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Abstract. We generalize Sunada’s method to produce new examples of closed, locally non-
isometric manifolds which are isospectral. In particular, we produce pairs of isospectral, simply-
connected, locally non-isometric normal homogeneous spaces. These pairs also allow us to see
that in general group actions with discrete spectra are not determined up to measurable conjugacy
by their spectra. In particular, we show this for lattice actions.
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1. Introduction

Spectral geometry is the study of the relationship between the geometry of a Rie-
mannian manifold (X,m) and the spectrum of the associated Laplace–Beltrami
operator ∆ acting on C∞(X). Specifically, one is concerned with the extent to
which the spectrum encodes geometric information. While the spectrum does
determine some geometric properties such as total scalar curvature, volume, and
dimension, in general it does not determine a Riemannian manifold up to isometry.
This was demonstrated for the first time by Milnor in 1964 when he produced ex-
amples of 16-dimensional tori which are isospectral yet non-isometric [Mil]. Hence,
in order to better understand the interplay between the geometry of a Riemannian
manifold and its spectrum, other such examples must be studied.

During the past two decades many new non-isometric isospectral spaces have
been found (e.g., [GW], [BT], [BG], [Gt1], [Gt2], [Gor1], [Sza1] and [GGSWW]).1

The first examples of topological significance were produced by Vignéras and Ikeda.
In [Vig] examples of 3-dimensional hyperbolic spaces with non-isomorphic funda-
mental groups were constructed and in [Ike] isospectral lens spaces were produced.
These examples demonstrated for the first time that the topology of the manifold

1 For a more comprehensive discussion of the spectral geometry landscape the reader is en-
couraged to see [Gor2].
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is not a spectral invariant. However, it is worth noting that these isospectral spaces
(along with all other understood examples) have a common universal cover.

Inspired by a result from number theory, Sunada produced the first general
method for constructing pairs of isospectral manifolds.

Theorem 1.1 (Sunada’s method, [Sun]). Let (X,m) and (X0,m0) be Rieman-
nian manifolds and π : X → X0 be a finite Riemannian covering with covering
transformation group G. Now suppose π1 : X1 → X0 and π2 : X2 → X0 are the
Riemannian coverings corresponding to subgroups Γ1,Γ2 ≤ G respectively. If for
every g ∈ G we have #(gG ∩ Γ1) = #(gG ∩ Γ2) (where gG denotes the conjugacy
class of g), then X1 and X2 are isospectral.

Many of the examples of isospectral pairs that arise in the literature can be
explained by Sunada’s method or one of its generalizations. One generalization
that will be of interest to us is the following.

Theorem 1.2 (Sunada–Pesce method, [Pes]). Let (X,m) be a Riemannian man-
ifold, G ≤ Isom(X,m) closed, K the generic stabilizer of the action of G on X
(see Section 2.2), and Γ1,Γ2 ≤ G be discrete such that the manifolds Γ1\X and
Γ2\X are compact. If the quasi-regular representations πG

Γ1
and πG

Γ2
of G are

K-equivalent (see Section 2.1), then the Riemannian quotients (Γ1\X,m1) and
(Γ2\X,m2) are isospectral.

As with all previous generalizations of Sunada’s method pairs arising in this
manner are not simply-connected. Also, the resulting pairs have a common Rie-
mannian covering, namely X, and consequently are locally isometric. This causes
us to wonder whether one can generalize Sunada’s method so that it produces
locally non-isometric, simply-connected isospectral pairs.

A natural approach to this would be to take quotients of simply-connected Lie
groups by non-trivial connected subgroups, which leads us to the following long
standing problem in the spectral geometry community.

Question. Are there examples of Riemannian manifolds (X,m) such that one
can find H1, H2 ≤ Isom(X,m) non-trivial and connected such that the quotient
manifolds (X/H1,m1) and (X/H2,m2) are isospectral yet non-isometric?

In this paper we are able to answer this question positively. Using a gener-
alization of the Sunada–Pesce method and a result of Larsen and Pink [LP] we
establish the following.

Main Result (Theorem 3.6). There exists a connected, simply-connected semi-
simple real Lie group H which for infinitely many n ∈ N admits reducible faithful
representations ρ1, ρ2 : H → SU(n), where ρ1 6 a∼ ρ2 (see Definition 3.1) and H1 =
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ρ1(H) and H2 = ρ2(H) are not conjugate by Aut(SU(n)). If we equip SU(n) with
a bi-invariant metric m, then the simply-connected, normal homogeneous spaces
(SU(n)/H1,m1) and (SU(n)/H2,m2) are isospectral yet locally non-isometric.

Recently, we have learned that Schueth has also obtained examples of isospec-
tral homogeneous spaces [Sch2]. In fact, she produces a continuous family of
pairwise isospectral left-invariant metrics on a simply-connected Lie group. Our
examples can be distinguished from Schueth’s in that they are normal homoge-
neous spaces; that is, they have the metric induced by the bi-invariant metric on G,
and our spaces are quotients of G by non-trivial connected subgroups H1,H2 ≤ G,
which are representation equivalent (see Definition 2.1). They can also be distin-
guished from Schueth’s examples in that the method of construction necessitates
an enormous dimension for the resulting homogeneous spaces. An estimate shows
the simplest example to have a dimension on the order of 1010 .

