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c© 2002 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

On the triple points of singular maps
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Abstract. The number of triple points (mod 2) of a self-transverse immersion of a closed 2n-
manifold M into 3n-space are known to equal one of the Stiefel–Whitney numbers of M . This
result is generalized to the case of generic (i.e. stable) maps with singularities. Besides triple
points and Stiefel–Whitney numbers, a certain linking number of the manifold of singular values
with the rest of the image is involved in the generalized equation which corrects an erroneous
formula in [9].

If n is even and the closed manifold is oriented then the equations mentioned above make
sense over the integers. Together, the integer- and mod 2 generalized equations imply that a
certain Stiefel–Whitney number of closed oriented 4k-manifolds vanishes. This Stiefel–Whitney
number is in fact the first in a family which vanish on such manifolds.
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1. Introduction

In his classical paper [10] of 1946, Whitney showed that the number of double
points of a self-transverse immersion of an n-manifold into 2n-space is related to
the Euler number of its normal bundle. Since then many results of a similar nature
have been found. This paper deals with a generalization of one of these results,
the Herbert–Ronga formula [5] which expresses the number of triple points of a
self-transverse immersion of a closed 2n-manifold into 3n-space in terms of one of
its characteristic numbers. More precisely, the Herbert–Ronga formula is extended
to singular generic (i.e. stable) maps of 2n-manifolds into 3n-space. (In this paper
all manifolds and maps are assumed to be C∞-smooth, unless otherwise explicitly
stated.) To state the formula, some notation is needed:

Let M be a closed 2n-manifold and let f : M → R3n be a generic map. If
∆(f) ⊂ R3n denotes the set of double points of f then ∆(f) is an immersed n-
dimensional submanifold with boundary. The self-intersection points of ∆(f) are
the triple points of f . The boundary of ∆(f) is Σ(f), the set of singular values
of f .
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Define t2(f) ∈ Z2 as the mod 2-number of triple points of f . Let Σ′(f) denote
the (n − 1)-dimensional submanifold of R3n which is obtained by shifting Σ(f)
slightly along its outward normal vector field in ∆(f). Then Σ′(f) ∩ f(M) = ∅.
Define l2(f) ∈ Z2 as the mod 2-linking number of the cycles f(M) and Σ′(f) in
R3n. If i1 + · · · + im = 2n then let w̄i1 . . . w̄im

[M ] ∈ Z2 denote the product of
the normal Stiefel–Whitney classes of M in dimensions i1, . . . , im evaluated on the
fundamental homology class of M .

Theorem 1. Let M be a closed manifold of dimension 2n and let f : M → R3n

be a generic map. Then

t2(f) + l2(f) = w̄2
n[M ] + w̄n+1w̄n−1[M ] (1)

Theorem 1 is proved in Section 2. It corrects the erroneous theorem on the
second page of [9], in which the second term in the right hand side of Equation (1)
is missing.

For closed oriented 4k-manifolds Equation (1) can be lifted to an integer equa-
tion: If n = 2k is even and M is oriented then there is an induced orientation
on ∆(f) as well as on the triple points of f . Define t(f) ∈ Z as the algebraic
number of triple points of f . The orientation of ∆(f) induces an orientation of its
boundary Σ(f) which in turn induces an orientation of Σ′(f). Define l(f) ∈ Z as
the linking number of the oriented cycles f(M) and Σ′(f) in R6k. Let p̄k[M4k] de-
note the kth normal Pontryagin number of M . The following theorem is Lemma 4
in [1].

Theorem 2. Let M be a closed oriented manifold of dimension 4k and let f : M →
R6k be a generic map. Then

3t(f)− 3l(f) = p̄k[M ]. (2)

Equation (2) turned out to be very useful: It is used in the derivation of a
geometric formula for Smale invariants of immersions of spheres, see [1] and [2],
and in the study of geometric features of the regular homotopy classification of
immersions of 3-manifolds in 5-space, see [7].

