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Marked length rigidity for symmetric spaces

Françoise Dal’Bo and Inkang Kim1

Abstract. We give conditions under which a homomorphism between two Zariski dense sub-
groups of connected semisimple Lie groups G and G′ without compact factors and with trivial
center can be extended to a continuous isomorphism between G and G′. In particular we prove
the marked length rigidity and the marked translation vector rigidity. This last result was mo-
tivated by a Margulis’s question.
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Introduction

Let G, G′ be connected semisimple Lie groups without compact factors and with
trivial center. The motivation of this paper is to give conditions under which a
homomorphism between two Zariski dense subgroups of G and G′ can be extended
to a continuous isomorphism between G and G′. Much study of lattices has been
done, yet the study of general co-infinite volume groups is relatively less carried
out. Fix a closed Weyl chamber A+ included in the Lie algebra of G. The trans-
lation vector v(g) of g ∈ G, is, by definition, the unique a ∈ A+ such that ea is
conjugate to the hyperbolic part of the Jordan decomposition of g (see section 1).
The Euclidean norm of v(g) is denoted `(g) and is called the length of g. If X is a
symmetric space associated to G, one has: `(g) = Inf

x∈X
d(x, g(x)). In the particular

case where G = PSL(n, R) and A+ is the set of diagonal matrices diag (a1, · · · , an)
with a1 ≥ · · · ≥ an, one has: v(g) = diag (Log |λ1|, · · ·Log |λn|) where λi is the
ith complex eigenvalue of g. Let Γ ⊂ G, the limit cone, L(Γ), associated to Γ is,
by definition, the smallest closed cone in A+ containing all v(γ) for γ ∈ Γ. An
important result due to Y. Benoist [1] says that the interior of L(Γ) is not empty, if
Γ is a Zariski dense group. The originality of this paper is to explore this property
to obtain strong rigidity results in a short and elementary way.

Let us give the main results.

1Partially supported by the KOSEF interdisciplinary grant 1999-2-101-5.
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Theorem A. Let Γ ⊂ G,Γ′ ⊂ G′ be Zariski dense subgroups. If ϕ is a surjective
homomorphism between Γ and Γ′ such that `(γ) = `(ϕ(γ)) for any γ ∈ Γ then ϕ
can be extended to a continuous isomorphism between G and G′.

Following the way of A. Parreau [15], we give applications of Theorem A to the
space of representations of an abstract group into G.

Theorem A is already known for symmetric spaces of rank 1 ([4], [11]) and
their products ([12]). For simple Lie groups it is shown in ([6]). Along this line,
Besson, Courtois, Gallot and Hamenstädt ([2], [9]) showed that, if M is a nega-
tively curved locally symmetric compact manifold and N is an arbitrary negatively
curved manifold which has the same marked length spectrum with M , then they
are isometric. Actually it is conjectured that two negatively curved compact man-
ifolds with the same marked length spectrum are isometric. This conjecture is
proved in dimension 2 ([14]).

The following theorem gives a positive answer to a Margulis’s question raised
during the rigidity conference at Paris in June 1998.

Theorem B. Suppose G = G′ and rank G ≥ 2. Let Γ,Γ′ be Zariski dense sub-
groups of G. If ϕ is a surjective homomorphism between Γ and Γ′ such that for all
γ ∈ Γ there exists k(γ) ∈ R∗ such that v(ϕ(γ)) = k(γ)v(γ), then ϕ can be extended
to a continuous automorphism of G.

We first study the simple case where G and G′ are simple. Using a criterion
of conjugacy proved in [6] we give a family of conditions (including conditions
of Theorems A and B) under which a surjective homomorphism between Zariski
dense subgroups can be extended.

