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c© 2002 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

The Huber theorem for non-compact
conformally flat manifolds

Gilles Carron and Marc Herzlich

Abstract. It was proved in 1957 by Huber that any complete surface with integrable Gauss
curvature is conformally equivalent to a compact surface with a finite number of points removed.
Counterexamples show that the curvature assumption must necessarily be strengthened in order
to get an analogous conclusion in higher dimensions. We show in this paper that any non
compact Riemannian manifold with finite Ln/2-norm of the Ricci curvature satisfies Huber-type
conclusions if either it is a conformal domain with volume growth controlled from above in a
compact Riemannian manifold or if it is conformally flat of dimension 4 and a natural Sobolev
inequality together with a mild scalar curvature decay assumption hold. We also get partial
results in other dimensions.
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1. Introduction

The main theme of this paper is the study of the geometry of non-compact man-
ifolds with asymptotically zero Ricci curvature. In other words, we will consider
throughout this paper complete Riemannian manifolds (M, g) satisfying∫

M

|Ricg|n
2 < ∞. (1.1)

Our goal is to investigate the consequences of assumption (1.1) on the asymptotic
behaviour of the metric. We are mainly interested in possible generalizations in
higher dimensions of the well-known and beautiful 1957’s result by Huber [18]:
every complete surface with integrable negative part of the Gauss curvature has
integrable Gauss curvature and is conformally equivalent to a compact surface
with a finite number of points removed. It is well known that any naive gener-
alization of this result in higher dimensions is wrong. For instance, examples of
manifolds with asymptotically non-negative curvature (in an integral sense) and
infinite homotopy type (i.e. they are not equivalent to the interior of a compact
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manifold with boundary) are known [26]. Moreover, there exist as well complete
Riemannian manifolds with finite volume, bounded curvature and infinite topo-
logical type. On the other hand, Abresch and later Kasue showed that some
topological information may be available as soon as the curvature Kg satisfies∫

R+
max{|Kg(x)| , r(x) > ρ} ρ dρ < ∞

where r is the distance to a fixed point (see [1, 20]). To obtain precise geometrical
information, it is usually necessary to add an extra volume or diameter growth
assumption (see for example [25, 31]). And the asymptotic geometry is known to
be simple only when the whole curvature tensor decays at infinity in a very strong
sense, e.g. if Kg = O(r−2−ε) where ε > 0 [4, 15].

In order to obtain conformal information on the behaviour at infinity, our
assumption (1.1) of finiteness of the Ln/2-norm of Ricci curvature must then be
strengthened a bit in order to stand in the middle of the two extremes. In this
paper, we shall study two important special cases, each considered with natural
extra assumptions.

In the first setting, the manifold is an arbitrary domain already embedded in
a compact manifold and the metric is conformal to the “compact” metric. As
expected, a Huber-type result follows if one adds control from above on the volume
growth. This is the contents of our first main result (Theorem 2.1). As this case is
rather special, it turns out that control on the full Ricci curvature is not necessary
and some results are already available when one has only finiteness of the Ln/2-
norm of the scalar curvature (see Theorem 2.1 for details). Our result may be
compared with a classical result by K. Uhlenbeck: any Hermitian vector bundle
on the euclidean ball Bn − {0} whose curvature is in Ln/2 extends W 1,n on the
whole ball [27].

In the second, we release the assumption on topology (no compact manifold
involved) and treat the case of conformally flat manifolds, which may be seen as
the closest analogues of surfaces in higher dimensions. Our manifolds will satisfy
finiteness of the Ln/2-norm of Ricci curvature (1.1), together with an adequate
Sobolev inequality:

µn(M, g)
(∫

M

u
2n

n−2

)1− 2
n

6
∫

M

|du|2, ∀u ∈ C∞0 (M), (1.2)

which is the extra hypothesis we choose for this case. For technical reasons, we
also have to add some mild assumption on scalar curvature:

Scalg ∈ L
n
2 (1−δ) ∩ L

n
2 (1+δ), for some δ ∈]0, 1[.

We notice that the Sobolev assumption is automatically satisfied in the case of
manifolds with positive Yamabe invariant together with finite Ln/2-norm (1.1)
of Ricci curvature. Things run smooth in dimension 4 and we prove our second
main result (Theorem 5.7): under these assumptions, the manifold is conformally
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equivalent to a compact orbifold with singularities (in finite number) removed.
As elementary examples show, it is impossible to rule out the orbifold-type sin-
gularities in dimension n > 3 as they may give rise, by sending conformally the
singularity to infinity, to manifolds and metrics satisfying our conditions. In other
dimensions, we are forced to strengthen the condition and to assume quadratic
decay on Ricci curvature to get a result valid in any dimension, and this is our
third main result (Theorem 5.9).

Our results should be compared with recent and independent results due to
S. Y. A. Chang, J. Qing and P. Yang [8]. They obtained a similar compactifi-
cation theorem for conformal complete metrics on domains in the round sphere
S4. However, their assumptions are different from ours. Their results use only
finiteness of the Gauss–Bonnet–Chern integral rather than L2-integrability of the
Ricci curvature but they need to impose uniformly positive scalar curvature (which
would be in our context a rather unnatural restriction). It should also be noticed
that our results apply to different situations where no assumption on topology is
made.

We conjecture that our result in the conformally flat case can be obtained with-
out the extra condition on scalar curvature. In the same vein, it would be inter-
esting to know whether the Sobolev inequality assumption is necessary. Whereas
such an assumption is certainly needed (see Remark 5.8), it is possible that only
a weaker form of it is enough to obtain a Huber-type conclusion. It follows how-
ever from section 2 that each manifold showing Huber’s behaviour at infinity does
satisfy the Sobolev inequality. Hence, it is not unreasonable to impose it in our
assumptions. It would of course also be highly desirable to have an answer for non
conformally flat manifolds. We intend to consider all these questions in a future
work.

The structure of the paper is as follows.

In section 2, we consider the simple case where the manifold is a domain in
a compact manifold and the complete metric is already conformal to a smooth
metric defined on the compact manifold (but no conformally flat assumption).
The proofs rely on elementary potential theory together with analysis at infinity
due to the first author [8].

In section 3, we present our first technical result. It shows that under the extra
assumption on the behaviour of the scalar curvature, every complete manifold
satisfying assumption (1.1) on Ricci can be endowed with another, conformally
related and quasi-isometric, metric with vanishing scalar curvature around infinity,
regardless of inner topology or geometry.

Section 4 is in a sense a digression from our main goal, but we found useful
to include it. Here we show that any complete Riemannian manifold that already
satisfies all our assumptions and the conclusion of Huber’s theorem is necessarily
conformally quasi-isometric to an asymptotically locally euclidean (ALE) mani-
fold. This remark provides some information on the geometry near the punctures
of the metrics studied in section 1: they are necessarily obtained by a stereographic
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conformal blow-up from the “compact” metric – in the terminology of [13, 22]. It
also aims at justifying our strategy in the next section, which reduces Huber’s
problem to finding ALE structures in the conformal class of the original metric.

Section 5 achieves the main goal of the paper. Building on work of S. Bando,
A. Kasue and H. Nakajima [4], our second technical result proves that any complete
conformally flat manifold, satisfying both (1.1) on Ricci and Sobolev and which is
scalar flat around infinity, is asymptotically locally euclidean. It remains to apply
our previous analysis: in dimension 4, the conformal metric found in section 3 is
shown to retain condition (1.1) on its Ricci curvature. Hence it is asymptotically
locally euclidean. In other dimensions, it is unclear whether this occurs, and we
need to impose quadratic decay of the Ricci curvature. In both cases, we end with
a conformally flat asymptotically locally euclidean manifold and the conclusion is
ensured by previous work of the second author [17]. Moreover, the proof shows
that everything in this section works equally well if our manifold is assumed to be
conformally flat in a neighbourhood of infinity only.

