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Abstract. We show that the dω-cohomology is isomorphic to a conformally invariant usual de
Rham cohomology of an appropriate cover. We also prove a Moser theorem for locally conformal
symplectic (lcs) forms. We point out a connection between lcs geometry and contact geometry.
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1. Preliminaries

A locally conformal symplectic (lcs) form on a smooth manifold M is a non-
degenerate 2-form Ω such that there exists an open cover U = (Ui) and smooth
positive functions λi on Ui such that

Ωi = λi(Ω|Ui
)

is a symplectic form on Ui. If for all i, λi = 1, the form Ω is a symplectic form.
Lee [15] observed that the 1-forms {d(lnλi)} fit together into a closed 1-form ω
such that

dΩ = −ω ∧ Ω. (1)

Such 1-form is uniquely determined by Ω and is called the Lee form of Ω.
Conversely, if a non-degenerate 2-form Ω satisfies (1), and U = (U)i is an open

cover with contractible open sets, then ω|Ui
= d ln λi, for some positive function

λi on Ui and λiΩ|Ui
is symplectic.

Two lcs forms Ω, Ω′ on a smooth manifold M are said to be (conformally)
equivalent if Ω′ = fΩ, for some positive function f on M .

A locally conformal symplectic (lcs) structure S on a smooth manifold M is an
equivalence class of lcs forms.
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The couple (M,S) is called a lcs manifold. If Ω is a representative of S, we
write Ω ∈ S. If ω = 0 in the definition above, then Ω is a symplectic form. In that
case the lcs structure S is said to be a global conformal symplectic (gcs) structure
and we write S = O.

Let (M,S) be a lcs manifold, and let Ω ∈ S and ω its Lee form. If Ω′ = λΩ for
some positive function λ, then an immediate calculation shows that the Lee form
of Ω′ is ω′ = ω − d ln(λ).

Hence the cohomology class [ω] ∈ H1(M, R) is an invariant LS of S, we call
the Lee class of S. Clearly, S = O iff LS = 0.

Locally conformal symplectic forms were introduced by Lee [15], and have been
extensively studied by Vaisman [18], [19]. The first properties of their automor-
phism groups were established by Lefebvre [16].

We will assume that all manifolds considered are connected, but not necessarily
compact, and have dimension at least 4. (In dimension 2, a lcs form is simply a
volume-form, and the corresponding structure is an orientation.)

For any closed 1-form ω on a smooth manifold M , the operator dω which assigns
to a p-form γ the (p + 1)-form

dωγ = dγ + ω ∧ γ

is a coboundary operator, i.e. dω ◦ dω = 0.
The cohomology of differential forms with this coboundary operator will be

denoted by H∗
ω(M) and will be called the dω-cohomology. For more information

on this cohomology, see [11] or [19].
A lcs form Ω is precisely a non-degenerate dω closed 2-form (where ω is the

Lee form).
This cohomology is “almost” an invariant of the lcs structure S = [Ω]: given

Ω′ ∈ S, there is an isomorphism between Hω(M) and Hω′(M), (ω′ the Lee form
of Ω′), depending on the choice of λ such that ω′ = ω − d lnλ. More precisely the
isomorphism is given by α 7→ λα.

In section 3, we show that the cA cohomology constructed in [5], [6], is isomor-
phic to Hω(M). This shows that the dω cohomology (which is a sort of twisted de
Rham cohomology of M) is a conformally invariant usual de Rham cohomology of
an appropiate cover of M .

Let DiffS(M) be the group of all automorphisms of a lcs structure S on a
smooth manifold M . It is clear that for any representative Ω ∈ S, then DiffS(M)
is the set of all diffeomorphisms φ of M such that φ∗Ω = fφΩ, where fφ is a
nowhere zero (positive) smooth function on M .

We also may choose (or fix) an underlying Ω ∈ S, and consider the group
GΩ(M) of diffeomorphisms of M which preserve the form Ω. This is a non-
invariant subgroup of DiffS(M).

The Lie algebra XS(M) of infinitesimal automorphisms of S, consists of vector
fields X on M such that LXΩ = (uΩ(X))Ω, where uΩ(X) is a smooth function on
M . Here LX stands for the Lie derivative in the direction X. We denote XS(M)c



Vol. 77 (2002) Some properties of locally conformal symplectic structures 385

the subalgebra of compact supported automorphisms. We will also consider the
subalgebra XΩ(M) of XS(M) consisting of vector fields X such that LXΩ = 0.

Definition. A lcs form Ω on M is said to be of the first kind if there exists
X ∈ XΩ(M), with ω(X) 6= 0, where ω is the corresponding Lee form. Otherwise
it is said to be of the second kind [18].

