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Abstract. We show that for certain classes of actions of Zd, d ≥ 2, by automorphisms of the
torus any measurable conjugacy has to be affine, hence measurable conjugacy implies algebraic
conjugacy; similarly any measurable factor is algebraic, and algebraic and affine centralizers
provide invariants of measurable conjugacy. Using the algebraic machinery of dual modules and
information about class numbers of algebraic number fields we construct various examples of Zd-
actions by Bernoulli automorphisms whose measurable orbit structure is rigid, including actions
which are weakly isomorphic but not isomorphic. We show that the structure of the centralizer
for these actions may or may not serve as a distinguishing measure-theoretic invariant.
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1. Introduction

Description of results

In the course of the last decade various rigidity properties have been found for
two different classes of actions by higher-rank abelian groups: on the one hand,
certain Anosov and partially hyperbolic actions of Zd and Rd, d ≥ 2, on compact
manifolds ([9, 10, 12]) and, on the other, actions of Zd, d ≥ 2, by automorphisms
of compact abelian groups (cf. e.g. [8, 16]). Among these rigidity phenomena is a
relative scarcity of invariant measures which stands in contrast with the classical
case d = 1 ([11]).

In this paper we make the first step in investigating a different albeit related
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phenomenon: rigidity of the measurable orbit structure with respect to the natural
smooth invariant measure.

In the classical case of actions by Z or R there are certain natural classes of
measure-preserving transformations which possess such rigidity: ergodic transla-
tions on compact abelian groups give a rather trivial example, while horocycle
flows and other homogeneous unipotent systems present a much more interest-
ing one [20, 21, 22]. In contrast to such situations, individual elements of the
higher-rank actions mentioned above are Bernoulli automorphisms. The measur-
able orbit structure of a Bernoulli map can be viewed as very “soft”. Recall that
the only metric invariant of Bernoulli automorphisms is entropy ([19]); in par-
ticular, weak isomorphism is equivalent to isomorphism for Bernoulli maps since
it implies equality of entropies. Furthermore, description of centralizers, factors,
joinings and other invariant objects associated with a Bernoulli map is impossible
in reasonable terms since each of these objects is huge and does not possess any
discernible structure.

In this paper we demonstrate that some very natural actions of Zd, d ≥ 2, by
Bernoulli automorphisms display a remarkable rigidity of their measurable orbit
structure. In particular, isomorphisms between such actions, centralizers, and
factor maps are very restricted, and a lot of algebraic information is encoded in
the measurable structure of such actions (see Section 5).

All these properties occur for broad subclasses of both main classes of actions
of higher-rank abelian groups mentioned above: Anosov and partially hyperbolic
actions on compact manifolds, and actions by automorphisms of compact abelian
groups. However, at present we are unable to present sufficiently definitive general
results due to various difficulties of both conceptual and technical nature. Trying
to present the most general available results would lead to cumbersome notations
and inelegant formulations. To avoid that we chose to restrict our present analysis
to a smaller class which in fact represents the intersection of the two, namely
the actions of Zd, d ≥ 2, by automorphisms of the torus. Thus we study the
measurable structure of such actions with respect to Lebesgue (Haar) measure
from the point of view of ergodic theory.

Our main purpose is to demonstrate several striking phenomena by means
of applying to specific examples general rigidity results which are presented in
Section 5 and are based on rigidity of invariant measures developed in [11] (see
[7] for further results along these lines including rigidity of joinings). Hence we
do not strive for the greatest possible generality even within the class of actions
by automorphisms of a torus. The basic algebraic setup for irreducible actions
by automorphisms of a torus is presented in Section 3. Then we adapt further
necessary algebraic preliminaries to the special but in a sense most representative
case of Cartan actions, i.e. to Zn−1-actions by hyperbolic automorphisms of the
n-dimensional torus (see Section 4).

The role of entropy for a smooth action of a higher-rank abelian group G on a
finite-dimensional manifold is played by the entropy function on G whose values
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are entropies of individual elements of the action (see Section 2.2 for more details)
which is naturally invariant of isomorphism and also of weak isomorphism and is
equivariant with respect to a time change.

In Section 6 we produce several kinds of specific examples of actions by er-
godic (and hence Bernoulli) automorphisms of tori with the same entropy func-
tion. These examples provide concrete instances when general criteria developed
in Section 5 can be applied. Our examples include:

(i) actions which are not weakly isomorphic (Section 6.1),
(ii) actions which are weakly isomorphic but not isomorphic, such that one

action is a maximal action by Bernoulli automorphisms and the other is
not (Section 6.2),

(iii) weakly isomorphic, but nonisomorphic, maximal actions (Section 6.3).
Once rigidity of conjugacies is established, examples of type (i) appear in a

rather simple-minded fashion: one simply constructs actions with the same entropy
data which are not isomorphic over Q. This is not surprising since entropy contains
only partial information about eigenvalues. Thus one can produce actions with
different eigenvalue structure but identical entropy data.

Examples of weakly isomorphic but nonisomorphic actions are more sophisti-
cated. We find them among Cartan actions (see Section 4). The centralizer of
a Cartan action in the group of automorphisms of the torus is (isomorphic to) a
finite extension of the acting group, and in some cases Cartan actions isomorphic
over Q may be distinguished by looking at the index of the group in its centralizer
(type (ii); see Examples 2a and 2b). The underlying cause for this phenomenon
is the existence of algebraic number fields K = Q(λ), where λ is a unit, such that
the ring of integers OK 6= Z[λ]. In general finding even simplest possible exam-
ples for n = 3 involves the use of data from algebraic number theory and rather
involved calculations. For examples of type (ii) one may use some special tricks
which allow to find some of these and to show nonisomorphism without a serious
use of symbolic manipulations on a computer.

A Cartan action α of Zn−1 on Tn is called maximal if its centralizer in the
group of automorphisms of the torus is equal to α × {±Id}. A maximal Cartan
action turns out to be maximal in the above sense: it cannot be extended to any
action of a bigger abelian group by Bernoulli automorphisms.

Examples of maximal Cartan actions isomorphic over Q but not isomorphic
(type (iii)) are the most remarkable. Conjugacy over Q guarantees that the ac-
tions by automorphisms of the torus Tn arising from their centralizers are weakly
isomorphic with finite fibres. The mechanism providing obstructions for algebraic
isomorphism in this case involves the connection between the class number of an
algebraic number field and GL(n, Z)-conjugacy classes of matrices in SL(n, Z)
which have the same characteristic polynomial (see Example 3). In finding these
examples the use of computational number-theoretic algorithms (which in our case
were implemented via the Pari-GP package) has been essential.

One of our central conclusions is that for a broad class of actions of Zd, d ≥
2, (see condition (R) in Section 2.2) the conjugacy class of the centralizer of
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the action in the group of affine automorphisms of the torus is an invariant of
measurable conjugacy. Let Zmeas(α) be the centralizer of the action α in the group
of measurable automorphisms. As it turns out in all our examples but Example
3b, the conjugacy class of the pair (Zmeas(α), α) is a distinguishing invariant of
the measurable isomorphism. Thus, in particular, Example 3b shows that there
are weakly isomorphic, but nonisomorphic actions for which the affine and hence
the measurable centralizers are isomorphic as abstract groups.

We would like to acknowledge a contribution of J.-P. Thouvenot to the early
development of ideas which led to this paper. He made an important observation
that rigidity of invariant measures can be used to prove rigidity of isomorphisms
via a joining construction (see Section 5.1).

2. Preliminaries

2.1. Basic ergodic theory

Any invertible (over Q) integral n×n matrix A ∈ M(n, Z)∩GL(n, Q) determines
an endomorphism of the torus Tn = Rn/Zn which we denote by FA. Conversely,
any endomorphism of Tn is given by a matrix from A ∈ M(n, Z) ∩ GL(n, Q). If,
in addition, detA = ±1, i.e. if A is invertible over Z, then FA is an automorphism
of Tn (the group of all such A is denoted by GL(n, Z)). The map FA preserves
Lebesgue (Haar) measure µ; it is ergodic with respect to µ if and only if there are
no roots of unity among the eigenvalues of A, as was first pointed out by Halmos
([6]). Furthermore, in this case there are eigenvalues of absolute value greater
than one and (FA, λ) is an exact endomorphism. If FA is an automorphism it
is in fact Bernoulli ([14]). For simplicity we will call such a map FA an ergodic
toral endomorphism (respectively, automorphism, if A is invertible). If all eigen-
values of A have absolute values different from one we will call the endomorphism
(automorphism) FA hyperbolic.