The spaces constructed in this paper along with those of Schueth [Sch1, Sch2],
Gordon [Gor3] and Szabó [Sza2] are the only known examples of closed, simply-
connected, locally non-isometric isospectral spaces. Schueth, Gordon and Szabó
construct their isospectral spaces by fixing a particular simply-connected manifold
and then creating isospectral metrics on this space through various interesting
techniques. Consequently, the resulting isospectral spaces are always homeomor-
phic. At the present time it is unclear to the author whether the isospectral pairs
presented in this paper are homeomorphic. A negative answer would demonstrate
for the first time that the universal cover is not a spectral invariant.2

The structure of this paper is as follows. In Section 2 we will discuss the proof
of the generalized Sunada–Pesce method. We will use this method in Section 3 to
construct new examples of isospectral yet locally non-isometric pairs of Rieman-
nian manifolds. In Section 4 we will establish a method for constructing isospectral
fiber bundles with isospectral fibers. Finally, we recall that a well-known theorem
of von Neumann states that two actions of an abelian locally compact group with
discrete spectra are measurably conjugate if the actions are isospectral [vN]. In
Section 5 we will use the examples constructed in Section 3 to demonstrate that
group actions with discrete spectra are not classified up to measurable conjugacy
by their spectra and hence von Neumann’s result is not true in general.

Notation. We will use the following notation.

1. We will let Spec(∆) denote the spectrum of the Laplacian taking multiplic-
ities into account.

2. Given a representation ρ : G → GL(V ) of a Lie group G we will let ResG
H(ρ)

denote the restriction of ρ to H for any subgroup H ≤ G.

2 In looking for simpler candidates for non-homeomorphic isospectral simply-connected spaces
one might consider the Aloff–Wallach spaces [AW] as normal homogeneous spaces. These spaces
are simply-connected, however, it can be shown that isospectral normal homogeneous Aloff–
Wallach spaces are necessarily isometric and hence homeomorphic (see [Bla], [JLPR] or [Sut]).
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3. Given a Lie group G, a closed subgroup H ≤ G and a representation τ :
H → GL(V ) we will let IndG

H(τ) denote the induced representation (see
p. 705).

4. Given two representations ρ1 : G1 → GL(V1) and ρ2 : G2 → GL(V2) we let
ρ1 ⊗ ρ2 : G1 ×G2 → GL(V1 ⊗ V2) denote the outer tensor product given
by ρ1 ⊗ ρ2(g1, g2) = ρ1(g1)⊗ ρ2(g2).

5. Given two representations (ρ, V ) and (τ,W ) of a Lie group G we will let
[ρ : τ ] denote the multiplicity of τ in ρ. In the case where E is a field
extension of F we will let [E : F ] denote the degree of the extension.

6. We will use the symbol “≤” to denote both vector subspaces and subgroups.

Acknowledgements. The work presented in this paper is part of my thesis [Sut]
carried out at the University of Michigan. It is my great pleasure to thank my
advisor, Ralf Spatzier, for introducing me to the area of spectral geometry and,
more importantly, for being a generous and supportive mentor. I am also indebted
to Gopal Prasad for making me aware of the work of Larsen and Pink concerning
dimension data and to Krishnan Shankar for discussing homogeneous spaces with
me. Thanks also go to the referee for providing helpful comments concerning the
exposition of this article.

2. Generalized Sunada–Pesce method

Developing techniques for constructing isospectral manifolds is one of the central
concerns of inverse spectral geometry. The examples these techniques yield allow
us to discover the geometric data that cannot be recovered from the spectrum of
the Laplacian. In this section we will generalize Sunada’s well-known method for
constructing pairs of isospectral manifolds. More specifically, we will generalize the
Sunada–Pesce method to allow one to obtain isospectral pairs by taking quotients
by non-trivial connected groups. By considering such quotients we open up the
possibility that the resulting isospectral pairs need not have a common Riemannian
covering or common universal cover, which is impossible under other versions of
Sunada’s method. In fact, in Section 3 we will show that through this method we
can construct many pairs of isospectral, simply-connected, locally non-isometric
spaces. We begin by reviewing the concept of relatively equivalent representations.

2.1. Relative equivalence

Two representations ρ1 : G → GL(V1) and ρ2 : G → GL(V2) of a Lie group G
are said to be equivalent, denoted by ρ1 ∼ ρ2 or (ρ1, V1) ∼ (ρ2, V2), if there
exists a vector space isomorphism T : V1 → V2 such that ρ2(g) ◦ T = T ◦ ρ1(g)
for any g ∈ G. Now, consider a representation ρ : G → GL(V ) of a unimodular
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Lie group G. For any compact subgroup K of G and any representation (τ,W ) of
K we may consider the vector subspace V τ ≡ ⊕Vα ≤ V , where the direct sum is
taken over K-invariant subspaces Vα ≤ V such that (ResG

K(ρ), Vα) ∼ (τ,W ). The
representation (ResG

K(ρ), V τ ) can then be extended to a representation of G by
considering the vector space

Vτ ≡ ∩{L ≤ V : V τ ≤ L and L is G-invariant}.
This subrepresentation will be denoted by (ρτ , Vτ ). For any two representations
(ρ, V ) and (ρ̃, Ṽ ) of G we will agree to say they are τ-equivalent, denoted by
ρ ∼τ ρ̃ or (ρ, V ) ∼τ (ρ̃, Ṽ ), if the subrepresentations (ρτ , Vτ ) and (ρ̃τ , Ṽτ ) are
equivalent.