A lcs structure S on M is said to be of the first kind if there is a representative
Ω ∈ S of the first kind. The lcs structure S is said to be of the second kind
otherwise.

Warning. Vaisman [18] observed that a first kind lcs structure admits represen-
tatives which are second kind lcs forms.

For X ∈ XΩ(M), and M connected, ω(X), is a constant number since:

0=dLXΩ=LXdΩ=LX(−ω ∧ Ω)=−((LXω) ∧ Ω + ω ∧ LXΩ)=−(di(X)ω) ∧ Ω

and Ω is non-degenerate.
Hence if Ω is a first kind lcs form with Lee form ω, the condition:

There is X ∈ XΩ(M), with ω(X) 6= 0

is equivalent to saying that there a 1-form θ such that

Ω = dθ + ω ∧ θ

Indeed just normalize X as above so that ω(X) = 1 and set θ = i(X)Ω. First kind
lcs forms are dω exact.

2. Examples

We describe here a few examples of lcs forms. The reader can consult the book
[9] for more examples.

2.1. Examples connected with Contact Geometry

A contact form α on a (2n+1) dimensional manifold N is a 1-form α such that
α ∧ (dα)n is everywhere non-zero. Two contact forms α and α′ are equivalent
if there is a smooth positive function f on N such that α′ = fα. The contact
structure C(α), determined by α is the equivalence class of α.

Consider the cartesian product M = N ×S1, and the projections p1 : M → N ,
p2 : M → S1. Let β be the canonical 1-form on S1 with integral 1. If we set
θ = p∗1α and ω = p∗2β, then

Ω = dθ + ω ∧ θ
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is non-degenerate and dΩ = −ω∧dθ = −ω∧(Ω−ω∧θ) = −ω∧Ω+ω∧ω∧θ = −ω∧Ω.
Hence the conformal class of Ω is a lcs structure on M , we denote S(α). This
structure is of the first kind.

The following result will be proved in section 4.

Theorem 1. The lcs structure S(α) depends only on the contact structure C(α).
In fact there is a well defined mapping from the group DiffC(α)(M) of automor-
phisms of the contact structure C(α) (the group of contact diffeomorphisms of
(M,α)) to the group DiffS(α)(M × S1).

2.2. Deformations of lcs structures

If we add a 2-form ηε C0 close to 0 to a lcs form Ω, the resulting form Ωε = Ω+ηε

is again non-degenerate. An immediate calculation gives:

dΩε = −ω ∧ Ωε + (dηε + ω ∧ ηε) = −ω ∧ Ωε + dωηε.

Hence if ηε is dω closed, then Ωε is a lcs form with ω as Lee form. For instance
take ηε = dωγε where γε is C1 close to zero.

To construct general deformations of a lcs form Ω, with Lee form ω, we may
look for 2-forms ηε C0 closed to zero, and closed 1-forms ρ (not necessarily small)
such that dΩε = −(ω + ρ)∧Ωε. In that connection, we note that if Lcs(M) is the
set of all lcs forms on a smooth manifold M , and F∗(M) the space of differential
forms, both with the C∞ topology, Lcs(M) is not an open subset of F∗(M).

Note that if the lcs form Ω is of first kind and we add to it a non-dω-exact
form, the resulting lcs form is not dω-exact, hence of the second kind.

We have the following fact:

Theorem 2. Let (M,S) be a compact lcs manifold, and let Ω ∈ S be a represen-
tative, with Lee form ω. Then for any dω exact 2-form ηε, C0 close to zero, the
lcs form Ωε = Ω + ηε represents a lcs structure equivalent to S.

Hence the non-trivial deformations of lcs structures are parametrized by ele-
ments of the second cohomology group H2

ω(M).

2.3. Lcs on cotangent bundles [12]

Let M = T ∗(N) be the total space of the cotangent bundle π : T ∗(N) → N over a
smooth manifold N . Let ΛN be the Liouville 1-form on M and α a closed 1-form
on N , then

Ωα = dωΛN

where ω = π∗α, is a lcs form on M . The conformal structure defined by this lcs
form depends only on the cohomology class of α.
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3. The cA -cohomology and the dω-cohomology

For any closed 1-form ω on a smooth manifold M , the operator dω which assigns
to a p-form γ the (p + 1)-form

dωγ = dγ + ω ∧ γ

is a coboundary operator, i.e. dω ◦ dω = 0.
The cohomology of differential forms with this coboundary operator will be

denoted by H∗
ω(M) and will be called the dω-cohomology. For more information

on this cohomology, see [11] or [19]. For instance, it was proved in [19] that the
groups Hp

ω(M) are isomorphic to the cohomology groups of M with coefficients in
the sheaf Fω(M) of germs of smooth functions f on M such that dωf = 0.