When it does not lead to a confusion we will not distinguish between a matrix
A and corresponding toral endomorphism FA.

Let λ1, . . . , λn be the eigenvalues of the matrix A, listed with their multiplici-
ties. The entropy hµ(FA) of FA with respect to Lebesgue measure is equal to∑

{i:|λi|>1}
log |λi|.

In particular, entropy is determined by the conjugacy class of the matrix A over
Q (or over C). Hence all ergodic toral automorphisms which are conjugate over Q
are measurably conjugate with respect to Lebesgue measure.

Classification, up to a conjugacy over Z, of matrices in SL(n, Z), which are
irreducible and conjugate over Q is closely related to the notion of class number of
an algebraic number field. A detailed discussion relevant to our purposes appears
in Section 4.2. Here we only mention the simplest case n = 2 which is not directly
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related to rigidity. In this case trace determines conjugacy class over Q and, in
particular, entropy. However if the class number of the corresponding number field
is greater than one there are matrices with the given trace which are not conjugate
over Z. This algebraic distinctiveness is not reflected in the measurable structure:
in fact, in the case of equal entropies the classical Adler–Weiss construction of the
Markov partition in [1] yields metric isomorphisms which are more concrete and
specific than in the general Ornstein isomorphism theory and yet not algebraic.

2.2. Higher rank actions

Let α be an action by commuting toral automorphisms given by integral matrices
A1, . . . , Ad. It defines an embedding ρα : Zd → GL(n, Z) by

ρn
α = An1

1 . . . And

d ,

where n = (n1, . . . , nd) ∈ Zd, and we have

αn = Fρn
α
.

Similarly, we write ρα : Zd
+ → M(n, Z)∩GL(n, Q) for an action by endomorphisms.

Conversely, any embedding ρ : Zd → GL(n, Z) (respectively, ρ : Zd
+ → M(n, Z) ∩

GL(n, Q)) defines an action by automorphisms (respectively, endomorphisms) of
Tn denoted by αρ.

Sometimes we will not explicitly distinguish between an action and the cor-
responding embedding, e.g. we may talk about “the centralizer of an action in
GL(n, Z)” etc.

Definitions. Let α and α′ be two actions of Zd (Zd
+) by automorphisms (endo-

morphisms) of Tn and Tn′ , respectively. The actions α and α′ are measurably
(or metrically, or measure-theoretically) isomorphic (or conjugate) if there exists a
Lebesgue measure-preserving bijection ϕ : Tn → Tn′ such that ϕ ◦ α = α′ ◦ ϕ.

The actions α and α′ are measurably isomorphic up to a time change if there
exist a measure-preserving bijection ϕ : Tn → Tn′ and a C ∈ GL(d, Z) such that
ϕ ◦ α ◦ C = α′ ◦ ϕ.

The action α′ is a measurable factor of α if there exists a Lebesgue measure-
preserving transformation ϕ : Tn → Tn′ such that ϕ ◦α = α′ ◦ϕ. If, in particular,
ϕ is almost everywhere finite-to-one, then α′ is called a finite factor or a factor
with finite fibres of α.

Actions α and α′ are weakly measurably isomorphic if each is a measurable
factor of the other.

A joining between α and α′ is a measure µ on Tn × Tn′ = Tn+n′ invariant
under the Cartesian product action α × α′ such that its projections into Tn and
Tn′ are Lebesgue measures. As will be explained in Section 5, conjugacies and
factors produce special kinds of joinings.
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These measure-theoretic notions have natural algebraic counterparts.

Definitions. The actions α and α′ are algebraically isomorphic (or conjugate)
if n = n′ and if there exists a group automorphism ϕ : Tn → Tn such that
ϕ ◦ α = α′ ◦ ϕ.

The actions α and α′ are algebraically isomorphic up to a time change if there
exists an automorphism ϕ : Tn → Tn and C ∈ GL(d, Z) such that ϕ◦α◦C = α′◦ϕ.

The action α′ is an algebraic factor of α if there exists a surjective homomor-
phism ϕ : Tn → Tn′ such that ϕ ◦ α = α′ ◦ ϕ.

The actions α and α′ are weakly algebraically isomorphic if each is an algebraic
factor of the other. In this case n = n′ and each factor map has finite fibres.

Finally, we call a map ϕ : Tn → Tn′ affine if there is a surjective continuous
group homomorphism ψ : Tn → Tn′ and x′ ∈ Tn′ s.t. ϕ(x) = ψ(x) + x′ for every
x ∈ Tn.

As already mentioned, we intend to show that under certain condition for d ≥ 2,
measure theoretic properties imply their algebraic counterparts.

We will say that an algebraic factor α′ of α is a rank-one factor if α′ is an
algebraic factor of α and α′(Zd

+) contains a cyclic sub-semigroup of finite index.
The most general situation when certain rigidity phenomena appear is the

following :

(R′): The action α does not possess nontrivial rank-one algebraic factors.

In the case of actions by automorphisms the condition (R′) is equivalent to the
following condition (R) (cf. [27]):

(R): The action α contains a group, isomorphic to Z2, which consists of ergodic
automorphisms.

By Proposition 6.6 in [25], Condition (R) is equivalent to saying that the re-
striction of α to a subgroup isomorphic to Z2 is mixing.

A Lyapunov exponent for an action α of Zd is a function χ : Zd → R which
associates to each n ∈ Zd the logarithm of the absolute value of the eigenvalue
for ρn

α corresponding to a fixed eigenvector. Any Lyapunov exponent is a linear
function; hence it extends uniquely to Rd. The multiplicity of an exponent is
defined as the sum of multiplicities of eigenvalues corresponding to this exponent.
Let χi, i = 1, . . . , k, be the different Lyapunov exponents and let mi be the
multiplicity of χi. Then the entropy formula for a single toral endomorphism
implies that

hα(n) = hµ(ρn
α) =

∑
{i:χi(n)>0}

miχi(n).

The function hα : Zd → R is called the entropy function of the action α. It
naturally extends to a symmetric, convex piecewise linear function of Rd. Any
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cone in Rd where all Lyapunov exponents have constant sign is called a Weyl
chamber. The entropy function is linear in any Weyl chamber.

The entropy function is a prime invariant of measurable isomorphism; since
entropy does not increase for factors the entropy function is also invariant of a
weak measurable isomorphism. Furthermore it changes equivariantly with respect
to automorphisms of Zd.

Remark. it is interesting to point out that the convex piecewise linear structure
of the entropy function persists in much greater generality, namely for smooth
actions on differentiable manifolds with a Borel invariant measure with compact
support.

2.3. Finite algebraic factors and invariant lattices

Every algebraic action has many algebraic factors with finite fibres. These factors
are in one-to-one correspondence with lattices Γ ⊂ Rn which contain the standard
lattice Γ0 = Zn, and which satisfy ρα(Γ) ⊂ Γ. The factor-action associated with
a particular lattice Γ ⊃ Γ0 is denoted by αΓ. Let us point out that in the case of
actions by automorphisms such factors are also invertible: if Γ ⊃ Γ0 and ρα(Γ) ⊂
Γ, then ρα(Γ) = Γ.

Let Γ ⊃ Γ0 be a lattice. Take any basis in Γ and let S ∈ GL(n, Q) be the
matrix which maps the standard basis in Γ0 to this basis. Then obviously the
factor-action αΓ is equal to the action αSραS−1 . In particular, ρα and ραΓ are
conjugate over Q, although not necessarily over Z. Notice that conjugacy over Q
is equivalent to conjugacy over R or over C.

For any positive integer q, the lattice 1
q Γ0 is invariant under any automorphism

in GL(n, Z) and gives rise to a factor which is conjugate to the initial action: one
can set S = 1

q Id and obtains that ρα = ρα 1
q
Γ0

. On the other hand one can find,

for any lattice Γ ⊃ Γ0, a positive integer q such that 1
q Γ0 ⊃ Γ (take q the least

common multiple of denominators of coordinates for a basis of Γ). Thus α 1
q Γ0

appears as a factor of αΓ. Summarizing, we have the following properties of finite
factors.

Proposition 2.1. Let α and α′ be Zd-actions by automorphism of the torus Tn.
The following are equivalent.

(1) ρα and ρα′ are conjugate over Q;
(2) there exists an action α′′ such that both α and α′ are isomorphic to finite

algebraic factors of α′′;
(3) α and α′ are weakly algebraically isomorphic, i.e. each of them is isomor-

phic to a finite algebraic factor of the other.

