Comment. Math. Helv. 77 (2002) 408–414 0010-2571/02/020408-7 \$ 1.50+0.20/0

°c 2002 Birkh¨auser Verlag, Basel

Commentarii Mathematici Helvetici

On the triple points of singular maps

Tobias Ekholm and András Szűcs

Abstract. The number of triple points (mod 2) of a self-transverse immersion of a closed $2n$ manifold M into 3n-space are known to equal one of the Stiefel–Whitney numbers of M . This result is generalized to the case of generic (i.e. stable) maps with singularities. Besides triple points and Stiefel–Whitney numbers, a certain linking number of the manifold of singular values with the rest of the image is involved in the generalized equation which corrects an erroneous formula in [9].

If n is even and the closed manifold is oriented then the equations mentioned above make sense over the integers. Together, the integer- and mod 2 generalized equations imply that a certain Stiefel–Whitney number of closed oriented 4k-manifolds vanishes. This Stiefel–Whitney number is in fact the first in a family which vanish on such manifolds.

Mathematics Subject Classification (2000). 57R20, 57R45, 58K30.

Keywords. Stable map, linking number, triple point, Stiefel–Whitney number, orientable 4kmanifold.

1. Introduction

In his classical paper [10] of 1946, Whitney showed that the number of double points of a self-transverse immersion of an n-manifold into 2n-space is related to the Euler number of its normal bundle. Since then many results of a similar nature have been found. This paper deals with a generalization of one of these results, the Herbert–Ronga formula [5] which expresses the number of triple points of a self-transverse immersion of a closed $2n$ -manifold into $3n$ -space in terms of one of its characteristic numbers. More precisely, the Herbert–Ronga formula is extended to singular generic (i.e. stable) maps of $2n$ -manifolds into $3n$ -space. (In this paper all manifolds and maps are assumed to be C^{∞} -smooth, unless otherwise explicitly stated.) To state the formula, some notation is needed:

Let M be a closed 2n-manifold and let $f: M \to \mathbb{R}^{3n}$ be a generic map. If $\Delta(f) \subset \mathbb{R}^{3n}$ denotes the set of double points of f then $\Delta(f)$ is an immersed ndimensional submanifold with boundary. The self-intersection points of $\Delta(f)$ are the triple points of f. The boundary of $\Delta(f)$ is $\Sigma(f)$, the set of singular values of f .

Define $t_2(f) \in \mathbb{Z}_2$ as the mod 2-number of triple points of f. Let $\Sigma'(f)$ denote the $(n-1)$ -dimensional submanifold of \mathbb{R}^{3n} which is obtained by shifting $\Sigma(f)$ slightly along its outward normal vector field in $\Delta(f)$. Then $\Sigma'(f) \cap f(M) = \emptyset$. Define $l_2(f) \in \mathbb{Z}_2$ as the mod 2-linking number of the cycles $f(M)$ and $\Sigma'(f)$ in \mathbb{R}^{3n} . If $i_1 + \cdots + i_m = 2n$ then let $\bar{w}_{i_1} \ldots \bar{w}_{i_m}[M] \in \mathbb{Z}_2$ denote the product of the normal Stiefel–Whitney classes of M in dimensions i_1, \ldots, i_m evaluated on the fundamental homology class of M.

Theorem 1. Let M be a closed manifold of dimension 2n and let $f: M \to \mathbb{R}^{3n}$ *be a generic map. Then*

$$
t_2(f) + l_2(f) = \bar{w}_n^2[M] + \bar{w}_{n+1}\bar{w}_{n-1}[M]
$$
 (1)

Theorem 1 is proved in Section 2. It corrects the erroneous theorem on the second page of $[9]$, in which the second term in the right hand side of Equation (1) is missing.

For closed oriented 4k-manifolds Equation (1) can be lifted to an integer equation: If $n = 2k$ is even and M is oriented then there is an induced orientation on $\Delta(f)$ as well as on the triple points of f. Define $t(f) \in \mathbb{Z}$ as the algebraic number of triple points of f. The orientation of $\Delta(f)$ induces an orientation of its boundary $\Sigma(f)$ which in turn induces an orientation of $\Sigma'(f)$. Define $l(f) \in \mathbb{Z}$ as the linking number of the oriented cycles $f(M)$ and $\Sigma'(f)$ in \mathbb{R}^{6k} . Let $\bar{p}_k[M^{4k}]$ denote the k^{th} normal Pontryagin number of M. The following theorem is Lemma 4 in [1].