In this section, we give another interpretation of the dω cohomology.
One associates with a closed 1-form ω on a smooth manifold M the minimum

regular cover π : M̃ → M over which the 1-form ω pulls back to an exact 1-
form. The manifold M̃ is a connected component of the sheaf of germs of smooth
functions f on M such that ω = df [10].

Let λ : M̃ → R be a positive function on M̃ such that

π∗ω = d(lnλ).

It is well known that the group A of automorphisms of the covering M̃ , is
isomorphic to the group of periods of ω [10]. We will need the following:

Lemma 1 [6]. For any τ ∈ A, the function

(λ ◦ τ)/λ

is a constant, we denote cτ , independent of the choice of λ and

τ 7→ cτ

is a group homomorphism c from A to the multiplicative group R+ of positive real
numbers.

For the convenience of the reader, we give here the proof [6].

Proof. Clearly if λ′ = aλ for some constant a, λ′ ◦ τ/λ′ = λ ◦ τ/λ.
For any τ ∈ A, we have:

d(ln(λ ◦ τ)− lnλ)) = τ∗π∗ω − π∗ω = (πτ)∗ω − π∗ω = π∗ω − π∗ω = 0.

Hence ln(λ ◦ τ/λ) = K, a constant and λ ◦ τ/λ = eK = cτ .
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If τ, τ ′ ∈ A:

cττ ′ = (λ ◦ ττ ′)/λ = ((λ ◦ (ττ ′))/(λ ◦ τ ′)).(λ ◦ τ ′)/λ

= ((λ ◦ τ)/λ) ◦ τ ′).((λ ◦ τ ′)/λ) = ((λ ◦ τ)/λ).((λ ◦ τ ′)/λ) = cτ .cτ ′ . ¤

The set F∗cA(M) of all differential forms α on M̃ such that τ∗α = cτα for all
τ ∈ A, is a subcomplex of the de Rham complex of M̃ . We denote its cohomology
by H∗

cA(M) and call it the conformally A-invariant cohomology of M . Clearly, if
the cohomology class of ω is trivial, then H∗

cA(M) coincides with the de Rham
cohomology of M .

Remark 1. For any differential form α on M , then Uα = λπ∗α ∈ F∗cA(M)
Indeed, for any τ ∈ A,

τ∗Uα = λ ◦ τ · τ∗π∗α =
λ ◦ τ

λ
· λ · (π ◦ τ)∗α = cτ (λπ∗α) = cτUα. ¤

Lemma 2. For any differential form, α, dωα = 0 if and only if d(λπ∗α) = 0.

Proof. Suppose dωα = 0. Then: d(λπ∗α) = dλ∧π∗α +λπ∗(−ω ∧α) = dλ∧π∗α−
λd(lnλ) ∧ π∗α = 0.

Suppose now d(λπ∗α) = 0, and compute:
λπ∗(dωα) = λπ∗dα + λπ∗ω ∧ π∗α = λπ∗dα + λd(lnλ) ∧ π∗α = d(λπ∗α) = 0.
Since λ is a positive function and π is a local diffeomorphism, dωα = 0. ¤

Theorem 3. H∗
cA(M) is (non-canonically) isomorphic with H∗

ω(M)

Proof. The natural homomorphism

H∗
ω(M) → H∗

cA(M) [α] 7→ [λπ∗α]

is onto: indeed, let β be a form such that dβ = 0 and τ∗β = cτβ for all τ ∈ A.
Then:

τ∗(β/λ) = τ∗β/λ ◦ τ = (cτ .β/λ).(λ/λ ◦ τ) = β/λ

for all τ ∈ A. Hence β/λ is basic, i.e. there is a form α on M such that β/λ = π∗α.
Since β = λπ∗α is closed, α is dω closed, by Lemma 2.

It is also one-to-one: suppose dωα = 0 and λπ∗α = dρ with τ∗ρ = cτρ for all
τ ∈ A. Then: rewriting the equations above with β replaced by ρ, we see that ρ/λ
is basic, i.e. there is a formγ on M such that ρ/λ = π∗γ.

Let us now compute: π∗(dωγ) = π∗(dγ + ω ∧ γ) = d(ρ/λ) + d ln λ ∧ ρ/λ =
dρ/λ− dλ/(λ)2 ∧ ρ + (dλ/λ) ∧ ρ/λ = dρ/λ = π∗α.



