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On the triple points of singular maps

Tobias Ekholm and Andrés Szlics

Abstract. The number of triple points (mod 2) of a self-transverse immersion of a closed 2n-
manifold M into 3n-space are known to equal one of the Stiefel-Whitney numbers of M. This
result is generalized to the case of generic (i.e. stable) maps with singularities. Besides triple
points and Stiefel-Whitney numbers, a certain linking number of the manifold of singular values
with the rest of the image is involved in the generalized equation which corrects an erroneous
formula in [9].

If n is even and the closed manifold is oriented then the equations mentioned above make
sense over the integers. Together, the integer- and mod 2 generalized equations imply that a
certain Stiefel-Whitney number of closed oriented 4k-manifolds vanishes. This Stiefel-Whitney
number is in fact the first in a family which vanish on such manifolds.
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1. Introduction

In his classical paper [10] of 1946, Whitney showed that the number of double
points of a self-transverse immersion of an n-manifold into 2n-space is related to
the Euler number of its normal bundle. Since then many results of a similar nature
have been found. This paper deals with a generalization of one of these results,
the Herbert—Ronga formula [5] which expresses the number of triple points of a
self-transverse immersion of a closed 2n-manifold into 3n-space in terms of one of
its characteristic numbers. More precisely, the Herbert—Ronga formula is extended
to singular generic (i.e. stable) maps of 2n-manifolds into 3n-space. (In this paper
all manifolds and maps are assumed to be C*°-smooth, unless otherwise explicitly
stated.) To state the formula, some notation is needed:

Let M be a closed 2n-manifold and let f: M — R3" be a generic map. If
A(f) € R3™ denotes the set of double points of f then A(f) is an immersed n-
dimensional submanifold with boundary. The self-intersection points of A(f) are
the triple points of f. The boundary of A(f) is X(f), the set of singular values

of f.
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Define to(f) € Zg as the mod 2-number of triple points of f. Let ¥/(f) denote
the (n — 1)-dimensional submanifold of R®" which is obtained by shifting X(f)
slightly along its outward normal vector field in A(f). Then X'(f) N f(M) = 0.
Define I3(f) € Zo as the mod 2-linking number of the cycles f(M) and ¥'(f) in
R3". If i3 + -+ + 4y, = 2n then let @, ...w;, [M] € Zs denote the product of
the normal Stiefel-Whitney classes of M in dimensions 41, ..., i,, evaluated on the
fundamental homology class of M.

Theorem 1. Let M be a closed manifold of dimension 2n and let f: M — R3"
be a generic map. Then

t2(f) + l2(f) = @y [M] + Gp 1 @1 [M] (1)

Theorem 1 is proved in Section 2. It corrects the erroneous theorem on the
second page of [9], in which the second term in the right hand side of Equation (1)
is missing.

For closed oriented 4k-manifolds Equation (1) can be lifted to an integer equa-
tion: If n = 2k is even and M is oriented then there is an induced orientation
on A(f) as well as on the triple points of f. Define t(f) € Z as the algebraic
number of triple points of f. The orientation of A(f) induces an orientation of its
boundary X(f) which in turn induces an orientation of ¥'(f). Define I(f) € Z as
the linking number of the oriented cycles f(M) and X/(f) in R*. Let p;.[M**] de-
note the k** normal Pontryagin number of M. The following theorem is Lemma 4
in [1].

Theorem 2. Let M be a closed oriented manifold of dimension 4k and let f: M —
RS% be a generic map. Then

3t(f) = 3U(f) = pr[M]. (2)

Equation (2) turned out to be very useful: It is used in the derivation of a
geometric formula for Smale invariants of immersions of spheres, see [1] and [2],
and in the study of geometric features of the regular homotopy classification of
immersions of 3-manifolds in 5-space, see [7].

If M is a closed oriented 4k-manifold then the mod 2-reduction of p;[M] equals
w3, [M]. Hence Theorems 1 and 2 together imply that

Wok+1Wak—1[M] =0 (3)

for any closed oriented 4k-manifold M. In fact, Wakt1Wak—1[M] is the first in a se-
quence of Stiefel-Whitney numbers which vanish on closed oriented 4k-manifolds.
More precisely,

Theorem 3. (Stong). If M is an oriented 4k-manifold and (2k; + 1) + ---+
(2k, + 1) = 4k then
Wk, 41 - - - w2kr+1[M] =0.
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This theorem was communicated by R. Stong to the second author together
with a proof of the first case (3). A proof of Theorem 3 is presented in Section 3.