2. Domains in a compact manifold

We consider here the geometry of domains contained in a compact manifold. The
purpose of this section is to show that any domain Ω endowed with a complete
metric which is conformally compact (in the sense that another conformally related
metric extends smoothly over the boundary), having moreover asymptotically zero
curvature in an integral sense and controlled volume growth, satisfies the conclu-
sions of Huber’s theorem: it is a compact manifold minus a finite set of points.
More precisely, we prove the following:

Theorem 2.1. Let Ω be a domain of (M, g0), a compact Riemannian manifold of
dimension n > 2. Assume Ω is endowed with a complete Riemannian metric g
which is conformal to g0. Suppose moreover that

– either the Ricci tensor of g is in L
n
2 (Ω, g) and volg B(x0, r) = o(rn logn−1 r)

for some point x0 in Ω;
– or the positive part Scal+ of the scalar curvature of g is in L

n
2 (Ω, g) and, for

some point x0 in Ω, volg B(x0, r) = O(rn).
Then there is a finite set {p1, . . . , pk} ⊂ M such that

Ω = M − {p1, . . . , pk}.

The proof of the Theorem is divided into two steps: in the first one, we show
that the Hausdorff dimension of M −Ω is zero; in the second, we show that M −Ω
has a finite number of connected components. The first step relies on the following:

Proposition 2.2. Let Ω be a domain in (M, g0), a compact Riemannian manifold
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of dimension n. Assume that Ω is endowed with a complete Riemannian metric
g which is conformal to g0. Assume that there is a point x0 ∈ Ω such that the
geodesic ball (for the metric g) with center x0 satisfies

volgB(x0, r) = o(rn logn−1 r), for r →∞,

then the n-capacity of M−Ω is zero, and the Hausdorff dimension of M−Ω = ∂Ω
is zero.

The proof of this proposition is reminiscent of the proof of Proposition 2.5 in
Schoen and Yau’s paper [24].

Proof of Proposition 2.2. We are going to prove that there is a sequence of bounded
Lipschitz functions with compact support in Ω, denoted (fk)k, such that

i) lim
k→∞

∫
Ω

|dfk|n = 0,

ii) lim
k→∞

fk = 1, uniformly on the compact sets of Ω

where the Ln-norm of the gradient is taken either with respect to the metric g0

of M or with respect to the metric g, as this integral is conformally invariant.
We note moreover that the Ln(M, g0)-limit of this sequence is the characteristic
function of Ω. We choose a function fk(x) = uk(r), where r is the distance function
(for the metric g) to some fixed point x0, and uk is defined as follows


uk(r) = 1 if r 6

√
k,

uk(r) = 0 if r > k,

uk(r) = log(k/r)/ log(
√

k) if
√

k 6 r 6 k.

As a result we have∫
Ω

|dfk|ng (x) d volg(x) =
∫ k

√
k

1
(log

√
k)n

1
rn

dV (r),

where V (r) is the function V (r) = volB(x0, r); now integration by parts leads to
∫

Ω

|dfk|ng (x) d volg(x) =
V (k)

kn(log
√

k)n
− V (

√
k)

(
√

k)n(log
√

k)n
+ n

∫ k

√
k

V (r)
(log

√
k)n

dr

rn+1
.

At the end we arrive to∫
Ω

|dfk|ng (x) d volg(x) = o(1) if k −→∞.

This proves that the n-capacity of M −Ω is zero, so that the Hausdorff dimension
of ∂Ω = M − Ω is zero. ¤
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The second step relies on the following Proposition

Proposition 2.3. Let Ω be a domain in (M, g0), a compact Riemannian manifold
of dimension n. Assume that Ω is endowed with a complete Riemannian manifold
g is conformal to g0. Assume that the positive part of scalar curvature of (Ω, g)
satisfies that ∫

Ω

Scal
n
2
+ (x) d volg(x) < ∞

then for a µ > 0, (Ω, g) satisfies the Sobolev inequality:

µ

(∫
Ω

u
2n

n−2

)1−2/n

6
∫

Ω

|du|2, ∀u ∈ C∞0 (Ω). (2.1)

Proof. According to [8, Proposition 2.5], we know that it is enough to show that
the Sobolev inequality holds outside some compact set of Ω, i.e. that we have,
outside a compact K, the Sobolev inequality

C

(∫
Ω−K

u
2n

n−2

)1−2/n

6
∫

Ω−K

|du|2, ∀u ∈ C∞0 (Ω−K).

But our assumption on the scalar curvature of g implies it is enough to show that
outside a compact K of Ω we have for any u in C∞0 (Ω−K),

C

(∫
Ω−K

u
2n

n−2 d volg

)1−2/n

6
∫

Ω−K

(
|du|2 +

n− 2
4(n− 1)

Scalgu2

)
d volg, (2.2)

As the matter of fact, choose another compact set K ′ containing K such that(∫
Ω−K′

Scaln/2
+

)2/n

6 n− 1
8(n− 2)

,

then with (2.2) and the help of Hölder inequality, we have the Sobolev inequality
on Ω − K ′ for the constant µ = C/2. Now we have to prove that the Yamabe
constant of (Ω − K, g) is positive. Here the Yamabe invariant of (Ω − K, g) is
defined by

Y (Ω−K, g) = inf
u∈C∞0 (Ω−K)

{∫
Ω−K

|du|2 +
n− 2

4(n− 1)
Scalgu2, ‖u‖L2n/(n−2) = 1

}
.

The Yamabe invariant is a conformal invariant, hence it is enough to find a compact
set in Ω such that Y (Ω−K, g0) > 0. Let L be the conformal Laplacian of g0:

L = ∆g0 +
n− 2

4(n− 1)
Scalg0 .

For any open set O of M of small volume, the first eigenvalue of the Laplace
operator of g0 on O for the Dirichlet boundary condition is bounded from below
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by C(volg0O)−2/n where C is a geometrical constant of (M, g0). Thus, if we choose
a compact K such that the volume of Ω −K is small enough, the operator L is
coercive on W 1,2

0 (Ω−K), that is to say there is a constant λ > 0 such that

λ‖u‖2L2 6
∫

Ω−K

u Lu d volg0 , ∀u ∈ C∞0 (Ω−K).

This implies that the topology of the Hilbert space W 1,2
0 (Ω −K) is given by the

quadratic form

u 7→
∫

Ω−K

u Lu d volg0 =
∫

Ω−K

(
|du|2 +

n− 2
4(n− 1)

Scalg0u
2d volg0

)
.

Since Ω−K is relatively compact in M , the Sobolev space W 1,2
0 (Ω−K) is embedded

in L2n/(n−2)(Ω − K), and this embedding implies that the Yamabe constant of
(Ω−K, g0) is positive. ¤

Remark 2.4. It should be noticed that the last two propositions imply that if a
domain of a compact Riemannian manifold is endowed with a conformal metric
with non-positive scalar curvature then the Sobolev inequality 2.1 holds; in partic-
ular the volume of geodesic balls satisfies a uniform euclidean-type lower bound.
This has the consequence that, for example, the Riemannian product R × Tn−1

cannot be conformally embedded in the flat torus Tn.

Proof of Theorem 2.1. With either set of assumptions of the Theorem, Proposition
2.2 then tells us that the Hausdorff dimension of ∂Ω = M − Ω is zero. Now,
our assumption on the scalar curvature implies that we can apply the second
Proposition: (Ω, g) satisfies the Sobolev inequality

µ

(∫
Ω

u
2n

n−2

)1−2/n

6
∫

Ω

|du|2, ∀u ∈ C∞0 (Ω).

(i) We now turn to the case where Scal+ is in L
n
2 . Here [7, Proposition 2.4]

shows that the Sobolev inequality implies a uniform lower bound on the volume
of geodesic balls of (Ω, g)

volg B(x, r) >
( µ

2n+2

)n/2

rn , ∀x ∈ Ω, r > 0. (2.3)

This lower bound and the assumption on volume growth imply that (Ω, g) has a
finite number of ends. As a matter of fact, let x0 be a fixed point in Ω and let
R > 0. In each unbounded connected component C of Ω − B(x0, R) we can find
a point xC at distance 2R from x0. The geodesic ball of radius R around xC is
in C and in the ball B(x0, 3R). Moreover, all these balls are disjoint. Thus the
sum of the volumes of these geodesic balls is bounded from below by

(
µ

2n+2

)n/2
Rn

times the number of unbounded connected components, whereas this sum is also
bounded from above by the volume of B(x0, 3R), hence is bounded by C ′(x0)Rn.
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These two inequalities show that the number of unbounded connected components
of Ω − B(x0, R) is no more than C ′(x0)

(
µ

2n+2

)−n/2. Since this bound is uniform
with respect to R, (Ω, g) has a finite number of ends.