Vol. 77 (2002) Some properties of locally conformal symplectic structures 389

Since π is a covering map, α = dωγ. ¤

In [5], [6], we had already observed that HcA(M) is a quotient of Hω(M).
We deduce the following well known fact ([11])

Corollary. If ω is a non-exact 1-form on a smooth manifold M , H0
ω(M) = 0.

Proof. An element of H0
ω(M) ≈ H0

cA(M) is represented by a constant K such that
K ◦ τ = K = cτK for all τ ∈ A. Since ω is not exact, there is a τ ∈ A with cτ 6= 1.
Hence K = 0. ¤

Let (M,S) be a lcs manifold, Ω ∈ S a representative, with Lee form ω. Let
π : M̃ → M be the minimum regular covering of M associated with the 1-form ω
and let λ : M̃ → R be a positive function on M̃ such that

π∗ω = d(lnλ).

Then Ω̃ = λ(π∗Ω) is a symplectic form on M̃ and its conformal class S̃ is inde-
pendent of the choice of Ω ∈ S and of λ.

Note that given a lcs Ω ∈ S, with Lee form ω, the cohomology classes [Ω] ∈
H2

ω(M) and [λπ∗Ω] ∈ H2
cA(M) are not invariants of the lcs structure S.

The cohomology groups H∗
cA(M) and the dω cohomology are “almost” invari-

ants of the lcs structure: since if ω and ω′ = ω − d ln λ are two Lee forms, then
Hω(M) is isomorphic to Hω′(M), by the isomorphism α → λα, which unfortu-
nately depends on the choice of λ. Two such λ’s differ by a constant.

4. Equivalence of lcs structures

We have the following Moser type result:

Theorem 4. Let Ωt be a smooth family of lcs forms on a compact manifold M .
Suppose that for all t, the Lee form of Ωt is the same 1-form ω and that Λt =
Ωt −Ω0 is dω- exact, then there exist a smooth family of diffeomorphisms φt with
φ0 = id and a smooth family of functions ft such that φ∗t Ωt = ftΩ0.

Remark 2. If the smooth family of lcs forms Ωt has a smooth family ωt of
corresponding Lee forms, and we write ωt = ω0+d ln ut for some positive functions
ut (see the beginning of the proof of Theorem 5), then Ω′t = utΩt has ω0 as Lee
form for all t. Hence assuming Λ′t = Ω′t − Ω′0 to be dω0-exact, yields that Ωt

represent equivalent lcs structures for all t.

Proof. By assumption, ∂/∂t(Ωt) is dω exact for all t. A result of [12], (Lemma 1.9)
asserts that there exists a smooth family of 1-forms ηt such that

∂/∂t(Ωt) = dωηt.
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The argument used to find a smooth lifting of dω-coboundaries is the same as in
[1], (Lemma II.2.2), which is an application of Grothendieck’s theory of nuclear
topological vector spaces. This replaces the Hodge–de Rham theorem in Moser’s
theorem for symplectic forms [17].

Let Ω̃t = λπ∗Ωt, where π : M̃ → M is the minimum regular cover and λ is
such that π∗ω = d lnλ. We define a smooth family of vector fields Xt on M̃ by:

i(Xt)Ω̃t = −λπ∗ηt

Since d(λπ∗ηt) = λπ∗dωηt, we have:

LXt
Ω̃t + ∂/∂t(Ω̃t) = 0.

We claim that Xt is complete. Hence it defines a smooth family of diffeomorphisms
ψt of M̃ such that ψ∗t Ω̃t = Ω̃0.

This argument is Moser’s standard path method [17].
To prove that Xt is complete, it is enough to show that it is basic, i.e., there is

a family of vector fields Yt on M such that π∗Xt = Yt. Since M is compact, Yt is
integrable, and so will be Xt.

For any τ ∈ A, we easily see that:

τ∗Ω̃t = cτ Ω̃t,

and
τ∗(λπ∗ηt) = cτ (λπ∗ηt).

We therefore have:

−cτ i(Xt)Ω̃t) = τ∗(λπ∗ηt) = −τ∗(i(Xt)Ω̃t) = −i((τ)−1)∗Xt)(τ∗Ω̃t)

= −i((τ)−1)∗Xt)(cτ Ω̃t) = −cτ i((τ)−1)∗Xt)(Ω̃t).

Hence
cτ i((τ)−1)∗Xt)(Ω̃t) = cτ i(Xt)Ω̃t).