Obviously, weak algebraic isomorphism implies weak measurable isomorphism.
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For Z-actions by Bernoulli automorphisms, weak isomorphism implies isomor-
phism since it preserves entropy, the only isomorphism invariant for Bernoulli
maps. In Section 5 we will show that, for actions by toral automorphisms sat-
isfying Condition (R), measurable isomorphism implies algebraic isomorphism.
Hence, existence of such actions which are conjugate over Q but not over Z pro-
vides examples of actions by Bernoulli maps which are weakly isomorphic but not
isomorphic.

2.4. Dual modules

For any action α of Zd by automorphisms of a compact abelian group X we denote
by α̂ the dual action on the discrete group X̂ of characters of X. For an element
χ ∈ X̂ we denote X̂α,χ the subgroup of X̂ generated by the orbit α̂χ.

Definition. The action α is called cyclic if X̂α,χ = X̂ for some χ ∈ X̂.

Cyclicity is obviously an invariant of algebraic conjugacy of actions up to a
time change.

More generally, the dual group X̂ has the structure of a module over the ring
Z[u±1

1 , . . . , u±1
d ] of Laurent polynomials in d commuting variables. Action by the

generators of α̂ corresponds to multiplications by independent variables. This
module is called the dual module of the action α (cf. [24, 25]). Cyclicity of the action
corresponds to the condition that this module has a single generator. The structure
of the dual module up to isomorphism is an invariant of algebraic conjugacy of the
action up to a time change.

In the case of the torus X = Tn which concerns us in this paper one can
slightly modify the construction of the dual module to make it more geometric. A
Zd-action α by automorphisms of the torus Rn/Zn naturally extends to an action
on Rn (this extension coincides with the embedding ρα if matrices are identified
with linear transformations). This action preserves the lattice Zn and furnishes
Zn with the structure of a module over the ring Z[u±1

1 , . . . , u±1
d ]. This module

is — in an obvious sense — a transpose of the dual module defined above. In
particular, the condition of cyclicity of the action does not depend on which of
these two definitions of dual module one adopts.

2.5. Algebraic and affine centralizers

Let α be an action of Zd by toral automorphisms, and let ρα(Zd) = {ρn
α : n ∈ Zd}.

The centralizer of α in the group of automorphisms of Tn is denoted by Z(α) and
is not distinguished from the centralizer of ρα(Zd) in GL(n, Z).

Similarly, the centralizer of α in the semigroup of all endomorphisms of Tn
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(identified with the centralizer of ρα(Zd) in the semigroup M(n, Z)∩GL(n, Q)) is
denoted by C(α).

The centralizer of α in the group of affine automorphisms of Tn will be denoted
by ZAff (α).

The centralizer of α in the semigroup of surjective affine maps of Tn will be
denoted by CAff (α).

3. Irreducible actions

3.1. Definition

The action α on Tn is called irreducible if any nontrivial algebraic factor of α has
finite fibres.

The following characterization of irreducible actions is useful (cf. [2]).

Proposition 3.1. The following conditions are equivalent:

(1) α is irreducible;
(2) ρα contains a matrix with characteristic polynomial irreducible over Q;
(3) ρα does not have a nontrivial invariant rational subspace or, equivalently,

any α-invariant closed subgroup of Tn is finite.

Corollary 3.2. Any irreducible free action α of Zd
+, d ≥ 2, satisfies condition

(R′).

Proof. A rank one algebraic factor has to have fibres of positive dimension. Hence
the pre-image of the origin under the factor map is a union of finitely many rational
tori of positive dimension and by Proposition 3.1 α cannot be irreducible.

3.2. Uniqueness of cyclic actions

Cyclicity uniquely determines an irreducible action up to algebraic conjugacy
within a class of weakly algebraically conjugate actions.

Proposition 3.3. If α is an irreducible cyclic action of Zd, d ≥ 1, on Tn and α′

is another cyclic action such that ρα and ρα′ are conjugate over Q, then α and α′

are algebraically isomorphic.

For the proof of Proposition 3.3 we need an elementary lemma.

Lemma 3.4. Let ρ : Zd → GL(n, Z) be an irreducible embedding. The centralizer
of ρ in GL(n, Q) acts transitively on Zn \ {0}.
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Proof. By diagonalizing ρ over C and taking the real form of it, one immediately
sees that the centralizer of ρ in GL(n, R) acts transitively on vectors with nonzero
projections on all eigenspaces and thus has a single open and dense orbit. Since the
centralizer over R is the closure of the centralizer over Q, the Q-linear span of the
orbit of any integer or rational vector under the centralizer is an invariant rational
subspace. Hence any integer point other than the origin belongs to the single open
dense orbit of the centralizer of ρ in GL(n, R). This implies the statement of the
lemma.

Proof of Proposition 3.3. Choose C ∈ M(n, Z) such that Cρα′C
−1 = ρα. Let

k, l ∈ Zn be cyclic vectors for ρα|Zn and ρα′ |Zn , respectively.
Now consider the integer vector C(l) and find D ∈ GL(n, Q) commuting with

ρα such that DC(l) = k. We have DCρα′C
−1D−1 = ρα. The conjugacy DC

maps bijectively the Z-span of the ρα′ -orbit of l to Z-span of the ρα-orbit of k. By
cyclicity both spans coincide with Zn, and hence DC ∈ GL(n, Z).

3.3. Centralizers of integer matrices and algebraic number fields

There is an intimate connection between irreducible actions on Tn and groups of
units in number fields of degree n. Since this connection (in the particular case
where the action is Cartan and hence the number field is totally real) plays a
central role in the construction of our principal examples (type (ii) and (iii) of the
Introduction), we will describe it here in detail even though most of this material
is fairly routine from the point of view of algebraic number theory.

Let A ∈ GL(n, Z) be a matrix with an irreducible characteristic polynomial f
and hence distinct eigenvalues. The centralizer of A in M(n, Q) can be identified
with the ring of all polynomials in A with rational coefficients modulo the principal
ideal generated by the polynomial f(A), and hence with the field K = Q(λ), where
λ is an eigenvalue of A, by the map

γ : p(A) 7→ p(λ) (1)

with p ∈ Q[x]. Notice that if B = p(A) is an integer matrix then γ(B) is an
algebraic integer, and if B ∈ GL(n, Z) then γ(B) is an algebraic unit (converse is
not necessarily true).

Lemma 3.5. The map γ in (1) is injective.

Proof. If γ(p(A)) = 1 for p(A) 6= Id, then p(A) has 1 as an eigenvalue, and hence
has a rational subspace consisting of all invariant vectors. This subspace must be
invariant under A which contradicts its irreducibility.

Denote by OK the ring of integers in K, by UK the group of units in OK , by
C(A) the centralizer of A in M(n, Z) and by Z(A) the centralizer of A in the group
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GL(n, Z).

Lemma 3.6. γ(C(A)) is a ring in K such that Z[λ] ⊂ γ(C(A)) ⊂ OK , and
γ(Z(A)) = UK ∩ γ(C(A)).

Proof. γ(C(A)) is a ring because C(A) is a ring. As we pointed out above images
of integer matrices are algebraic integers and images of matrices with determinant
±1 are algebraic units. Hence γ(C(A)) ⊂ OK . Finally, for every polynomial p
with integer coefficients, p(A) is an integer matrix, hence Z[λ] ⊂ γ(C(A)).

Notice that Z(λ) is a finite index subring of OK ; hence γ(C(A)) has the same
property.

Remark. The groups of units in two different rings, say O1 ⊂ O2, may coincide.
Examples can be found in the table of totally real cubic fields in [4].

Proposition 3.7. Z(A) is isomorphic to Zr1+r2−1 × F where r1 is the number
the real embeddings, r2 is the number of pairs of complex conjugate embeddings of
the field K into C, and F is a finite cyclic group.

Proof. By Lemma 3.6, Z(A) is isomorphic to the group of units in the order
γ(C(A)), the statement follows from the Dirichlet Unit Theorem ([3], Ch.2, §4.3).

Now consider an irreducible action α of Zd on Tn. Denote ρα(Zd) by Γ, and let λ
be an eigenvalue of a matrix A ∈ Γ with an irreducible characteristic polynomial.
The centralizers of Γ in M(n, Z) and GL(n, Z) coincide with C(A) and Z(A)
correspondingly. The field K = Q(λ) has degree n and we can consider the map
γ as above. By Lemma 3.6 γ(Γ) ⊂ UK .