2. Proof of Theorem 1

Fix a generic map f: M — R3" of a closed 2n-manifold. Let ¥ C M denote the
(n — 1)-dimensional submanifold of singular points of f and let ¥ = f(X). Then
f maps ¥ diffeomorphically to .

Let A € M denote the closure of the preimages of multiple points of f. Then
A is an immersed closed n-dimensional manifold with transverse double points at
the preimages of triple points of f. Let A,es denote the resolution of A and let
7: Aes — M denote the natural immersion with image Ac M.

There is a natural involution 7': Ares — Ares such that foZoT = for. Since
no triple point of f is singular we have a natural embedding Y C A and X is
the fix point set of T

Let v(7) denote the normal bundle of the immersion 7 and let v denote its
restriction to Y. Since v is an n-dimensional vector bundle over an (n— 1)-manifold
there exists a non-zero section. Let § be such a section.

A standard transversality argument allows us to extend 3 to a section S of v(7)
which is transverse to the 0-section and which satisfies the following two conditions:

e If 2 is a double point of 7 then S(z) # 0.
e If S(z) = 0 then S(T'(x)) # 0.

Let A C R3" denote the closure of the double points of f. Then A is an
immersed submanifold with boundary ¥ and A has triple points at the triple
points of f. Let A,e denote the resolution of A and let ¢: A,es — R3” denote
the natural immersion with image A. Let v(¢) denote the normal bundle of the
immersion ¢. Note that there is a natural map II: Ares — Aves which is a double
cover of Ayes — Y when restricted t0 Aes — i, and which maps » diffeomorphically
onto X.

Define the section S of v(1) as follows:

S(y) =
df(ggyl)) +df(S(y2)) if y € Aves — 3, where y1 # y2, H(y1) = (y2) = v,
2df (S(y1)) if y € 3, where II(y;) = y.

Let C(X) C Ayes be a small open collar on the boundary ¥ of Ayes. Let A”
denote the image of the immersion y — (y) + €S(y), ¥ € Ares — C(X) for some
small ¢ > 0. Then, if € and the collar C(X) are small enough, A” is a chain
with boundary A" = ¥ satisfying " N f(M) = @. If ks denotes the mod 2-
linking number, e denotes the mod 2-intersection number, and f(F) denotes the
mod 2-number of elements in the finite set F', then

ko (X", f(M)) = A” o f(M) = 4(S71(0)) + t2(f), (4)
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Figure 1. A piece of f(M) (represented by a 2-sphere and a piece of a plane) with the double
point set A (fat lines), its normal field S, and singularity set X (dots) with its outward
normal field V in A.

since near each zero z of S there is a unique intersection point of A” and f(M)
near f(z), and near each triple point of f there are exactly three such intersection
points.

The homology class of the cycle A in M is Poincaré dual to n'® normal Stiefel-
Whitney class @,, of M, see [6]. Thus

w,[M] = A e A=4(S7(0)), ()

since the image of a slight shift of the immersion ¢ along S intersects A near each
zero of S and in two points near each double point of &.
Equations (4) and (5) imply

lka (", f(M)) = wy,[M] + t2(f). (6)

Recall that ¥/ C R3" is the submanifold which results when ¥ is shifted slightly
along its unit outward normal vector field V in A, and that X' N f(M) = 0. We
compare the linking numbers lky (X7, f(M)) and lko (X', f(M)):

Let ¥y C M be the submanifold which results when ¥ is shifted a small distance
along S. Let ¥g = f(20) and for p € 2, let pg = f(Po) where jy is the point in
> corresponding to p € X with f(p) = p.

For small € > 0 and p € X let [,(€) be the segment of the straight line through
p+ €V (p) and pg of length 2¢ and centered at py. For € > 0 and the shifting of 3
in M small enough,

I'= U Lp(€)

pEX

is a submanifold of R3". If the collar C(X) is chosen small enough and if the
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shifting distance along S is small enough then the boundary JI" of T is isotopic to
YUY in R3 — f(M). Thus

lko (3, f(M)) = lka(So, f(M)) + T e f(M) = Iko(X", f(M)) + T o f(M). (7)

We compute T'e f(M): The intersection I'N f(M) is a clean intersection. That
is, ' f(M) = Xy is a manifold and the tangent bundle

TS0 =Tf(M)NTT C TR*", (8)

where all bundles in the left hand side are restricted to Y.

