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1. Introduction

Let S be a finite set. A Coxeter matrix over S is a matrix M = (ms,t)s,t∈S indexed
by the elements of S and such that:

• ms,s = 1 for all s ∈ S;

• ms,t = mt,s ∈ {2, 3, 4, . . . ,+∞} for all s, t ∈ S, s 6= t.

A Coxeter matrix M = (ms,t)s,t∈S is usually represented by its Coxeter graph Γ.
This is defined by the following data:

• S is the set of vertices of Γ;

• two vertices s, t ∈ S are joined by an edge if ms,t ≥ 3;

• the edge which joins s and t is labeled by ms,t if ms,t ≥ 4.

The Coxeter system associated with Γ is the pair (W,S), where W is the group
presented by

W = 〈S | s2 = 1 for s ∈ S, (st)ms,t = 1 for s, t ∈ S, s 6= t, ms,t < +∞〉.

The group W is called the Coxeter group associated with Γ.
Let Σ = {σs; s ∈ S} be an abstract set in one-to-one correspondence with S.

For two objects a, b and m ∈ N we write

prod(a, b;m) =
{

(ab)
m
2 if m is even,

(ab)
m−1

2 a if m is odd.
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The Artin system associated with Γ is the pair (GΓ,Σ), where GΓ is the group
presented by

GΓ = 〈Σ | prod(σs, σt;ms,t) = prod(σt, σs;ms,t) for s, t ∈ S, s 6= t, ms,t < +∞〉.

The group GΓ is called the Artin group associated with Γ.
Recall that a monoid is a semigroup with a unity, and a homomorphism of

monoids is a map φ : M → M ′ which satisfies φ(fg) = φ(f)φ(g) for all f, g ∈ M ,
and φ(1) = 1. The Artin monoid associated with Γ is the monoid G+

Γ presented by
the same generators and relations as GΓ. Let ι : G+

Γ → GΓ denote the canonical
homomorphism from G+

Γ to GΓ. The goal of this paper is to prove the following.

Theorem 1.1. The homomorphism ι : G+
Γ → GΓ is injective for all Coxeter

graphs.

It seems that the authorship of the Artin groups, also called generalized braid
groups, has to be attributed to Jacques Tits, in spite of the fact that his name does
not always appear in the references. Furthermore, it is in a paper of him [Tit2]
where these groups appeared for the first time. However, it was Brieskorn and Saito
who proposed in [BS] the question of the study of all these groups (Deligne’s paper
[Del], which appeared at the same time, is concerned only with spherical type Artin
groups, namely, those Artin groups for which W is finite). Some families of Artin
groups are well understood, but, since the paper of Brieskorn and Saito in 1972,
very few results concerning all Artin groups have been published. In particular,
Theorem 1.1 above was known only for some particular classes, namely, for the
spherical type Artin groups (see [BS] and [Del]), for the two-dimensional Artin
groups (see [ChP] and [Cha]), and for the FC-type Artin groups (see [Alt] and
[Cha]). It was unknown, for example, for the so-called affine type Artin groups.

Our proof of Theorem 1.1 is independent of the previous approaches of the
problem. Note first that, in order to prove Theorem 1.1, it suffices to show that
there exists an injective homomorphism ψ : G+

Γ → G, where G is a group, not
necessarily equal to GΓ.

We say that a Coxeter graph Γ is of small type if ms,t ∈ {2, 3} for all s, t ∈ S,
s 6= t. We say that Γ has no triangle if there is no triple {s, t, r} in S such that
ms,t,ms,r,mt,r ≥ 3. The first ingredient in our proof is to show that, for any
Coxeter graph Γ, there exists an injective homomorphism φ : G+

Γ → G+
Γ̃

, where

G+
Γ̃

is an Artin monoid associated to a Coxeter graph Γ̃ of small type with no
triangle. The homomorphism φ is obtained by a “folding” as described in [Cri],
its construction is essentially the same as the one given in [CrP, Sec. 6], and the
proof of the injectivity is a direct application of [Cri, Thm. 1.3]. This construction
is given in Section 5.