For the purposes of purely algebraic considerations in this and the next section
it is convenient to consider actions of integer n × n matrices on Qn rather than
on Rn and correspondingly to think of α as an action by automorphisms of the
rational torus Tn

Q = Qn/Zn.
Let v = (v1, . . . , vn) be an eigenvector of A with eigenvalue λ whose coordinates

belong to K. Consider the “projection” π : Qn → K defined by π(r1, . . . rn) =∑n
i=1 rivi. It is a bijection ([29], Prop. 8) which conjugates the action of the

group Γ with the action on K given by multiplication by corresponding eigenvalues∏d
i=1 λki

i , k1, . . . , kd ∈ Z. Here A1, . . . , Ad ∈ Γ are the images of the generators of
the action α, and Aiv = λiv, i = 1, . . . , d. The lattice πZn ⊂ K is a module over
the ring Z[λ1, . . . , λd].

Conversely, any such data, consisting of an algebraic number field K = Q(λ)
of degree n, a d-tuple λ̄ = (λ1, . . . , λd) of multiplicatively independent units in
K, and a lattice L ⊂ K which is a module over Z[λ1, . . . , λd], determine an Zd-
action αλ̄,L by automorphisms of Tn up to algebraic conjugacy (corresponding to
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a choice of a basis in the lattice L). This action is generated by multiplications by
λ1, . . . , λd (which preserve L by assumption). The action αλ̄,L diagonalizes over
C as follows. Let φ1 = id, φ2, . . . , φn be different embeddings of K into C. The
multiplications by λi, i = 1, . . . , d, are simultaneously conjugate over C to the
respective matrices (

λi 0 ... 0
0 φ2(λi) ... 0
... ... ... ...
0 0 ... φn(λi)

)
, i = 1, . . . , d.

We will assume that the action is irreducible which in many interesting cases
can be easily checked.

Thus, all actions αλ̄,L with fixed λ̄ are weakly algebraically isomorphic since
the corresponding embeddings are conjugate over Q (Proposition 2.1). Actions
produced with different sets of units in the same field, say λ̄ and µ̄ = (µ1, . . . , µd),
are weakly algebraically isomorphic if and only if there is an automorphism g of K
such that µi = gλi, i = 1, . . . , d. By Proposition 3.3 there is a unique cyclic action
(up to algebraic isomorphism) within any class of weakly algebraically isomorphic
actions: it corresponds to setting L = Z[λ1, . . . , λd]; we will denote this action by
αmin

λ̄
. Cyclicity of the action αmin

λ̄
is obvious since the whole lattice is obtained

from its single element 1 by the action of the ring Z[λ±1
1 , . . . , λ±1

d ].
Let us summarize this discussion.

Proposition 3.8. Any irreducible action α of Zd by automorphisms of Tn is
algebraically conjugate to an action of the form αλ̄,L. It is weakly algebraically
conjugate to the cyclic action αmin

λ̄
. The field K = Q[λ1, . . . , λd] has degree n, and

the vector of units λ̄ = (λ1, . . . , λd) is defined up to an automorphism of K.

Apart from the cyclic model αmin
λ̄

there is another canonical choice of the
lattice L, namely the ring of integers OK . We will denote the action αλ̄,OK

by
αmax

λ̄
. More generally, one can choose as the lattice L any subring O such that

Z[λ1, . . . , λd] ⊂ O ⊂ OK .

Proposition 3.9. Assume that O ) Z[λ1, . . . , λd]. Then the action αλ̄,O is not
algebraically isomorphic up to a time change to αmin

λ̄
. In particular, if OK 6=

Z[λ1, . . . , λd], then the actions αmax
λ̄

and αmin
λ̄

are not algebraically isomorphic up
to a time change.

Proof. Let us denote the centralizers in M(n, Z) of the actions αλ̄,O and αmin
λ̄

by C1 and C2, respectively. The centralizer C1 contains multiplications by all
elements of O. For, if one takes any basis in O, the multiplication by an element
µ ∈ O takes elements of the basis into elements of O, which are linear combinations
with integral coefficients of the basis elements; hence the multiplication is given
by an integer matrix. On the other hand any element of each centralizer is a
multiplication by an integer in K (Lemma 3.6).
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Now assume that the multiplication by µ ∈ OK belongs to C2. This means that
this multiplication preserves Z[λ1, . . . , λd]; in particular, µ = µ · 1 ∈ Z[λ1, . . . , λd].
Thus C2 consists of multiplication by elements of Z[λ1, . . . , λd]. An algebraic
isomorphism up to a time change has to preserve both the module of polynomials
with integer coefficients in the generators of the action and the centralizer of the
action in M(n, Z), which is impossible.

The central question which appears in connection with our examples is the
classification of weakly algebraically isomorphic Cartan actions up to algebraic
isomorphism.

Proposition 3.9 is useful in distinguishing weakly algebraically isomorphic ac-
tions when OK 6= Z[λ1, . . . , λd]. Cyclicity also can serve as a distinguishing invari-
ant.

Corollary 3.10. The action αλ̄,O is cyclic if and only if O = Z[λ1, . . . , λd].

Proof. The action αmin
λ̄

corresponding to the ring Z[λ1, . . . , λd] is cyclic by def-
inition since the ring coincides with the orbit of 1. By Proposition 3.3, if αλ̄,O
were cyclic, it would be algebraically conjugate to αmin

λ̄
, which, by Proposition 3.9,

implies that O = Z[λ1, . . . , λd].

The property common to all actions of the αλ̄,O is transitivity of the action
of the centralizer C(αλ̄,O) on the lattice. Similarly to cyclicity this property is
obviously an invariant of algebraic conjugacy up to a time change.

Proposition 3.11. Any irreducible action α of Zd by automorphisms of Tn whose
centralizer C(α) in M(n, Z) acts transitively on Zn is algebraically isomorphic to
an action αλ̄,O, where O ⊂ OK is a ring which contains Z[λ1, . . . , λd].

Proof. By Proposition 3.8 any irreducible action α of Zd by automorphisms of
Tn is algebraically conjugate to an action of the form αλ̄,L for a lattice L ⊂ K.
Let C be the centralizer of αλ̄,L in the semigroup of linear endomorphisms of L.
We fix an element β ∈ L with Cβ = L and consider conjugation of the action
αλ̄,L by multiplication by β−1; this is simply αλ̄,β−1L. The centralizer of αλ̄,β−1L
acts on the element 1 ∈ β−1L transitively. By Lemma 3.6 the centralizer consists
of all multiplications by elements of a certain subring O ⊂ OK which contains
Z[λ1, . . . , λd]. Thus 1 ∈ β−1L = O.

3.4. Structure of algebraic and affine centralizers for irreducible actions

By Lemma 3.6, the centralizer C(α), as an additive group, is isomorphic to Zn

and has an additional ring structure. In the terminology of Proposition 3.7, the
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centralizer Z(α) for an irreducible action α by toral automorphisms is isomorphic
to Zr1+r2−1 × F .

An irreducible action α has maximal rank if d = r1 + r2 − 1. In this case Z(α)
is a finite extension of α.

Notice that any affine map commuting with an action α by toral automorphisms
preserves the set Fix(α) of fixed points of the action. This set is always a subgroup
of the torus and hence, for an irreducible action, always finite. The translation by
any element of Fix(α) commutes with α and thus belongs to ZAff (α). Furthermore,
the affine centralizers ZAff (α) and CAff (α) are generated by these translations and,
respectively, Z(α) and C(α).

Remark. Most of the material of this section extends to general irreducible ac-
tions of Zd by automorphisms of compact connected abelian groups; a group pos-
sessing such an action must be a torus or a solenoid ([25, 26]). In the solenoid
case, which includes natural extensions of Zd-actions by toral endomorphisms, the
algebraic numbers λ1, . . . , λd which appear in the constructions are not in general
integers. As we mentioned in the introduction we restrict our algebraic setting
here since we are able to exhibit some of the most interesting and striking new
phenomena using Cartan actions and certain actions directly derived from them.
However, other interesting examples appear for actions on the torus connected
with not totally real algebraic number fields, actions on solenoids, and actions on
zero-dimensional abelian groups (cf. e.g. [16, 24, 25, 26]).

One can also extend the setup of this section to certain classes of reducible
actions. Since some of these satisfy condition (R) basic rigidity results still hold
and a number of further interesting examples can be constructed.

4. Cartan actions

4.1. Structure of Cartan actions

Of particular interest for our study are abelian groups of ergodic automorphisms
of Tn of maximal possible rank n− 1 (in agreement with the real rank of the Lie
group SL(n, R)).

Definition. An action of Zn−1 on Tn for n ≥ 3 by ergodic automorphisms is
called a Cartan action.

Proposition 4.1. Let α be a Cartan action on Tn.

(1) Any element of ρα other than identity has real eigenvalues and is hyperbolic
and thus Bernoulli.