If M is a closed oriented 4k-manifold then the mod 2-reduction of p̄k[M ] equals
w̄2

2k[M ]. Hence Theorems 1 and 2 together imply that

w̄2k+1w̄2k−1[M ] = 0 (3)

for any closed oriented 4k-manifold M . In fact, w̄2k+1w̄2k−1[M ] is the first in a se-
quence of Stiefel–Whitney numbers which vanish on closed oriented 4k-manifolds.
More precisely,

Theorem 3. (Stong). If M is an oriented 4k-manifold and (2k1 + 1) + · · ·+
(2kr + 1) = 4k then

w̄2k1+1 . . . w̄2kr+1[M ] = 0.
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This theorem was communicated by R. Stong to the second author together
with a proof of the first case (3). A proof of Theorem 3 is presented in Section 3.

2. Proof of Theorem 1

Fix a generic map f : M → R3n of a closed 2n-manifold. Let Σ̃ ⊂ M denote the
(n − 1)-dimensional submanifold of singular points of f and let Σ = f(Σ̃). Then
f maps Σ̃ diffeomorphically to Σ.

Let ∆̃ ⊂ M denote the closure of the preimages of multiple points of f . Then
∆̃ is an immersed closed n-dimensional manifold with transverse double points at
the preimages of triple points of f . Let ∆̃res denote the resolution of ∆̃ and let
ι̃ : ∆̃res → M denote the natural immersion with image ∆̃ ⊂ M .

There is a natural involution T : ∆̃res → ∆̃res such that f ◦ ι̃ ◦ T = f ◦ ι̃. Since
no triple point of f is singular we have a natural embedding Σ̃ ⊂ ∆̃res and Σ̃ is
the fix point set of T .

Let ν(ι̃) denote the normal bundle of the immersion ι̃ and let ν denote its
restriction to Σ̃. Since ν is an n-dimensional vector bundle over an (n−1)-manifold
there exists a non-zero section. Let s̃ be such a section.

A standard transversality argument allows us to extend s̃ to a section S̃ of ν(ι̃)
which is transverse to the 0-section and which satisfies the following two conditions:

• If x is a double point of ι̃ then S̃(x) 6= 0.
• If S̃(x) = 0 then S̃(T (x)) 6= 0.

Let ∆ ⊂ R3n denote the closure of the double points of f . Then ∆ is an
immersed submanifold with boundary Σ and ∆ has triple points at the triple
points of f . Let ∆res denote the resolution of ∆ and let ι : ∆res → R3n denote
the natural immersion with image ∆. Let ν(ι) denote the normal bundle of the
immersion ι. Note that there is a natural map Π: ∆̃res → ∆res which is a double
cover of ∆res−Σ when restricted to ∆̃res− Σ̃, and which maps Σ̃ diffeomorphically
onto Σ.

Define the section S of ν(ι) as follows:

S(y) ={
df(S̃(y1)) + df(S̃(y2)) if y ∈ ∆res − Σ, where y1 6= y2, Π(y1) = Π(y2) = y,

2df(S̃(y1)) if y ∈ Σ, where Π(y1) = y.

Let C(Σ) ⊂ ∆res be a small open collar on the boundary Σ of ∆res. Let ∆′′

denote the image of the immersion y 7→ ι(y) + εS(y), y ∈ ∆res − C(Σ) for some
small ε > 0. Then, if ε and the collar C(Σ) are small enough, ∆′′ is a chain
with boundary ∂∆′′ = Σ′′ satisfying Σ′′ ∩ f(M) = ∅. If lk2 denotes the mod 2-
linking number, • denotes the mod 2-intersection number, and ](F ) denotes the
mod 2-number of elements in the finite set F , then

lk2(Σ′′, f(M)) = ∆′′ • f(M) = ](S̃−1(0)) + t2(f), (4)
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Figure 1. A piece of f(M) (represented by a 2-sphere and a piece of a plane) with the double
point set ∆ (fat lines), its normal field S, and singularity set Σ (dots) with its outward

normal field V in ∆.

since near each zero z of S̃ there is a unique intersection point of ∆′′ and f(M)
near f(z), and near each triple point of f there are exactly three such intersection
points.