So, in order to prove Theorem 1.1, it suffices to consider only Coxeter graphs
of small type with no triangle. Take such a Coxeter graph, Γ. We construct in
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Section 3 a homomorphism ψ : G+
Γ → Gl(V ), where V is a (infinite dimensional)

vector space over Q(x, y), and we prove in Section 4 that ψ is injective.
If Γ = An, then GAn

is the braid group on n + 1 strings, and ψ : G+
An

→
Gl(V ) is equivalent to the representation constructed by Bigelow and Krammer in
[Big], [Kra1] and [Kra2]. In this case, V has finite dimension, and the injectivity
of ψ implies the injectivity of the induced representation GAn

→ Gl(V ). More
generally, if Γ is of spherical and small type, then the representation ψ : G+

Γ →
Gl(V ) is equivalent to the ones constructed independently by Digne [Dig], and
by Cohen and Wales [CW]. In this case again, V has finite dimension and the
induced representation GΓ → Gl(V ) is injective. We do not know whether the
representation GΓ → Gl(V ) induced by ψ is injective for all Coxeter graphs of
small type with no triangle. The construction of ψ and the proof of the injectivity
are based on a (non always easy) generalization of the methods of Krammer, Digne,
Cohen and Wales.

Acknowledgments. I would like to thank John Crisp for many useful conver-
sations during the preparation of this work, and for drawing my attention to the
results of [Cri] which are one of the main tools of the proof of Theorem 1.1.

2. Preliminaries

We summarize in this section some well known results on Artin monoids, Coxeter
groups and root systems, and give definitions and some basic properties of closed
sets. The closed sets have been introduced by Krammer in [Kra2] for Artin groups
of type An. This notion has been extended to the Artin groups of small and
spherical type by Digne [Dig], Cohen and Wales [CW]. Here we extend it to all
small type Artin groups.

Let Γ be a Coxeter graph. It is shown in [BS] that the Artin monoid G+
Γ is

cancellative, namely, if fg1h = fg2h, then g1 = g2. We say that h is a multiple of
g and write g < h if there exists f ∈ G+

Γ such that gf = h. The relation < is a
partial ordering on G+

Γ .
Let θ : G+

Γ → W be the homomorphism which sends σs to s for all s ∈ S.
Then θ has a natural set-section τ : W → G+

Γ defined as follows. Let w ∈ W .
We choose a reduced expression w = s1 . . . sl for w and we set τ(w) = σs1 . . . σsl

.
By Tits’ solution of the word problem for Coxeter groups [Tit1], the definition of
τ(w) does not depend on the choice of the reduced expression.

Let l : W → N and l : G+
Γ → N denote the word length functions of W and

G+
Γ with respect to S and Σ, respectively. Define a partial ordering on W by u < v

if l(v) = l(u) + l(u−1v). Then l(τ(w)) = l(w) for all w ∈ W , and one has u < v if
and only if τ(u) < τ(v).

The proof of the following proposition is essentially the same as the one of [Del,
Pro. 1.14] and [Mic, Lem. 1.4].
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Proposition 2.1. Let E be a nonempty finite subset of W such that:
• if u < v and v ∈ E, then u ∈ E;
• if v ∈ W and s, t ∈ S are such that l(vs) = l(vt) = l(v) + 1 and vs, vt ∈ E,

then ms,t < +∞ and v · prod(s, t;ms,t) ∈ E.
Then there exists w0 ∈ W such that E = {v ∈ W ; v < w0}.

The next proposition is part of [Mic, Prop. 2.1]. It is also a direct consequence
of [BS, Lem. 2.1 and Prop. 2.3].

Proposition 2.2. Let f ∈ G+
Γ and let E = {w ∈ W ; τ(w) < f}. Then E satisfies:

• if u < v and v ∈ E, then u ∈ E;
• if v ∈ W and s, t ∈ S are such that l(vs) = l(vt) = l(v) + 1 and vs, vt ∈ E,

then ms,t < +∞ and v · prod(s, t;ms,t) ∈ E.