In this paper we will be concerned with representations of G which are 1K-
equivalent, where 1K denotes the trivial representation of K on C. To be consistent
with [Pes] we will refer to this as K-equivalence, and we will denote V 1K and
(ρ1K

, V1K
) by V K and (ρK , VK) respectively. As usual we will let Ĝ denote the

set of equivalence classes of irreducible representations of G and we will agree to
let ĜK denote the set of equivalence classes of representations of G which admit
non-trivial K-fixed vectors; that is, ĜK ≡ {[(ρ, V )] ∈ Ĝ : VK 6= 0}. We will
illustrate the concept of K-equivalence by constructing two representations of a
group G, which are K-equivalent for some subgroup K ≤ G, but not equivalent.
In doing this it will be useful to review the method of induction.

Let G be a locally compact group, H a closed subgroup and ρ : H → GL(V )
a unitary representation of H. The representation ρ gives a representation of G
known as the induced representation, denoted by IndG

H(ρ), which acts on the
vector space

Ṽ ≡ {f : G → V L2-function : f(gh) = ρ(h)−1f(g) for all h ∈ H,

almost every g ∈ G}
by

(IndG
H(ρ)(g)f)(x) ≡ f(g−1x)

for any g ∈ G and f ∈ Ṽ . In the case where ρ = 1H is the trivial representation
of H, IndG

H(ρ) is a representation of G on L2(G/H) known as the quasi-regular
representation of G with respect to H, which we will denote by πG

H . We now
make the following observation.

Observation. Let G be a Lie group. Now consider subgroups K,H1,H2 ≤ G
(closed) such that K\G/Hi = {point} (equivalently Hi acts transitively on K\G)
for i = 1, 2, then πG

H1
∼K πG

H2
. If G is compact and dim(G/H1) 6= dim(G/H2),

then we may conclude πG
H1
6∼ πG

H2
.

For n ≥ 2, we can see that if G = SO(4n), H1 = U(2n), H2 = Sp(n) and
K = SO(4n−1), then the above implies that the representations πG

H1
and πG

H2
are
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K-equivalent, yet inequivalent. Indeed, we view K as a subgroup of G under the
imbedding A 7→ [1]⊕A and we consider H1 and H2 as subgroups of G by using the
standard imbedding of complex and quaternionic matrices into the real matrices
(see [Kna, p. 34-36]). Then since H1 and H2 act transitively on S4n−1 = K\G
we see that K\G/Hi = {point} for i = 1, 2. Hence, πG

H1
∼K πG

H2
, however, since

dim(G/H1) 6= dim(G/H2) (for n ≥ 2) we find that πG
H1
6∼ πG

H2
.

We conclude this section with a little jargon.

Definition 2.1. Let G be a compact Lie group and K ≤ G compact. We will say
that two closed subgroups H1,H2 ≤ G are

1. Representation equivalent if πG
H1
∼ πG

H2
.

2. K-equivalent if πG
H1
∼K πG

H2
.

2.2. The method

Before stating our method for constructing isospectral Riemannian manifolds, we
recall the notion of the generic stabilizer.

Definition 2.2. Suppose G is a Lie group which has a proper C∞-action on a
manifold X. For each x ∈ X let Gx denote the stabilizer of x. There exists a
subgroup K of G called the generic stabilizer with the following properties:

1. For all x ∈ X, K is conjugate to a subgroup of Gx.

2. There exists an open and dense subset U in X such that for all x ∈ U K
and Gx are conjugate.

Orbit spaces of the type G/K are known as principal orbits.

With this terminology we may now state the following proposition.

Theorem 2.3 (Generalized Sunada–Pesce technique). Let (X,m) be a compact
Riemannian manifold and G ≤ Isom(X,m) a compact Lie group. We will let K
denote the generic stabilizer of the action of G on X. Now suppose H1,H2 ≤ G
are closed, K-equivalent subgroups which act freely on X and are such that the
Riemannian submersions πi : X → X/Hi, i = 1, 2, have totally geodesic fibers. It
then follows that the Riemannian manifolds X/H1 and X/H2 are isospectral on
functions.

As in Pesce’s original paper [Pes] the proof of this theorem is an application
of Frobenius’ reciprocity theorem and a result of Donnelly. But first we recall the
following result.
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Lemma 2.4. Let (Ek,m) and (Bn,mB) be Riemannian manifolds. Let π : (E,m)
→ (B,mB) be a Riemannian submersion with totally geodesic fibers, then the
eigenfunctions of B are functions whose pullbacks are eigenfunctions on E. In
fact, if f is an eigenfunction of ∆B with eigenvalue λ, then its pullback f ◦π is an
eigenvalue of ∆E with eigenvalue λ. Hence, we see that Spec(∆B) ⊂ Spec(∆E).

Proof. Let f ∈ L2(B) be such that ∆Bf = λf and let f̃ = f ◦ π ∈ L2(E) be its
pullback to E. Now fix x ∈ E and let {γ1, ..., γk} be a collection of geodesics such
that γi(0) = x for all i and {γ̇1(0), ..., γ̇k(0)} is an orthonormal basis for TxE with
{γ̇1(0), ..., γ̇n(0)} vertical (that is, tangent to the fiber through x). Then

∆E f̃(x) = −
k∑
1

d2

dt2
(f̃ ◦ γi)(0)

= −
k∑

n+1

d2

dt2
(f̃ ◦ γi)(0)

= −
k∑

n+1

d2

dt2
(f ◦ (π ◦ γi))(0)

= ∆Bf(π(x))

= λf̃(x).