(2) α is irreducible.
(3) The centralizer of Z(α) is a finite extension of ρα(Zn−1).
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Proof. First, let us point out that it is sufficient to prove the proposition for
irreducible actions. For, if α is not irreducible, it has a nontrivial irreducible
algebraic factor of dimension, say, m ≤ n − 1. Since every factor of an ergodic
automorphism is ergodic, we thus obtain an action of Zn−1 in Tm by ergodic
automorphisms. By considering a restriction of this action to a subgroup of rank
m−1 which contains an irreducible matrix, we obtain a Cartan action on Tm. By
Statement 3 for irreducible actions, the centralizer of this Cartan action is a finite
extension of Zm−1, and thus cannot contain Zn−1, a contradiction.

Now assuming that α is irreducible, take a matrix A ∈ ρα(Zn−1) with irre-
ducible characteristic polynomial f . Such a matrix exists by Proposition 3.1. It
has distinct eigenvalues, say λ = λ1, . . . , λn. Consider the correspondence γ de-
fined in (1). By Lemma 3.6 for every B ∈ ρα(Zn−1) we have γ(B) ∈ UK , hence the
group of units UK in K contains a subgroup isomorphic to Zn−1. By the Dirichlet
Unit Theorem the rank of the group of units in K is equal to r1 + r2 − 1, where
r1 is the number of real embeddings and r2 is the number of pairs of complex
conjugate embeddings of K into C. Since r1 + 2r2 = n we deduce that r2 = 0, so
the field K is totally real, that is all eigenvalues of A, and hence of any matrix in
ρα(Zn−1), are real. The same argument gives Statement 3, since any element of
the centralizer of ρα(Zn−1) in GL(n, Z) corresponds to a unit in K. Hyperbolicity
of matrices in ρα(Zn−1) is proved in the same way as Lemma 3.5.

Lemma 4.2. Let A be a hyperbolic matrix in SL(n, Z) with irreducible character-
istic polynomial and distinct real eigenvalues. Then every element of the centralizer
Z(A) other than {±1} is hyperbolic.

Proof. Assume that B ∈ Z(A) is not hyperbolic. As B is simultaneously diag-
onalizable with A and has real eigenvalues, it has an eigenvalue +1 or −1. The
corresponding eigenspace is rational and A-invariant. Since A is irreducible, this
eigenspace has to coincide with the whole space and hence B = ±1.

Corollary 4.3. Cartan actions are exactly the maximal rank irreducible actions
corresponding to totally real number fields.

Corollary 4.4. The centralizer Z(α) for a Cartan action α is isomorphic to
Zn−1 × {±1}.

We will call a Cartan action α maximal if α is an index two subgroup in Z(α).
Let us point out that ZAff (α) is isomorphic Z(α) × Fix(α). Thus, the factor

of ZAff (α) by the subgroup of finite order elements is always isomorphic to Zn−1.
If α is maximal, this factor is identified with α itself. In the next Section we will
show (Corollary 5.4) that for a Cartan action α on Tn, n ≥ 3 the isomorphism
type of the pair (ZAff (α), α) is an invariant of the measurable isomorphism. Thus,
in particular, for a maximal Cartan action the order of the group Fix(α) is a
measurable invariant.
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Remark. An important geometric distinction between Cartan actions and gen-
eral irreducible actions by hyperbolic automorphisms is the absence of multiple
Lyapunov exponents. This greatly simplifies proofs of various rigidity properties
both in the differentiable and measurable context.

4.2. Algebraically nonisomorphic maximal Cartan actions

In Section 3.3 we described a particular class of irreducible actions αλ̄,O which is
characterized by the transitivity of the action of the centralizer C(αλ̄,O) on the
lattice (Proposition 3.11). In the case OK = Z[λ] there is only one such action,
namely the cyclic one (Corollary 3.10). Now we will analyze this special case for
totally real fields in detail and show how information about the class number of
the field helps to construct algebraically nonisomorphic maximal Cartan actions.
This will in particular provide examples of Cartan actions not isomorphic up to a
time change to any action of the form αλ̄,O.

It is well-known that for n = 2 there are natural bijections between conjugacy
classes of hyperbolic elements in SL(2, Z) of a given trace, ideal classes in the
corresponding real quadratic field, and congruence classes of primitive integral in-
definite quadratic forms of the corresponding discriminant. This has been used by
Sarnak [23] in his proof of the Prime Geodesic Theorem for surfaces of constant
negative curvature (see also [13]). It follows from an old Theorem of Latimer and
MacDuffee (see [17], [28], and a more modern account in [29]), that the first bijec-
tion persists for n > 2. Let A a hyperbolic matrix A ∈ SL(n, Z) with irreducible
characteristic polynomial f and distinct real eigenvalues, K = Q(λ), where λ is
an eigenvalue of A, and OK = Z[λ]. To each matrix A′ with the same eigenvalues,
we assign the eigenvector v = (v1, . . . , vn) with eigenvalue λ: A′v = λv with all
its entries in OK , which can be always done, and to this eigenvector, an ideal in
OK with the Z-basis v1, . . . , vn. The described map is a bijection between the
GL(n, Z)-conjugacy classes of matrices in SL(n, Z) which have the same charac-
teristic polynomial f and the set of ideal classes in OK . Moreover, it allows us to
reach conclusions about centralizers as well.

Theorem 4.5. Let A ∈ SL(n, Z) be a hyperbolic matrix with irreducible char-
acteristic polynomial f and distinct real eigenvalues, K = Q(λ) where λ is an
eigenvalue of A, and OK = Z[λ]. Suppose the number of eigenvalues among
λ1, . . . , λn that belong to K is equal to r. If the class number h(K) > r, then there
exists a matrix A′ ∈ SL(n, Z) having the same eigenvalues as A whose centralizer
Z(A′) is not conjugate in GL(n, Z) to Z(A). Furthermore, the number of matri-
ces in SL(n, Z) having the same eigenvalues as A with pairwise nonconjugate (in
GL(n, Z)) centralizers is at least [h(K)

r ] + 1, where [x] is the largest integer < x.

Proof. Suppose the matrix A corresponds to the ideal class I1 with the Z-basis
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v(1). Then
Av(1) = λv(1).

Since h(K) > 1, there exists a matrix A2 having the same eigenvalues which
corresponds to a different ideal class I2 with the basis v(2), and we have

A2v
(2) = λv(2).

The eigenvectors v(1) and v(2) are chosen with all their entries in OK . Now assume
that Z(A2) is conjugate to Z(A). Then Z(A2) contains a matrix B2 conjugate to
A. Since B2 commutes with A2 we have B2v

(2) = µ2v
(2), and since B2 is conjugate

to A, µ2 is one of the roots of f . Moreover, since B2 ∈ SL(n, Z) and all entries of
v(2) are in K, µ2 ∈ K. Thus µ2 is one of r roots of f which belongs to K.

From B2 = S−1AS (S ∈ GL(n, Z)) we deduce that µ2(Sv(2)) = A(Sv(2)).
Since I1 and I2 belong to different ideal classes, Sv(2) 6= kv(1) for any k in the
quotient field of OK , and since λ is a simple eigenvalue for A, we deduce that
µ2 6= λ, and thus µ2 can take one of the r − 1 remaining values.

Now assume that A3 corresponds to the third ideal class, i.e

A3v
(3) = λv(3),

and B3 commutes with A3 and is conjugate to A, and hence to B2. Then
B3v

(3) = µ3v
(3) where µ3 is a root of f belonging to the field K. By the pre-

vious considerations, µ3 6= λ and µ3 6= µ2. An induction argument shows that
if the class number of K is greater than r, there exists a matrix A′ such that
no matrix in Z(A′) is conjugate to A, i.e. Z(A′) and Z(A) are not conjugate in
GL(n, Z).

Since A′ has the same characteristic polynomial as A, continuing the same
process, we can find not more than r matrices representing different ideal classes
having centralizers conjugate to Z(A′), and the required estimate follows.

5. Measure-theoretic rigidity of conjugacies, centralizers, and fac-
tors

5.1. Conjugacies

Suppose α and α′ are measurable actions of the same group G by measure-
preserving transformations of the spaces (X,µ) and (Y, ν), respectively. If H :
(X,µ) → (Y, ν) is a metric isomorphism (conjugacy) between the actions then the
lift of the measure µ onto the graphH ⊂ X × Y coincides with the lift of ν to
graphH−1. The resulting measure η is a very special case of a joining of α and α′:
it is invariant under the diagonal (product) action α × α′ and its projections to
X and Y coincide with µ and ν, respectively. Obviously the projections establish
metric isomorphism of the action α×α′ on (X ×Y, η) with α on (X,µ) and α′ on
(Y, ν) correspondingly.
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Similarly, if an automorphism H : (X,µ) → (X,µ) commutes with the action
α, the lift of µ to graphH ⊂ X ×X is a self-joining of α, i.e. it is α× α-invariant
and both of its projections coincide with µ. Thus an information about invariant
measures of the products of different actions as well as the product of an action
with itself may give an information about isomorphisms and centralizers.