Theorem 2. Let M be a closed oriented manifold of dimension 4k and let $f: M \to$ R⁶^k *be a generic map. Then*

$$
3t(f) - 3l(f) = \bar{p}_k[M].
$$
\n⁽²⁾

Equation (2) turned out to be very useful: It is used in the derivation of a geometric formula for Smale invariants of immersions of spheres, see [1] and [2], and in the study of geometric features of the regular homotopy classification of immersions of 3-manifolds in 5-space, see [7].

If M is a closed oriented 4k-manifold then the mod 2-reduction of $\bar{p}_k[M]$ equals $\bar{w}_{2k}^2[M]$. Hence Theorems 1 and 2 together imply that

$$
\bar{w}_{2k+1}\bar{w}_{2k-1}[M] = 0\tag{3}
$$

for any closed oriented 4k-manifold M. In fact, $\bar{w}_{2k+1}\bar{w}_{2k-1}[M]$ is the first in a sequence of Stiefel–Whitney numbers which vanish on closed oriented $4k$ -manifolds. More precisely,

Theorem 3. (Stong). If M is an oriented 4k-manifold and $(2k_1 + 1) + \cdots$ $(2k_r + 1) = 4k$ *then*

$$
\overline{w}_{2k_1+1}\dots\overline{w}_{2k_r+1}[M]=0.
$$

This theorem was communicated by R. Stong to the second author together with a proof of the first case (3). A proof of Theorem 3 is presented in Section 3.

2. Proof of Theorem 1

Fix a generic map $f: M \to \mathbb{R}^{3n}$ of a closed $2n$ -manifold. Let $\tilde{\Sigma} \subset M$ denote the $(n-1)$ -dimensional submanifold of singular points of f and let $\Sigma = f(\tilde{\Sigma})$. Then f maps $\tilde{\Sigma}$ diffeomorphically to Σ .

Let $\Delta \subset M$ denote the closure of the preimages of multiple points of f. Then $\tilde{\Delta}$ is an immersed closed *n*-dimensional manifold with transverse double points at the preimages of triple points of f. Let $\tilde{\Delta}_{\text{res}}$ denote the resolution of $\tilde{\Delta}$ and let $\tilde{\iota}: \Delta_{\text{res}} \to M$ denote the natural immersion with image $\Delta \subset M$.

There is a natural involution $T: \tilde{\Delta}_{\text{res}} \to \tilde{\Delta}_{\text{res}}$ such that $f \circ \tilde{\iota} \circ T = f \circ \tilde{\iota}$. Since no triple point of f is singular we have a natural embedding $\tilde{\Sigma} \subset \tilde{\Delta}_{res}$ and $\tilde{\Sigma}$ is the fix point set of T.

Let $\nu(\tilde{\iota})$ denote the normal bundle of the immersion $\tilde{\iota}$ and let ν denote its restriction to Σ . Since ν is an n-dimensional vector bundle over an $(n-1)$ -manifold there exists a non-zero section. Let \tilde{s} be such a section.

A standard transversality argument allows us to extend \tilde{s} to a section \tilde{S} of $\nu(\tilde{\iota})$ which is transverse to the 0-section and which satisfies the following two conditions:

- If x is a double point of $\tilde{\iota}$ then $\tilde{S}(x) \neq 0$.
- If $\tilde{S}(x) = 0$ then $\tilde{S}(T(x)) \neq 0$.

Let $\Delta \subset \mathbb{R}^{3n}$ denote the closure of the double points of f. Then Δ is an immersed submanifold with boundary Σ and Δ has triple points at the triple points of f. Let Δ_{res} denote the resolution of Δ and let $\iota: \Delta_{\text{res}} \to \mathbb{R}^{3n}$ denote the natural immersion with image Δ . Let $\nu(\iota)$ denote the normal bundle of the immersion ι . Note that there is a natural map $\Pi: \tilde{\Delta}_{\text{res}} \to \Delta_{\text{res}}$ which is a double cover of $\Delta_{\rm res} - \Sigma$ when restricted to $\tilde{\Delta}_{\rm res} - \tilde{\Sigma},$ and which maps $\tilde{\Sigma}$ diffeomorphically onto Σ.