(ii) In case Ricg is in L
n
2 , one does not need any volume control to ensure finiteness

of the number of ends since one may apply [8]: the number of ends is bounded by
the dimension of the first reduced L2-cohomology group, which is finite under our
curvature assumption.

Considering now both cases together again, we get that ∂Ω has a finite number
of connected components. Dimension theory [19] tells us that a connected set
which is not a point has topological dimension greater than 1. Since Hausdorff
dimension is always greater than topological dimension, ∂Ω is a finite set. ¤

For future reference, we note that a basic consequence of our arguments is:

Lemma 2.5. Let Ω be a domain of a compact Riemannian manifold (M, g0) of
dimension n > 2. Assume Ω is endowed with a complete Riemannian metric g
which is conformal to g0, moreover assume that the volume of geodesic balls of
(M, g) is bounded from below uniformly:

∃C > 0, ∀x ∈ M, ∀r ≥ 1, volgB(x, r) > Crn.

and that for a point x0 in (M, g) we have

volgB(x0, r) 6 C ′rn,∀r > 1,

then there is a finite set {p1, . . . , pk} ⊂ M such that

Ω = M − {p1, . . . , pk}.

Theorem 2.1 has an interesting application in the case of the sphere:

Corollary 2.6. Let Ω be a domain of the sphere (Sn, g0) of dimension n > 2,
endowed with a complete Riemannian metric g conformal to g0 and satisfying
either ∫

Ω

|Ricg|n
2 (x)d volg(x) < ∞ and volgB(x0, r) = o(rn logn−1 r),

or ∫
Ω

(Scal+)
n
2 (x)d volg(x) < ∞ and volgB(x0, r) = O(rn).

Then there is a finite set {p1, . . . , pk} ⊂ Sn such that Ω = Sn − {p1, . . . , pk}.

Note that a much stronger result will be obtained in dimension 4 at the end of
the paper (Corollary 5.13).
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3. Scalar curvature uniformization of non-compact manifolds with
asymptotically zero Ricci curvature

Our second interest is in uniformization, by which we mean finding on such a
manifold a best possible metric. The goal of the paper imposes us to restrict
ourselves to conformal deformations only. Inspired by the well known Yamabe
problem, we seek a metric with vanishing scalar curvature at infinity and which
retains the asymptotic properties of the original metric. This is the only place
where our extra assumption on scalar curvature is needed.

Theorem 3.1. If (Mn, g) is a complete Riemannian manifold which satisfies the
Sobolev inequality

µn(M, g)
(∫

M

u
2n

n−2

)1−2/n

6
∫

M

|du|2, ∀u ∈ C∞0 (M)

and whose scalar curvature satisfies for a δ ∈]0, 1[,

Scalg ∈ L
n
2 (1−δ) ∩ L

n
2 (1+δ)

then there is a bounded smooth function ρ : M → R such that the complete metric
e2ρg has vanishing scalar curvature outside some compact set.

Proof. In fact, we will find a function u which is defined outside some compact
set K ⊂ M and solves the equation

∆u + cnScalgu = −cnScalg outside K (3.1)

where cn = (n − 2)/4(n − 1); moreover |u| 6 1/2 on M − K. Letting v be the
positive smooth function v = 1 + u outside some bounded neighbourhood of K,
the new metric v

4
n−2 g will have vanishing scalar curvature outside the compact set

– recall the scalar curvature of the metric v
4

n−2 g is given by the formula

cnScal
v

4
n−2 g

= v−
n+2
n−2 (∆v + cn Scalgv) .

The proof will be done in two steps. In the first step, we show that equation
(3.1) has a solution u ∈ L

n
2

1−δ
δ . In the second, we study the asymptotic behaviour

of the solution.
According to the work of Varopoulos [29], the Sobolev inequality has the fol-

lowing consequence: let Ω be an open (not necessarily bounded) subset of M and
note ∆Ω the Laplacian operator with Dirichlet boundary condition. More exactly,
∆Ω is the Friedrichs extension associated to the quadratic form u 7→ ‖du‖2L2(Ω)

defined on the closure of C∞0 (Ω) in H1(M), or, alternatively, ∆Ω is the minimal
extension of ∆ : C∞0 (Ω) −→ C∞0 (Ω). Then the heat operator e−t∆Ω associated to
∆Ω has the following mapping properties: for p > 1, it maps Lp(Ω) in L∞(Ω) and

‖e−t∆Ω‖Lp→L∞ 6 C(n, p)µ−n/2pt−n/2p. (3.2)
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Moreover the operator

∆−α/2
Ω =

∫ ∞

0

e−t∆Ωtα/2−1 dt

Γ(α/2)

has the following properties: if p ∈]1, n/α[ then it maps Lp(Ω) in L
np

n−pα (Ω), and

‖∆−α/2
Ω ‖

Lp→L
np

n−pα
6 C(n, p, α)µ−α/2. (3.3)

These properties (3.3) rely upon the bound (3.2) and a maximal theorem of E.
Stein. We now want to solve the equation

∆u + cnScalgu = −cnScalg, outside K.

For this we shall solve the equation

u = ∆−1/2
M−Kf

f + Af = −cn ∆−1/2
M−KScalg

where A is the operator

Af = ∆−1/2
M−K

(
Scalg∆

−1/2
M−Kf

)
.

The mapping properties (3.3) of the operator ∆−1/2
M−K and the Hölder inequality

imply that, for 1 < p < n, the operator A is a bounded operator on Lp(M −K)
and

‖A‖Lp→Lp 6 C(n, p)µ−1‖Scalg‖L
n
2 (M−K)

.

Moreover the hypothesis on the scalar curvature yields that ∆−1/2
M−KScalg lives in

Ln 1−δ
1+δ

‖∆−1/2
M−KScalg‖

L
n 1−δ

1+δ (M−K)
6 C(n, δ)µ−1/2‖Scalg‖L

n
2 (1−δ)(M−K)

. (3.4)

If the compact K is such that
(∫

M−K
Scaln/2

g (x)dx
) 2

n

is small enough, we have

‖A‖
L

n 1−δ
1+δ →L

n 1−δ
1+δ

6 1/2,

and the operator Id + A is invertible on Ln 1−δ
1+δ (M −K). Hence we may find f in

Ln 1−δ
1+δ (M −K) such that

f + Af = −cn∆−1/2
M−KScalg.

The function u = ∆−1/2
M−Kf solves the equation (3.1) and we have

‖u‖
L

n
2

1−δ
δ

6 C(n, δ)µ−1‖Scalg‖L
n
2 (1−δ)(M−K)

.

In the second step of the proof, we are able to show that provided K is large
enough then the function u is bounded by 1/2 on M−K. For this we could employ
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the Moser iteration scheme, but we will alternatively use the mapping properties
(3.3) of the previous operators.

First we show that the equation

f + Af = −cn∆−1/2
M−KScalg

can be solved on Ln 1−δ
1+δ ∩ Ln 1+δ

1−δ . First note that because of our assumptions on
the scalar curvature and of (3.3), we have also

‖∆−1/2
M−KScalg‖

L
n 1+δ

1−δ (M−K)
≤ C(n, δ)µ−1/2‖Scalg‖L

n
2 (1+δ)(M−K)

.

We have to show that the operator Id+A is invertible on Ln 1−δ
1+δ ∩Ln 1+δ

1−δ if M −K
is small enough. This stems out from a Gagliardo–Nirenberg inequality: we claim
that if h ∈ L

n
2

1−δ
δ (M − K) and if ∆1/2

M−Kh ∈ Ln 1+δ
1−δ , then there is a constant

C(n, δ, µ) such that

‖h‖L∞ 6 C(n, δ, µ)
[
‖h‖

L
n
2

1−δ
δ (M−K)

+ ‖∆1/2
M−Kh‖

L
n 1+δ

1−δ (M−K)

]
. (3.5)

The Gagliardo–Nirenberg inequality is shown by mimicking the argument of [12]:
we know from the subordination identity that

e−y
√

∆M−K =
y

2
√

π

∫ ∞

0

e−y2/4te−t∆M−K t−3/2dt,

so that the Poisson operator e−y
√

∆M−K maps Lp in L∞ and

‖e−y
√

∆M−K‖Lp→L∞ 6 C(n, p)µ−n/2py−n/p, ∀y > 0.

