Comment. Math. Helv. 77 (2002) 383–398 0010-2571/02/020383-16 \$ 1.50+0.20/0

°c 2002 Birkh¨auser Verlag, Basel

Commentarii Mathematici Helvetici

Some properties of locally conformal symplectic structures

Augustin Banyaga

Abstract. We show that the d_{ω} -cohomology is isomorphic to a conformally invariant usual de Rham cohomology of an appropriate cover. We also prove a Moser theorem for locally conformal symplectic (lcs) forms. We point out a connection between lcs geometry and contact geometry. Finally, we show the connections between first kind, second kind, essential, inessential, local, and global conformal symplectic structures through several invariants.

Mathematics Subject Classification (2000). 53C12; 53C15.

Keywords. Locally conformal symplectic structures, Lee form, extended Lee homomorphism, de Rham invariant, Gelfand–Fucks invariant, Lee invariant, conformal invariants, essential/inessential conformal structures, the d_{ω} cohomology, the cA-cohomology.

1. Preliminaries

A locally conformal symplectic (lcs) form on a smooth manifold M is a nondegenerate 2-form Ω such that there exists an open cover $\mathcal{U} = (U_i)$ and smooth positive functions λ_i on U_i such that

$$
\Omega_i = \lambda_i(\Omega_{|U_i})
$$

is a symplectic form on U_i . If for all i, $\lambda_i = 1$, the form Ω is a symplectic form. Lee [15] observed that the 1-forms $\{d(\ln \lambda_i)\}\)$ fit together into a closed 1-form ω such that

$$
d\Omega = -\omega \wedge \Omega. \tag{1}
$$

Such 1-form is uniquely determined by Ω and is called the Lee form of Ω .

Conversely, if a non-degenerate 2-form Ω satisfies (1), and $\mathcal{U} = (U)_i$ is an open cover with contractible open sets, then $\omega_{|U_i} = d \ln \lambda_i$, for some positive function λ_i on U_i and $\lambda_i \Omega_{|U_i}$ is symplectic.

Two lcs forms Ω , Ω' on a smooth manifold M are said to be (conformally) equivalent if $\Omega' = f\Omega$, for some positive function f on M.

A locally conformal symplectic (lcs) structure S on a smooth manifold M is an equivalence class of lcs forms.

The couple (M, S) is called a *lcs manifold*. If Ω is a representative of S, we write $\Omega \in \mathcal{S}$. If $\omega = 0$ in the definition above, then Ω is a symplectic form. In that case the lcs structure S is said to be a *global conformal symplectic* (gcs) structure and we write $S = \mathcal{O}$.

Let (M, S) be a lcs manifold, and let $\Omega \in S$ and ω its Lee form. If $\Omega' = \lambda \Omega$ for some positive function λ , then an immediate calculation shows that the Lee form of Ω' is $\omega' = \omega - d \ln(\lambda)$.

Hence the cohomology class $[\omega] \in H^1(M, \mathbb{R})$ is an invariant $\mathcal{L}_{\mathcal{S}}$ of \mathcal{S} , we call the Lee class of S. Clearly, $S = \mathcal{O}$ iff $\mathcal{L}_{\mathcal{S}} = 0$.

Locally conformal symplectic forms were introduced by Lee [15], and have been extensively studied by Vaisman [18], [19]. The first properties of their automorphism groups were established by Lefebvre [16].

We will assume that all manifolds considered are connected, but not necessarily compact, and have dimension at least 4. (In dimension 2, a lcs form is simply a volume-form, and the corresponding structure is an orientation.)

For any closed 1-form ω on a smooth manifold M, the operator d_{ω} which assigns to a p-form γ the $(p+1)$ -form

$$
d_\omega\gamma=d\gamma+\omega\wedge\gamma
$$

is a coboundary operator, i.e. $d_{\omega} \circ d_{\omega} = 0$.

The cohomology of differential forms with this coboundary operator will be denoted by $H^*_{\omega}(M)$ and will be called the d_{ω} -cohomology. For more information on this cohomology, see [11] or [19].

A lcs form Ω is precisely a non-degenerate d_{ω} closed 2-form (where ω is the Lee form).

This cohomology is "almost" an invariant of the lcs structure $S = [\Omega]$: given $\Omega' \in \mathcal{S}$, there is an isomorphism between $H_{\omega}(M)$ and $H_{\omega'}(M)$, $(\omega'$ the Lee form of Ω'), depending on the choice of λ such that $\omega' = \omega - d \ln \lambda$. More precisely the isomorphism is given by $\alpha \mapsto \lambda \alpha$.

In section 3, we show that the $c\mathcal{A}$ cohomology constructed in [5], [6], is isomorphic to $H_{\omega}(M)$. This shows that the d_{ω} cohomology (which is a sort of twisted de Rham cohomology of M) is a conformally invariant usual de Rham cohomology of an appropiate cover of M.

Let $\text{Diff}_{\mathcal{S}}(M)$ be the group of all automorphisms of a lcs structure S on a smooth manifold M. It is clear that for any representative $\Omega \in \mathcal{S}$, then $\text{Diff}_{\mathcal{S}}(M)$ is the set of all diffeomorphisms ϕ of M such that $\phi^*\Omega = f_\phi\Omega$, where f_ϕ is a nowhere zero (positive) smooth function on M.

We also may choose (or fix) an underlying $\Omega \in \mathcal{S}$, and consider the group $G_{\Omega}(M)$ of diffeomorphisms of M which preserve the form Ω . This is a noninvariant subgroup of $\text{Diff}_{\mathcal{S}}(M)$.

The Lie algebra $\mathcal{X}_{\mathcal{S}}(M)$ of infinitesimal automorphisms of S, consists of vector fields X on M such that $L_X\Omega=(u_{\Omega}(X))\Omega$, where $u_{\Omega}(X)$ is a smooth function on M. Here L_X stands for the Lie derivative in the direction X. We denote $\mathcal{X}_{\mathcal{S}}(M)_c$

the subalgebra of compact supported automorphisms. We will also consider the subalgebra $\mathcal{X}_{\Omega}(M)$ of $\mathcal{X}_{\mathcal{S}}(M)$ consisting of vector fields X such that $L_X\Omega = 0$.

Definition. A lcs form Ω on M is said to be of the first kind if there exists $X \in \mathcal{X}_{\Omega}(M)$, with $\omega(X) \neq 0$, where ω is the corresponding Lee form. Otherwise it is said to be of the second kind [18].

