EVy = €oEVy and
we deduce from diagrams (7.8) and (7.9) that EvVia = evia € HE(Mey(X; B)).

The invariant ® can therefore be defined as

d(a) = / Irss €VL A, (7.10)
Mo (X;B) )G

where the relevant maps fit in the diagram

ExgMcr(X;B) —2—  ExgX* (7.11)
ve Joxky
E xg Mc(X; B)™ E x¢ (XF)®
Sex(X;B) = Men(X:B)JG s XFJG.

From the diagram

E xg (Ek war (PC x Xss)k)

lN -

E x¢ (Xss)k -~ . (Xss)k/G . Xk

we see that j%..a = J%..€ )k = ¢"&, where & is by definition the cohomology
class on X* determined by a.

The assumption (a3) says that the subset Mc x(X;B)° C Mo (X;B)* of
morphisms with image contained in X is dense. We deduce, going the other way
round in (7.11), that

d(a) = /7 - (ev)'qa. (7.12)
Mc x(X;B) )G
At this point we have finally moved from the left-hand-side to the right-hand-side
of (7.5) as we wished. Notice that since the maps involved in the computations
are rational, the pull-backs are defined as in 4.1.

The composition of morphisms @ : C — X representing the class B with the

projection X — (Pic’C)" x C is of the form {7} x id¢ because B induces the class
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0@ [C]. Consequently, a map @ : C — X* defines a map C' — C x X which is the
identity on the first component.

Lemma 7.3. The map

T: Mc)k(X,B)//G - Mc,k(c x X; [C] + B)

is birational.

Proof. Assumption (a4) implies that T is dominant if every morphism 4 : C' — X
representing B is in its image. From the diagram

A XSS C x Xss > X8

b 4k

ide xd . "
C—CxX—X

we deduce that the pull-back 4*X* — (' is a topologically trivial, holomorphic

principal bundle (this follows from the assumption that B is induced by a class

B € Hy(X™;7Z)); it is therefore isomorphic to P, := Pf|{;}xc for a certain 7 €

(Pic°C)". This data induces the map @ : C' — P, xg X% C P¢ xg X = X which

represents the class B and also T'(u) = .

Now let us prove that T is generically injective. Using assumption (a3), we may
restrict ourselves to the (dense) open subset Mc (X ; B)® representing morphisms
whose image is contained in X®. Let us assume that

u
C % Poxg XSS\ -
CxX

= /¢
C — P xg X

are such that ¢ o = ¢ o @'. Then (¢ o) (X* — X) = (po@)*(X*® — X) and

lemma 6.4 implies that 7 = 7. Then C =% P, x¢ X* induce the same map to
X and consequently for any ¢ € C, @' (¢) = g(¢)u(¢) for a unique g(¢) € G. The
morphism C' — G must be constant, so &' = gu and they define the same point in
Mec(X;B)//G. O

Since C' has trivial automorphism group,
qu(c X X; [C] + B) <————1—:—1———-> Hc’k(f(; B)
Finally, from the diagram

eV

Mox(X; B)JJG -5 X ))G -5 X

11 ‘
4

A C’UX A
MCk(C x X; [C] —‘rB)—k) (C x X

)
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we conclude that the invariant ® does coincide with a Gromov—Witten invariant
of X. Indeed,

C,k? Sk koA X * A
<I>X’B(o<) = /7 . engta= /7 A A(eka) pryd
Mcyk(X;B)//G Mc,k(CXX;[C]-‘rB)
= (evp) & = GWSE ().
Mcx(X;B) X.B

I would like to conclude with the remark

Why should the Hamiltonian invariants be interesting? 1 have mentioned in the
introduction that the starting point of this study was the problem of comparing
the GW-invariants of a quotient with the invariants of the variety we start with.
Simple dimensional counting shows that —except in genus zero— the question is not
well-posed in this form: the dimension of the space of morphisms from curves to
a quotient variety is larger than the dimension of the space of morphisms into the
starting variety. The difference between these dimensions is exactly the dimension
of the moduli space of principal G-bundles over a curve; this can be explained
noticing that, for morphisms v : C' — X which represent an a priori given homol-
ogy class, the holomorphic type of the the pull-backs v*X* — C changes within
a fixed topological type. In this way, the space of principal bundles over curves
with fixed topological type naturally enters into the scene.

Equality (7.12) brings our attention to another aspect of the problem: GW-
invariants of X can be computed (under suitable transversality conditions) in the
following way

Wt = [ (g0 év)"a,

Mc,x(X;B) /)G
for q : (Xss)k/G — X*_ The interesting part is that there is a natural projection
7: Mox(X;B))JG — (Pic’C)",
so that one can further write
Wit = [ e
, (PicoC)"
and now the integration takes place on the Picard torus of the curve. One may

hope that enumerative invariants of suitably chosen X’s can be expressed in terms
of interesting intersection numbers of the Picard variety.
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