Since cτ 6= 0, we have: i((τ)−1)∗Xt)(Ω̃t) = i(Xt)Ω̃t. Therefore ((τ)−1)∗Xt) = Xt.
Let now φt be the family of diffeomorphisms of M covered by ψt, i.e. π ◦ ψt =

φt ◦ π, then ψ∗t Ω̃t = (λt ◦ ψt).π∗(φ∗t Ωt) = λ0π
∗Ω0. Hence π∗(φ∗t Ωt) = (λ0/(λt ◦

φt))π∗Ω0. For all τ ∈ A, we have:

(λ0/(λt ◦ φt))π∗Ω0 = π∗(φ∗t Ωt) = τ∗π∗(φ∗t Ωt) = ((λ0/(λt ◦ φt) ◦ τ)π∗Ω0.

Therefore, (λ0/λt ◦ φt) is invariant by all τ ∈ A, hence (λ0/λt ◦ φt) = ft ◦ π
for some function ft on M . We thus get that π∗(φ∗t Ωt) = π∗(ftΩ0), and hence
φ∗t Ωt = ftΩ0.

This finishes the proof of Theorem 4. ¤
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Exactly like in Moser’s theorem in Symplectic Geometry [17], there are ex-
amples in which we get smooth liftings of the coboundaries Λt without using the
deep lemma (which is an application of Grothendieck’s theory of topological vector
spaces). The most trivial example is provided by Theorem 2: if ηε = dωγε, then
Λt = dω(tγε)

In the following situation, we also have an immediate smooth lifting of the
coboundaries Λt.

Theorem 5. Let Ωt be a smooth family of lcs forms on a compact manifold M ,
with a smooth family ωt of Lee forms having a fixed de Rham cohomology, i.e.
[ω0] = [ωt],∀t, and such that there exists a smooth family θt, with Ωt = dθt+ωt∧θt,
then the lcs forms Ωt define equivalent lcs structures.

Proof. There is a smooth family of positive functions ut on M with ωt = ω0 +
d ln(ut) and u0 = 1. Indeed, since (∂/∂t)(ωt) is exact, there is a smooth family of
positive functions vt such that (∂/∂t)(ωt) = d ln(vt). Use for instance the Hodge–
de Rham decomposition theorem. Now integrate both side and set ut =

∫ t

0 (vs)ds.
Let π : M̃ → M be the minimum cover associated with ω0, and let λ0 : M̃ → R

be a positive function such that π∗ω0 = d lnλ0. Then π∗ωt = d ln λ0+d ln(ut◦π) =
d ln λt with λt = λ0.(ut ◦ π). We have:

Ω̃t = λtπ
∗Ωt = λtπ

∗(dθt) + λtd lnλt ∧ π∗θt = d(λtπ
∗θt).

Setting ∂/∂t(λtπ
∗θt) = ρt, we define a smooth family of vector fields Xt on M̃

by:
i(Xt)Ω̃t = −ρt.

We have:
LXt

Ω̃t + ∂/∂t(Ω̃t) = 0.

We claim that Xt is complete. Hence it defines a smooth family of diffeomorphisms
ψt of M̃ such that ψ∗t Ω̃t = Ω̃0.

From here proceed like in the proof of Theorem 3. ¤

Remark 3. Let ut be a smooth family of positive functions such that ωt =
ω0 + d ln ut. Then Ω′t = utΩt has ω0 as Lee form for all t. Moreover setting
θ′t = utθt, we have:

dω0(θ
′
t)=utdθt +

dut

ut
∧ (utθt) +ω0 ∧utθt =ut(dθt + (d ln ut + ω0)∧ θt)=utΩt =Ω′t.

Hence Ω′t = dω0(θ
′
t). The coboundary Λ′t = Ω′t − Ω′0 has the smooth lifting

dω0(θ
′
t − θ′0).

Proof of Theorem 1. Theorem 1 is a consequence of Theorem 5 since two contact
forms α, α′ define the same contact structure if α′ = wα, with w a smooth positive
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function. Now set αt = exp(t ln(w))α. The family of lcs forms is Ωt = dθt +ω∧ θt

with θt = p∗1αt.
The mapping ρ : DiffC(α)(M) → DiffS(α)(M × S1) comes from the proof. For

h ∈ DiffC(α)(M), h∗α = w.α, then the diffeomorphism φ1 above obtained using
Ωt = dθt + ω ∧ θt, with θt = p∗1αt and αt = exp(t. ln(w))α, takes Ω1 to aΩ0.
Taking a path from hα to α, which does not reverse the first one, for instance
α′t = (t + (1 − t)h)α, θ′t = p∗1α

′
t and Ω′t = dθ′t + ω ∧ θ′t, get a diffeomorphism φ1

taking Ω0 back to a multiple of Ω1. Now set ρ(h) = φ1 ◦ ψ1. ¤

5. Invariants of lcs structures

Given a lcs manifold (M,S), we have considered the following objects attached
to S:

1. The cohomology class of the Lee form ω of any representative lcs form Ω ∈ S.
We saw that this is an invariant LS , we called the Lee class of S. The group A of
periods of ω is an object depending only on the conformal class S.