A lcs structure S on M is said to be of the first kind if there is a representative $\Omega \in \mathcal{S}$ of the first kind. The lcs structure S is said to be of the second kind otherwise.

Warning. Vaisman [18] observed that a first kind lcs structure admits representatives which are second kind lcs forms.

For $X \in \mathcal{X}_{\Omega}(M)$, and M connected, $\omega(X)$, is a constant number since:

$$
0 = dL_X\Omega = L_Xd\Omega = L_X(-\omega \wedge \Omega) = -((L_X\omega) \wedge \Omega + \omega \wedge L_X\Omega) = -(di(X)\omega) \wedge \Omega
$$

and Ω is non-degenerate.

Hence if Ω is a first kind lcs form with Lee form ω , the condition:

There is $X \in \mathcal{X}_{\Omega}(M)$, with $\omega(X) \neq 0$

is equivalent to saying that there a 1-form θ such that

$$
\Omega = d\theta + \omega \wedge \theta
$$

Indeed just normalize X as above so that $\omega(X) = 1$ and set $\theta = i(X)\Omega$. First kind lcs forms are d_{ω} exact.

2. Examples

We describe here a few examples of lcs forms. The reader can consult the book [9] for more examples.

2.1. Examples connected with Contact Geometry

A contact form α on a (2n+1) dimensional manifold N is a 1-form α such that $\alpha \wedge (d\alpha)^n$ is everywhere non-zero. Two contact forms α and α' are equivalent if there is a smooth positive function f on N such that $\alpha' = f\alpha$. The contact structure $\mathcal{C}(\alpha)$, determined by α is the equivalence class of α .

Consider the cartesian product $M = N \times S^1$, and the projections $p_1 : M \to N$, $p_2: M \to S^1$. Let β be the canonical 1-form on S^1 with integral 1. If we set $\theta = p_1^* \alpha$ and $\omega = p_2^* \beta$, then

$$
\Omega = d\theta + \omega \wedge \theta
$$

is non-degenerate and $d\Omega = -\omega \wedge d\theta = -\omega \wedge (\Omega - \omega \wedge \theta) = -\omega \wedge \Omega + \omega \wedge \omega \wedge \theta = -\omega \wedge \Omega$. Hence the conformal class of Ω is a lcs structure on M, we denote $\mathcal{S}(\alpha)$. This structure is of the first kind.

The following result will be proved in section 4.

Theorem 1. The lcs structure $\mathcal{S}(\alpha)$ depends only on the contact structure $\mathcal{C}(\alpha)$. In fact there is a well defined mapping from the group $\mathrm{Diff}_{\mathcal{C}(\alpha)}(M)$ of automorphisms of the contact structure $\mathcal{C}(\alpha)$ (the group of contact diffeomorphisms of (M, α)) to the group $\text{Diff}_{\mathcal{S}(\alpha)}(M \times S^1)$.

2.2. Deformations of lcs structures

If we add a 2-form $\eta_{\epsilon} C^0$ close to 0 to a lcs form Ω , the resulting form $\Omega_{\epsilon} = \Omega + \eta_{\epsilon}$ is again non-degenerate. An immediate calculation gives:

$$
d\Omega_{\epsilon} = -\omega \wedge \Omega_{\epsilon} + (d\eta_{\epsilon} + \omega \wedge \eta_{\epsilon}) = -\omega \wedge \Omega_{\epsilon} + d_{\omega} \eta_{\epsilon}.
$$

Hence if η_{ϵ} is d_{ω} closed, then Ω_{ϵ} is a lcs form with ω as Lee form. For instance take $\eta_{\epsilon} = d_{\omega} \gamma_{\epsilon}$ where γ_{ϵ} is C^1 close to zero.

To construct general deformations of a lcs form Ω , with Lee form ω , we may look for 2-forms $\eta_{\epsilon} C^{0}$ closed to zero, and closed 1-forms ρ (not necessarily small) such that $d\Omega_{\epsilon} = -(\omega + \rho) \wedge \Omega_{\epsilon}$. In that connection, we note that if $\mathcal{L}_{cs}(M)$ is the set of all lcs forms on a smooth manifold M, and $\mathcal{F}^*(M)$ the space of differential forms, both with the C^{∞} topology, $\mathcal{L}_{cs}(M)$ is not an open subset of $\mathcal{F}^{*}(M)$.

Note that if the lcs form Ω is of first kind and we add to it a non-d_ω-exact form, the resulting lcs form is not d_{ω} -exact, hence of the second kind.

We have the following fact:

Theorem 2. Let (M, \mathcal{S}) be a compact lcs manifold, and let $\Omega \in \mathcal{S}$ be a representative, with Lee form ω . Then for any d_{ω} exact 2-form η_{ϵ} , C^0 close to zero, the $\emph{les form $\Omega_{\epsilon}=\Omega+\eta_{\epsilon}$ represents a $\textit{les structure equivalent to \mathcal{S}}.}$

Hence the non-trivial deformations of lcs structures are parametrized by elements of the second cohomology group $H^2_\omega(M)$.

2.3. Lcs on cotangent bundles [12]

Let $M = T^*(N)$ be the total space of the cotangent bundle $\pi : T^*(N) \to N$ over a smooth manifold N. Let Λ_N be the Liouville 1-form on M and α a closed 1-form on N , then

$$
\Omega_{\alpha} = d_{\omega} \Lambda_N
$$

where $\omega = \pi^* \alpha$, is a lcs form on M. The conformal structure defined by this lcs form depends only on the cohomology class of α .

3. The cA **-cohomology and the** d_{ω} **-cohomology**

For any closed 1-form ω on a smooth manifold M, the operator d_{ω} which assigns to a p-form γ the $(p+1)$ -form

$$
d_\omega\gamma=d\gamma+\omega\wedge\gamma
$$

is a coboundary operator, i.e. $d_{\omega} \circ d_{\omega} = 0$.

The cohomology of differential forms with this coboundary operator will be denoted by $H^*_{\omega}(M)$ and will be called the d_{ω} -cohomology. For more information on this cohomology, see [11] or [19]. For instance, it was proved in [19] that the groups $H^p_\omega(M)$ are isomorphic to the cohomology groups of M with coefficients in the sheaf $\mathcal{F}_{\omega}(M)$ of germs of smooth functions f on M such that $d_{\omega} f = 0$.

In this section, we give another interpretation of the d_{ω} cohomology.

One associates with a closed 1-form ω on a smooth manifold M the minimum regular cover π : $\tilde{M} \to M$ over which the 1-form ω pulls back to an exact 1form. The manifold \tilde{M} is a connected component of the sheaf of germs of smooth functions f on M such that $\omega = df$ [10].