Now if h is such a function, we have

h = e−
√

∆M−K h−
∫ 1

0

e−y
√

∆M−K ∆1/2
M−Kh dy ,

so that we may bound ‖h‖L∞(M−K) from above by

C(n, δ)
[
µ−2δ/(1−δ)‖h‖

L
n
2

1−δ
δ (M−K)

+ µ(1−δ)/(1+δ)‖∆1/2
M−Kh‖

L
n 1+δ

1−δ (M−K)

]
which is precisely the desired inequality.

Now we already know that if f lives in Ln 1−δ
1+δ ∩ Ln 1+δ

1−δ then

‖Af‖
L

n 1−δ
1+δ

6 C(n, δ)µ−1‖Scalg‖Ln/2(M−K)‖f‖
L

n 1−δ
1+δ

.

Moreover, (3.3) implies

‖Af‖
L

n 1+δ
1−δ (M−K)

6 C(n, δ)
∥∥∥Scalg∆

−1/2
M−Kf

∥∥∥
L

n
2 (1+δ)(M−K)

.

Now we have

‖Scalg∆
−1/2
M−Kf‖

L
n
2 (1+δ)(M−K)

6 ‖Scalg‖L
n
2 (1+δ)(M−K)

‖∆−1/2
M−Kf‖

L∞(M−K)



Vol. 77 (2002) The Huber theorem 203

and the Gagliardo–Nirenberg inequality (3.5) provides

‖∆−1/2
M−Kf‖L∞(M−K) 6 C(n, δ, µ)

[
‖∆−1/2

M−Kf‖
L

n
2

1−δ
δ (M−K)

+ ‖f‖
L

n 1+δ
1−δ (M−K)

]
.

But again by (3.3), we have

‖∆−1/2
M−Kf‖

L
n
2

1−δ
δ

6 C(n, δ)µ−1/2‖f‖
L

n 1−δ
1+δ (M−K)

.

So that we end with the bound

‖Af‖
L

n 1+δ
1−δ

6C(n, δ, µ)‖Scalg‖L
n
2 (1+δ)(M−K)

[
‖f‖

L
n 1−δ

1+δ (M−K)
+‖f‖

L
n
2

1−δ
δ (M−K)

]
.

Hence, if K is such that ‖Scalg‖L
n
2 (1+δ)(M−K)

and ‖Scalg‖L
n
2 (1−δ)(M−K)

are small

enough then the operator A is bounded on Ln 1−δ
1+δ (M −K)∩Ln 1+δ

1−δ (M −K) with
an operator norm bounded by 1/2.

We may then find f ∈ Ln 1−δ
1+δ ∩ Ln 1+δ

1−δ which solves the equation

f + Af = −cn∆M−KScalg, outside K.

Now the function u = ∆−1/2
M−Kf solves the equation (3.1), and lives in L

n
2

1−δ
δ .

Moreover, ∆1/2
M−Ku = f ∈ Ln 1+δ

1−δ . We then have the bounds

‖u‖
L

n
2

1−δ
δ

6 C(n, δ, µ)‖Scalg‖L
n
2 (1−δ)(M−K)

,

‖f‖
L

n 1+δ
1−δ

6 C(n, δ, µ)‖Scalg‖L
n
2 (1+δ)(M−K)

.

Using the Gagliardo–Nirenberg inequality (3.5), we obtain

‖u‖L∞(M−K) 6 C(n, δ, µ)
[
‖Scalg‖L

n
2 (1+δ)(M−K)

+ ‖Scalg‖L
n
2 (1−δ)(M−K)

]
.

We may then choose the compact K adequately to have the desired bound |u| 6
1/2 over M −K. ¤

Remark 3.2. The Moser iteration scheme [14] would show that the function ρ in
the statement of Theorem 3.1 has limit zero at infinity.

Remark 3.3. If the two integrals for the scalar curvature are small with respect
to the Sobolev constant, we may get a metric with vanishing scalar curvature
everywhere.

Remark 3.4. It is possible to replace the hypothesis on the Sobolev inequality
by a more conformally invariant one: we can assume for instance that the Yam-
abe invariant of a neighbourhood of infinity is positive. As already noticed, this
together with boundedness of the Ln/2-norm of the scalar curvature implies the
Sobolev inequality.
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4. On the geometry of compact manifolds with a finite
number of points removed

As already explained in the introduction, the goal of this short section is to give
a proof of the following statement: if (M, g) is a complete manifold controlled
volume growth and finite Ln/2-norm of Ricci curvature (1.1), the scalar curvature
assumption of Theorem 3.1 together with the conclusions of Huber’s theorem, then
it is conformally quasi-isometric to an asymptotically locally euclidean manifold.

In fact, we shall prove the following, slightly stronger, result, which also gives
some information on the case treated in section 2.

Theorem 4.1. Let (M, g0) be a compact Riemanniann manifold and let Ω be a
domain in M endowed with a complete Riemannian metric g which is conformal
to g0. Assume moreover that the Ricci and scalar curvature of (Ω, g) satisfy

Ricg ∈ L
n
2 , Scalg ∈ L

n
2 (1−δ) ∩ L

n
2 (1+δ)

for some δ in ]0, 1[, and that volg B(x0, r) 6 Crn for some x0 in M . Then there
is a bounded smooth function f on Ω such that (Ω, e2fg) has a finite number of
ends, each of them asymptotically euclidean.

We recall that an end E of a complete Riemannian manifold (Mn, g) is said to
be asymptotically euclidean (of order τ > 0) if E is diffeomorphic to the comple-
ment of a euclidean ball in the euclidean space Rn and if, in theses coordinates,
the metric g satisfies

gij(z) = δij + O(|z|−τ ), ∂kgij(z) = O(|z|−τ−1),
|∂kgij(z)− ∂kgij(w)| |z − w|α 6 O(min{|z|, |w|}−τ−1−α).

for some α ∈]0, 1[. An end of a Riemannian manifold is called asymptotically
locally euclidean, or ALE in short, if a finite Riemannian cover of this end is
asymptotically euclidean.

Proof. According to Theorem 2.1, we know that there is a finite set {p1, . . . , pk} ⊂
M such that Ω = M − {p1, . . . , pk}. Theorem 3.1 provides a smooth bounded
function f on Ω such that the new metric e2fg has vanishing scalar curvature in
some neighbourhood of {p1, . . . , pk}. We may then take r > 0 small enough in
order that

(i) the g0-geodesic balls B(pi, r) are smooth, convex and disjoint;
(ii) the scalar curvature of e2fg is zero in B(pi, r)− {pi}.

Fix some i ∈ {1, . . . , k}. We also have existence of a bounded smooth function h
on B(pi, r) such that the metric e2hg0 has vanishing scalar curvature. Since g is
conformal to g0, there is a smooth positive function v on Ω with g = v

4
n−2 g0. Now

we have e2fg = w
4

n−2 e2hg0 with w = e
n−2

8 fve−
n−2

8 h. The function w is positive
and satisfies

∆w = 0 on B(pi, r)− {pi}
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where ∆ is the Laplacian associated with the metric e2hg0. Define w̄ to be the
solution of the Dirichlet problem{

∆w̄ = 0 on B(pi, r),
w̄ = w on ∂B(pi, r).

The function w − w̄ is a harmonic function on B(pi, r) − {pi} and according to
the maximum principle, it is a positive function. Thus, w− w̄ is a multiple of the
Green function associated to ∆ on B(pi, r) for the Dirichlet boundary condition
with pole at pi. If we come back to v, we obtain that there is a constant λ > 0
such that e

n−2
8 fv−λGi is a smooth function in B(pi, r) where Gi is the conformal

Green function of (B(pi, r), g0) with Dirichlet boundary condition and pole at pi.
Computations done by J. Lee and T. Parker [22, Lemma 6.4] show that the new
metric e2fg is asymptotically euclidean. ¤

Keeping the terminology of [22], we shall say that Ω is obtained from (M, g0)
by a stereographic conformal blow up.