2. We considered the minimum cover of M which has a group of deck transfor-
mations isomorphic with the group A of periods of ω as group of automorphisms,
and the cA cohomology.

In Proposition 1, we gather other invariants built using the automorphisms of
the lcs structure.

If G is a Lie algebra and K is a G-module, we denote by H∗(G,K), the coho-
mology of G with coefficients in K [14]. This is the cohomology of the complex
(C∗(G,K), δ) where p-cochains are p-linear alternating mappings on G with values
in K and the coboundary operator is given by:

∂f(X1, . . . , Xp+1) =
∑

i

(−1)i+1Xi · f(X1, . . . , X̂i, . . . Xp+1)

+
∑
i≤j

(−1)i+jf([Xi, Xj ], . . . , X̂i, . . . X̂j , . . . ).

We also consider the cohomology H∗(G,K) of an (abstract) group G into a
G-module K [13]. The p-cochains now are mappings from Gp to K and the
coboundary operator δ is given by

δg(a0, . . . , ap) = a0 · c(a1, . . . , ap)−
( ∑

i

(−1)ic(a0, . . . , aiai+1, . . . ap)
)

+ (−1)p+1c(a0, . . . , ap−1).

H1(G,K) is the quotient of derivations (1-cocycles) by inner derivations (co-
boundaries). Recall that derivations are maps d : G → K such that d(gh) =
g.d(h) + dg and an inner derivation is a map v : G → K such that there exists
k ∈ K such that v(g) = g.k − k.
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H1(G,K) is the quotient of the space of linear maps v : G → K such that
u([X,Y ]) = X.u(Y )− Y.u(X) (1-cocycles), modulo (the coboundaries) consisting
of linear maps v such that there exists k ∈ K with v(X) = X.k, for all X,Y ∈ G.

Proposition 1. Let S be a lcs structure on M , and Ω ∈ S with Lee form ω.
1. The map DΩ : DiffS(M) → C∞(M), φ 7→ ln(fφ−1), if φ∗Ω = fφΩ is a

1-cocycle on DiffS(M) whose cohomology class aS ∈ H1(DiffS(M), C∞(M)) is
independent of the choice of Ω ∈ S, i.e. an invariant of S.

2. The map dΩ : XS(M) → C∞(M), X 7→ uΩ(X), where LXΩ = (uΩ(X))Ω,
is a 1-cocycle, whose cohomology class bS ∈ H1(XS(M), C∞(M)) is independent
of the choice of Ω ∈ S, i.e., an invariant of S.

3. The map ω̂ : XS(M) → C∞(M), X 7→ ω(X) is a 1-cocycle, whose cohomol-
ogy class cS ∈ H1(XS(M), C∞(M)) is independent of the choice of Ω ∈ S, i.e. an
invariant of S.

4. The sum dΩ + ω̂ is a 1-cocycle on XS(M) with values in R, hence a homo-
morphism l, called the extended Lee homomorphism, an invariant of S.

5. Suppose M is compact and fix a riemannian metric. For each h ∈ DiffS(M)
(not even homotopic to the identity) h∗ω − ω is an exact 1-form. Let uh be the
unique function provided by the Hodge decomposition of h∗ω−ω such that h∗ω−ω =
duh.

For h, h′ ∈ DiffS(M):

(h, h′) 7→ uh ◦ h′ + uh′ − uhh′

is a 2-cocycle Kω with values in R. Its cohomology class in H2(DiffS(M), R) is
an invariant KS of S.

Statements 1, and 2 have been observed in [2]. The statement 3 is obvious,
since the coboundary operator in the Gelfand–Fucks cohomology (cohomology on
Lie algebras of vector fields) is the same as in the de Rham cohomology.

The class cS may be called the Gelfand–Fucks class of S.
Statement 4 was proved by Vaisman [18]. See also [6].
Statement 5 was proved in [8]. The Hodge–de Rham theory gives a smooth

lifting of de Rham coboundaries: i.e. any exact p-form θ determines uniquely a
(p − 1)-form α such that θ = dα as follows: let δ be the codifferential, and G
the Green operator defined by a riemannian metric, then α = δG(θ). Here the
function uh is uh = δ(G(h∗ω − ω)). See for instance [3].