Let $\lambda : \tilde{M} \to \mathbb{R}$ be a positive function on \tilde{M} such that

$$
\pi^*\omega = d(\ln \lambda).
$$

It is well known that the group A of automorphisms of the covering \tilde{M} , is isomorphic to the group of periods of ω [10]. We will need the following:

Lemma 1 [6]. For any $\tau \in A$, the function

 $(\lambda \circ \tau)/\lambda$

is a constant, we denote c_{τ} , independent of the choice of λ and

 $\tau \mapsto c_{\tau}$

is a group homomorphism c from A to the multiplicative group \mathbb{R}^+ of positive real numbers.

For the convenience of the reader, we give here the proof [6].

Proof. Clearly if $\lambda' = a\lambda$ for some constant $a, \lambda' \circ \tau / \lambda' = \lambda \circ \tau / \lambda$. For any $\tau \in \mathcal{A}$, we have:

$$
d(\ln(\lambda \circ \tau) - \ln \lambda)) = \tau^* \pi^* \omega - \pi^* \omega = (\pi \tau)^* \omega - \pi^* \omega = \pi^* \omega - \pi^* \omega = 0.
$$

Hence $\ln(\lambda \circ \tau/\lambda) = K$, a constant and $\lambda \circ \tau/\lambda = e^{K} = c_{\tau}$.

If $\tau, \tau' \in \mathcal{A}$: $c_{\tau\tau'} = (\lambda \circ \tau\tau')/\lambda = ((\lambda \circ (\tau\tau'))/(\lambda \circ \tau')).(\lambda \circ \tau')/\lambda$

$$
=((\lambda\circ\tau)/\lambda)\circ\tau').((\lambda\circ\tau')/\lambda)=((\lambda\circ\tau)/\lambda).((\lambda\circ\tau')/\lambda)=c_{\tau}.c_{\tau'}.\qquad \Box
$$

The set $\mathcal{F}_{c\mathcal{A}}^{*}(M)$ of all differential forms α on \tilde{M} such that $\tau^*\alpha = c_{\tau}\alpha$ for all $\tau \in A$, is a subcomplex of the de Rham complex of M. We denote its cohomology by $H_{c\mathcal{A}}^{*}(M)$ and call it the conformally \mathcal{A} -invariant cohomology of M. Clearly, if the cohomology class of ω is trivial, then $H_{c\mathcal{A}}^{*}(M)$ coincides with the de Rham cohomology of M.

Remark 1. For any differential form α on M, then $U_{\alpha} = \lambda \pi^* \alpha \in \mathcal{F}_{c\mathcal{A}}^*(M)$ Indeed, for any $\tau \in \mathcal{A}$,

$$
\tau^* U_\alpha = \lambda \circ \tau \cdot \tau^* \pi^* \alpha = \frac{\lambda \circ \tau}{\lambda} \cdot (\pi \circ \tau)^* \alpha = c_\tau (\lambda \pi^* \alpha) = c_\tau U_\alpha.
$$

Lemma 2. For any differential form, α , $d_{\omega} \alpha = 0$ if and only if $d(\lambda \pi^* \alpha) = 0$.

Proof. Suppose $d_{\omega} \alpha = 0$. Then: $d(\lambda \pi^* \alpha) = d\lambda \wedge \pi^* \alpha + \lambda \pi^* (-\omega \wedge \alpha) = d\lambda \wedge \pi^* \alpha$ $\lambda d(\ln \lambda) \wedge \pi^* \alpha = 0.$

Suppose now $d(\lambda \pi^* \alpha) = 0$, and compute:

 $\lambda \pi^*(d_\omega \alpha) = \lambda \pi^* d\alpha + \lambda \pi^* \omega \wedge \pi^* \alpha = \lambda \pi^* d\alpha + \lambda d(\ln \lambda) \wedge \pi^* \alpha = d(\lambda \pi^* \alpha) = 0.$ Since λ is a positive function and π is a local diffeomorphism, $d_{\omega}\alpha = 0$.

Theorem 3. $H_{c\mathcal{A}}^{*}(M)$ is (non-canonically) isomorphic with $H_{\omega}^{*}(M)$

Proof. The natural homomorphism

$$
H_{\omega}^{*}(M) \to H_{c\mathcal{A}}^{*}(M) \quad [\alpha] \mapsto [\lambda \pi^{*}\alpha]
$$

is onto: indeed, let β be a form such that $d\beta = 0$ and $\tau^* \beta = c_{\tau} \beta$ for all $\tau \in A$. Then:

$$
\tau^*(\beta/\lambda) = \tau^*\beta/\lambda \circ \tau = (c_\tau.\beta/\lambda).(\lambda/\lambda \circ \tau) = \beta/\lambda
$$

for all $\tau \in A$. Hence β/λ is basic, i.e. there is a form α on M such that $\beta/\lambda = \pi^* \alpha$. Since $\beta = \lambda \pi^* \alpha$ is closed, α is d_{ω} closed, by Lemma 2.

It is also one-to-one: suppose $d_{\omega} \alpha = 0$ and $\lambda \pi^* \alpha = d\rho$ with $\tau^* \rho = c_{\tau} \rho$ for all $\tau \in A$. Then: rewriting the equations above with β replaced by ρ , we see that ρ/λ is basic, i.e. there is a form γ on M such that $\rho/\lambda = \pi^* \gamma$.

Let us now compute: $\pi^*(d_\omega \gamma) = \pi^*(d\gamma + \omega \wedge \gamma) = d(\rho/\lambda) + d\ln \lambda \wedge \rho/\lambda =$ $d\rho/\lambda - d\lambda/(\lambda)^2 \wedge \rho + (d\lambda/\lambda) \wedge \rho/\lambda = d\rho/\lambda = \pi^* \alpha.$

Since π is a covering map, $\alpha = d_{\omega}\gamma$.

In [5], [6], we had already observed that $H_{c\mathcal{A}}(M)$ is a quotient of $H_{\omega}(M)$. We deduce the following well known fact ([11])

Corollary. If ω is a non-exact 1-form on a smooth manifold M, $H_{\omega}^{0}(M) = 0$.

Proof. An element of $H^0_{\alpha}(M) \approx H^0_{cA}(M)$ is represented by a constant K such that $K \circ \tau = K = c_{\tau} K$ for all $\tau \in \mathcal{A}$. Since ω is not exact, there is a $\tau \in \mathcal{A}$ with $c_{\tau} \neq 1$. Hence $K = 0$.