The homology class of the cycle ∆̃ in M is Poincaré dual to nth normal Stiefel–
Whitney class w̄n of M , see [6]. Thus

w̄2
n[M ] = ∆̃ • ∆̃ = ](S̃−1(0)), (5)

since the image of a slight shift of the immersion ι̃ along S̃ intersects ∆̃ near each
zero of S̃ and in two points near each double point of ι̃.

Equations (4) and (5) imply

lk2(Σ′′, f(M)) = w̄2
n[M ] + t2(f). (6)

Recall that Σ′ ⊂ R3n is the submanifold which results when Σ is shifted slightly
along its unit outward normal vector field V in ∆, and that Σ′ ∩ f(M) = ∅. We
compare the linking numbers lk2(Σ′′, f(M)) and lk2(Σ′, f(M)):

Let Σ̃0 ⊂ M be the submanifold which results when Σ̃ is shifted a small distance
along S̃. Let Σ0 = f(Σ̃0) and for p ∈ Σ, let p0 = f(p̃0) where p̃0 is the point in
Σ̃0 corresponding to p̃ ∈ Σ̃ with f(p̃) = p.

For small ε > 0 and p ∈ Σ let lp(ε) be the segment of the straight line through
p + εV (p) and p0 of length 2ε and centered at p0. For ε > 0 and the shifting of Σ̃
in M small enough,

Γ =
⋃
p∈Σ

lp(ε)

is a submanifold of R3n. If the collar C(Σ) is chosen small enough and if the



412 T. Ekholm and A. Szűcs CMH

shifting distance along S is small enough then the boundary ∂Γ of Γ is isotopic to
Σ′ ∪ Σ′′ in R3n − f(M). Thus

lk2(Σ′, f(M)) = lk2(Σ0, f(M)) + Γ • f(M) = lk2(Σ′′, f(M)) + Γ • f(M). (7)

We compute Γ•f(M): The intersection Γ∩f(M) is a clean intersection. That
is, Γ ∩ f(M) = Σ0 is a manifold and the tangent bundle

TΣ0 = Tf(M) ∩ TΓ ⊂ TR3n, (8)

where all bundles in the left hand side are restricted to Σ0.

l p ε( )

V(p) Σ’

∂’’Γ ∋Σ00p

p+εΣ

V(p)

C( )
∆’’

∂’Γ’’Σ

∋p ∋Σ

Figure 2. The normal space of Σ in R3n at p ∈ Σ. In the figure the boundary of Γ is the union
of ∂′Γ, isotopic to Σ′ in R3n − f(M), and ∂′′Γ isotopic to Σ′′ in R3n − f(M).

As in [4], we find
Γ • f(M) = wn−1(ξ),

where ξ is the so called excess bundle over Σ0:

ξ = TR3n/(TΓ + Tf(M)),

where all bundles are restricted to Σ0.
To finish the proof it remains to calculate wn−1(ξ). Note that

TΓ|Σ0 = TΣ0 ⊕ ε1,

where ε1 is the trivial line bundle directed along the intervals lp(ε). Thus, by (8),

ξ ⊕ Tf(M)|Σ0 ⊕ ε1 = TR3n|Σ0. (9)

The bundle Tf(M)|Σ0 is identified with TM |Σ̃0 by the differential of f . Hence if
i0 : Σ̃0 → M denotes the inclusion then w(ξ) = i∗0w̄(M). Therefore, if FV denotes
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the fundamental homology class of the manifold V and PD denotes the Poincaré
duality operator,