(1)

This shows us that pullbacks of eigenfunctions on B are eigenfunctions on E with
the same eigenvalue. So, we obtain Spec(∆B) ⊂ Spec(∆E). ¤

Proof of Theorem 2.3. Let ∆,∆1, and ∆2 denote the Laplace–Beltrami operator
on X,X/H1, and X/H2 respectively. Since πi : X → X/Hi (i = 1, 2) has totally
geodesic fibers it follows from Lemma 2.4 that Spec(∆i) ⊂ Spec(∆) for i = 1, 2. We
also recall that the action of Isom(X,m) on L2(X) commutes with the Laplacian.
Hence, Isom(X,m) preserves the eigenspace decomposition of L2(X). So for any
λ ∈ Spec(∆) and H ≤ Isom(X,m) (closed) we have a representation πH

λ of H on
L2(X,m)λ given by πH

λ (h).f = f ◦ h−1. In our situation we will be interested in
πG

λ , πH1
λ , and πH2

λ for λ ∈ Spec(∆).
Now it is clear that for any λ ∈ Spec(∆) we have dimL2(X/Hi)λ = [πHi

λ : 1Hi
].

Indeed, for H ≤ Isom(X,m) (closed) we let L2(X)H = {f ∈ L2(X) : h.f =
f for all h ∈ H}. One can see that L2(X/H) = L2(X)H and it follows that
L2(X/H)λ = L2(X)H

λ . Hence, dimL2(X/H)λ = [πH
λ : 1H ]. We may now conclude

that (X/H1,m1) and (X/H2,m2) are isospectral if and only if [πH1
λ : 1H1 ] =

[πH2
λ : 1H2 ] for all λ ∈ Spec(∆). Since it is clear that for every H ≤ G πH

λ =
ResG

H(πG
λ ), Frobenius reciprocity gives us the following:
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[πHi

λ : 1Hi
] = [ResG

Hi
(πG

λ ) : 1Hi
]

=
[
ResG

Hi

( ∑
ρ∈Ĝ

[πG
λ : ρ]ρ

)
: 1Hi

]

=
∑
ρ∈Ĝ

[πG
λ : ρ][ResG

Hi
(ρ) : 1Hi

]

=
∑
ρ∈Ĝ

[πG
λ : ρ][IndG

Hi
(1Hi

) : ρ]

=
∑
ρ∈Ĝ

[πG
λ : ρ][πG

Hi
: ρ].

(2)

We now recall the following theorem of Donnelly.

Theorem 2.5 ([Don], p. 25). Let G be a compact Lie group and X a compact,
smooth G-space with principal orbit type G/K; that is, K is the generic stabilizer of
the G-action on X. Then the decomposition of L2(X) into G-irreducibles contains
precisely those finite dimensional representations appearing in the decomposition
of πG

K = IndG
K(1K) the quasi-regular representation of G with respect to K. Also,

if the orbit space X/G has dimension greater than 1, then each irreducible appears
an infinite number of times.

Now by Frobenius reciprocity we have [πG
K : ρ] = [ResG

K(ρ) : 1K ] for each ρ ∈ Ĝ.
So we conclude from the above theorem that [πG

λ : ρ] 6= 0 for some λ ∈ Spec(∆) if
and only if ρK is non-trivial. Consequently, for i = 1, 2, we see that

[πHi

λ : 1Hi
] =

∑
ρ∈ĜK

[πG
λ : ρ][πG

Hi
: ρ].

Finally, as a result of the K-equivalence of πG
H1

and πG
H2

we obtain isospectrality.
¤

3. Building new examples

In this section we will use Theorem 2.3 along with a result of Larsen and Pink [LP]
to produce the first pairs of non-isometric isospectral manifolds which are of the
form (X/H1,m1) and (X/H2,m2), where H1,H2 ≤ Isom(X,m) are nontrivial and
connected. In particular, we will obtain the first examples of isospectral simply-
connected, locally non-isometric, normal homogeneous spaces.

We begin by introducing a slightly more general notion of equivalence of rep-
resentations.

Definition 3.1. Two representations τ1 : G → GL(V1) and τ2 : G → GL(V2) are
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said to be automorphically equivalent, denoted τ1
a∼ τ2 or (τ1, V1)

a∼ (τ2, V2), if
there exists a Lie group automorphism α : G → G and a vector space isomorphism
T : V1 → V2 such that T ◦ τ1(g) = τ2(α(g)) ◦ T for all g ∈ G.

Clearly, equivalence implies automorphic equivalence just by taking α to be the
identity map. However, a dramatic difference between these two definitions can be
obtained by considering the irreducible representations of the additive group R.
For each θ ∈ C we obtain an irreducible representation of R on C given by πθ(x)v =
e2πiθxv for any x ∈ R and v ∈ C. These are all the inequivalent irreducible
representations of R, but we see that for θ, ϑ ∈ R\{0} πθ(x) = πϑ( θ

ϑx), hence all
of the non-trivial irreducible representations are automorphically equivalent.3

Now consider G a connected, complex reductive Lie group and let ρ : G →
GL(V ) be a faithful representation of dimension n. The dimension data of
(ρ, V ) is defined as

{(σ : GL(V ) → GL(W ),dim WG) : σ is a homomorphism and dimW < ∞}.
The objective of [LP] is to determine the extent to which the dimension data of
(ρ, V ), determines the group G and/or the representation ρ : G → GL(V ). The
main result of their paper is the following.