Define the section S of $\nu(\iota)$ as follows:

$$
S(y) =
$$
\n
$$
\begin{cases}\ndf(\tilde{S}(y_1)) + df(\tilde{S}(y_2)) & \text{if } y \in \Delta_{\text{res}} - \Sigma, \text{ where } y_1 \neq y_2, \Pi(y_1) = \Pi(y_2) = y, \\
2df(\tilde{S}(y_1)) & \text{if } y \in \Sigma, \text{ where } \Pi(y_1) = y.\n\end{cases}
$$

Let $C(\Sigma) \subset \Delta_{\text{res}}$ be a small open collar on the boundary Σ of Δ_{res} . Let Δ'' denote the image of the immersion $y \mapsto \iota(y) + \epsilon S(y), y \in \Delta_{\text{res}} - C(\Sigma)$ for some small $\epsilon > 0$. Then, if ϵ and the collar $C(\Sigma)$ are small enough, Δ'' is a chain with boundary $\partial \Delta'' = \Sigma''$ satisfying $\Sigma'' \cap f(M) = \emptyset$. If lk₂ denotes the mod 2linking number, \bullet denotes the mod 2-intersection number, and $\sharp(F)$ denotes the mod 2-number of elements in the finite set F , then

$$
lk_2(\Sigma'', f(M)) = \Delta'' \bullet f(M) = \sharp(\tilde{S}^{-1}(0)) + t_2(f),
$$
\n(4)

Vol. 77 (2002) On the triple points of singular maps 411

Figure 1. A piece of $f(M)$ (represented by a 2-sphere and a piece of a plane) with the double point set Δ (fat lines), its normal field S, and singularity set Σ (dots) with its outward normal field V in Δ .

since near each zero z of \tilde{S} there is a unique intersection point of Δ'' and $f(M)$ near $f(z)$, and near each triple point of f there are exactly three such intersection points.

The homology class of the cycle $\tilde{\Delta}$ in M is Poincaré dual to n^{th} normal Stiefel– Whitney class \bar{w}_n of M, see [6]. Thus

$$
\bar{w}_n^2[M] = \tilde{\Delta} \bullet \tilde{\Delta} = \sharp(\tilde{S}^{-1}(0)),\tag{5}
$$

since the image of a slight shift of the immersion $\tilde{\iota}$ along \tilde{S} intersects $\tilde{\Delta}$ near each zero of \tilde{S} and in *two* points near each double point of $\tilde{\iota}$.

Equations (4) and (5) imply

$$
lk_2(\Sigma'', f(M)) = \bar{w}_n^2[M] + t_2(f).
$$
 (6)

Recall that $\Sigma' \subset \mathbb{R}^{3n}$ is the submanifold which results when Σ is shifted slightly along its unit outward normal vector field V in Δ , and that $\Sigma' \cap f(M) = \emptyset$. We compare the linking numbers $lk_2(\Sigma'', f(M))$ and $lk_2(\Sigma', f(M))$:

Let $\tilde{\Sigma}_0 \subset M$ be the submanifold which results when $\tilde{\Sigma}$ is shifted a small distance along \tilde{S} . Let $\Sigma_0 = f(\tilde{\Sigma}_0)$ and for $p \in \Sigma$, let $p_0 = f(\tilde{p}_0)$ where \tilde{p}_0 is the point in $\tilde{\Sigma}_0$ corresponding to $\tilde{p} \in \tilde{\Sigma}$ with $f(\tilde{p}) = p$.

For small $\epsilon > 0$ and $p \in \Sigma$ let $l_p(\epsilon)$ be the segment of the straight line through $p + \epsilon V(p)$ and p_0 of length 2ϵ and centered at p_0 . For $\epsilon > 0$ and the shifting of $\tilde{\Sigma}$ in M small enough,

$$
\Gamma = \bigcup_{p \in \Sigma} l_p(\epsilon)
$$

is a submanifold of \mathbb{R}^{3n} . If the collar $C(\Sigma)$ is chosen small enough and if the

shifting distance along S is small enough then the boundary $\partial \Gamma$ of Γ is isotopic to $\Sigma' \cup \Sigma''$ in $\mathbb{R}^{3n} - f(M)$. Thus

$$
\mathrm{lk}_2(\Sigma', f(M)) = \mathrm{lk}_2(\Sigma_0, f(M)) + \Gamma \bullet f(M) = \mathrm{lk}_2(\Sigma'', f(M)) + \Gamma \bullet f(M). \tag{7}
$$

We compute $\Gamma \bullet f(M)$: The intersection $\Gamma \cap f(M)$ is a clean intersection. That is, $\Gamma \cap f(M) = \Sigma_0$ is a manifold and the tangent bundle

$$
T\Sigma_0 = Tf(M) \cap T\Gamma \subset T\mathbb{R}^{3n},\tag{8}
$$

where all bundles in the left hand side are restricted to Σ_0 .