5. Structure at infinity of conformally flat manifolds

This section is the central part of the paper. We begin in the first subsection
by proving that scalar flat, conformally flat complete manifolds satisfying both
condition (1.1) on Ricci curvature and the Sobolev inequality

µn(M, g)
(∫

M

u
2n

n−2

)1−2/n

6
∫

M

|du|2, ∀u ∈ C∞0 (M)

are asymptotically locally euclidean. This and the uniformization arguments of
the previous sections are immediatly used in the following subsection, thus proving
our main result, Theorem 5.7, in dimension 4. The last subsection deals with the
case of other dimensions.

Geometry at infinity of scalar flat, conformally flat manifolds. Our second
main technical result is the following:

Theorem 5.1. Let (Mn, g) be a Riemannian manifold which satisfies the Sobolev
inequality

µn(M, g)
(∫

M

u
2n

n−2

)1−2/n

6
∫

M

|du|2, ∀u ∈ C∞0 (M),

whose Ricci tensor satisfies∫
M

|Ricg|n
2 (x)d volg(x) < ∞.

If (M, g) is scalar flat and conformally flat in a neighbourhood of infinity, then it
has a finite number of ends, each of them asymptotically locally euclidean.
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Proof. The idea is to show that the tracefree Ricci tensor Ric0 decays at infinity
faster than expected. Fix a point p in M . If we are able to prove that

|Ric0|(x) 6 C

d(p, x)2+η
∀x ∈ M −Bp(1), (5.1)

for some η > 0, then we can apply the characterization of asymptotically locally
euclidean manifolds due to A. Kasue, S. Bando and H. Nakajima [4]: the manifold
is indeed asymptotically locally euclidean if curvature has the decay (5.1) above
and if the volume of Bp(r) grows at least as rn. The first assumption is then
obviously satisfied (as the metric is scalar flat and conformally flat), whereas the
second is a well-known consequence of the Sobolev inequality [7, Proposition 2.4].

We now have to exhibit the estimate (5.1). Our starting point is the basic
Weitzenböck formula for Ricci curvature [5, Formula (4.1)](

dDδD + δDdD
)
Ric0 = D∗DRic0 + cRic ◦ Ric0, (5.2)

where c is a constant whose value is irrelevant for our concerns and may then vary
from line to line. We may apply this to our conformally flat, scalar flat, metric
outside a compact set. The Ricci tensor is then a closed and co-closed 1-form with
values into 1-forms and we get

∆Ric0 = D∗DRic0 = cRic0 ◦ Ric0. (5.3)

We can immediately infer from this a first subelliptic estimate for the norm |Ric0|:
1
2
∆|Ric0|2 = |Ric0|∆|Ric0| − |d|Ric0||2

= 〈Ric0,∆Ric0〉 − |DRic0|2.

Hence, by Kato inequality,

|Ric0|∆|Ric0| = 〈Ric0,∆Ric0〉 − |DRic0|2 + |d|Ric0||2 6 c |Ric0|2,

and finally

∆|Ric0| 6 c |Ric0|2, (5.4)

in the weak sense, outside a compact set.
The next ingredient is the refined Kato-like inequality proven in [6]; for Ric0

is in the kernel of the elliptic first order operator dD + δD acting on trace-free
symmetric tensors, we have

|d|Ric0|| 6
√

n

n + 2
|DRic0| (5.5)

wherever Ric0 does not vanish (see [6] for the precise computation). Letting β =
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n−2
n , we may now compute:

∆
(|Ric0|β

)
= β

(|Ric0|β−1 ∆|Ric0| − (β − 1)|Ric0|β−2 |d|Ric0||2
)

= β|Ric0|β−2
(〈Ric0,∆Ric0〉 − |DRic0|2 + |d|Ric0||2

)
− β(β − 1)|Ric0|β−2 |d|Ric0||2

= β|Ric0|β−2
(〈Ric0,∆Ric0〉 − |DRic0|2 + (2− β)|d|Ric0||2

)
.

Taking now into account the precise value of β, we end up with

∆
(
|Ric0|

n−2
n

)
6 n− 2

n
|Ric0|−

n+2
n |〈Ric0,∆Ric0〉| 6 C|Ric0|

2(n−1)
n (5.6)

in the weak sense outside a compact set.
Denoting u = |Ric0| and v = |Ric0|1/γ where γ = n

n−2 , our general assumptions
imply that u is in Ln/2, and that

∆u 6 cu2, and ∆v 6 c u v outside a compact set. (5.7)

The conclusion will now follow from the next two lemmas.
In what follows, we denote by Mr the complement of the ball of radius r and

centre p in M .

Lemma 5.2. Assume that M satisfies the Sobolev inequality. Let u positive be in
Ln/2 such that ∆u 6 cu2 in the weak sense. Then there exists r0 such that for all
r > r0, u belongs to L∞(Mr) and

sup
M2r

u 6 Cr−2

(∫
Mr

u
n
2

) 2
n

. (5.8)

for r large enough.

Lemma 5.3. Assume that M satisfies the Sobolev inequality and has sub-euclidean
volume growth. Let u positive be in Ln/2, v positive in Lγn/2 with γ = n/(n− 2).
Assume ∆v 6 cuv in the weak sense, then(∫

M2r

vγ n
2

) 1
γ

6
(∫

Mr−M2r

vγ n
2

) 1
γ

(5.9)

for r large enough.

Proof of Theorem 5.1 (assuming the lemmas). We begin by applying Lemma 5.2.
Since u = |Ric0| belongs to Ln/2,

sup
M2r

u 6 Cr−2

(∫
Mr

u
n
2

) 2
n

= o(r−2). (5.10)

The second step is to apply Lemma 5.3 and we need volume growth control from
above. Now remember Scal and W vanish, whereas u above is the norm of the
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tracefree Ricci tensor. Hence Kg = o(r−2) and diameter is controlled from above
and volume growth is controlled from below (from the Sobolev inequality) on
each annulus M2kr−Mk−1r. We can then infer from Anderson–Cheeger harmonic
radius’ theory [2, 3, 16, 23] that the rescaled annuli (Mkri

− Mk−1ri
, r−2

i g) are
covered by a finite (and uniformly bounded) number of balls of uniformly bounded
size where the metric coefficients are C1,α-close to the euclidean metric. Hence
one gets volume growth control from above. We can now estimate further the
tracefree part of Ricci by applying Lemma 5.3 to v = u1/γ . We get

(∫
M2r

vγ n
2

) 1
γ

6
(∫

Mr−M2r

vγ n
2

) 1
γ

hence ∫
M2r

u
n
2 6

∫
Mr

u
n
2 −

∫
M2r

u
n
2 .

The conclusion now stems out from injecting the result of the following elementary
Lemma into estimate (5.10) above.

Lemma 5.4. If F is a positive non-increasing function satisfying, for r > 1,

F (2r) 6 C(F (r)− F (2r)) and lim
r→∞F (r) = 0

then there exists η > 0 such that F (r) 6 Cr−η for large r.

We now detail the proofs of the first two Lemmas, leaving the third one to the
reader.

Proof of Lemma 5.2. We shall use the standard Moser iteration scheme. It sim-
plifies matters to take r = 1, so that we will prove that, if w is a positive function
in Ln/2 satisfies ∆w 6 cw2 in the weak sense, then there is ε0 > 0 such that, if

(∫
M1

w
n
2

) 2
n

< ε0

then

sup
M2

w 6 C

(∫
M1

w
n
2

) 2
n

.

Rescaling by g → r−2g where r > r0 and r0 is chosen such that ||u||Ln/2(Mr0 ) < ε0

establishes the link with the desired property.
Let 1 < r− < r+ << r′ < ∞ and let ϕ be a smooth cut-off function with

support in Mr− − M2r′ having value 1 in Mr+ − Mr′ and such that |dϕ| 6
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1/(r+ − r−). Let moreover α > 1. We now compute:

4α

(α + 1)2

∫
ϕ2|d

(
w

α+1
2

)
|2 =

∫
ϕ2〈d (wα) , dw〉

=
∫

ϕ2wα∆w − 2
∫

ϕwα〈dϕ, dw〉

6 c

∫
ϕ2wα+2 + 2

∫
ϕwα |dϕ| |dw|,

where the last line has been obtained with the inequation (5.8). By Young’s
inequality

(2w
α+1

2 |dϕ| − 1
4
ϕw

α−1
2 |dw|)2 > 0,

i.e.