Definition. Let f ∈ G+
Γ . By Propositions 2.1 and 2.2, there exists a unique

w0 ∈ W such that {v ∈ W ; τ(v) < f} = {v ∈ W ; v < w0}. We set

L(f) = w0.

The next proposition is also part of [Mic, Prop. 2.1]

Proposition 2.3. Let f, g ∈ G+
Γ . Then

L(fg) = L(f · (τ ◦ L)(g)).

Let Π = {αs; s ∈ S} be an abstract set in one-to-one correspondence with S.
The elements of Π are called simple roots. Let U denote the real vector space
having Π as a basis, and let 〈 , 〉 : U ×U → R be the symmetric bilinear form on
U defined by

〈αs, αt〉 =
{−2 cos(π/ms,t) if ms,t < +∞
−2 if ms,t = +∞

There is a faithful representation W → Gl(U) which is defined by

s(x) = x− 〈αs, x〉αs, x ∈ U, s ∈ S,

and which preserves the bilinear form 〈 , 〉. This representation is called the
canonical representation of W .

The set Φ = {wαs; s ∈ S,w ∈ W} is called the root system of W . The subsets
Φ+ = {∑s∈S λsαs ∈ Φ;λs ≥ 0 for all s ∈ S} and Φ− = {β ∈ Φ;−β ∈ Φ+}
are the sets of positive roots and negative roots, respectively. For w ∈ W we set
Φw = {β ∈ Φ+;w−1β ∈ Φ−}.
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We list in the following proposition some well known results on root systems
(see [Hil] and [Deo]).

Proposition 2.4. (1) Φ = Φ+ t Φ−.
(2) |Φw| = l(w) for all w ∈ W .
(3) For all u, v ∈ W such that u < v, one has Φv = Φu t u · Φu−1v.
(4) For all w ∈ W and s ∈ S,

l(sw) =
{

l(w) + 1 if w−1αs ∈ Φ+,
l(w)− 1 if w−1αs ∈ Φ−.

(5) Let β = wαs ∈ Φ+, and let rβ = wsw−1. Then rβ acts on U by

rβ(x) = x− 〈x, β〉β, x ∈ U.

Let β ∈ Φ+. Define the depth of β to be

dp(β) = min{l ∈ N; there exists w ∈ W such that wβ ∈ Φ− and l(w) = l}.

Lemma 2.5. Let β ∈ Φ+. Then

dp(β) = min{l ∈ N; there exist w ∈ W and s ∈ S

such that β = w−1αs and l = l(w) + 1}.

Proof. Let d1 = min{l ∈ N; there exists w ∈ W such that wβ ∈ Φ− and l(w) = l}
and d2 = min{l ∈ N; there exist w ∈ W and s ∈ S such that β = w−1αs and
l = l(w) + 1}.

Let w ∈ W and s ∈ S such that β = w−1αs and l(w) = d2 − 1. Since β ∈ Φ+,
by Proposition 2.4, l(sw) = l(w) + 1 = d2. Moreover, swβ = sαs = −αs ∈ Φ−.
This shows that d2 ≤ d1.

Let w ∈ W such that wβ ∈ Φ− and l(w) = d1. Let s ∈ S such that l(sw) =
l(w)−1. Let v = sw and γ = vβ. By the minimality of l(w) = d1, one has γ ∈ Φ+.
Moreover, sγ = wβ ∈ Φ−, thus γ = αs and β = v−1αs. This shows that d1 ≤ d2.

¤

The following proposition is proved in [BH, Lem. 1.7].

Proposition 2.6. Let s ∈ S and β ∈ Φ+ \ {αs}. Then

dp(s · β) =




dp(β)− 1 if 〈αs, β〉 > 0,
dp(β) if 〈αs, β〉 = 0,
dp(β) + 1 if 〈αs, β〉 < 0.
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From now on and till the end of the section, we assume that Γ is a Coxeter
graph of small type, namely, that ms,t ∈ {2, 3} for all s, t ∈ S, s 6= t. Note that,
under this assumption, all the roots can be written β =

∑
s∈S λsαs, with λs ∈ Z,

and one has 〈β, γ〉 ∈ Z for all β, γ ∈ Φ.