Figure 2. The normal space of Σ in \mathbb{R}^{3n} at $p \in \Sigma$. In the figure the boundary of Γ is the union of $\partial' \Gamma$, isotopic to Σ' in $\mathbb{R}^{3n} - f(M)$, and $\partial'' \Gamma$ isotopic to Σ'' in $\mathbb{R}^{3n} - f(M)$.

As in [4], we find

$$
\Gamma \bullet f(M) = w_{n-1}(\xi),
$$

where ξ is the so called excess bundle over Σ_0 :

$$
\xi = T\mathbb{R}^{3n}/(T\Gamma + Tf(M)),
$$

where all bundles are restricted to Σ_0 .

To finish the proof it remains to calculate $w_{n-1}(\xi)$. Note that

$$
T\Gamma|\Sigma_0 = T\Sigma_0 \oplus \epsilon^1,
$$

where ϵ^1 is the trivial line bundle directed along the intervals $l_p(\epsilon)$. Thus, by (8),

$$
\xi \oplus Tf(M)|\Sigma_0 \oplus \epsilon^1 = T\mathbb{R}^{3n}|\Sigma_0.
$$
\n(9)

The bundle $Tf(M)|\Sigma_0$ is identified with $TM|\tilde{\Sigma}_0$ by the differential of f. Hence if $i_0: \tilde{\Sigma}_0 \to M$ denotes the inclusion then $w(\xi) = i_0^* \bar{w}(M)$. Therefore, if F_V denotes

the fundamental homology class of the manifold V and PD denotes the Poincaré duality operator,

$$
\langle w_{n-1}(\xi), F_{\Sigma_0} \rangle = \langle i_0^* \bar{w}(M), F_{\tilde{\Sigma}_0} \rangle = \langle \bar{w}(M), i_{0*}(F_{\tilde{\Sigma}_0}) \rangle = \langle \bar{w}(M), \text{PD } \bar{w}_{n+1}(M) \rangle
$$

= $\langle \bar{w}(M) \cup \bar{w}_{n+1}(M), F_M \rangle = \bar{w}_{n-1} \bar{w}_{n+1}[M].$ (10)

Here, the third equality follows from the well-known formula PD $\bar{w}_{n+1}(M) = i_* F_{\tilde{y}}$, where $i: \tilde{\Sigma} \to M$ denotes the inclusion, together with $i_* F_{\tilde{\Sigma}} = i_{0*} F_{\tilde{\Sigma}_0}$. Equations (6) (7) and (10) prove the theorem tions (6) , (7) , and (10) prove the theorem.

3. Proof of Theorem 3

Let $\mathfrak{N}_*, \Omega_*,$ and Ω_*^U denote the cobordism ring, the oriented cobordism ring, and the complex cobordism ring, respectively. Note that there are natural forgetting homomorphisms

$$
\Omega_*^U \longrightarrow \Omega_* \longrightarrow \mathfrak{N}_*.
$$

For a manifold M , let $[M]$ denote its cobordism class.

Using some facts from cobordism theory which can all be found in Chapter 4 of Stong's book [8], we show that it is enough to prove the theorem for oriented 4k-manifolds M such that either

(a) $[M] \in \Omega_{4k}$ maps to a square $[N \times N] \in \mathfrak{N}_{4k}$, or

(b) [M] is a torsion element of Ω_{4k} (in fact, [M] torsion implies $2 \cdot [M] = 0$):

Let $Tors(\Omega_*)$ denote the torsion subgroup of Ω_* . The homomorphism $\Omega_*^U \to \Omega_*$ induces an epimorphism

$$
\Omega^U_*\; \longrightarrow\; \Omega_*/\operatorname{Tors}(\Omega_*).
$$

and the image $\Omega_*^U \to \mathfrak{N}_*$ consists of squares of elements in \mathfrak{N}_* .