4wα+1|dϕ|2 +
1

4(α + 1)2
ϕ2|d

(
w

α+1
2

)
|2 > ϕwα|dϕ| |dw|,

applied to the last term, we get

4(α− 1
8 )

(α + 1)2

∫
ϕ2|d

(
w

α+1
2

)
|2 6 c

∫
ϕ2wα+2 + 8

∫
wα+1 |dϕ|2

which is easily turned into∫
|d

(
ϕw

α+1
2

)
|2 6 cα

(∫
ϕ2wα+2 +

∫
wα+1 |dϕ|2

)
.

We may now conclude from the Sobolev inequality that (recall γ = n
n−2 )

(∫
ϕ2γwγ(α+1)

) 1
γ

6 cα

(∫
ϕ2wα+2 +

∫
wα+1 |dϕ|2

)
. (5.11)

Step 1. Suppose now α + 1 = n
2 . The formula (5.11) above yields

(∫
ϕ2γwγ n

2

) 1
γ

6 c(n)
(∫

ϕ2w
n
2 +1 +

∫
w

n
2 |dϕ|2

)

6 c(n)

((∫
ϕ2γw

n
2 γ

) 1
γ

(∫
suppϕ

w
n
2

) 2
n

+
∫

w
n
2 |dϕ|2

)
.

Hence if ||w||
L

n
2 (M1)

is small enough, we can absorb this term in the left hand side
and conclude that (∫

ϕ2γwγ n
2

) 1
γ

6 c(n)
∫
|dϕ|2w n

2

so that ||w||γ n
2

6 C||w||n
2

by letting r′ tend to infinity (and C is a constant strongly
depending on the geometry of M).
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Step 2. Consider now the general case α+1 > n
2 . Fix q in ]n, γn[, we may estimate

∫
ϕ2wα+2 6

(∫
suppϕ

w
q
2

) 2
q

(∫
ϕ

2q
q−2 w

α+1
2

2q
q−2

) q−2
q

.

Standard Hölder-like interpolation inequalities enable us to control the first paren-
thesis on the right-hand side by the L

n
2 and Lγ n

2 norms of w. The second paren-
thesis is estimated as follows:(∫

ϕ
2q

q−2 w
α+1

2
2q

q−2

) q−2
q

6 ε

(∫
ϕ

2n
n−2 w

α+1
2

2n
n−2

)n−2
n

+ ε−ν

∫
ϕ2wα+1

with ν−1 = q
n − 1 and 0 < ε < 1 to be chosen later. The basic inequality (5.11)

then becomes(∫ (
ϕw

α+1
2

)2γ
) 1

γ

6 cα
(
ε||ϕw

α+1
2 ||22γ + ε−ν ||ϕw

α+1
2 ||22

)
+ cα

∫
wα+1|dϕ|2.

For a given α, we may now choose ε = 1
2 (cα)−1 and absorb the first term on the

right-hand side in the left-hand side and obtain the second basic estimate:

||ϕw
α+1

2 ||22γ 6 cα(1 + αν)||(ϕ + |dϕ|)w α+1
2 ||22. (5.12)

Let now p = α + 1 and

N(p, r) =
(∫

Mr

wp

) 1
p

.

By letting r′ go to infinity, we may reinterpret formula (5.12) as

N(γp, r+) 6
(

cp(1 + pν)
r+ − r−

) 2
p

N(p, r−).

This is easily iterated, letting p0 = n
2 , pm = γmp0, rm,− = 1 + 2−(m+2) and

rm,+ = 2− 2−(m+2), thus leading to:

N(γmp0, rm,+) 6 (cγ)c
∑ m

i=1 iγ−i

N(γm−1p0, rm,−).

Letting m tend to infinity yields the expected result. ¤

We now pass on to Lemma 5.3, whose proof looks quite similar.

Proof of Lemma 5.3. Arguing as in the previous Lemma, using the inequation
and the Sobolev inequality, we arrive with some computations to another basic
estimate involving the two functions u and v and an extra cut-off function ϕ with
support in Mr, having value 1 on M2r and such that |dϕ| 6 1/r:(∫ (

ϕv
n
4
) 2n

n−2

)n−2
n

6 c

(∫
uϕ2v

n
2 +

∫
v

n
2 |dϕ|2

)
. (5.13)
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We may then apply the Hölder inequality to the first term in the right-hand side,
and absorb it in the left-hand side if r is chosen large enough. We are left with(∫

ϕ2vγ n
2

) 1
γ

6 c

∫
v

n
2 |dϕ|2,

and with Hölder again,(∫
ϕ2vγ n

2

) 1
γ

6 c

(∫
suppdϕ

vγ n
2

) 1
γ

(∫
|dϕ|n

) 2
n

.

We may now use our assumption on dϕ together with the bound on volume growth
and conclude that

||vγ ||
L

n
2 (M2r)

6 C
(
||vγ ||

L
n
2 (Mr−M2r)

)
,

which ends the proof. ¤

Remark 5.5. The asymptotic structure is here C1,α-asymptotically flat. It may
then be not regular enough for our purposes. Since we intend to apply methods
of [17], we a priori need C3,α-asymptotic flatness. However, the elliptic trick of
[17, Lemme 4.4] may be used to obtain more regularity in weighted Hölder spaces
through a further conformal rescaling.

Geometry at infinity of 4-dimensional conformally flat manifolds. We
prove here our main result: any complete conformally flat 4-dimensional manifold
(M, g) satisfying

Ricg ∈ L2, Scalg ∈ L
4
3 ∩ L2(1+δ), with δ > 0

is conformally equivalent to a compact manifold with a finite number of points re-
moved. As the proof shows, it is enough to consider manifolds that are conformally
flat around infinity only. We begin by stating:

Lemma 5.6. Let (M, g) be a complete Riemannian manifold of dimension 4 which
is conformally flat in a neighbourhood of infinity. Assume it satisfies the Sobolev
inequality

µ(M, g)
(∫

M

u4

)1/2

6
∫

M

|du|2, ∀u ∈ C∞0 (M)

and that the Ricci and scalar curvatures of (M, g) satisfy

Ricg ∈ L2, Scalg ∈ L
4
3 ∩ L2(1+δ) for some δ ∈]0, 1[,

then there is a bounded smooth function f on M such that (M, e2fg) has a finite
number of ends, each of them asymptotically locally euclidean.

Proof. According to Theorem 3.1, there is a positive function v = 1+u such that
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(i) there is a positive constant C with C−1 6 v 6 C;
(ii) the new metric v2g has vanishing scalar curvature outside some compact

set;
(iii) the function u is in L4 ∩ L∞ and it satisfies the equation

∆u +
1
6
Scalgu = ϕ

where ϕ = − 1
6 Scalg outside some compact set.

In order to apply Theorem 5.1, we need integrability of the Ricci curvature of
v2g to the power n/2 = 2. The formula for the change of Ricci curvature under a
conformal change of metric ḡ = v2g is

Ricḡ = Ricg − (n− 2)v−1Ddv + 2(n− 2)v−2dv⊗ dv +
(
v−1∆v − (n− 3)v−2|dv|2) .

Hence, we need to show that
(i) du ∈ L4 and
(ii) Ddu ∈ L2.

We first notice that du is in L2: from the proof of Theorem 3.1 (and keeping the
notations thereof), we have found u as a solution of the equation

u = ∆−1/2
M−Kf

f + Af = −cn ∆−1/2
M−KScalg

where A is the operator

f 7−→ Af = ∆−1/2
M−K

(
Scalg ∆−1/2

M−Kf
)

.