1. Benoist’s theorem for limit cone

An element g of a real reductive connected linear group can be uniquely written
g = ehu where e si elliptic (all the eigenvalues have modulus 1), u is unipotent (u-
Id is nilpotent), h is hyperbolic (all the eigenvalues are real positive), and all three
commute. This decomposition is called the Jordan decomposition of g. If G =KAN
is any Iwasawa decomposition of a connected semisimple Lie group G, then e is
conjugate to an element in K, h is conjugate to an element in A and u is conjugate
to an element in N ([1], [7]). Fix a closed Weyl chamberA+ in the Lie algebra of G,
there exists a unique a ∈ A+, called the translation vector of g and denoted v(g),
such that h is conjugate to ea. Geometrically, if X is a symmetric space associated
to G, then ‖v(g)‖ = `(g) where `(g) = Inf

x∈X
d(x, g(x)) (see [15] for an interpretation

of v(g)). Let Γ be a subgroup of G, one defines the limit cone of Γ, denoted L(Γ),
as the smallest closed cone in A+ containing v(Γ). If G =PSL(2,R)×PSL(2,R) and

A+ = {(r1M, r2M)/r1, r2 ∈ R+} where M =
(

1 0
0 −1

)
, then L(Γ) is the closure
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of {(r`(γ1)M, r`(γ2)M)/r ∈ R+, (γ1, γ2) ∈ Γ} where `(γi) = 0 if γi is elliptic or
parabolic and `(γi) > 0 is the displacement of γi if γi is hyperbolic. The following
result, due to Y. Benoist, plays a key role in this paper.

Theorem 1.1 [1]. If Γ is a Zariski dense subgroup of G then L(Γ) is convex and
has nonempty interior.

In the particular case where Γ is a Zariski dense subgroup of PSL(2,R)×
PSL(2,R) associated to the diagonal action of two isomorphic Fuchsian groups

Γ1
ϕ−−−−→ Γ2, this theorem says that

{
`(γ1)

`(ϕ(γ1))
, γ1 ∈ Γ1

}
is an interval [a, b] ⊂

[0,∞] with a 6= b. This property was already remarked in the context of rank 1
semisimple groups by M. Burger [4] (see also [5]).

2. Rigidity results for simple groups

In this section one supposes that G and G′ are connected, noncompact, simple
Lie groups with trivial center. Let ϕ : Γ → Γ′ be a homomorphism between two
subgroups of G and G′. One defines the graph group Γϕ ⊂ G × G′ by Γϕ =
{(γ, ϕ(γ))/γ ∈ Γ}. The following result is proved in [6].

Criterion of conjugacy 2.1 [6]. Let ϕ be a surjective homomorphism between
two Zariski dense subgroups Γ, Γ′ included in connected non compact simple Lie
groups, G and G′, with trivial center. The following properties are equivalent:

1) ϕ can be extended to a continuous isomorphism between G and G′

2) Γϕ is not Zariski dense in G×G′.

This criterion is false if G a G′ are not simple. Take for example G =PSL(2,R)
and G′ = G × G. Denote A+ the closed Weyl chamber of G defined by A+ =

{rM/r ∈ R+} where M =
(

1 0
0 −1

)
. Let ϕ : Γ1 → Γ2 be an isomorphism between

non conjugate and non elementary Fuchsian groups. The groups Γ1 and Γ1ϕ

are Zariski dense subgroups respectively of G and G′. Consider the isomorphism
Ψ : Γ1 → Γ1ϕ defined by Ψ(γ) = (γ, ϕ(γ)). The limit cone of the graph group
associated to Ψ is included in {(rM, rM, sM)/r, s ∈ R+} ⊂ A+ × A+ and hence
has empty interior. According to Benoist’s theorem (section 1), Γ1Ψ is not Zariski
dense. On the other hand Ψ cannot be extended.

One deduces from the previous criterion the following corollary.

Corollary 2.2. Let Ad be the adjoint representation. If there exists an algebraic
relation satisfied by all (Ad (γ)), Ad (ϕ(γ)) with γ ∈ Γ, then ϕ can be extended to
a continuous isomorphism between G and G′.
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In the case where G =PSL(n, R), G′=PSL(n′, R) and ϕ preserves the trace,
Corollary 2.2 is proved in [16].