Hence, if M is any oriented $4k$ -manifold then there exists some oriented $4k$ manifold V such that [V] is torsion in Ω_{4k} and $[M]+[V] = [N \times N]$ in \mathfrak{N}_{4k} . This implies that the theorem follows once it is proved for manifolds satisfying (a) or (b) above.

First consider (a): let $M = N \times N$. Then $\bar{w}(M) = \bar{w}(N) \times \bar{w}(N)$ and hence

$$
\bar{w}_{2k+1}(M) = \sum_{i+j=2k+1} \bar{w}_i(N) \times \bar{w}_j(N).
$$

Thus

$$
\langle \bar{w}_{2k_1+1}(M) \dots \bar{w}_{2k_r+1}(M), F_M \rangle =
$$

= $\sum \langle \bar{w}_{i_1}(N) \dots \bar{w}_{i_r}(N), F_N \rangle \cdot \langle \bar{w}_{j_1}(N) \dots \bar{w}_{j_r}(N), F_N \rangle.$ (11)

Since $i_s + j_s$ is odd for all i_s, j_s there is a fixed point free involution T acting on

414 T. Ekholm and A. Szűcs CMH

the set of the terms in the sum in (11) such that $i_1 + \cdots + i_r = 2k = j_1 + \cdots + j_r$:

$$
T\colon \langle \bar{w}_{i_1}(N)\dots \bar{w}_{i_r}(N), F_N \rangle \cdot \langle \bar{w}_{j_1}(N)\dots \bar{w}_{j_r}(N), F_N \rangle \n\mapsto \langle \bar{w}_{j_1}(N)\dots \bar{w}_{j_r}(N), F_N \rangle \cdot \langle \bar{w}_{i_1}(N)\dots \bar{w}_{i_r}(N), F_N \rangle.
$$

Thus the terms in the left hand side of (11) which does not vanish for dimensional reasons cancel in pairs and hence $\bar{w}_{2k_1+1} \dots \bar{w}_{2k_r+1}[M] = 0.$

Next consider (b): let $u: \mathfrak{N}_{4k} \to \mathbb{Z}_2$ denote the homomorphism induced by $\sum 2k_j + 1 = 4k$. Odd-dimensional Stiefel–Whitney classes are mod 2-reductions the product of odd-dimensional normal Stiefel–Whitney classes $\bar{w}_{2k_1+1} \dots \bar{w}_{2k_r+1}$, of twisted integer classes, see [3], p. 140. Hence, a product of an even number of such classes is an integer class so the map

$$
\Omega_{4k} \ \xrightarrow{\ \pi \ \ } \ \mathfrak{N}_{4k} \ \xrightarrow{\quad \ u \ \ } \ \mathbb{Z}_2
$$

lifts to a homomorphism

$$
\Omega_{4k} \xrightarrow{U} \mathbb{Z}.
$$

Thus U and therefore $u \circ \pi$ is zero on any torsion element of Ω_{4k} .

References

- [1] T. Ekholm and A. Szűcs, Geometric formulas for Smale invariants of codimension two immersions, Topology, to appear.
- T. Ekholm and A. Szűcs, The group of immersions of homotopy $4k 1$ -spheres, preprint.
- [3] J. Milnor and J. Stasheff, Characteristic classes, Ann. of Math. Stud. **76**, Princeton Univ. Press, 1974.
- [4] D. Quillen, Elementary proof of some results of cobordism theory using Steenrod operations, Adv. in Math. **7** (1971), 29–56.
- [5] F. Ronga, On multiple points of smooth immersions Comment. Math. Helv. **55** (1980), 521–527.
- [6] F. Ronga, La classe duale aux points doubles d'une application Composito Math. **27** (1973), 223–232.
- [7] O. Saeki, A. Szűcs and M. Takase, Regular homotopy classes of immersions of 3-manifolds into 5-space, Manuscripta Math., to appear.
- [8] R. Stong, Notes on cobordism theory, Princeton Univ. Press, 1968.
- [9] A. Szűcs, The linking number of singular maps, *Comment. Math. Helv.* **61** (1986), 360–369.
- [10] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, Ann. of Math. **45** (1944), 220–293.

Tobias Ekholm Uppsala University Department of Mathematics P.O. Box 480 SE-751 06 Uppsala Sweden e-mail: tobias@math.uu.se

A. Szűcs Eötvös Loránd University Department of Analysis Pázmány Péter sétány 1/C H-1117 Budapest Hungary e-mail: szucs@cs.elte.hu

(Received: October 12, 2001)