Definition. A subset A ⊂ Φ+ is a closed subset if:
• A is finite;
• if α, β ∈ A, then 〈α, β〉 ≥ −1;
• if α, β ∈ A and 〈α, β〉 = −1, then α + β = rα(β) = rβ(α) ∈ A.

Lemma 2.7. Let w ∈ W . Then Φw is a closed subset.

Proof. Let α, β ∈ Φ+. A direct calculation shows that: if 〈α, β〉 ≤ −2, then
(rαrβ)l(α) is a positive root of the form alα + blβ, where al, bl ≥ 0, for all l ∈ N,
and (rαrβ)l(α) 6= (rαrβ)k(α) for l 6= k. This implies that: if 〈α, β〉 ≤ −2, then
there are infinitely many positive roots of the form aα + bβ, with a, b ≥ 0.

The set Φw is finite since |Φw| = l(w). Let α, β ∈ Φw. If γ = aα + bβ, with
a, b ≥ 0, is a positive root, then γ ∈ Φw, since w−1γ = aw−1α + bw−1β is a
negative root. By the above considerations, this implies that 〈α, β〉 ≥ −1 and that
α + β ∈ Φw if 〈α, β〉 = −1. ¤

Proposition 2.8. Let A be a closed subset of Φ+ and let E = {w ∈ W ; Φw ⊂ A}.
Then E satisfies:

• E is finite;
• if u < v and v ∈ E, then u ∈ E;
• if v ∈ W and s, t ∈ S are such that l(vs) = l(vt) = l(v) + 1 and vs, vt ∈ E,

then v · prod(s, t;ms,t) ∈ E.

Proof. If Φw ⊂ A, then l(w) = |Φw| ≤ |A|. Since A is finite, it follows that l(w) is
bounded for all w ∈ E, thus E is finite.

Suppose u < v and v ∈ E. Then, by Proposition 2.4, Φu ⊂ Φv ⊂ A, thus
u ∈ E.

Let v ∈ W and s, t ∈ S such that l(vs) = l(vt) = l(v) + 1 and vs, vt ∈ E.
By Proposition 2.4, one has Φvs = Φv ∪ {vαs} and Φvt = Φv ∪ {vαt}. Let
w = v · prod(s, t;ms,t). If ms,t = 2 then Φw = Φv ∪ {vαs, vαt} ⊂ A, thus w ∈ E.
If ms,t = 3, then 〈vαs, vαt〉 = 〈αs, αt〉 = −1, thus vαs + vαt = v(αs + αt) ∈ A. It
follows that Φw = Φv ∪ {vαs, vαt, v(αs + αt)} ⊂ A, thus w ∈ E. ¤

Definition. Let A be a closed subset of Φ+. By Propositions 2.1 and 2.8, there
exists a unique w0 ∈ W such that {w ∈ W ; Φw ⊂ A} = {w ∈ W ;w < w0}. We set

C(A) = w0.

Note that C(Φw) = w for all w ∈ W .
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3. The representation

Throughout this section, Γ is assumed to be a Coxeter graph of small type with no
triangle, namely, ms,t ∈ {2, 3} for all s, t ∈ S, s 6= t, and there is no triple {s, t, r}
in S such that ms,t = ms,r = mt,r = 3. Our aim here is to construct a (infinite
dimensional) linear representation ψ : G+

Γ → Gl(V ). We will prove in Section 4
that this linear representation is faithful. This will imply that ι : G+

Γ → GΓ is
injective.

Let E = {eβ ;β ∈ Φ+} be an abstract set in one-to-one correspondence with
Φ+, let K = Q(x, y) denote the field of rational functions on two variables over
Q, and let V be the K-vector space having E as a basis.