Remark 4. We can define similar invariants using objects with compact support,
and denote them by ac

S , bc
S , cc

S .

Definition. The structure S is called inessential if there exists Ω∗ ∈ S such that
GΩ∗(M) = DiffS(M). The structure S is called essential otherwise.

The following fact was observed in [4]:
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Proposition 2. Let (M,S) be a lcs manifold. Then S is inessential iff aS = 0.

The connection between these invariants, and the problem of essentiality, and
globality of locally conformal structure is given by the following:

Theorem 6. Let (M,S) be a lcs manifold.
1. If aS = 0, then S = O. Furthermore, the Lee homomorphism is trivial, and

the structure S is of the second kind. Thus inessential structures are of the second
kind. This also says that if S is of the first kind, then aS 6= 0.

2. If M is compact, then S = O implies that aS = 0.
3. The Gelfand–Fucks class cS vanishes iff the Lee class LS does.
4. If M is compact, the vanishing of one of the four classes aS , bS , cS , LS ,

implies the vanishing of the remaining three classes.

We will need the following “local transitivity” result. Lefebvre’s [16] proved it
away from the zeros of the Lee form. Since for any point, the lcs structure can be
represented by a lcs form with Lee form not vanishing at that point, Lefebvre’s
argument applies. For the convenience of the reader, we rewrote it in our style.

Theorem 7. Let (M,S) be a lcs manifold of dimension 2n. For each x ∈ M ,
there exist 2n vector fields V x

j ∈ XS(M) with arbitrarily small compact support
in an open neighborhood of x and such that {V x

j (x)}j=1,...,2n form a basis of the
tangent space TxM .

Proof. 1. For each point x ∈ M , there is Ω ∈ S, with Lee form ω such that
ω(x) 6= 0. Indeed, if the Lee form ω of Ω ∈ S vanishes at x, consider a contractible
neighborhood U of x at which ω|U = d ln(λ), and choose a smooth positive function
ρ, constant outside of U with dρ(x) 6= 0 and d lnλ 6= d ln ρ on a neighborhood of
x. The form ρΩ ∈ S and has Lee form ω′ = ω − d ln(ρ). The new Lee form does
not vanish at x (and in a neighborhood).

2. Any function u on an open set U where fΩ|U is symplectic defines a vector
field Xu on U by the equation:

i(Xu)fΩ|U) = d(fu).

A direct calculation shows that LXu
Ω|U) = (−Xu · ln f)Ω [18].

3. The form Ω ∈ S above has a Lee form ω not vanishing on an open neigh-
borhood V ⊂ U of x. Hence, there are local coordinates (x1, . . . xn, y1, . . . , yn)
defined on a smaller neighborhood V1 of x such that y1 6= 0, and

Ω|U1 = y1

( n∑
k=1

dxk ∧ dyk

)
.

Let µ be a smooth function, supported in V2 and which is equal to 1 on a closed
neighborhood F of x, where F ⊂ V2 ⊂ V1.
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We define 2n vector fields by:

i(Y1)
( 1

y1
Ω|V1

)
= d

(
µ

y2
1

y1

)
= d(µy1)

and for j = 2, . . . , n,

i(Yj)
( 1

y1
Ω|V1

)
= d

(
µ

yj

y1

)
.

For j = 1, . . . , n define Xj by:

i(Xj)
( 1

y1
Ω|V1

)
= d

(
µ

xj

y1

)
.

Then Xi, Yi are smooth vector fields on M with compact support in V1, which all
belong to XS(M)c.

Let us note ej = ∂/∂xj and e′j = ∂/∂yj , then on F , we have

Y1 = e1, Yj =
1
y1

ej − yj

y2
1

e1, j = 2, . . . , n

Xj = − 1
y1

e′j −
xj

y2
1

e1, j = 1, . . . , n.

Writing that
∑n

i=1(aiXi + biYi) = 0, gives immediately that bi = 0 and ai = 0,
i.e. these vector fields are linearly independent near x. ¤

Proof of Theorem 6. 1. Suppose that aS = 0, that is S is inessential (Proposition
2). Let Ω∗ ∈ S with DiffS(M) = GΩ∗(M), and let ω∗ be the corresponding Lee
form. It follows that

XS(M)c = XΩ∗(M)c.