Remark that the condition `(γ) = `(ϕ(γ)) for each γ ∈ Γ is not in general
an algebraic condition. But in this case, since ‖v(γ)‖ = ‖v(ϕ(γ))‖ for γ ∈ Γ, the
limit cone of the graph group has empty interior. Applying Benoist’s theorem, one
concludes that Γϕ is not Zariski dense and hence that ϕ can be extended. More
generally, one has the following result.

Corollary 2.3. If the interior of L(Γϕ) is empty then ϕ can be extended to a
continuous isomorphism between G and G′.

Let us give three different conditions under which Γϕ is not Zariski dense and
hence ϕ can be extended:

1) `(γ) = `(ϕ(γ)) for any γ ∈ Γ.
2) v(γ) and v(ϕ(γ)) are colinear for any γ ∈ Γ.
3) The largest modulus of the complex eigenvalue or Ad (γ) equals the largest

one of Ad (ϕ(γ)) for any γ ∈ Γ.

Conditions 1) and 2) correspond to Theorems A and B when G and G′ are
simple. Contrary to the conditions 1) and 2), if ϕ satisfies condition 3) and G
and G′ are not simple, ϕ cannot be necessarily extended. For example, fix two
isomorphic Schottky groups ρ : Γ → Γ′ in PSL(2,R). Suppose that `(γ) > `(ρ(γ))
for each γ ∈ Γ (see [5] for the construction of such groups). Consider the iso-
morphism ϕ : Γ → Γρ defined by ϕ(γ) = (γ, ρ(γ)). The groups Γ,Γρ are Zariski
dense respectively in PSL(2,R) and PSL(2,R)× PSL(2,R) and the condition 3) is
satisfied but ϕ cannot be extended.

3. Proofs of Theorems A and B

In this section G and G′ denote connected semisimple groups with trivial center
and without compact factor. Such a group can be decomposed into a product of
connected noncompact simple groups with trivial center.

Lemma 3.1. Let Γ, Γ′ be Zariski dense subgroups of G and G′. Suppose that ϕ
is a surjective homomorphism between Γ and Γ′ and set Γϕ = {(γ, ϕ(γ))/γ ∈ Γ}.
The projections of the identity component of the Zariski closure of Γϕ into G and
G′ are surjective.

Proof. The Lie algebra G of G can be decomposed into a direct sum of simple
ideals G = F1 + · · · + Fn. Moreover each ideal of G is a direct sum of certain Fi

([10] corollary II.6.3). Let Gi be the connected Lie subgroup in G associated to Fi.
Since G has trivial center, G = G1×· · ·×Gn. Let H be the identity component of
the Zariski closure of Γϕ. Denote p the projection of H into G and Tp its tangent
map at identity. The image, F , of the Lie algebra of H by Tp is a non trivial
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subalgebra of G normalized by Γ. Since Γ is Zariski dense, F is an ideal and hence
F = Fi1 + · · ·+ Fik

, k ≤ n. This implies that p(H) = Gi1 × · · · ×Gik
. Since the

index of H in the Zariski closure of Γϕ is finite and Γ is Zariski dense, p(H) is
also Zariski dense. This proves that k = n and thus that p is surjective. Since ϕ
is surjective, the same argument holds for the projection of H into G′. ¤