Theorem 3.2 ([LP], p. 377). Let G be a connected, complex Lie group with (ρ, V )
a finite dimensional faithful representation. Then

1. The dimension data determine G up to isomorphism. That is, if τ : G′ →
GL(V ) is another representation of a connected, complex Lie group G′ with
the same dimension data, then G and G′ are isomorphic as Lie groups.
(Notice that G and G′ act on the same vector space V .)

2. If ρ is irreducible, the dimension data determine ρ up to automorphic equiv-
alence. That is, if there exists another faithful irreducible representation
τ : G → GL(V ) of G with the same dimension data, then ρ and τ are
automorphically equivalent.

3. There exists a G as above which admits a countably infinite number of pairs
of reducible representations (ρ1, V ) and (ρ2, V ) of G, where V is of arbi-
trarily large dimension, such that ρ1 and ρ2 have the same dimension data
and ρ1 6 a∼ ρ2.

Remark 3.3. In [LP] the term automorphically equivalent is not used. Instead
they use isomorphic. We have introduced this term so as not to cause confusion
with the usual notion of equivalence, which is sometimes referred to as isomorphic.

Our interest lies in the third part of the above theorem. We note that the

3 This example was pointed out to the author by A. Knapp. A less dramatic example is obtained
by comparing the standard representation of i : SU(n) ↪→ GLn(C) and σ : SU(n) → GLn(C)

given by σ(g) = i(g), where the bar denotes complex conjugation.
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method Larsen and Pink employ to produce the automorphically inequivalent
pairs of representations with the same dimension data actually yields self-dual
representations. That is, in the above ρ1 ∼ ρ∗1 and ρ2 ∼ ρ∗2, where for any
representation τ : G → GL(W ) τ∗(g) ≡ τ(g−1)t is the contragredient represen-
tation. Indeed, we recall that on p. 392 of [LP] the group G is constructed as a
product of non-isomorphic semisimple Lie groups G1, . . . , Gr whose root systems
Φ1, . . . ,Φr ⊂ BCn are subsystems of maximal rank n. They then choose formal
characters v1, . . . , vr ∈ Z[ΛBCn

]Wn ≡ Z[Zn]Wn , where Wn = {±1}n o Sn is the
Weyl group of BCn and Sn is the permutation group on n elements, such that for
all i, j = 1, . . . , r there exists a faithful representation ρij : Gi → GL(Vij) with
formal character vj . Since the formal character vj is invariant under {±1}n o Sn

it follows that if λ is a weight of vj , then so is −λ. Hence, any representa-
tion with formal character vj is self-dual. Larsen and Pink then consider the
faithful representations ρ1 = ⊕σ∈Ar

ρ1σ(1) ⊗ · · · ⊗ ρrσ(r) : G → GL(V1) and
ρ2 = ⊕σ∈Sr−Ar

ρ1σ(1) ⊗ · · · ⊗ ρrσ(r) : G → GL(V2), where

V1 =
⊕

σ∈Ar

V1σ(1) ⊗ · · · ⊗ Vrσ(r)

and
V2 =

⊕
σ∈Sr−Ar

V1σ(1) ⊗ · · · ⊗ Vrσ(r).

It is then clear that ρ1 ∼ ρ∗1 and ρ2 ∼ ρ∗2 and that V1 ≈ V2 ≡ V . The representa-
tions (ρ1, V ) and (ρ2, V ) are the representations alluded to in Theorem 3.2(3).

If one now considers compact real forms we see that part three of Theorem 3.2
can be recast as follows.

Corollary 3.4. There exists a compact, connected, semisimple real Lie group H
such that for infinitely many n ∈ N there exist faithful representations ρ1, ρ2 :
H → SU(n) with the same dimension data and such that ρ1 6 a∼ ρ2 and ρ1 6 a∼ ρ∗2.
In fact, H1 = ρ1(H) and H2 = ρ2(H) are not conjugate by Aut(SU(n)); that is,
there are no automorphisms α of SU(n) such that α(H1) = H2.

Proof. The first part of this theorem is standard representation theory and follows
for example from [Var, Theorem 4.11.14]. As for the statement concerning the
non-conjugacy of H1 and H2 we recall the following.

Proposition 3.5 (see p. 56 of [Oni2]). Let G be a connected, simple, non-abelian
compact Lie group and H a connected and simply-connected Lie group.

1. Let σ, τ : H → G be two homomorphisms with discrete kernels. Then there
exists α ∈ Aut(G) such that α(σ(H)) = τ(H) if and only if τ = α ◦ σ ◦ β
for a certain β ∈ Aut(H).

2. Two homomorphisms τ, σ : H → SU(n) are conjugate by Aut(SU(n)) if
and only if τ ∼ σ or τ ∼ σ∗. Here conjugate by Aut(SU(n)) means there
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exists α ∈ Aut(SU(n)) such that τ = α ◦ σ.