For all s ∈ S, we define a linear transformation ϕs : V → V by

ϕs(eβ) =




0 if β = αs,

eβ if 〈αs, β〉 = 0,

y · eβ−aαs
if 〈αs, β〉 = a > 0 and β 6= αs,

(1− y) · eβ + eβ+aαs
if 〈αs, β〉 = −a < 0.

A direct (case by case) calculation shows that

ϕsϕt = ϕtϕs if ms,t = 2,
ϕsϕtϕs = ϕtϕsϕt if ms,t = 3.

So:

Proposition 3.1. The mapping σs → ϕs, s ∈ S, induces a homomorphism ϕ :
G+

Γ → End(V ).

Now, for all s ∈ S and all β ∈ Φ+, take a polynomial T (s, β) ∈ Q[y] and define
ψs : V → V by

ψs(eβ) = ϕs(eβ) + xT (s, β) · eαs
.

The goal of this section is to prove the following:

Theorem 3.2. There is a choice of polynomials T (s, β), s ∈ S and β ∈ Φ+, so
that the mapping σs → ψs, s ∈ S, induces a homomorphism ψ : G+

Γ → Gl(V ).

Let s ∈ S and β ∈ Φ+. We define the polynomial T (s, β) by induction on
dp(β). Assume first that dp(β) = 1. There exists t ∈ S such that β = αt. Then
we set

(D1) T (s, αt) = y2 if t = s,

(D2) T (s, αt) = 0 if t 6= s.
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Now, assume that dp(β) ≥ 2. We choose t ∈ S such that dp(t · β) = dp(β) − 1.
By Proposition 2.6, one has 〈αt, β〉 = b > 0.
Case 1: 〈αs, β〉 = a > 0. Then we set

(D3) T (s, β) = ydp(β)(y − 1).

Case 2: 〈αs, β〉 = 0. Then we set

(D4) T (s, β) = y · T (s, β − bαt) if 〈αs, αt〉 = 0,

(D5) T (s, β) = (y − 1) · T (s, β − bαt) + y · T (t, β − bαs − bαt) if 〈αs, αt〉 = −1.

Case 3: 〈αs, β〉 = −a < 0. Then we set

T (s, β) = y · T (s, β − bαt) if 〈αs, αt〉 = 0(D6)

T (s, β) = (y−1) · T (s, β−bαt)(D7)
+ y · T (t, β−(b−a)αs−bαt) if 〈αs, αt〉 = −1 and b > a

T (s, β) = T (t, β − bαt)(D8)
+ (y − 1) · T (s, β − bαt) if 〈αs, αt〉 = −1 and b = a

T (s, β) = y · T (s, β−bαt)(D9)

+ T (t, β−bαt) + ydp(β)−1(1−y) if 〈αs, αt〉 = −1 and b < a.

The proofs of the following lemmas 3.3 and 3.4 are long and tedious case by
case verifications and they are not very instructive for the remainder of the paper.
So, we put them in a separate section at the end of the paper and continue with
the proof of Theorem 3.2.

Lemma 3.3. Let s ∈ S and β ∈ Φ+ such that dp(β) ≥ 2 and 〈αs, β〉 = 0. Then
the definition of T (s, β) does not depend on the choice of the t ∈ S such that
dp(t · β) = dp(β)− 1.

Lemma 3.4. Let s ∈ S and β ∈ Φ+ such that dp(β) ≥ 2 and 〈αs, β〉 = −a < 0.
Then the definition of T (s, β) does not depend on the choice of the t ∈ S such that
dp(t · β) = dp(β)− 1.

Lemma 3.5. Let s, t ∈ S and β ∈ Φ+ such that 〈αs, αt〉 = −1, 〈αs, β〉 = 0, and
〈αt, β〉 = 0. Then

T (s, β) = T (t, β).

Proof. We argue by induction on dp(β). Assume first that dp(β) = 1. There exists
r ∈ S such that β = αr. One has r 6= s and r 6= t since 〈αs, β〉 = 〈αt, β〉 = 0.
Then, by (D2),

T (s, β) = T (s, αr) = 0 = T (t, αr) = T (t, β).
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Now, assume that dp(β) ≥ 2. We choose r ∈ S such that dp(r · β) = dp(β) − 1.
By Proposition 2.6, one has 〈αr, β〉 = c > 0.