Moreover our assumption on the scalar curvature implied that f lived in
L2(M − K). Let H1

0 (M − K) be the completion of the space C∞0 (M − K) en-
dowed with the norm h 7→ ‖dh‖L2 , then the operator ∆−1/2

M−K realizes an isometry
between L2(M −K) and H1

0 (M −K). Hence u = ∆−1/2
M−Kf is in the Sobolev space

H1
0 (M −K); hence du lives in L2.
Now we let α = du and the Bochner identity implies that the 1-form α solves

the equation

∆α + Ric(α) +
1
6
Scalgα = −1

6
u d Scalg + dϕ.

where ∆ = D∗D is the rough Laplacian. From an integration by parts formula,
we get ∫

M

|D(ψα)|2 =
∫

M

|dψ|2α2 +
∫

M

〈∆α, α〉ψ2

=
∫

M

|dψ|2α2 −
∫

M

〈(Ricg +
1
6
Scalg)α, α〉ψ2

− 1
6

∫
M

ψ2 u 〈d Scalg, α〉+
∫

M

ψ2 〈dϕ, α〉.
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Let R > 0 and let ψR be a cutoff function with value 1 in B(x0, R) and 0 outside
B(x0, 2R). We choose ψ = ψR − ψR0 , (R > R0) such that ϕ = − 1

6Scalg outside
B(x0, R0), and we integrate by parts in order to get rid of the term in d Scalg:∫

M

|D(ψα)|2 =
∫

M

|dψ|2α2 −
∫

M

ψ2 〈(Ricg +
1
6
Scalg)α, α〉

− 1
6

∫
M

ψ2 〈d Scalg, α〉(1 + u)

=
∫

M

|dψ|2α2 −
∫

M

ψ2 〈(Ricg +
1
6
Scalg)α, α〉

+
(

1
6

)2 ∫
M

ψ2 Scal2g(1 + u)2 +
1
6

∫
M

ψ2 Scalg|α|2

+
1
3

∫
M

ψ Scalg(1 + u) 〈dψ, α〉.

With the Cauchy–Schwarz inequality, we get∫
M

|D(ψα)|2 6 2
∫

M

|dψ|2α2 +
∫

M

ψ2|Ric−| |α|2 +
1
18

∫
M

ψ2Scal2g(1 + u)2.

Now we use the Sobolev inequality and a Hölder inequality.
Letting B = B(x0, 2R0), we have:

(µ

2
− ‖Ric−‖L2(M−B)

) (∫
M

(ψ|α|)4
)1/2

+
1
2

∫
M

|D(ψα)|2

6 2
∫

M

|dψ|2α2 +
1
18

∫
M

Scal2g(1 + u)2ψ2.

We can then choose R0 such that

‖Ric−‖L2(M−B(x0,2R0)) 6 µ/4.

Since α ∈ L2 and Scalg ∈ L2 by assumption, letting R go to infinity yields α ∈ L4

and Dα ∈ L2. ¤
Applying the compactification theorem for conformally flat asymptotically eu-

clidean manifolds proved by the second author [17, Corollaire B.1] immediately
yields:

Theorem 5.7. Let (M, g) be a complete Riemannian manifold of dimension 4
which is conformally flat in a neighbourhood of infinity. Assume it satisfies the
Sobolev inequality

µ(M, g)
(∫

M

u4

)1/2

6
∫

M

|du|2, ∀u ∈ C∞0 (M)

and the Ricci and scalar curvatures of (M, g) satisfy

Ricg ∈ L2, Scalg ∈ L
4
3 ∩ L2(1+δ) for some δ ∈]0, 1[
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then (M, g) is conformally equivalent to a compact orbifold with a finite number
of singular points removed.

Remark 5.8. Stefan Unnebrink has constructed asymptotically flat (in curvature
sense) metrics on R4 with curvature bounded by r−2−ε (with ε > 0) and slow
volume growth, namely volgB(x0, r) 6 C r3 [28]. Hence, it seems necessary to
have an assumption similar to the Sobolev inequality, which ensures euclidean
volume growth (as is the case on any ALE manifold). It would be nice to know
which assumptions imply the Sobolev inequality in the conformally flat case (apart
from the already quoted positive Yamabe invariant case).

Other dimensions. Careful examination of the proof above shows that it relies
on the special fact that L

n
2 = L2 has a Hilbert space structure in dimension 4.

It then breaks down for n 6= 4. Unfortunately, we have been unable to find
an alternative argument that would cover the general case. We shall however
prove here that analogous results can be obtained in dimensions n 6= 4 with a
strengthened assumption on Ricci curvature.

Theorem 5.9. Let (M, g) be a complete Riemannian manifold of dimension n
which is conformally flat in a neighbourhood of infinity. Assume it satisfies the
Sobolev inequality

µn(M, g)
(∫

M

u
2n

n−2

)1− 2
n

6
∫

M

|du|2, ∀u ∈ C∞0 (M),

and the Ricci and scalar curvatures of (M, g) satisfy

r2|Ricg| 6 C, Ricg ∈ L
n
2 , and Scalg ∈ L

n
2 (1−δ) for some δ ∈]0, 1[ (5.14)

where r is the distance function to a fixed point. Then (M, g) is conformally
equivalent to a compact orbifold with a finite number of singular points removed.

Proof. As above, the main problem is to show that du is in Ln and Ddu in Ln/2.
The idea is here to use classical local elliptic estimates for relatively compact
domains in M : for each ω′ ⊂⊂ ω ⊂⊂ M , there is a constant C(ω, ω′) > 0 such
that

‖u‖
W 2, n

2
6 C(ω, ω′)

(‖∆u + cnScalgu‖L
n
2

+ ‖u‖
L

n
2

)
.

If one intends to stick to finiteness of Ln/2-norm of Ricci curvature (1.1), without
any extra assumption, one encounters the following obstacle: there is a priori no
way to estimate uniformly (w.r.t. the domains ω and ω′) the constants C(ω, ω′),
and it seems then impossible to globalize such estimates on the whole manifold.
Assuming the extra condition stated in formula (5.14) is the key to overcoming
the problem. Let As be the geodesic annulus A(s/2, 2s) from a fixed basepoint x0.
Then the annuli As with metric gs = s−2g have uniformly bounded Ricci curvature,
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are conformally flat and satisfy the Sobolev inequality. From Cheeger’s Lemma
[10, 11] (see also [23, 10.4.5]), their injectivity radii are uniformly bounded from
below. Hence they have uniform lower bound on the harmonic radius [2, 3, 16]:
rH(gs) > r0 > 0. On each ball of radius r0/2, there exist harmonic coordinates
and the metric coefficients are there controlled in the C1,α-topology.

This has two useful consequences: first of all it gives volume growth control,
as above, and moreover one may apply the local elliptic estimate above, extracted
from [14, Theorem 9.11], in euclidean norms, to ω = B(r0/2), ω′ = B(r0/4) and
the equation

∆gs
u + cnScalgs

u = cnϕs

where ϕs = −Scalgs
around infinity. Thus,

‖u‖
W 2, n

2 (B(r0/4))
6 C0

(
‖∆gs

u + cnScalgs
u‖

L
n
2 (B(r0/2))

+ ‖u‖
L

n
2 (B(r0/2))

)
.

From the euclidean Sobolev inequality, one gets

‖Ddu‖
L

n
2 (B(r0/4))

+ ‖du‖Ln(B(r0/4)) 6 C1

(
‖ϕs‖L

n
2 (B(r0/2))

+ ‖u‖
L

n
2 (B(r0/2))

)
and the bounds on the metric coefficients in the coordinates yield that the same in-
equality is valid with gs-dependent norms rather than coordinate-dependent ones.
Coming back to g, using the volume bound from above obtained at the beginning
of this proof and the bound from below proved in formula (2.3) which yield a uni-
form upper bound on the number of harmonic balls needed to cover each annulus
and the conformal covariance of each norm involved, we end up with

‖Ddu‖
L

n
2 (M)

+ ‖du‖Ln(M) 6 C2

(
‖ϕ‖

L
n
2 (M)

+ ‖r−2u‖
L

n
2 (M)

)
. (5.15)

Section 3 tells us that u lives in L
n
2

1−δ
δ and the last term can then be estimated

by Hölder’s inequality and the volume growth. This ends the proof. ¤

Remark 5.10. If one wants to keep only integral conditions, one can obtain the
same conclusions in higher dimensions (n > 4) under some extra assumptions
on the derivative of the curvature tensor. Namely, let (Mn, g) be a complete
Riemannian manifold which is conformally flat in a neighbourhood of infinity (with
n > 5). Assume now that it satisfies the Sobolev inequality

µ(M, g)
(∫

M

u
2n

n−2

)1−2/n

6
∫

M

|du|2, ∀u ∈ C∞0 (M)

and that the Ricci curvature of (M, g) satisfies

Ric ∈ Ln/2, DRic ∈ Ln/3 ∩ L
2n

n−2

and that the scalar curvature satisfies for a δ ∈]0, 1[,

Scalg ∈ L
2n

n+2 ∩ L2(1+δ), DdScalg ∈ Ln/4 ∩ L2,
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and subeuclidean volume growth

volg B(x0, r) 6 C(x0) rn ∀r > 1,

then there is a bounded smooth function f on M such that (M, e2fg) has a finite
number of ends and each of them is asymptotically locally euclidean. Hence,
Huber’s theorem holds under these assumptions.