Now let’s suppose α(H1) = H2 for some α ∈ Aut(SU(n)). Then the first part
of the above shows us that ρ2 = α ◦ ρ1 ◦ β for some β ∈ Aut(H). The second part
of Proposition 3.5 then implies that ρ2 ∼ ρ1 ◦ β or ρ2 ∼ ρ∗1 ◦ β. That is, ρ2

a∼ ρ1

or ρ2
a∼ ρ∗1, which is a contradiction. Hence, H1 and H2 are not conjugate by

Aut(SU(n)). ¤

Now let H1 = ρ1(H), H2 = ρ2(H) ≤ SU(n) be two realizations of H as in
Corollary 3.4. Since H1,H2 ≤ SU(n) have the same dimension data with respect
to the standard representation of SU(n) it follows from Frobenius’ Reciprocity
that πG

H1
∼ πG

H2
. Now, if we consider SU(n) with the bi-invariant metric, then it

is clear that SU(n) acts on itself by isometries and that πi : SU(n) → SU(n)/Hi

(the projection mapping) is a Riemannian submersion with totally geodesic fibers
for i = 1, 2. It then follows from Theorem 2.3 that the quotient spaces SU(n)/H1

and SU(n)/H2 are isospectral. From their construction as quotients of SU(n) it is
clear from O’Neill’s formula [O’N] that these spaces have non-negative sectional
curvature. We also note that it follows from the exact homotopy sequence of a weak
fibration that these spaces are simply connected (see [Swi, Chapter 4]). We now
turn our attention to the task of showing these spaces are locally non-isometric.

It is well-known that simply-connected homogeneous spaces are isometric if and
only if they are locally isometric. Consequently, it is enough to show that these
spaces are non-isometric. In [Oni1] the isometry groups of homogeneous spaces
are studied and we see that for i = 1, 2 the connected component of the identity
element, Isom(G/Hi)0, is the locally direct product of G and [NG(Hi)/Hi]0, which
is denoted by G · [NG(Hi)/Hi]0. As Hi and G are connected and Hi is semi-simple
it follows that [NG(Hi)/Hi]0 ∼= ZG(Hi)0 for each i. Hence, for i = 1, 2 we have

Isom(G/Hi)0 ∼= G · ZG(Hi)0

and
Isom(G/Hi)0ēi

∼= Hi · ZG(Hi)0,

where ēi = πi(e) and πi : G → G/Hi is the canonical projection for i = 1, 2.
We now assume there is an isometry f : (G/H1,m1) → (G/H2,m2). Without

loss of generality we may assume that f(ē1) = ē2. The isometry f then induces a
Lie group isomorphism α : Isom(G/H1)0 → Isom(G/H2)0 given by α(Ψ) = f ◦Ψ◦
f−1. Since α must map simple factors to simple factors and G = SU(n) is a simple
factor contained in neither ZG(H1) or ZG(H2) we conclude that α(G) = G and
α(ZG(H1)0) = ZG(H2)0. Also, since α(Isom(G/H1)0ē1

) = Isom(G/H2)0ē2
it follows

that α(H1) = H2. So we see that our isometry f induces an automorphism α :
G → G such that α(H1) = H2, which is a contradiction by Corollary 3.4. Hence,
our spaces are not isometric, and consequently they are locally non-isometric.

We may summarize our work thus far as follows.
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Theorem 3.6. There exists a connected, simply-connected semi-simple real Lie
group H which for infinitely many n ∈ N admits reducible faithful representa-
tions ρ1, ρ2 : H → SU(n), where ρ1 6 a∼ ρ2 and H1 = ρ1(H) and H2 = ρ2(H)
are not conjugate by Aut(SU(n)). If we equip SU(n) with a bi-invariant metric
m, then the simply-connected, normal homogeneous spaces (SU(n)/H1,m1) and
(SU(n)/H2,m2) are isospectral yet locally non-isometric.

Remark 3.7. We offer the following comments.
1. It is clear that if one picks Γ1, Γ2 ≤ SU(n) discrete such that [πG

Γ1
: ρ]

= [πG
Γ2

: ρ] for all ρ ∈ ŜU(n)H1
= ŜU(n)H2

, then Γ1\SU(n)/H1 and
Γ2\SU(n)/H2 are isospectral yet locally non-isometric.

2. There is no SU(n)-equivariant homeomorphism between SU(n)/H1 and
SU(n)/H2. However, we cannot at this time determine whether the spaces
are homeomorphic.

3. The smallest value of n in Theorem 3.6 will be quite large, this follows from
the comment on p. 393 of [LP]. In fact we estimate that the dimension of
the smallest resulting homogeneous space is on the order of 1010.

4. Isospectral fiber bundles

In the previous section we saw that the study of dimension data can lead to
examples of isospectral pairs which are quotients of compact Lie groups. In this
section we will show that by considering dimension data we can also find isospectral
pairs which arise as quotients of Lie groups of non-compact type. Indeed we will
establish the following result.

Proposition 4.1. Let G be a semisimple Lie Group of non-compact type, K ≤ G
a maximal compact subgroup and Γ ≤ G a co-compact lattice. Let ρ : G → GL(V )
be a finite dimensional faithful representation, so we may consider G to be a closed
linear group. Now suppose H1,H2 ≤ K are closed, act freely on G and have the
same dimension data (with respect to K). It follows that Γ\G/H1 and Γ\G/H2

are isospectral on functions.

The spaces Γ\G/H1 and Γ\G/H2 are fiber bundles over Γ\G/K with fibers
(Γ ∩K)\K/H1 and (Γ ∩K)\K/H2 respectively.

Proof. Endow G with a metric which is left G-invariant and right K-invariant,
hence when restricted to K it is bi-invariant. Now select a co-compact lattice
Γ ≤ G. Then for any finite dimensional unitary representation σ : K → GL(Vσ)
of K we may construct a locally homogeneous bundle π : Eσ → Γ\G/K. Indeed,
let K act on (Γ\G)× Vσ by k.(x, v) = (xk−1, σ(k)v). Then we let Eσ = ((Γ\G)×
Vσ)/K = {(x, v) : (x, v) ∈ (Γ\G) × Vσ}, where (x, v) = {(xk−1, σ(k)v) : k ∈ K}.
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We let π : Eσ → Γ\G/K be given by (x, v) 7→ x. Then π−1(x) = {(x, v) : v ∈ Vσ}
is the fiber over x ∈ Γ\G/K.