Let (M, \mathcal{S}) be a lcs manifold, $\Omega \in \mathcal{S}$ a representative, with Lee form ω . Let $\pi : M \to M$ be the minimum regular covering of M associated with the 1-form ω and let $\lambda : \tilde{M} \to \mathbb{R}$ be a positive function on \tilde{M} such that

$$
\pi^* \omega = d(\ln \lambda).
$$

Then $\tilde{\Omega} = \lambda(\pi^*\Omega)$ is a symplectic form on \tilde{M} and its conformal class $\tilde{\mathcal{S}}$ is independent of the choice of $\Omega \in \mathcal{S}$ and of λ .

Note that given a lcs $\Omega \in \mathcal{S}$, with Lee form ω , the cohomology classes $[\Omega] \in$ $H^2_{\omega}(M)$ and $[\lambda \pi^* \Omega] \in H^2_{c\mathcal{A}}(M)$ are not invariants of the lcs structure \mathcal{S} .

The cohomology groups $H_{c\mathcal{A}}^{*}(M)$ and the d_{ω} cohomology are "almost" invariants of the lcs structure: since if ω and $\omega' = \omega - d \ln \lambda$ are two Lee forms, then $H_{\omega}(M)$ is isomorphic to $H_{\omega'}(M)$, by the isomorphism $\alpha \to \lambda \alpha$, which unfortunately depends on the choice of λ . Two such λ 's differ by a constant.

4. Equivalence of lcs structures

We have the following Moser type result:

Theorem 4. Let Ω_t be a smooth family of lcs forms on a compact manifold M. Suppose that for all t, the Lee form of Ω_t is the same 1-form ω and that $\Lambda_t =$ $\Omega_t - \Omega_0$ is d_{ω} - exact, then there exist a smooth family of diffeomorphisms ϕ_t with $\phi_0 = id$ and a smooth family of functions f_t such that $\phi_t^* \Omega_t = f_t \Omega_0$.

Remark 2. If the smooth family of lcs forms Ω_t has a smooth family ω_t of corresponding Lee forms, and we write $\omega_t = \omega_0 + d \ln u_t$ for some positive functions u_t (see the beginning of the proof of Theorem 5), then $\Omega'_t = u_t \Omega_t$ has ω_0 as Lee form for all t. Hence assuming $\Lambda'_t = \Omega'_t - \Omega'_0$ to be d_{ω_0} -exact, yields that Ω_t represent equivalent lcs structures for all t.

Proof. By assumption, $\partial/\partial t(\Omega_t)$ is d_ω exact for all t. A result of [12], (Lemma 1.9) asserts that there exists a smooth family of 1-forms η_t such that

$$
\partial/\partial t(\Omega_t)=d_\omega\eta_t.
$$

The argument used to find a smooth lifting of d_{ω} -coboundaries is the same as in [1], (Lemma II.2.2), which is an application of Grothendieck's theory of nuclear topological vector spaces. This replaces the Hodge–de Rham theorem in Moser's theorem for symplectic forms [17].

Let $\tilde{\Omega}_t = \lambda \pi^* \Omega_t$, where $\pi : \tilde{M} \to M$ is the minimum regular cover and λ is such that $\pi^*\omega = d \ln \lambda$. We define a smooth family of vector fields X_t on \tilde{M} by:

$$
i(X_t)\tilde{\Omega}_t = -\lambda \pi^* \eta_t
$$

Since $d(\lambda \pi^* \eta_t) = \lambda \pi^* d_\omega \eta_t$, we have:

$$
L_{X_t}\tilde{\Omega}_t + \partial/\partial t(\tilde{\Omega}_t) = 0.
$$

We claim that X_t is complete. Hence it defines a smooth family of diffeomorphisms ψ_t of \tilde{M} such that $\psi_t^* \tilde{\Omega}_t = \tilde{\Omega}_0$.

This argument is Moser's standard path method [17].

To prove that X_t is complete, it is enough to show that it is basic, i.e., there is a family of vector fields Y_t on M such that $\pi_* X_t = Y_t$. Since M is compact, Y_t is integrable, and so will be X_t .

For any $\tau \in \mathcal{A}$, we easily see that:

$$
\tau^* \tilde{\Omega}_t = c_\tau \tilde{\Omega}_t,
$$

and

$$
\tau^*(\lambda \pi^* \eta_t) = c_\tau(\lambda \pi^* \eta_t).
$$

We therefore have:

$$
-c_{\tau}i(X_{t})\tilde{\Omega}_{t}) = \tau^{*}(\lambda \pi^{*} \eta_{t}) = -\tau^{*}(i(X_{t})\tilde{\Omega}_{t}) = -i((\tau)^{-1})_{*}X_{t})(\tau^{*}\tilde{\Omega}_{t})
$$

$$
= -i((\tau)^{-1})_{*}X_{t})(c_{\tau}\tilde{\Omega}_{t}) = -c_{\tau}i((\tau)^{-1})_{*}X_{t})(\tilde{\Omega}_{t}).
$$

Hence

$$
c_{\tau}i((\tau)^{-1})_*X_t)(\tilde{\Omega}_t) = c_{\tau}i(X_t)\tilde{\Omega}_t).
$$

Since $c_{\tau} \neq 0$, we have: $i((\tau)^{-1})_*X_t(\tilde{\Omega}_t) = i(X_t)\tilde{\Omega}_t$. Therefore $((\tau)^{-1})_*X_t = X_t$.

Let now ϕ_t be the family of diffeomorphisms of M covered by ψ_t , i.e. $\pi \circ \psi_t =$ $\phi_t \circ \pi$, then $\psi_t^* \tilde{\Omega}_t = (\lambda_t \circ \psi_t) . \pi^* (\phi_t^* \Omega_t) = \lambda_0 \pi^* \Omega_0$. Hence $\pi^* (\phi_t^* \Omega_t) = (\lambda_0 / (\lambda_t \circ \psi_t) \Pi_t)$ $(\phi_t)\right) \pi^* \Omega_0$. For all $\tau \in \mathcal{A}$, we have:

$$
(\lambda_0/(\lambda_t \circ \phi_t))\pi^*\Omega_0 = \pi^*(\phi_t^*\Omega_t) = \tau^*\pi^*(\phi_t^*\Omega_t) = ((\lambda_0/(\lambda_t \circ \phi_t) \circ \tau)\pi^*\Omega_0).
$$

Therefore, $(\lambda_0/\lambda_t \circ \phi_t)$ is invariant by all $\tau \in A$, hence $(\lambda_0/\lambda_t \circ \phi_t) = f_t \circ \pi$ for some function f_t on M. We thus get that $\pi^*(\phi_t^*\Omega_t) = \pi^*(f_t\Omega_0)$, and hence $\phi_t^* \Omega_t = f_t \Omega_0.$

This finishes the proof of Theorem 4. \Box

Exactly like in Moser's theorem in Symplectic Geometry [17], there are examples in which we get smooth liftings of the coboundaries Λ_t without using the deep lemma (which is an application of Grothendieck's theory of topological vector spaces). The most trivial example is provided by Theorem 2: if $\eta_{\epsilon} = d_{\omega} \gamma_{\epsilon}$, then $\Lambda_t = d_\omega(t\gamma_\epsilon)$

In the following situation, we also have an immediate smooth lifting of the coboundaries Λ_t .