Proof of the remark. The proof of this last result follows basically the same path
as the previous proofs, but is considerably more technical. It begins as the proof of
Theorem 5.7 and the same argument leads to: du ∈ L

2n
n−2 ∩L2 and Ddu ∈ L2. This

is not enough when n 6= 4, and it remains to show that du ∈ Ln and Ddu ∈ Ln/2.
Moser iteration enters the picture here, applied to adequate inequations verified by
α = du and Dα (in the notation of the proofs above). One then uses the following
(Moser-type) analytical lemma:

Lemma 5.11. Let (M, g) be a complete Riemannian manifold which satisfies the
Sobolev inequality

µ(M, g)
(∫

M

u
2n

n−2

)1−2/n

6
∫

M

|du|2, ∀u ∈ C∞0 (M),

and moreover we suppose that the volume growth of geodesic balls is sub-euclidean.
Let A ∈ Lτ satisfying the inequation

∆A 6 V A + f

with V ∈ Ln/2 and f ∈ Lp. If p 6 τ 6 np
n−2p , then A is in L

np
n−2p .

The lemma leads to the following direct corollary:

Corollary 5.12. Let (M, g) be a complete Riemannian manifold. Under the same
assumptions, if A ∈ Lτ satisfies the inequation

∆A 6 V A + f

with V ∈ Ln/2 and f ∈ Lp− ∩ Lp+ , then, if p− 6 τ 6 np+
n−2p+

, we get that

A ∈ L
p+n

n−2p+ .

We postpone the proofs of these two results for a moment and notice that, once
one has singled out an adequate inequation on α or Dα, the corollary, applied to
both, finishes the proof of the remark.

As for the first step (inequation for α) we have seen that the differential form
α satisfies the equation

∆α + Ricα + cnScalgα = −cnud Scalg + dϕ.

The Kato inequality implies that A = |α| satisfies the inequation:

∆A 6 V A + f
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with V = Ric− + cn|Scalg| and f = |dϕ|+ cn‖u‖L∞ |d Scalg|, with our hypothesis
we have V ∈ Ln/2 and f ∈ Ln/3 ∩ L2n/(n−2) and A ∈ L2n/(n−2) so that we can
employ the corollary and we obtain A ∈ Ln.

To pass on the case of Dα, we can differentiate again the inequality above and
obtain

∆Dα + [D,∆]α + (Ricg + cnScalg)Dα =
− (DRic)α− cnd Scalg ⊗ α + Ddϕ + cnα⊗ d Scalg − cnuDd Scalg

According to M. Le Couturier and G. Robert [21, Lemma 3.3.1],

[D,∆]α(X) =
1
2
DXRicα + R(DXα, .) + DRic(X)α.

Since the manifold is conformally flat, the curvature tensor R is bounded in terms
of |Ricg|, so that the Kato inequality again yields that B = |Dα| satisfies the
inequation ∆B 6 WB + h where W = bn|Ricg|+ cn|Scalg| and

h = Cn|DRicg||α|+ |α||d Scalg|+ cn‖u‖L∞ |DdScalg|+ |Ddϕ|.
Now our assumptions are: h ∈ L2∩Ln/4, and B ∈ L2, so that the Corollary above
implies that Ddu ∈ Ln/2. ¤
Proof of Lemma 5.11. This is shown in the following way, starting with the basic
inequality (Lemma B.3 of [30]): if ρ > 1 and ψ ∈ C∞0 (M) then∫

M

|d(ψA
ρ
2 )|2 6 C(ρ)

∫
M

|dψ|2Aρ + ψ2Aρ−1∆A.

We use our hypothesis on A, the Sobolev inequality and Hölder inequality in order
to obtain:

(
µ− C(ρ)‖V ‖Ln/2(suppψ)

)‖ψ2Aρ‖
L

n
n−2

6 C(ρ) ‖f‖Lp

(∫
M

ψ
2p

p−1 A(ρ−1) p
p1

)1−1/p

+ C(ρ)
(∫

M

|dψ|2λ

)1/λ (∫
M

A(ρ−1) p
p−1

)(1−1/p)( ρ
ρ−1 )

,

where λ is defined by λ−1 + (1− 1/p)
(

ρ
ρ−1

)
= 1. Assume now that A lives in Lτ0

where p 6 τ0 6 np/(n − 2p). Let ρ be defined by τ0 = (ρ − 1)p/(p − 1) and let
τ1 = n

n−2

(
1 + p−1

p τ0

)
so that λ = τ0p/(τ0 − p). Then choose R0 such that

C(ρ)‖V ‖Ln/2(M−B(x0,R0)) 6 µ/2

Using the sub-euclidean growth of the geodesic balls and applying the last in-
equality to a function ψ = ψR such that supp (ψR) ⊂ B(x0, 2R) − B(x0, R0),
ψR = 1 on B(x0, R) − B(x0, R0 + 1), 0 6 ψR 6 1 on M and |dψR| 6 2/R on
B(x0, 2R)−B(x0, R), we obtain
µ

2
‖A‖Lτ1 (B(x0,R)−B(x0,R0+1)) 6 C(ρ)‖A‖ρ−1

Lτ0 ‖f‖Lp +
[
C + C ′Rn

τ0−p
τ0p −2

]
‖A‖ρ

Lτ0 .
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Now, since τ0 6 pn/(n − 2p), we have n τ0−p
τ0p 6 2. Letting R tend to ∞ we get

that A ∈ Lτ1 . By iterating this procedure, we finally obtain that A ∈ Lr for all
r ∈ [τ, np/(n− 2p)[.

It remains to go up to the upper bound np/(n − 2p), and this is done in the
following way: we apply again our first inequation with ρ defined by

np

n− 2p
= ρ

n

n− 2
= (ρ− 1)

p

p− 1
,

and we choose R0, ψ similarly as above. It yields
µ

2
‖ψ 2

ρ A‖ρ
Lpn/(n−2p) 6 C(ρ)‖f‖Lp‖ψ 2

ρ A‖ρ−1
Lpn/(n−2p) + C(ρ)

∫
M

|dψ|2Aρ.

On the other hand, we have∫
M

|dψ|2Aρ 6
∫

B(x0,R0+1)−B(x0,R0)

|dψ|2Aρ +
4

R2

∫
B(x0,2R)−B(x0,R)

Aρ.

Since ρ < pn/(n − 2p), we can choose a β in [τ, np/(n − 2p)[ such that ρ 6 β.
From the Hölder inequality and the volume growth of geodesic balls, we get∫

B(x0,2R)−B(x0,R)

|dψ|2Aρ 6 CRn(1−ρ/β)−2‖A‖ρ
Lβ .

As β < np/(n− 2p), we have n(1− ρ/β) < 2, and finally A ∈ Lnp/(n−2p) when R
goes to infinity. ¤

The case of the sphere. The results of the current section can also be applied
to the case of a domain in the 4-dimensional sphere and we get a strengthening
of Corollary 2.6 for this precise dimension. As already noticed in section 2, the
Sobolev inequality is automatically obtained in this case, hence the following re-
sult (analogous results may be obtained for any other conformally flat compact
manifold with positive Yamabe invariant):

Corollary 5.13. Let Ω be a domain of the sphere (S4, g0) endowed with a complete
metric g conformal to g0. Assume moreover

Ricg ∈ L2(Ω, g) and Scalg ∈ L
4
3 (Ω, g) ∩ L2(1+δ)(Ω, g) for some δ ∈]0, 1[.

Then there is a finite set {p1, . . . , pk} such that Ω = S4 − {p1, . . . , pk}.

This may be compared with S. Y. A. Chang, J. Qing and P. Yang’s proof [8] that
any domain in the 4-sphere with a complete metric conformal to the round one,
with Ricci curvature bounded from below, bounded “Q-curvature” (the integral of
the local curvature expression that gives the Gauss–Bonnet–Chern integrand) and
uniformly positive scalar curvature is the sphere minus a finite number of points.
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