We let L2(Γ\G/K,Eσ) denote the set of L2-sections of Eσ. Then as a vector
space L2(Γ\G/K,Eσ) is isomorphic to

Ṽσ ≡ {F̃ :Γ\G → Vσ : F̃ is L2, σ(k)−1F̃ (x)= F̃ (xk), for all k∈K, a.e. x ∈ Γ\G}.
This can be seen in the following manner. Let F ∈ L2(Γ\G/K,Eσ), then for all x ∈
Γ\G/K we know F (x) ∈ π−1(x). Hence, F (x) = (x, F̃ (x)). Now for F to be well
defined we must have for all x ∈ Γ\G and for all k ∈ K (x, F̃ (x)) ∼ (xk, F̃ (xk)),
but this occurs if and only if σ(k)−1F̃ (x) = F̃ (xk). So the correspondence is clear.
On Ṽσ we see that K acts by (k.F̃ )(x) = F̃ (xk) = σ(k)−1F̃ (x).

We now recall that for any two measure spaces (X,µ) and (Y, ν) we have
L2(X × Y ) = L2(X) ⊗ L2(Y ) and if we have an action of a group L on X × Y
then L2(X ×L Y ) = (L2(X) ⊗ L2(Y ))L. Now, given that Γ\G = Γ\G ×K K and
(by the Peter-Weyl Theorem) L2(K) = ⊕σ∈K̂(⊕dim σ

i=1 Vσ) we see:

L2(Γ\G) = (L2(Γ\G)⊗ L2(K))K

= (L2(Γ\G)⊗ (⊕σ∈K̂(⊕dim σ
i=1 Vσ)))K

= ⊕σ∈K̂(⊕dim σ
i=1 (L2(Γ\G)⊗ Vσ)K)

= ⊕σ∈K̂(⊕dim σ
i=1 L2(Γ\G/K,Eσ))

= ⊕σ∈K̂(⊕dim σ
i=1 Ṽσ).

(3)

Then for any H ≤ K we have L2(Γ\G/H) = L2(Γ\G)H = ⊕σ∈K̂(⊕dim σ
i=1 Ṽ H

σ ).
In the case that σ is a finite dimensional irreducible representation of K we see

that for F ∈ Ṽσ we know F̃ ≡ 0 or Vσ = L(Im(F̃ )), the linear span of Im(F̃ ).
Also, if F̃ ∈ Ṽ H

σ , H ≤ K, then we see ImF̃ ⊂ V H
σ . These facts imply that

for σ ∈ K̂ and F̃ ∈ Ṽ H
σ \{0} we have Vσ = L(Im(F̃ )) ⊂ V H

σ ⊂ Vσ, hence we
conclude V H

σ = Vσ if and only if Ṽ H
σ 6= 0. Therefore, for any H ≤ K we have

L2(Γ\G/H) = ⊕{σ∈K̂: ResK
H (σ)=id}(⊕dim σ

i=1 Ṽ H
σ ).

We now recall that the bundle Eσ admits a locally invariant connection ∇,
which is the push-forward of the invariant connection on the homogeneous bun-
dle Ẽσ = (G × Vσ)/K. The connection ∇ defines a quadratic form Dσ on
C∞(Γ\G/K,Eσ) given by

Dσ(f) =
∫

Γ\G/K

‖∇f(x)‖2dx.

The quadratic form Dσ defines an elliptic operator ∆σ on L2(Γ\G/K,Eσ) known
as the Laplace operator. If σ is irreducible, ∆σ is equal to a shift of the restriction
of the negative of the Casimir element of G by a constant determined by σ. Now for
any H ≤ K we see that ∆ on L2(Γ\G/H) is given by ∆ = ⊕{σ∈K̂: ResK

H (σ)=id}∆σ.
It then follows from this and the above that if H1,H2 ≤ K have the same dimension
data (with respect to K), then Γ\G/H1 and Γ\G/H2 are isospectral. ¤
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Remark 4.2. If we let H1, H2 ≤ K ≡ SU(n) be as in Theorem 3.6, G = SLn(C)
and Γ ≤ G be co-compact, then we see that Γ\G/H1 and Γ\G/H2 are isospectral
fiber bundles over Γ\G/K with isospectral fibers (Γ∩K)\K/H1 and (Γ∩K)\K/H2.

5. Group actions and a theorem of von Neumann

We now conclude our paper by considering the spectra of group actions.

Let G be a locally compact group and (X,µ) a measure space where X is a
G-space and µ is a finite, G-invariant measure. We then obtain a representation of
G on L2(X,µ) given by (g ·f)(x) = f(g−1 ·x). The decomposition of L2(X,µ) into
G-irreducible representations with their multiplicities taken into account is said
to be the spectrum of the action of G on X. If the decomposition of L2(X,µ)
into G-irreducibles is a countable direct sum of finite dimensional irreducible rep-
resentations we say that the spectrum of the action is discrete. Two G actions
are said to be isospectral if their spectra coincide.

A theorem of von Neumann states that two actions of a locally compact abelian
group are measurably conjugate if their spectra are discrete and coincide [vN].
Spatzier considered the problem of spectral rigidity of group actions in the case of
groups of non-compact type and obtained the following result.