Theorem 5. Let Ω_t be a smooth family of lcs forms on a compact manifold M, with a smooth family ω_t of Lee forms having a fixed de Rham cohomology, i.e. $[\omega_0]=[\omega_t], \forall t$, and such that there exists a smooth family θ_t , with $\Omega_t = d\theta_t + \omega_t \wedge \theta_t$, then the lcs forms Ω_t define equivalent lcs structures.

Proof. There is a smooth family of positive functions u_t on M with $\omega_t = \omega_0 +$ $d \ln(u_t)$ and $u_0 = 1$. Indeed, since $(\partial/\partial t)(\omega_t)$ is exact, there is a smooth family of positive functions v_t such that $(\partial/\partial t)(\omega_t) = d \ln(v_t)$. Use for instance the Hodge– de Rham decomposition theorem. Now integrate both side and set $u_t = \int_0^t (v_s) ds$.

Let $\pi : \tilde{M} \to M$ be the minimum cover associated with ω_0 , and let $\lambda_0 : \tilde{M} \to \mathbb{R}$ be a positive function such that $\pi^*\omega_0 = d \ln \lambda_0$. Then $\pi^*\omega_t = d \ln \lambda_0 + d \ln(u_t \circ \pi) =$ $d \ln \lambda_t$ with $\lambda_t = \lambda_0 (u_t \circ \pi)$. We have:

$$
\tilde{\Omega}_t = \lambda_t \pi^* \Omega_t = \lambda_t \pi^* (d\theta_t) + \lambda_t d \ln \lambda_t \wedge \pi^* \theta_t = d(\lambda_t \pi^* \theta_t).
$$

Setting $\partial/\partial t(\lambda_t \pi^* \theta_t) = \rho_t$, we define a smooth family of vector fields X_t on \tilde{M} by:

$$
i(X_t)\tilde{\Omega}_t = -\rho_t.
$$

We have:

$$
L_{X_t}\tilde{\Omega}_t + \partial/\partial t(\tilde{\Omega}_t) = 0.
$$

We claim that X_t is complete. Hence it defines a smooth family of diffeomorphisms ψ_t of \tilde{M} such that $\psi_t^* \tilde{\Omega}_t = \tilde{\Omega}_0$.

From here proceed like in the proof of Theorem 3. \Box

Remark 3. Let u_t be a smooth family of positive functions such that ω_t $\omega_0 + d \ln u_t$. Then $\Omega'_t = u_t \Omega_t$ has ω_0 as Lee form for all t. Moreover setting $\theta'_t = u_t \theta_t$, we have:

$$
d_{\omega_0}(\theta'_t) = u_t d\theta_t + \frac{du_t}{u_t} \wedge (u_t \theta_t) + \omega_0 \wedge u_t \theta_t = u_t (d\theta_t + (d \ln u_t + \omega_0) \wedge \theta_t) = u_t \Omega_t = \Omega'_t.
$$

Hence $\Omega'_t = d_{\omega_0}(\theta'_t)$. The coboundary $\Lambda'_t = \Omega'_t - \Omega'_0$ has the smooth lifting $d_{\omega_0}(\theta_t'-\theta_0').$

Proof of Theorem 1. Theorem 1 is a consequence of Theorem 5 since two contact forms α, α' define the same contact structure if $\alpha' = w\alpha$, with w a smooth positive

function. Now set $\alpha_t = \exp(t \ln(w))\alpha$. The family of lcs forms is $\Omega_t = d\theta_t + \omega \wedge \theta_t$ with $\theta_t = p_1^* \alpha_t$.

The mapping $\rho : \mathrm{Diff}_{\mathcal{C}(\alpha)}(M) \to \mathrm{Diff}_{\mathcal{S}(\alpha)}(M \times S^1)$ comes from the proof. For $h \in \text{Diff}_{\mathcal{C}(\alpha)}(M), h^*\alpha = w.\alpha$, then the diffeomorphism ϕ_1 above obtained using $\Omega_t = d\theta_t + \omega \wedge \theta_t$, with $\theta_t = p_1^* \alpha_t$ and $\alpha_t = \exp(t \cdot \ln(w))\alpha$, takes Ω_1 to $a\Omega_0$. Taking a path from $h\alpha$ to α , which does not reverse the first one, for instance $\alpha'_t = (t + (1-t)h)\alpha, \theta'_t = p_1^*\alpha'_t \text{ and } \Omega'_t = d\theta'_t + \omega \wedge \theta'_t \text{, get a diffeomorphism } \phi_1$ taking Ω_0 back to a multiple of Ω_1 . Now set $\rho(h) = \phi_1 \circ \psi_1$.

5. Invariants of lcs structures

Given a lcs manifold (M, S) , we have considered the following objects attached to S :

1. The cohomology class of the Lee form ω of any representative lcs form $\Omega \in \mathcal{S}$. We saw that this is an invariant \mathcal{L}_S , we called the Lee class of S. The group A of periods of ω is an object depending only on the conformal class S.

2. We considered the minimum cover of M which has a group of deck transformations isomorphic with the group A of periods of ω as group of automorphisms, and the cA cohomology.

In Proposition 1, we gather other invariants built using the automorphisms of the lcs structure.