Proof of Theorem A. Denote H the identity component of the Zariski closure of
Γϕ and H its Lie algebra. We want to prove that the projection p (resp. p′) of H
into G (resp. G′) is injective. Let us first show that H is semisimple. Consider its
solvable radical R ⊂ H. The image of R by the tangent map Tp of p at identity
is normalized by Γ. Since Γ is Zariski dense in G, Tp(R) is a solvable ideal. The
semi simplicity of G implies that Tp(R)is trivial. Since ϕ is surjective, the same
argument holds for p′. This shows that R is trivial. Fix a Cartan decomposition
H = P ′′+T ′′ of H, since G×G′ is semisimple, there exists a Cartan decomposition
P+T of the Lie algebra of G×G′ such that P ′′ ⊂ P and T ′′ ⊂ T ([10] VI exercise
8(i)). Choose a Weyl chamber W ⊂ P ′′ since P ′′ ⊂ P one has W ⊂ A × A′
where A and A′ are Cartan subalgebras of the Lie algebra G,G′ of G and G′. Let
us analyze Ker p. This group is normalized by Γ′ because ϕ is surjective. Since
Γ′ is Zariski dense and the center of G′ is trivial, either Ker p = {Id} or Ker p
is a normal non trivial Lie subgroup of G′. In the last case, denote I the Lie
algebra of the identity component of Ker p. One has I = I ′1 + · · · + I ′p where I ′j
are noncompact simple ideals of G′ such that G = I ′1 + · · · + I ′k with k ≥ p ([10]
corollary II.6.3). It follows that W contains an element a = (0, ω) ∈ A ×A′ with
‖ω‖ 6= 0. Since Γϕ ∩H is Zariski dense in H, according to Benoist’s theorem, the
interior of its limit cone, LW(Γϕ ∩ H), relatively to W, is not empty. Moreover
LW(Γϕ∩H) is included in S = {(u, u′) ∈ A×A′/‖u‖ = ‖u′‖} because ϕ preserves
the translation length and LW(Γϕ ∩ H) is included in the image of the limit
cone of Γϕ ∩ H relatively to A+ × A′+ by the Weyl group. Let b = (u, u′) an
element of the interior of LW(Γϕ ∩ H) ⊂ W. One can suppose ‖u‖ = ‖u′‖ = 1.
Since the interior of LW(Γϕ ∩ H) in W is not empty, the intersection of the
plane generated by a and b with LW(Γϕ ∩ H) contains an open disc. There is
a contradiction with the fact that the intersection of this plane with S is the
curve {αa + βb/2αβ 〈u′, ω〉+ α2‖ω‖2 = 0}. In conclusion p is injective. The same
argument holds for p′, because ϕ is surjective. Applying the lemma 3.1, one obtains
that p and p′ are bijective. Consider now the projections q (resp. q′) of the Zariski
closure Γ

Z

ϕ of Γϕ into G (resp. G′). The maps q and q′ are surjective. Let us prove
that they are injective. Take g ∈ Ker q, for any h ∈ H one has q(ghg−1h−1) = Id.
Since H is normalized by Γ

z

ϕ and p is injective, gh = hg. Using the fact that p′

is surjective one obtains p′(g)g′ = g′p′(g) for any g′ ∈ G′. Because the center of
G′ is trivial, g = Id. The same argument also holds for p′. Consider the map
f = p′ ◦ p−1, it is a continuous isomorphism between G and G′ whose restriction
to Γ coincides with ϕ. ¤
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Proof of Theorem B. The proof is similar to the previous one. Let us just adapt the
end of the proof of Theorem A, when we suppose that Ker p is nontrivial. Under
this assumption one obtains that W contains an element a = (0, ω) ∈ A×A with
ω 6= 0. Since v(γ) = k(γ)v(ϕ(γ)) for each γ ∈ Γ, the limit cone LA+×A+

(Γϕ∩H) is
included in T = {(u, u′) ∈ A+×A+/u and u′ are colinear} and hence LW(Γϕ∩H)
is included in ∪

g∈Weyl
gT where Weyl is the Weyl group of A ×A. The interior of

LW(Γϕ ∩ H) in W is not empty according to Benoist’s theorem. It follows that
for some g ∈ Weyl, the interior I of g(T ) is not empty in W. Let b = (u, u′) ∈ I.
Since rank G ≥ 2 one can assume that u′ is not colinear to w. The intersection
of the plane P generated by a and b with I contains an open disc. There is a
contradiction with the fact that the intersection of T with g−1(P ) is a line. ¤

4. Applications of Theorem A to the space of representations

Fix a connected semisimple Lie group G without compact factor and with trivial
center, and a symmetric space X associated to G. A subgroup of G is said parabolic
if it fix a point of the geometric boundary, ∂X, of X.

Proposition 4.1. Let Γ be a nonparabolic subgroup of G and H the identity
component of its identity component. If H 6= G then H fix a totally geodesic
submanifold Y $ X.