Theorem 5.1 ([Spa]). Let G be a non-compact almost simple connected real al-
gebraic group whose complexification is one of the following types:

1. An with n ≥ 26,
2. Bn with n ≥ 27,
3. Bn or Dn with n ≥ 13.

Then G has properly ergodic actions which are isospectral yet not measurably con-
jugate.

However, the spectra of these actions are necessarily non-discrete. In particular,
if G is of non-compact type and (X,µ) is a G-space, then the G-irreducibles
which occur in the decomposition of L2(X,µ) are infinite dimensional. Using the
examples constructed in Theorem 3.6 we can show that, in general, actions with
discrete spectra are not characterized up to measurable conjugacy by their spectra.
Indeed, we obtain the following result.

Proposition 5.2. Let G = SU(n), H1 and H2 be as in Theorem 3.6. Any dense
subgroup Θ ≤ G has actions on the measure spaces (G/H1, dx1) and (G/H2, dx2)
with discrete spectra which are isospectral, but the actions are not measurably con-
jugate.

Proof. Let Θ ≤ G be dense and let G act on G/H1 and G/H2 in the usual way.
We then get actions of Θ on (G/H1, dx1) and (G/H2, dx2). Let us suppose these
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Θ-actions are measurably conjugate. That is, suppose there exists F : G/H1 →
G/H2 a measurable isomorphism such that F (θ.x) = θ.F (x) for all θ ∈ Θ. When
A = {f : G/H1 → G/H2 measurable} is endowed with the topology of convergence
in measure it is a standard Borel space and we have a natural (Borel) action of G
on A given by (g.f)(x) = g.f(g−1.x). It can be seen that for all f ∈ A Gf (the
stabilizer of f) is closed. Since Θ is dense and Θ ⊂ GF we have GF = G. So, F
is a G-map. The same can be said for F−1.

Now there exists L1 : G/H1 → G/H2 continuous such that F = L1 a.e. and
there exists L2 : G/H2 → G/H1 continuous such that F−1 = L2 a.e. Then
L2 ◦ L1 = I a.e. and L1 ◦ L2 = I a.e., where I denotes the identity. From
continuity we obtain equality everywhere. Consequently, L = L1 : G/H1 → G/H2

is a homeomorphism which is also a G-map.
It is clear that Gē1 = H1, where ē1 = eH1. Then, since L is a G-map, we see

H1 ≤ Gf(ē1) = Hg
2 for some g ∈ G. From the fact that L is also a homeomorphism

we see Hg
2 ≤ Gē1 = H1. We have thus established that H1 and H2 are conjugate

in G. However, by construction this is false. We are then led to conclude that the
Θ-actions are not measurably conjugate.

Since Θ ≤ G is dense we know that the spectra of the Θ-actions coincide
with the spectra of the respective G-actions. By construction the G-actions on
(G/H1, dx1) and (G/H2, dx2) have discrete spectra and are isospectral. Hence,
the Θ actions have discrete spectra and are isospectral. ¤

From Proposition 5.2 it follows that there are arithmetic lattices which admit
actions with discrete spectra that are isospectral yet not measurably conjugate.
Indeed, we recall the following result.

Proposition 5.3 (Restriction of scalars). Let F ⊂ R be an algebraic number
field with d = [F : Q] < ∞ and let O be the ring of integers in F . Now suppose
G ≤ SL(n, R) is defined over F , and let σ1 = id, σ2, . . . , σd denote the d distinct (up
to complex conjugation) imbeddings of F in C. Then GO imbeds as an arithmetic
lattice in

Gσ1 × · · · ×Gσd

via the natural embedding g
φ7→ (σ1(g), . . . , σd(g)), where Gσi denotes the Galois

conjugate of G by σi. Furthermore, if G is simple, then φ(GO) is irreducible.

If we let F = Q[
√

2], then SU(m, l) (m+ l ≥ 2), the set of matrices in SL(m+ l)
which preserve the quadratic form

∑m
i=1 x2

i −
√

2(
∑m+l

i=m+1 x2
i ), is defined over F .

In this case the only non-trivial imbedding of F inside C is given by σ(x+
√

2y) =
x −√2y and O = Z[

√
2]. From Proposition 5.3 it follows that Γ = φ(SU(m, l)O)

is an irreducible arithmetic lattice in SU(m, l) × SU(m + l). In the case where
min(m, l) ≥ 1, we see that SU(m+ l) is the maximal compact factor in SU(m, l)×
SU(m + l) and hence it follows from the irreduciblity of Γ that π(Γ) is dense in
SU(m+l), where π : SU(m, l)×SU(m+l) → SU(m+l) is the canonical projection.
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If we now let SU(n), H1, and H2 be as in Proposition 5.2, then we see that there
is an irreducible arithmetic lattice Γ in SU(n − 2, 2) × SU(n) which has actions
on SU(n)/H1 and SU(n)/H2 with discrete spectra that are isospectral yet not
measurably conjugate.

Remark 5.4. After a more careful review of the literature we have recently
learned that a counterexample to the spectral rigidity of group actions is con-
tained in [Mac]. Mackey observes that if (G,H1,H2) is a triple of groups where
H1 and H2 are non-conjugate, representation equivalent subgroups of G, then the
G-actions on G/H1 and G/H2 are isospectral, but not measurably conjugate. He
then gives an example of such a triple of groups taken from [Tod], where G = S16 is
the permutation group on 16 elements and H1 and H2 are two order 16 subgroups.
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