The use of this joining construction in order to deduce rigidity of isomorphisms
and centralizers from properties of invariant measures of the product was first
suggested in this context to the authors by J.-P. Thouvenot.

In both cases the ergodic properties of the joining would be known because of
the isomorphism with the original actions. Very similar considerations apply to
the actions of semi-groups by noninvertible measure-preserving transformations.
We will use the following corollary of the results of [11].

Theorem 5.1. Let α be an action of Z2 by ergodic toral automorphisms and let
µ be a weakly mixing α-invariant measure such that for some m ∈ Z2, αm is a K-
automorphism. Then µ is a translate of Haar measure on an α-invariant rational
subtorus.

Proof. We refer to Corollary 5.2’ from ([11], “Corrections...”). According to this
corollary the measure µ is an extension of a zero entropy measure for an algebraic
factor of smaller dimension with Haar conditional measures in the fiber. But since
α contains a K-automorphism it does not have non-trivial zero entropy factors.
Hence the factor in question is the action on a single point and µ itself is a Haar
measure on a rational subtorus.

Conclusion of Theorem 5.1 obviously holds for any action of Zd, d ≥ 2 which
contains a subgroup Z2 satisfying assumptions of Theorem 5.1. Thus we can
deduce the following result which is central for our constructions.

Theorem 5.2. Let α and α′ be two actions of Zd by automorphisms of Tn and Tn′

correspondingly and assume that α satisfies condition (R). Suppose that H : Tn →
Tn′ is a measure-preserving isomorphism between (α, λ) and (α′, λ), where λ is
Haar measure. Then n = n′ and H coincides (mod 0) with an affine automorphism
on the torus Tn, and hence α and α′ are algebraically isomorphic.

Proof. First of all, condition (R) is invariant under metric isomorphism, hence
α′ also satisfies this condition. But ergodicity with respect to Haar measure can
also be expressed in terms of the eigenvalues; hence α × α′ also satisfies (R).
Now consider the joining measure η on graphH ⊂ Tn+n′ . The conditions of
Theorem 5.1 are satisfied for the invariant measure η of the action α×α′. Thus η
is a translate of Haar measure on a rational α×α′-invariant subtorus T′ ⊂ Tn+n′ =
Tn × Tn′ . On the other hand we know that projections of T′ to both Tn and Tn′

preserve Haar measure and are one-to-one. The partitions of T′ into pre-images of
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points for each of the projections are measurable partitions and Haar measures on
elements are conditional measures. This implies that both projections are onto,
both partitions are partitions into points, and hence n = n′ and T′ = graph I,
where I : Tn → Tn is an affine automorphism which has to coincide (mod 0) with
the measure-preserving isomorphism H.

Since a time change is in a sense a trivial modification of an action we are pri-
marily interested in distinguishing actions up to a time change. The corresponding
rigidity criterion follows immediately from Theorem 5.2.

Corollary 5.3. Let α and α′ be two actions of Zd by automorphisms of Tn and
Tn′ , respectively, and assume that α satisfies condition (R). If α and α′ are
measurably isomorphic up to a time change then they are algebraically isomorphic
up to a time change.

5.2. Centralizers

Applying Theorem 5.2 to the case α = α′ we immediately obtain rigidity of the
centralizers.

Corollary 5.4. Let α be an action of Zd by automorphisms of Tn satisfying con-
dition (R). Any invertible Lebesgue measure-preserving transformation commuting
with α coincides (mod 0) with an affine automorphism of Tn.

Any affine transformation commuting with α preserves the finite set of fixed
points of the action. Hence the centralizer of α in affine automorphisms has a
finite index subgroups which consist of automorphisms and which corresponds to
the centralizer of ρα(Zd) in GL(n, Z).

Thus, in contrast with the case of a single automorphism, the centralizer of
such an action α is not more than countable, and can be identified with a finite
extension of a certain subgroup of GL(n, Z). As an immediate consequence we
obtain the following result.

Proposition 5.5. For any d and k, 2 ≤ d ≤ k, there exists a Zd-action by hy-
perbolic toral automorphisms such that its centralizer in the group of Lebesgue
measure-preserving transformations is isomorphic to {±1} × Zk.

Proof. Consider a hyperbolic matrix A ∈ SL(k + 1, Z) with irreducible character-
istic polynomial and real eigenvalues such that the origin is the only fixed point
of FA. Consider a subgroup of Z(A) isomorphic to Zd and containing A as one of
its generators. This subgroup determines an embedding ρ : Zd → SL(k + 1, Z).
Since d ≥ 2 and by Proposition 4.2, all matrices in ρ(Zd) are hyperbolic and hence
ergodic, condition (R) is satisfied. Hence by Corollary 5.4, the measure-theoretic
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centralizer of the action αρ coincides with its algebraic centralizer, which, in turn,
and obviously, coincides with centralizer of the single automorphism FA isomorphic
to {±1} × Zk.

5.3. Factors, noninvertible centralizers and weak isomorphism

A small modification of the proof of Theorem 5.2 produces a result about rigidity
of factors.

Theorem 5.6. Let α and α′ be two actions of Zd by automorphisms of Tn and Tn′

respectively, and assume that α satisfies condition (R). Suppose that H : Tn → Tn′

is a Lebesgue measure-preserving transformation such that H ◦ α = α′ ◦H. Then
α′ also satisfies (R) and H coincides (mod 0) with an epimorphism h : Tn → Tn′

followed by translation. In particular, α′ is an algebraic factor of α.

Proof. Since α′ is a measurable factor of α, every element which is ergodic for α is
also ergodic for α′. Hence α′ also satisfies condition (R). As before consider the
product action α × α′ which now by the same argument also satisfies (R). Take
the α×α′ invariant measure η = (Id×H)∗λ on graphH. This measure provides a
joining of α and α′. Since (α×α′, (Id×H)∗λ) is isomorphic to (α, λ) the conditions
of Corollary 5.1 are satisfied and η is a translate of Haar measure on an invariant
rational subtorus T′. Since T′ projects to the first coordinate one-to-one we deduce
that H is an algebraic epimorphism (mod 0) followed by a translation.

Similarly to the previous section the application of Theorem 5.6 to the case
α = α′ gives a description of the centralizer of α in the group of all measure-
preserving transformations.

Corollary 5.7. Let α be an action of Zd by automorphisms of Tn satisfying
condition (R). Any Lebesgue measure-preserving transformation commuting with
α coincides (mod 0) with an affine map on Tn.

Now we can obtain the following strengthening of Proposition 2.1 for actions
satisfying condition (R) which is one of the central conclusions of this paper.

Theorem 5.8. Let α be an action of Zd by automorphisms of Tn satisfying condi-
tion (R) and α′ another Zd-action by toral automorphisms. Then (α, λ) is weakly
isomorphic to (α′, λ′) if and only if ρα and ρα′ are isomorphic over Q, i.e. if α
and α′ are finite algebraic factors of each other.

Proof. By Theorem 5.6, α and α′ are algebraic factors of each other. This implies
that α′ acts on the torus of the same dimension n and hence both algebraic factor-
maps have finite fibres. Now the statement follows from Proposition 2.1.
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5.4. Distinguishing weakly isomorphic actions

Similarly we can translate criteria for algebraic conjugacy of weakly algebraically
conjugate actions to the measurable setting.

Theorem 5.9. If α is an irreducible cyclic action of Zd, d ≥ 2, on Tn and α′ is
a non-cyclic Zd-action by toral automorphisms. Then α and α′ are not measurably
isomorphic up to a time change.

Proof. Since action α satisfies condition (R) (Corollary 3.2) we can apply Theorem
5.8 and conclude that we only need to consider the case when ρα and ρα′ are
isomorphic over Q up to a time change. But then, by Proposition 3.3, α and α′

are not algebraically isomorphic up to a time change and hence, by Corollary 5.3,
they are not measurably isomorphic up to a time change.

Combining Proposition 3.9 and Corollary 5.3 we immediately obtain rigidity
for the minimal irreducible models.