Proof. We thank P. Eberlein for helpful arguments.
The group H is reductive or parabolic ([3] corollaire 3.3). The last case cannot

happens because H is normalized by Γ which does not fix any point in ∂X. Let
H = ST be the Levi decomposition of H where S is a connected semisimple group
and T is a torus, corresponding to the identity component of the center of H. If
T 6= Id there exists a flat totally geodesic submanifold T ⊂ X such that T leaves
F invariant and F/T is compact ([8]). Let C be the union of all totally geodesic
submanifolds which are parallel to F . Then C is invariant under H and is isometric
to F × N for some closed convex subset N of X ([7] proposition 1.6.7). The set
C is a totally geodesic submanifold possible with boundary. Let Y be a complete
totally geodesic submanifold of X with dim Y = dim C. Since H leaves C invariant
and C contains an open subset of Y , the group H leaves Y invariant. Remark
that Y 6= X, because Y contains an Euclidean factor. If T = {Id} then H is
semisimple, and there exists x ∈ X such that Hx is a totally geodesic submanifold
([13] lemma 7.21). By the assumption H 6= G hence Hx 6= X. ¤

Let Γ be an abstract group and ρ : Γ → G be a faithful representation. One
always supposes that the Zariski closure, Hρ, of ρ(Γ) is connected and that the
representation ρ is nonparabolic (i.e. ρ(Γ) is nonparabolic). In this case Hρ is
reductive (proof of proposition 4.1). Let Hρ = ST be the Levi decomposition
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of Hρ. The representation ρ is noncompact if S is a semisimple group without
compact factor and with trivial center. Under this assumption Hρ stabilizes a
totally geodesic submanifold of X isometric to N×F where N is a symmetric space
on which S acts transitively and F is a flat on which T acts by translation with
compact quotient (proof of the proposition 4.1). Two faithful, nonparabolic and
noncompact representations ρ and ρ′ of Γ are equivalent if there exists a isometry
f between N × F and N ′ × F ′ such that f ◦ ρ(γ) = ρ′(γ) ◦ f for any γ ∈ Γ. If
F and F ′ are empty, then ρ and ρ′ are equivalent if and only if ρ′ ◦ ρ−1 can be
extended to a continuous isomorphism between S and S′ ([7] proposition 3.9.11).
Denote Rfnpnc/ ∼ the space of faithful nonparabolic,noncompact representations
of Γ into G, up to the equivalence relation. The following result is an application
of Theorem A to the context of representations.

Proposition 4.2. The map L: Rfnpnc/ ∼→ RΓ defined by L([ρ])(γ) = `(ρ(γ)) is
injective.

Proof. Let ρ1, ρ2 ∈ Rfnpnc. Suppose L(ρ1) = L(ρ2). For i = 1, 2 set Γi =
ρi(Γ),Hi = Hρi and Hi = SiTi.

a) Suppose S1 = S2 = {e}, then Ti acts by translation on the flat (Fi, 〈〉i) and
Fi/Ti is compact. Let us identify ρi(γ) with its translation vector. Choose a basis,
ρ1(γ1), · · · , ρ1(γn) of F1, such a basis exists because Γ1 is Zariski dense in T1. For
γ ∈ Γ, write ρ1(γ) =

∑n
i=1 aiρ1(γi) and ρ2(γ) =

∑n
i=1 biρ2(γi) + ω where ω is

orthogonal to each ρ2(γi). Since ‖ρ1(γ)‖ = ‖ρ2(γ)‖, one has 〈ρ1(γ), ρ1(γ′)〉1 =
〈ρ2(γ), ρ2(γ′)〉2 for any γ, γ′ ∈ Γ. Put cij = 〈ρ1(γi), ρ1(γj〉1 = 〈ρ2(γi), ρ2(γj)〉2.
One has 〈ρ1(γ), ρ1(γj)〉1 =