If G is a Lie algebra and K is a G-module, we denote by $H^*(\mathcal{G}, K)$, the cohomology of G with coefficients in K [14]. This is the cohomology of the complex $(C^*(\mathcal{G}, K), \delta)$ where p-cochains are p-linear alternating mappings on \mathcal{G} with values in K and the coboundary operator is given by:

$$
\partial f(X_1, ..., X_{p+1}) = \sum_i (-1)^{i+1} X_i \cdot f(X_1, ..., \hat{X}_i, ..., X_{p+1}) + \sum_{i \le j} (-1)^{i+j} f([X_i, X_j], ..., \hat{X}_i, ..., \hat{X}_j, ...).
$$

We also consider the cohomology $H^*(G, K)$ of an (abstract) group G into a G-module K [13]. The p-cochains now are mappings from G^p to K and the coboundary operator δ is given by

$$
\delta g(a_0, \dots, a_p) = a_0 \cdot c(a_1, \dots, a_p) - \left(\sum_i (-1)^i c(a_0, \dots, a_i a_{i+1}, \dots a_p) \right) + (-1)^{p+1} c(a_0, \dots, a_{p-1}).
$$

 $H^1(G, K)$ is the quotient of derivations (1-cocycles) by inner derivations (coboundaries). Recall that derivations are maps $d : G \to K$ such that $d(gh) =$ $g.d(h) + dg$ and an inner derivation is a map $v : G \to K$ such that there exists $k \in K$ such that $v(g) = g.k - k$.

 $H^1(\mathcal{G}, K)$ is the quotient of the space of linear maps $v : \mathcal{G} \to K$ such that $u([X, Y]) = X. u(Y) - Y. u(X)$ (1-cocycles), modulo (the coboundaries) consisting of linear maps v such that there exists $k \in K$ with $v(X) = X.k$, for all $X, Y \in \mathcal{G}$.

Proposition 1. Let S be a lcs structure on M, and $\Omega \in \mathcal{S}$ with Lee form ω .

1. The map D_{Ω} : Diff_S $(M) \rightarrow C^{\infty}(M)$, $\phi \mapsto \ln(f_{\phi^{-1}})$, if $\phi^* \Omega = f_{\phi} \Omega$ is a 1-cocycle on Diff_S(M) whose cohomology class $a_S \in H^1(\text{Diff}_S(M), C^{\infty}(M))$ is independent of the choice of $\Omega \in \mathcal{S}$, i.e. an invariant of \mathcal{S} .

2. The map $d_{\Omega}: \mathcal{X}_{\mathcal{S}}(M) \to C^{\infty}(M)$, $X \mapsto u_{\Omega}(X)$, where $L_X\Omega = (u_{\Omega}(X))\Omega$, is a 1-cocycle, whose cohomology class $b_S \in H^1(\mathcal{X}_S(M), C^{\infty}(M))$ is independent of the choice of $\Omega \in \mathcal{S}$, i.e., an invariant of \mathcal{S} .

3. The map $\hat{\omega}: \mathcal{X}_{S}(M) \to C^{\infty}(M)$, $X \mapsto \omega(X)$ is a 1-cocycle, whose cohomology class $c_S \in H^1(\mathcal{X}_S(M), C^{\infty}(M))$ is independent of the choice of $\Omega \in \mathcal{S}$, i.e. an invariant of S.

4. The sum $d_{\Omega} + \hat{\omega}$ is a 1-cocycle on $\mathcal{X}_{\mathcal{S}}(M)$ with values in \mathbb{R} , hence a homomorphism l , called the extended Lee homomorphism, an invariant of S .

5. Suppose M is compact and fix a riemannian metric. For each $h \in \text{Diff}_{\mathcal{S}}(M)$ (not even homotopic to the identity) $h^* \omega - \omega$ is an exact 1-form. Let u_h be the unique function provided by the Hodge decomposition of $h^*\omega-\omega$ such that $h^*\omega-\omega=$ du_h .

For $h, h' \in \text{Diff}_{\mathcal{S}}(M)$:

$$
(h, h') \mapsto u_h \circ h' + u_{h'} - u_{hh'}
$$

is a 2-cocycle K_{ω} with values in \mathbb{R} . Its cohomology class in $H^2(\text{Diff}_S(M), \mathbb{R})$ is an invariant $\mathcal{K}_{\mathcal{S}}$ of $\mathcal{S}.$

Statements 1, and 2 have been observed in [2]. The statement 3 is obvious, since the coboundary operator in the Gelfand–Fucks cohomology (cohomology on Lie algebras of vector fields) is the same as in the de Rham cohomology.

The class c_S may be called the Gelfand–Fucks class of S .

Statement 4 was proved by Vaisman [18]. See also [6].

Statement 5 was proved in [8]. The Hodge–de Rham theory gives a smooth lifting of de Rham coboundaries: i.e. any exact p -form θ determines uniquely a $(p-1)$ -form α such that $\theta = d\alpha$ as follows: let δ be the codifferential, and G the Green operator defined by a riemannian metric, then $\alpha = \delta G(\theta)$. Here the function u_h is $u_h = \delta(G(h^*\omega - \omega))$. See for instance [3].

Remark 4. We can define similar invariants using objects with compact support, and denote them by $a_{\mathcal{S}}^c$, $b_{\mathcal{S}}^c$, $c_{\mathcal{S}}^c$.

Definition. The structure S is called **inessential** if there exists $\Omega_* \in S$ such that G_{Ω} ₁ (M) = Diff_S(M). The structure S is called **essential** otherwise.

The following fact was observed in [4]:

Proposition 2. Let (M, S) be a lcs manifold. Then S is inessential iff $a_S = 0$.

The connection between these invariants, and the problem of essentiality, and globality of locally conformal structure is given by the following:

Theorem 6. Let (M, \mathcal{S}) be a lcs manifold.

1. If $a_S = 0$, then $S = \mathcal{O}$. Furthermore, the Lee homomorphism is trivial, and the structure S is of the second kind. Thus inessential structures are of the second kind. This also says that if S is of the first kind, then $a_s \neq 0$.

- 2. If M is compact, then $S = \mathcal{O}$ implies that $a_S = 0$.
- 3. The Gelfand–Fucks class c_S vanishes iff the Lee class \mathcal{L}_S does.

4. If M is compact, the vanishing of one of the four classes $a_S, b_S, c_S, \mathcal{L}_S$, implies the vanishing of the remaining three classes.

We will need the following "local transitivity" result. Lefebvre's [16] proved it away from the zeros of the Lee form. Since for any point, the lcs structure can be represented by a lcs form with Lee form not vanishing at that point, Lefebvre's argument applies. For the convenience of the reader, we rewrote it in our style.

Theorem 7. Let (M, \mathcal{S}) be a lcs manifold of dimension $2n$. For each $x \in M$, there exist $2n$ vector fields $V_j^x \in \mathcal{X}_{\mathcal{S}}(M)$ with arbitrarily small compact support in an open neighborhood of x and such that ${V_j^x(x)}_{j=1,\dots,2n}$ form a basis of the tangent space T_xM .