// ar
()
A I
,—"’— y’ /.
P or /’%,/v(p)

N ~ ,
C(Z) |mz prev(ppz

Figure 2. The normal space of ¥ in R3™ at p € ¥. In the figure the boundary of T" is the union
of &'T, isotopic to ¥’ in R3" — f(M), and 9"'T isotopic to X" in R3™ — f(M).

As in [4], we find
Te f(M) - wn—l(&),

where ¢ is the so called excess bundle over ¥y:
£ =TR™/(TT + T f(M)),

where all bundles are restricted to .
To finish the proof it remains to calculate w,_1(¢). Note that

TT|Sg = TS @ €',
where €' is the trivial line bundle directed along the intervals I, (¢). Thus, by (8),
EQTF(M)|So @ e! = TR |S,. (9)

The bundle T'f(M)|% is identified with TM|%, by the differential of f. Hence if
ig: 3o — M denotes the inclusion then w(&) = i§w(M). Therefore, if Fy, denotes
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the fundamental homology class of the manifold V' and PD denotes the Poincaré
duality operator,

(wn—1(8), Pxy) = (igw(M), Fy, ) = (@(M),io.(Fyg,)) = (0(M), PD @41 (M))
= (@(M) U sy (M), Frg) = @10 s1[M]. (10)

Here, the third equality follows from the well-known formula PD @41 (M) = 4. F
where i: ¥ — M denotes the inclusion, together with i, Fy = iO*FEO‘ Equa-
tions (6), (7), and (10) prove the theorem. O

3. Proof of Theorem 3

Let M., Q,, and QU denote the cobordism ring, the oriented cobordism ring, and
the complex cobordism ring, respectively. Note that there are natural forgetting
homomorphisms

Qv Q. N,

*

For a manifold M, let [M] denote its cobordism class.

Using some facts from cobordism theory which can all be found in Chapter 4
of Stong’s book [8], we show that it is enough to prove the theorem for oriented
4k-manifolds M such that either

(a) [M] € Q4r maps to a square [N x N] € Dy, or

(b) [M] is a torsion element of Q4 (in fact, [M] torsion implies 2 - [M] = 0):

Let Tors(£2,) denote the torsion subgroup of §2,. The homomorphism QV — €,
induces an epimorphism

QU ——— Q,/Tors(Q.).

and the image QU — M, consists of squares of elements in N,.

Hence, if M is any oriented 4k-manifold then there exists some oriented 4k-
manifold V such that [V] is torsion in Q4 and [M] + [V] = [N x N] in 94j. This
implies that the theorem follows once it is proved for manifolds satisfying (a) or
(b) above.

First consider (a): let M = N x N. Then @w(M) = @w(N) x @w(N) and hence

Wop1 (M) = > wi(N) x w;(N).
itj=2k+1

Thus
(Wapy +1(M) ... Wak,+1 (M), Far) =
=> (@i, (N)...w;, (N), Fy) - (0, (N) ... @;,(N), Fx) . (11)

Since is + js is odd for all ig, js there is a fixed point free involution 7" acting on
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the set of the terms in the sum in (11) such that 4y +--- 44, = 2k = j; + - - + j,:
T: <’(I}“(N)1I}ZT(N)7FN> . <1D]1(N)1T}JT(N),FN>
= (w5, (N) ... w;, (N), Fn) - (@i, (N) ... w;, (N), Fy) .

Thus the terms in the left hand side of (11) which does not vanish for dimensional
reasons cancel in pairs and hence Wag, 41 . . . Wag, +1[M] = 0.

Next consider (b): let u: Myp — Zo denote the homomorphism induced by
the product of odd-dimensional normal Stiefel-Whitney classes Wag, +1 - . . Wk, +1,
>-2k; + 1 = 4k. Odd-dimensional Stiefel-Whitney classes are mod 2-reductions
of twisted integer classes, see [3], p. 140. Hence, a product of an even number of
such classes is an integer class so the map

Qi —— Ny ——— Lo
lifts to a homomorphism
Q4k L Z.

Thus U and therefore u o 7 is zero on any torsion element of {24. O
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