〈wn−1(ξ), FΣ0〉 =
〈
i∗0w̄(M), FΣ̃0

〉
=

〈
w̄(M), i0∗(FΣ̃0

)
〉

= 〈w̄(M),PD w̄n+1(M)〉
= 〈w̄(M) ∪ w̄n+1(M), FM 〉 = w̄n−1w̄n+1[M ]. (10)

Here, the third equality follows from the well-known formula PD w̄n+1(M) = i∗FΣ̃,
where i : Σ̃ → M denotes the inclusion, together with i∗FΣ̃ = i0∗FΣ̃0

. Equa-
tions (6), (7), and (10) prove the theorem. ¤

3. Proof of Theorem 3

Let N∗, Ω∗, and ΩU
∗ denote the cobordism ring, the oriented cobordism ring, and

the complex cobordism ring, respectively. Note that there are natural forgetting
homomorphisms

ΩU
∗ −−−−→ Ω∗ −−−−→ N∗.

For a manifold M , let [M ] denote its cobordism class.
Using some facts from cobordism theory which can all be found in Chapter 4

of Stong’s book [8], we show that it is enough to prove the theorem for oriented
4k-manifolds M such that either

(a) [M ] ∈ Ω4k maps to a square [N ×N ] ∈ N4k, or
(b) [M ] is a torsion element of Ω4k (in fact, [M ] torsion implies 2 · [M ] = 0):

Let Tors(Ω∗) denote the torsion subgroup of Ω∗. The homomorphism ΩU
∗ → Ω∗

induces an epimorphism

ΩU
∗ −−−−→ Ω∗/Tors(Ω∗).

and the image ΩU
∗ → N∗ consists of squares of elements in N∗.

Hence, if M is any oriented 4k-manifold then there exists some oriented 4k-
manifold V such that [V ] is torsion in Ω4k and [M ] + [V ] = [N ×N ] in N4k. This
implies that the theorem follows once it is proved for manifolds satisfying (a) or
(b) above.

First consider (a): let M = N ×N . Then w̄(M) = w̄(N)× w̄(N) and hence

w̄2k+1(M) =
∑

i+j=2k+1

w̄i(N)× w̄j(N).

Thus

〈w̄2k1+1(M) . . . w̄2kr+1(M), FM 〉 =

=
∑

〈w̄i1(N) . . . w̄ir
(N), FN 〉 · 〈w̄j1(N) . . . w̄jr

(N), FN 〉 . (11)

Since is + js is odd for all is, js there is a fixed point free involution T acting on
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the set of the terms in the sum in (11) such that i1 + · · ·+ ir = 2k = j1 + · · ·+ jr:

T : 〈w̄i1(N) . . . w̄ir
(N), FN 〉 · 〈w̄j1(N) . . . w̄jr

(N), FN 〉
7→ 〈w̄j1(N) . . . w̄jr

(N), FN 〉 · 〈w̄i1(N) . . . w̄ir
(N), FN 〉 .

Thus the terms in the left hand side of (11) which does not vanish for dimensional
reasons cancel in pairs and hence w̄2k1+1 . . . w̄2kr+1[M ] = 0.

Next consider (b): let u : N4k → Z2 denote the homomorphism induced by
the product of odd-dimensional normal Stiefel–Whitney classes w̄2k1+1 . . . w̄2kr+1,∑

2kj + 1 = 4k. Odd-dimensional Stiefel–Whitney classes are mod 2-reductions
of twisted integer classes, see [3], p. 140. Hence, a product of an even number of
such classes is an integer class so the map

Ω4k
π−−−−→ N4k

u−−−−→ Z2

lifts to a homomorphism
Ω4k

U−−−−→ Z.

Thus U and therefore u ◦ π is zero on any torsion element of Ω4k. ¤
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[1] T. Ekholm and A. Szűcs, Geometric formulas for Smale invariants of codimension two
immersions, Topology, to appear.
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