Proof. 1. For each point $x \in M$, there is $\Omega \in \mathcal{S}$, with Lee form ω such that $\omega(x) \neq 0$. Indeed, if the Lee form ω of $\Omega \in \mathcal{S}$ vanishes at x, consider a contractible neighborhood U of x at which $\omega|_U = d \ln(\lambda)$, and choose a smooth positive function ρ, constant outside of U with $dρ(x) \neq 0$ and $d ln λ \neq d ln ρ$ on a neighborhood of x. The form $\rho\Omega \in \mathcal{S}$ and has Lee form $\omega' = \omega - d\ln(\rho)$. The new Lee form does not vanish at x (and in a neighborhood).

2. Any function u on an open set U where $f\Omega_{|U}$ is symplectic defines a vector field X_u on U by the equation:

$$
i(X_u)f\Omega_|U) = d(fu).
$$

A direct calculation shows that $L_{X_u} \Omega_l U) = (-X_u \cdot \ln f) \Omega$ [18].

3. The form $\Omega \in \mathcal{S}$ above has a Lee form ω not vanishing on an open neighborhood $V \subset U$ of x. Hence, there are local coordinates $(x_1,...,x_n,y_1,...,y_n)$ defined on a smaller neighborhood V_1 of x such that $y_1 \neq 0$, and

$$
\Omega|_{U_1} = y_1 \Big(\sum_{k=1}^n dx_k \wedge dy_k \Big).
$$

Let μ be a smooth function, supported in V_2 and which is equal to 1 on a closed neighborhood F of x, where $F \subset V_2 \subset V_1$.

We define 2n vector fields by:

$$
i(Y_1) \left(\frac{1}{y_1} \Omega_{|V_1} \right) = d \left(\mu \frac{y_1^2}{y_1} \right) = d(\mu y_1)
$$

and for $j = 2, \ldots, n$,

$$
i(Y_j)\Big(\frac{1}{y_1}\Omega_{|V_1}\Big)=d\Big(\mu\frac{y_j}{y_1}\Big).
$$

For $j = 1, \ldots, n$ define X_j by:

$$
i(X_j)\Big(\frac{1}{y_1}\Omega_{|V_1}\Big) = d\Big(\mu \frac{x_j}{y_1}\Big).
$$

Then X_i, Y_i are smooth vector fields on M with compact support in V_1 , which all belong to $\mathcal{X}_{\mathcal{S}}(M)_c$.

Let us note $e_j = \partial/\partial x_j$ and $e'_j = \partial/\partial y_j$, then on F, we have

$$
Y_1 = e_1
$$
, $Y_j = \frac{1}{y_1} e_j - \frac{y_j}{y_1^2} e_1$, $j = 2,..., n$

$$
X_j = -\frac{1}{y_1} e'_j - \frac{x_j}{y_1^2} e_1
$$
, $j = 1,..., n$.

Writing that $\sum_{i=1}^{n} (a_i X_i + b_i Y_i) = 0$, gives immediately that $b_i = 0$ and $a_i = 0$, i.e. these vector fields are linearly independent near x . \Box

Proof of Theorem 6. 1. Suppose that $a_s = 0$, that is S is inessential (Proposition 2). Let $\Omega_* \in \mathcal{S}$ with $\text{Diff}_{\mathcal{S}}(M) = G_{\Omega_*}(M)$, and let ω_* be the corresponding Lee form. It follows that

$$
\mathcal{X}_{\mathcal{S}}(M)_c = \mathcal{X}_{\Omega_*}(M)_c.
$$

Let us now show that $\omega_* = 0$.

For each $x \in M$, and any tangent vector $\xi \in T_xM$, we want to show that $\omega_*(x)(\xi) = 0$. By Theorem 7, $\xi = \sum_{j=1}^{2n} c_j(x)V_j^x(x)$. Extend now the coefficients $c_j(x)$ into smooth functions c_j with compact support near x. We get a smooth vector field with compact support $V = \sum_{j=1}^{2n} c_j V_j^x$, which coincides with ξ at $x \in M$. Therefore,

$$
\omega_*(x)(\xi) = \omega_*(x)(V(x)) = (\omega_*(V))(x) = \sum_{j=1}^{2n} (c_j \omega_*(V_j^x))(x).
$$

Since $V_j^x \in \mathcal{X}_{\mathcal{S}}(M)_c = \mathcal{X}_{\Omega_*}(M)_c, \ \omega_*\left(V_j^x\right))$ is a constant function (see Remark 5.3) with compact support, and hence identically zero. This proves that $\omega_*(x) = 0$.

This implies that $S = \mathcal{O}$.

Since the Lee homomorphism can be computed using Ω_* and ω_* , we see that

$$
l=\hat{\omega}_*=0.
$$

This implies that the structure is of the second kind. Indeed, if Ω is any representative of S with Lee form ω and $X \in \mathcal{X}_{\Omega}(M)$, then $l(X) = \omega(X) = 0$.

2. If $S = \mathcal{O}$, there is a symplectic form $\Omega \in \mathcal{S}$. If $\phi \in \text{Diff}_{\mathcal{S}}(M)$, then $\phi^* \Omega = f\Omega$. By the classical theorem of Libermann (see [6]), f is a constant, provided that the dimension of M is at least 4, (which is assumed here) and if M is compact, this constant must be 1. This follows from the fact that $\int_M \phi^* \Omega^n = f^n \int_M \Omega^n$ and by the formula of change of variable, we have equality with $\int_M \Omega^n$. Hence $f = 1$ and therefore $a_{\mathcal{S}} = 0$.

3. It is clear that $[\omega] = 0$ implies that $[\hat{\omega}] = 0$. Conversely, suppose there exists a smooth function u such that $\omega(X) = X.u = du(X)$ for all $X \in \mathcal{X}_{S}(M)$. We show that indeed $\omega(\xi) = du(\xi)$ for all vector fields ξ , i.e that $\omega = du$. For each point $x \in M$, we need to show that $\omega(\xi)(x)=(du(\xi)(x)).$

As above, we consider the vector field $V = \sum_{j=1}^{2n} c_j V_j^x$, which is equal to ξ at x. Then, like above: $\omega(\xi)(x) = \sum_{j=1}^{2n} (c_j \omega(V_j^x))(x) = \sum_{j=1}^{2n} (c_j du(x)(V_j^x)) =$ $du(x)(\sum_{j=1}^{2n} c_j V_j^x) = du(x)(V) = du(x)(\xi)$. Therefore the de Rham class of ω is trivial.