∑n
i=1 aicij and 〈ρ2(γ), ρ2(γj)〉1 =

∑n
i=1 bicij hence∑n

i=1(ai − bi)cij = 0 for any 1 ≤ j ≤ n. This proves that ai = bi. Moreover
‖ρ1(γ)‖ = ‖ρ2(γ)‖ hence ω = 0. One thus obtains ρ2(γ) =

∑n
i=1 aiρ2(γi) and dim

F2 = n because Γ2 is Zariski dense in T2. The linear map f : F1 → F2 defined by
f(ρ1(γi)) = ρ2(γi) is an isometry satisfying f ◦ρ1(γ) = ρ2(γ)◦f , hence [ρ1] = [ρ2].

b) Suppose S1 6= {e}, then S2 6= {e}. Decompose Si into a product of non-
compact simple factors with trivial center Si = Si1 × · · · × Siki

and denote pis

the projection of Si into Sis. Since Γi is Zariski dense in Si × Ti then pis(Γ) is
Zariski dense in Sis. Set D = [Γ,Γ] and Di = ρi(D). The group Di is normalized
by Γi and is included in Si, hence one can suppose that the Zariski closure of
Di equals Si1 × · · · × Sini

with ni ≤ ki. Moreover ni = ki because pis(Di) is
normalized by pis(Γ) which is Zariski dense in Sis and the center of Sis is trivial.
In conclusion Di is Zariski dense in Si. By assumption `(ρ1(d)) = `(ρ2(d)) for
any d ∈ D. One deduces from Theorem A that the restriction of ρ2 ◦ ρ−1

1 to D1

can be extended to a continuous isomorphism ϕ between S1 and S2. Up to ϕ,
one can suppose S1 = S2 and ρ1(d) = ρ2(d) for any d ∈ D. Let γ ∈ Γ, since
ρ1(γdγ−1) = ρ2(γdγ−1) and ρ1(d) = ρ2(d), the projection of ρ−1

2 (γ)ρ1(γ) into S1

commutes with all ρ1(d) Since D1 is Zariski dense and the center of S1 is trivial,
the projection of ρ−1

2 (γ)ρ1(γ) into S1 is trivial. Consider now the projection pi of
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Γi into Ti. One has `(p1 ◦ ρ1(γ)) = `(p2 ◦ ρ2(γ)), moreover pi(Γi) is Zariski dense
in Ti. Using arguments developped in a), one obtains the existence of a isometry
f : F1 → F2 such that f ◦ (p1 ◦ ρ1(γ)) = p2 ◦ ρ2(γ) ◦ f , hence [ρ1] = [ρ2]. ¤

The following part is inspired by the section 5 of A. Parreau’s thesis ([15]).
Let us consider the particular case where Γ is an infinite group of finite type. Fix
a finite set, S, of generators. One associates to a representation ρ : Γ → G its
minimal displacement, λ(ρ) = Inf

x∈X
(Sup

s∈S
d(x, ρ(s)(x)). If λ(ρ) = 0 there exists a

sequence (xn)n≥1 in X such that lim
n

d(xn, ρ(s)(xn)) = 0 for any s ∈ S. Up to a

subsequence one can suppose that (xn)n≥1 converges in X∪∂X. If lim
n

xn = x ∈ X

then ρ(s)(x) = x for any s ∈ S and hence ρ(Γ) belongs to a compact subgroup.
Otherwise lim

n
xn = ξ ∈ ∂X and ρ(s)(ξ) = ξ for any s ∈ S. In this case ρ is

parabolic. In conclusion, if ρ ∈ Rfnpnc then λ(ρ) > 0. Let us consider the map
V

λ
: Rfnpnc/ ∼→ RΓ defined by L([ρ])(γ) =

`(ρ(γ))
λ(ρ)

. This map is continuous ([15]

propositions V.2.3 and V.3.8) and its image is included in a compact set ([15]
proposition V.4.1). One deduces from these properties and from the proposition
4.2 the following result.

Corollary 4.3. The map
L

λ
: Rfnpnc/ ∼→ RΓ is injective, continuous and its

image is included in a compact set.
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