Corollary 5.10. Assume that O ) Z[λ1, . . . , λd]. Then the action αλ̄,O is not
measurably isomorphic up to a time change to αmin

λ̄
. In particular, if OK )

Z[λ1, . . . , λd], then the actions αmax
λ̄

and αmin
λ̄

are not measurably isomorphic up
to a time change.

6. Examples

Now we proceed to produce examples of actions for which the entropy data coin-
cide but which are not algebraically isomorphic, and hence by Theorem 5.2 not
measure-theoretically isomorphic.

6.1. Weakly nonisomorphic actions

In this section we consider actions which are not algebraically isomorphic over Q
(or, equivalently, over R) and hence by Theorem 5.8 are not even weakly isomor-
phic. The easiest way is as follows.

Example 1a. Start with any action α of Zd, d ≥ 2, by ergodic automorphisms
of Tn. We may double the entropies of all its elements in two different ways: by
considering the Cartesian square α×α acting on T2n, and by taking second powers
of all elements: αn

2 = α2n for all n ∈ Zd. Obviously α × α is not algebraically
isomorphic to α2, since, for example, they act on tori of different dimension. Hence
by Theorem 5.2 (α× α, λ) is not metrically isomorphic to (α2, λ) either.

Now we assume that α contains an automorphism FA where A is hyperbolic
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with an irreducible characteristic polynomial and distinct positive real eigenvalues.
In this case it is easy to find an invariant distinguishing the two actions, namely, the
algebraic type of the centralizer of the action in the group of measure-preserving
transformations. By Corollary 5.4, the centralizer of α in the group of measure-
preserving transformations coincides with the centralizer in the group of affine
maps, which is a finite extension of the centralizer in the group of automorphisms.
By the Dirichlet Unit Theorem, the centralizer of Z(α2) in the group of automor-
phisms of the torus is isomorphic to {±1}×Zn−1, whereas the centralizer of α×α
contains the Z2(n−1)-action by product transformations αn1×αn2 , n1,n2 ∈ Zn−1.
In fact, the centralizer of α× α can be calculated explicitly:

Proposition 6.1. Let λ be an eigenvalue of A. Then K = Q(λ) is a totally real
algebraic field. If its ring of integers OK is equal to Z[λ] then the centralizer of
α× α in GL(2n, Z) is isomorphic to the group GL(2,OK), i.e. the group of 2× 2
matrices with entries in OK whose determinant is a unit in OK .

Proof. First we notice that a matrix in block form B = ( X Y
Z T ) with X,Y, Z, T ∈

M(n, Z) commutes with ( A 0
0 A ) if an only if X,Y, Z, T commute with A and can

thus be identified with elements of OK . In this case B can be identified with a
matrix in M(2,OK). Since det ( X Y

Z T ) = det(XT − Y Z) = ±1 (cf. [5]), the norm
of the determinant of the 2×2 matrix corresponding to B is equal ±1. Hence this
determinant is a unit in OK , and we obtain the desired isomorphism.

It is not difficult to modify Example 1a to obtain weakly nonisomorphic actions
with the same entropy on the torus of the same dimension.

Example 1b. For a natural number k define the action αk similarly to α2:
αn

k = αkn for all n ∈ Zd.
The actions α3 × α and α2 × α2 act on T2n, have the same entropies for all

elements and are not isomorphic.
As before, we can see that centralizers of these two actions are not isomorphic.

In particular, the centralizer of α3 × α is abelian since it has simple eigenvalues,
while the centralizer of α2 × α2 is not.

6.2. Cartan actions distinguished by cyclicity or maximality

We give two examples which illustrate the method of Section 3.3. They provide
weakly algebraically isomorphic Cartan actions of Z2 on T3 which are not alge-
braically isomorphic even up to a time change (i.e. a linear change of coordinates
in Z2) by Proposition 3.9. These examples utilize the existence of number fields
K = Q(λ) and units λ̄ = (λ1, λ2) in them for which OK 6= Z[λ1, λ2]. In each
example one action has a form αmin

λ̄
and the other αmax

λ̄
. Hence by Corollary 5.10

they are not measurably isomorphic up to a time change
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In other words, in each example one action, namely, αmin
λ̄

, is a cyclic Cartan
action, and the other is not.

We will also show that in these examples the conjugacy type of the pair
(Z(α), α) distinguishes weakly isomorphic actions. Let us point out that a non-
cyclic action for example αmax

λ̄
may be maximal, for example when fundamental

units lie in a proper subring of OK . However in our examples centralizers for the
cyclic actions will be different and thus will serve as a distinguishing invariant.

The information about cubic fields is either taken from [4] or obtained with
the help of the computer package Pari-GP. Some calculations were made by Arsen
Elkin during the REU program at Penn State in summer of 1999.

We construct two Z2-actions, α, generated by commuting matrices A and B,
and α′, generated by commuting matrices A′ and B′ in GL(3, Z). These actions are
weakly algebraically isomorphic by Proposition 3.8 since they are produced with
the same set of units on two different orders, Z[λ] and OK , but not algebraically
isomorphic by Proposition 3.9. In these examples the action α is cyclic by Corollary
3.10 and will be shown to be a maximal Cartan action. Thus Z(α) = α× {±Id}.
The action α′ is not maximal, specifically, Z(α′)/{±Id} is a nontrivial finite ex-
tension of α′.

Example 2a. Let K be a totally real cubic field given by the irreducible polyno-
mial f(x) = x3+3x2−6x+1, i.e. K = Q(λ) where λ is one of its roots. The discrim-
inant of K is equal to 81, hence its Galois group is cyclic, and [OK : Z[λ]] = 3. The
algebraic integers λ1 = λ and λ2 = 2− 4λ− λ2 are units with f(λ1) = f(λ2) = 0.
The minimal order in K containing λ1 and λ2 is Z[λ1, λ2] = Z[λ], and the maximal
order is OK . A basis in fundamental units is ε = λ2+5λ+1

3 and ε− 1, hence UK is
not contained in Z[λ].

With respect to the basis {1, λ, λ2} in Z[λ], multiplications by λ1 and λ2 are
given by the matrices

A =
(

0 1 0
0 0 1−1 6 −3

)
, B =

(
2 −4 −1
1 −4 −1
1 −5 −1

)
,

respectively (if acting from the right on row-vectors). A direct calculation shows
that this action is maximal.

With respect to the basis {− 2
3+ 5

3λ+ 1
3λ2,−1

3+ 7
3λ+ 2

3λ2} inOK , multiplications
by λ1 and λ2 are given by the matrices

A′ =
(

1 2 −1
−1 −2 2

2 5 −2

)
, B′ =

(
1 −1 −1

−1 −2 −1
−1 −4 −2

)
.

We have A′ = V AV −1, B′ = V BV −1 for V =
(

2 −2 −1
0 −3 0
1 −4 −2

)
. Since A is a companion

matrix of f , α = 〈A,B〉 has a cyclic element in Z3. If A′ also had a cyclic element
m = (m1,m2,m3) ∈ Z3, then the vectors

m=(m1,m2,m3), mA′=(m1−m2+2m3,2m1−2m2+5m3,−m1+2m2−2m3)

m(A′)2=(−3m1+5m2−7m3,−7m1+12m2−16m3,5m1−7m2+12m3),
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would have to generate Z3 or, equivalently

det
( m1 m2 m3

m1−m2+2m3 2m1−2m2+5m3 −m1+2m2−2m3−3m1+5m2−7m3 −7m1+12m2−16m3 5m1−7m2+12m3

)
= 3m3

1 + 18m2
1m3 − 9m1m

2
2 − 9m1m2m3

+ 27m1m
2
3 + 3m3

2 − 9m2m
2
3 + 3m3

3 = 1.

This contradiction shows that A′ has no cyclic vector, and since B′ = 2−4A′−A′2 ,
the action α′ is not cyclic. In this example both actions α and α′ have a single fixed
point (0, 0, 0), hence their linear and affine centralizers coincide, and by Corollary
5.3 α and α′ are not measurably isomorphic up to a time change.

The action α′ is not maximal because Z(α′) contains fundamental units.

Example 2b. Let us consider a totally real cubic field K given by the irreducible
polynomial f(x) = x3 − 7x2 + 11x − 1. Thus K = Q(λ) where λ is one of its
roots. In this field the ring of integers OK has basis {1, λ, 1

2λ2 + 1
2} and hence

[OK : Z[λ]] = 2. The fundamental units in OK are { 1
2λ2 − 2λ + 1

2 , λ − 2}. We
choose the units λ = λ1 = ( 1

2λ2 − 2λ + 1
2 )2 and λ2 = λ− 2 which are contained in

both orders, OK and Z[λ].
In Z[λ] we consider the basis {1, λ, λ2} relative to which the multiplication by

λ1 is represented by the companion matrix A =
(

0 1 0
0 0 1
1 −11 7

)
and multiplication

by λ2 is represented by the matrix B =
(−2 1 0

0 −2 1
1 −11 5

)
.