4. In the compact case $(a\mathcal{S} = 0) \Leftrightarrow (\mathcal{S} = \mathcal{O})$ and $(a\mathcal{S} = 0) \Leftrightarrow (b\mathcal{S} = 0)$.

We also have that in general, $(S = \mathcal{O} \Leftrightarrow (\mathcal{L}_{\mathcal{S}} = 0)$ and $(c_{\mathcal{S}} = 0) \Leftrightarrow (\mathcal{L}_{\mathcal{S}} = 0)$
Putting these facts together, vields the last assertion of Theorem 5.

Putting these facts together, yields the last assertion of Theorem 5. ¤

Remarks. 1. If M is not compact, $S = 0$ does not imply that $a_S = 0$. Take for instance the global conformal symplectic structure defined by the standard symplectic form on \mathbb{R}^{2n} , and more generally non-compact manifolds with complete Liouville vector fields, like Stein manifolds [4].

2. The vanishing of the compactly supported invariant $a_{\mathcal{S}}^c$ also implies that $S = 0$. This was proved in [12].

6. Concluding remarks and questions

1. The mapping $L : \mathcal{L}_{cs}(M) \to \mathcal{F}^1(M)$ assigning to a lcs form its Lee form is not continuous in the C^0 topology. Indeed if u is a smooth function which is C^0 close to 1 and C^1 far from 0, then the Lee forms of $u\Omega$ and Ω , are far apart. How about the continuity for the C^{∞} topology?

If M has a complex structure J and a hermitian metric q such that the lcs form Ω is given by $\Omega(X, Y) = q(X, JY)$ (*M* is said to be a locally conformal Kaehler manifold), then L is continuous for the C^{∞} topology. Indeed in that case we have an explicit formula for $L(\Omega)$ [9]:

$$
L(\Omega) = \frac{1}{n-1} (\delta \Omega \circ J).
$$

Here δ is the codifferential with respect to the metric g, and $2n$ is the dimension of M.

2. The Lee homomorphism $l : \mathcal{X}_{S}(M) \to \mathbb{R}$ can be integrated into a homomorphism $\mathcal{L}: \text{Diff}_{\mathcal{S}}(M)_+ \to \mathbb{R}/\Delta$ (where Δ is some countable subgroup of \mathbb{R}), and $\text{Diff}_{\mathcal{S}}(M)_+$ is the group of automorphisms of S which admit a lift to the minimal regular cover \tilde{M} [6].

If α is a contact form on a compact manifold M, we constructed in Theorem 1 a map $\rho : \mathrm{Diff}_{\mathcal{C}(\alpha)}(M) \to \mathrm{Diff}_{\mathcal{S}(\alpha)}(M \times S^1)_+$. Composing ρ with the extended global Lee homomorphism, we get a map:

$$
\mu = \mathcal{L} \circ \rho : \mathrm{Diff}_{\mathcal{C}(\alpha)}(M) \to \mathbb{R}/\Delta.
$$

This map is not a group homomorphism. This allows us to define a 2-cocycle η on the the group $\text{Diff}_{\mathcal{C}(\alpha)}(M)$:

$$
\eta(\phi, \psi) = \rho(\phi) . \rho(\psi) . (\rho(\phi \psi))^{-1}
$$

for all $\phi, \psi \in \text{Diff}_{\mathcal{C}(\alpha)}(M)$.

What is the meaning of that cocycle?

References

- [1] A. Banyaga, Sur la structure du groupe de diffeomorphismes qui preservent une forme symplectique, Comment. Math. Helv. **53** (1978), 174–227.
- [2] A. Banyaga, Invariants of contact structures and transversally oriented foliations, Annals of Global Analysis and Geometry **14** (1996), 427–441.
- [3] A. Banyaga, The structure of classical diffeomorphism groups, Mathematics and its applications no 400, Kluwer Academic Publisher, 1997.
- [4] A. Banyaga, On essential conformal groups and a conformal invariant, Journal of Geometry **68** (2000), 10–15.
- [5] A. Banyaga, Quelques invariants des structures localement conformement symplectiques, C. R. Acad. Sci. Paris **332** Serie 1 (2001), 29–32.
- [6] A. Banyaga, A geometric integration of the extended Lee homomorphism, Journal of Geometry and Physics **39** (2001), 30–44.
- [7] A. Banyaga, An introduction to symplectic geometry, in: M. Audin, J. Lafontaine (eds), Holomorphic Curves in symplectic geometry, Progress in Math 117, Birkhäuser, 1994, 17– 40.
- [8] A. Banyaga and R. Urwin, Sur la cohomologie du groupe des diffeomorphismes, C. R. Acad. Sci. Paris **294** (1982), 625–627.
- [9] S. Dragomir and L. Ornea, Locally conformal Kaehler geometry, Progress in Math. 155, Birkhäuser, 1998.
- [10] C. Godbillon, Elements de topologie algebriques, Hermann, Paris, 1971.
- [11] F. Guerida and A. Lichnerowicz, Geometrie des algebres de Lie locales de Kirillov, J. Math. Pures et Appl. **63** (1984), 407–484.
- [12] S. Haller and T. Rybicki On the group of diffeomorphisms preserving a locally conformal symplectic structure, Ann. Global Anal. and Geom. **17** (1999) 475–502.
- [13] P. Hilton and U. Stammback, A course in homological algebra, Springer Graduate Texts in Math., Springer, 1971.

- [14] G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. Math. **57** (2)(1953), 591– 603.
- [15] H. C. Lee, A kind of even-dimensional differential geometry and its application to exterior calculus, Amer. J. Math. **65** (1943), 433–438.
- [16] J. Lefebvre, Propriétés du groupe de transformations conformes et du groupe des automorphismes d'une variété localement conformement symplectique, C. R. Acad. Sci. Paris 268 Serie A (1969), 717–719.
- [17] J. Moser, On the volume element of a manifold, *Trans. Amer. Math. Soc.* **120** (1965), 286–294.
- [18] I. Vaisman, Locally conformal symplectic manifolds, Inter. J. Math. and Math. Sci. **8** no 3 (1983), 521–536.
- [19] I. Vaisman, Remarkable operators and commutation formulas on locally conformal Kaehler manifolds, Compositio Math. **40** (1980), 227–259.

Augustin Banyaga The Pennsylvania State University Department of Mathematics 225 Mc Allister Building University Park PA 16803 U.S.A. e-mail: banyaga@math.psu.edu

(Received: May 28, 2001)

To access this journal online: http://www.birkhauser.ch