Let us now show that ω∗ = 0.
For each x ∈ M , and any tangent vector ξ ∈ TxM , we want to show that

ω∗(x)(ξ) = 0. By Theorem 7, ξ =
∑2n

j=1 cj(x)V x
j (x). Extend now the coefficients

cj(x) into smooth functions cj with compact support near x. We get a smooth
vector field with compact support V =

∑2n
j=1 cjV

x
j , which coincides with ξ at

x ∈ M . Therefore,

ω∗(x)(ξ) = ω∗(x)(V (x)) = (ω∗(V ))(x) =
2n∑

j=1

(cjω∗(V x
j ))(x).

Since V x
j ∈ XS(M)c = XΩ∗(M)c, ω∗(V x

j )) is a constant function (see Remark 5.3)
with compact support, and hence identically zero. This proves that ω∗(x) = 0.

This implies that S = O.
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Since the Lee homomorphism can be computed using Ω∗ and ω∗, we see that

l = ω̂∗ = 0.

This implies that the structure is of the second kind. Indeed, if Ω is any represen-
tative of S with Lee form ω and X ∈ XΩ(M), then l(X) = ω(X) = 0.

2. If S = O, there is a symplectic form Ω ∈ S. If φ ∈ DiffS(M), then φ∗Ω = fΩ.
By the classical theorem of Libermann (see [6]), f is a constant, provided that the
dimension of M is at least 4, (which is assumed here) and if M is compact, this
constant must be 1. This follows from the fact that

∫
M

φ∗Ωn = fn
∫

M
Ωn and by

the formula of change of variable, we have equality with
∫

M
Ωn. Hence f = 1 and

therefore aS = 0.
3. It is clear that [ω] = 0 implies that [ω̂] = 0. Conversely, suppose there exists

a smooth function u such that ω(X) = X.u = du(X) for all X ∈ XS(M). We
show that indeed ω(ξ) = du(ξ) for all vector fields ξ, i.e that ω = du. For each
point x ∈ M , we need to show that ω(ξ)(x) = (du(ξ)(x)).

As above, we consider the vector field V =
∑2n

j=1 cjV
x
j , which is equal to ξ

at x. Then, like above: ω(ξ)(x) =
∑2n

j=1(cjω(V x
j ))(x) =

∑2n
j=1(cjdu(x)(V x

j )) =

du(x)(
∑2n

j=1 cjV
x
j ) = du(x)(V ) = du(x)(ξ). Therefore the de Rham class of ω is

trivial.
4. In the compact case (aS = 0) ⇔ (S = O) and (aS = 0) ⇔ (bS = 0).
We also have that in general, (S = O ⇔ (LS = 0) and (cS = 0) ⇔ (LS = 0)
Putting these facts together, yields the last assertion of Theorem 5. ¤

Remarks. 1. If M is not compact, S = 0 does not imply that aS = 0. Take
for instance the global conformal symplectic structure defined by the standard
symplectic form on R2n, and more generally non-compact manifolds with complete
Liouville vector fields, like Stein manifolds [4].

2. The vanishing of the compactly supported invariant ac
S also implies that

S = 0. This was proved in [12].

6. Concluding remarks and questions

1. The mapping L : Lcs(M) → F1(M) assigning to a lcs form its Lee form is not
continuous in the C0 topology. Indeed if u is a smooth function which is C0 close
to 1 and C1 far from 0, then the Lee forms of uΩ and Ω, are far apart. How about
the continuity for the C∞ topology?

If M has a complex structure J and a hermitian metric g such that the lcs form
Ω is given by Ω(X,Y ) = g(X,JY ) (M is said to be a locally conformal Kaehler
manifold), then L is continuous for the C∞ topology. Indeed in that case we have
an explicit formula for L(Ω) [9]:

L(Ω) =
1

n− 1
(δΩ ◦ J).
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Here δ is the codifferential with respect to the metric g, and 2n is the dimension
of M .

2. The Lee homomorphism l : XS(M) → R can be integrated into a homomor-
phism L : DiffS(M)+ → R/∆ (where ∆ is some countable subgroup of R), and
DiffS(M)+ is the group of automorphisms of S which admit a lift to the minimal
regular cover M̃ [6].

If α is a contact form on a compact manifold M , we constructed in Theorem
1 a map ρ : DiffC(α)(M) → DiffS(α)(M × S1)+. Composing ρ with the extended
global Lee homomorphism, we get a map:

µ = L ◦ ρ : DiffC(α)(M) → R/∆.

This map is not a group homomorphism. This allows us to define a 2-cocycle η
on the the group DiffC(α)(M):

η(φ, ψ) = ρ(φ).ρ(ψ).(ρ(φψ))−1

for all φ, ψ ∈ DiffC(α)(M).
What is the meaning of that cocycle?
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