For OK with the basis {1, λ, 1
2λ2 + 1

2} multiplications by λ1 and λ2 are repre-

sented by the matrices A′ =
(

0 1 0−1 0 2
−3 −5 7

)
and B′ =

(−2 1 0
−1 −2 2
−3 −5 5

)
.

It can be seen directly that α and α′ are not algebraically conjugate up to a

time change since A′ is a square of a matrix from SL(3, Z): A′ =
(

0 −2 1
−1 −5 3
−2 −9 6

)2

,

while A is not a square of a matrix in GL(3, Z), which is checked by reducing
modulo 2. In this case it is also easily seen that the action α′ is not cyclic since
the corresponding determinant is divisible by 2. The action α has 2 fixed points on
T3: (0, 0, 0) and (1

2 , 1
2 , 1

2 ), while the action α′ has 4 fixed points: (0, 0, 0), (1
2 , 1

2 , 1
2 ),

( 1
2 , 1

2 , 0), and (0, 0, 1
2 ). Hence the affine centralizer of α is Z(α) × Z/2Z, and the

affine centralizer of α′ is Z(α′)× (Z/2Z× Z/2Z).
By Lemma 4.2, the group of elements of finite order in ZAff (α) is Z/2Z×Z/2Z

and in ZAff (α′) it is Z/2Z×Z/2Z×Z/2Z. The indices of each action in its affine
centralizer are [ZAff (α) : α] = 4 and [ZAff (α′) : α′] = 16.

This gives two alternative arguments that the actions are not measurably iso-
morphic up to a time change.
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6.3. Nonisomorphic maximal Cartan actions

We find examples of weakly algebraically isomorphic maximal Cartan actions
which are not algebraically isomorphic up to time change. For such an action
α the structure of the pair (Z(α), α) is always the same: Z(α) is isomorphic as
a group to α× {±Id}. The algebraic tool which allows to distinguish the actions
is described in Section 4.2. In particular due to Theorem 4.5 we may conclude
existence of such actions from certain information about the class number and the
Galois group.

Let A a hyperbolic matrix A ∈ SL(n, Z) with irreducible characteristic poly-
nomial f , and distinct real eigenvalues, K = Q(λ), where λ is an eigenvalue of A.
Nontrivial time changes in a Cartan action which includes A exist only if another
root belongs to the field Q(λ) (Proposition 3.8). For, the image B of A under
such a time change must have the same characteristic polynomial as A and hence
γ(B) ∈ Q(λ) is the root in question. For n = 3 this situation correspond to the
Galois group of the field being cyclic.

Example 3a. An example for n = 3 can be obtained from a totally real cubic
field with class number 2 and the Galois group S3. The class number 2 guarantees
that the actions obtained from two different ideal classes are not isomorphic and
the Galois group S3 guarantees that there are no nontrivial time changes.

The smallest discriminant for such a field is 1957 ([4], Table B4), and it can
be represented as K = Q(λ) where λ is a unit in K with minimal polynomial
f(x) = x3 − 2x2 − 8x − 1. In this field the ring of integers OK = Z[λ] and the
fundamental units are λ1 = λ and λ2 = λ + 2. Two actions are constructed
with this set of units (fundamental, hence multiplicatively independent) on two
different lattices, OK with the basis {1, λ, λ2}, representing the principal ideal
class, and L with the basis {2, 1+λ, 1+λ2} representing to the second ideal class.
Notice that the units λ1 and λ2 do not belong to L, but L is a Z[λ]-module. The

first action α is generated by the matrices A =
(

0 1 0
0 0 1
1 8 2

)
and B =

(
2 1 0
0 2 1
1 8 4

)
which

represent multiplication by λ1 and λ2, respectively, on OK . The second action α′

is generated by matrices A′ =
(−1 2 0
−1 1 1
−5 9 2

)
and B′ =

(
1 2 0−1 3 1

−5 9 5

)
which represent

multiplication by λ1 and λ2, respectively, on L in the given basis. By Proposition
3.8 these actions are weakly algebraically isomorphic. By Theorem 4.5 they are
not algebraically isomorphic. Since the Galois group is S3 there are no nontrivial
time changes which produce conjugacy over Q. Therefore, by Theorem 5.2 the
actions are not measurably isomorphic.

It is interesting to point out that for actions α and α′ the affine centralizers
ZAff (α) and ZAff (α′) are not isomorphic as abstract groups. The action α has 2
fixed points on T3: (0, 0, 0) and (1

2 , 1
2 , 1

2 ), while the action α′ has a single fixed point
(0, 0, 0). Hence ZAff (α) is isomorphic to Z(α) × Z/2Z, ZAff (α′) is isomorphic to
Z(α′). As abstract groups, ZAff (α) ≈ Z2×Z/2Z×Z/2Z and ZAff (α′) ≈ Z2×Z/2Z.



Vol. 77 (2002) Measure-theoretic rigidity 743

Hence by Corollary 5.4 the measurable centralizers of α and α′ are not conju-
gate in the group of measure-preserving transformation providing a distinguishing
invariant of measurable isomorphism.

Example 3b. This example is obtained from a totally real cubic field with class
number 3, Galois group S3, and discriminant 2597. It can be represented as
K = Q(λ) where λ is a unit in K with minimal polynomial f(x) = x3−2x2−8x+1.
In this field the ring of integers OK = Z[λ] and the fundamental units are λ1 = λ
and λ2 = λ + 2. Three actions are constructed with this set of units on three
different lattices, OK with the basis {1, λ, λ2}, representing the principal ideal
class, L with the basis {2, 1 + λ, 1 + λ2} representing the second ideal class, and
L2 with the basis {4, 3 + λ, 3 + λ2} representing the third ideal class.

Multiplications by λ1 and λ2 generate the following three weakly algebraically
isomorphic actions which are not algebraically isomorphic by Theorem 4.5 even
up to a time change, and therefore not measurably isomorphic:

A =
(

0 1 0
0 0 1−1 8 2

)
and B =

(
2 1 0
0 2 1−1 8 4

)
;

A′ =
(−1 2 0
−1 1 1
−6 9 2

)
and B′ =

(
1 2 0−1 3 1

−6 9 4

)
;

A′′ =
( −3 4 0
−3 3 1
−10 11 2

)
and B′′ =

( −1 4 0
−3 5 1
−10 11 4

)
.

Each action has 2 fixed point in T3, (0, 0, 0) and (1
2 , 1

2 , 1
2 ). Hence all affine

centralizers are isomorphic as abstract groups to Z2 × Z/2Z× Z/2Z.

Example 3c Finally we give an example of two nonisomorphic maximal Cartan
actions which come from the vector of fundamental units λ̄ = (λ1, λ2) in a totally
real cubic field K such that Z(λ1, λ2) 6= OK . Thus the whole group of units
does not generate the ring OK . Both actions αmin

λ̄
and αmax

λ̄
of the group Z2 are

maximal Cartan actions by Lemma 3.6. However by Corollary 3.10 the former is
cyclic and the latter is not and hence they are not measurably isomorphic up to a
time change by Corollary 5.10.

For a specific example we pick the totally real cubic field K = Q(α) with class
number 1 discriminant 1304 given by the polynomial x3−x2−11x−1. For this field
we have [OK : Z(α)] = 2. Generators in OK can be taken to be {1, α, β = α2+1

2 }.
Fundamental units are λ1 = −α, λ2 = −5 + 14α + 10β = 14α + 5α2 ∈ Z[α].
Thus the whole group of units lies in Z[λ]. To construct the generators for two
non-isomorphic action αmin

λ̄
and αmax

λ̄
we write multiplications by λ1 and λ2 in

bases {1, α, α2} and {1, α, β}, correspondingly. The resulting matrices are:

A =
(

0 −1 0
1 0 −1
1 11 1

)
B =

(
0 14 5
5 55 19
19 214 74

)
,

A′ =
(

0 −1 0
1 0 −2
0 −6 −1

)
B =

( −5 14 10
−14 55 38
−30 114 79

)
.

The first action has only one fixed point, the origin; the second has four fixed
points (0, 0, 0), (1

2 , 1
2 , 1

2 ), (1
2 , 1

2 , 0), and (0, 0, 1
2 ). Thus we have an example of
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two maximal Cartan actions of Z2 which have nonisomorphic affine and hence
measurable centralizers.
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