Case 1: 〈αs, αr〉 = 0 and 〈αt, αr〉 = 0. Then

T (s, β) = y · T (s, β − cαr) by (D4)
= y · T (t, β − cαr) by induction
= T (t, β) by (D4).

Case 2: 〈αs, αr〉 = 0 and 〈αt, αr〉 = −1. We cannot have dp(β) ≤ 3 in this case.
Suppose dp(β) ≥ 4. Then

T (s, β) = y · T (s, β − cαr) by (D4)
= y(y−1) · T (s, β−cαt−cαr)

+y2 · T (t, β−cαs−cαt−cαr) by (D5)

= ydp(β)−1(y−1)2 + y2 · T (t, β−cαs−cαt−cαr) by (D3)

= ydp(β)−1(y−1)2 + y2 · T (r, β−cαs−cαt−cαr) by induction
= (y−1) · T (t, β−cαr) + y · T (r, β−cαt−cαr) by (D3) and (D4)
= T (t, β) by (D5).

Since Γ has no triangle, we cannot have 〈αs, αr〉 = −1 and 〈αt, αr〉 = −1
(because 〈αs, αt〉 = −1). So, Case 1 and Case 2 are the only possible cases. ¤

Lemma 3.6. Let s, t ∈ S such that ms,t = 2. Then ψsψt = ψtψs.

Proof. Let β ∈ Φ+. We compute (ψsψt)(eβ) and (ψtψs)(eβ) replacing T (s, αs)
and T (t, αt) by y2, and replacing T (s, αt) and T (t, αs) by 0, and we compare both
expressions. This can be easily made with a computer.

Case 1: β = αs. Then we directly obtain (ψsψt)(eβ) = (ψtψs)(eβ).

Case 2: 〈αs, β〉 = 0 and 〈αt, β〉 = 0. Then we directly obtain (ψsψt)(eβ) =
(ψtψs)(eβ).

Case 3: 〈αs, β〉 = 0 and 〈αs, β〉 = b > 0. Then the equality (ψsψt)(eβ) =
(ψtψs)(eβ) is equivalent to

T (s, β) = y · T (s, β − bαt).

This equality follows from (D4).

Case 4: 〈αs, β〉 = 0 and 〈αt, β〉 = −b < 0. Then the equality (ψsψt)(eβ) =
(ψtψs)(eβ) is equivalent to

T (s, β + bαt) = y · T (s, β).

This equality follows from (D4).
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Case 5: 〈αs, β〉 = a > 0 and 〈αt, β〉 = b > 0. Then the equality (ψsψt)(eβ) =
(ψtψs)(eβ) is equivalent to

T (s, β) = y · T (s, β − bαt),
T (t, β) = y · T (t, β − aαs).

These two equalities follow from (D3).
Case 6: 〈αs, β〉 = a > 0 and 〈αt, β〉 = −b < 0. Then the equality (ψsψt)(eβ) =
(ψtψs)(eβ) is equivalent to

T (s, β + bαt) = y · T (s, β),
T (t, β) = y · T (t, β − aαs).

The first equality follows from (D3) and the second one from (D6).
Case 7: 〈αs, β〉 = −a < 0 and 〈αt, β〉 = −b < 0. Then the equality (ψsψt)(eβ) =
(ψtψs)(eβ) is equivalent to

T (s, β + bαt) = y · T (s, β),
T (t, β + aαs) = y · T (t, β).

These two equalities follow from (D6). ¤

Lemma 3.7. Let s, t ∈ S such that ms,t = 3. Then ψsψtψs = ψtψsψt.

Proof. Let β ∈ Φ+. We compute (ψsψtψs)(eβ) and (ψtψsψt)(eβ) replacing T (s, αs)
and T (t, αt) by y2, replacing T (s, αt) and T (t, αs) by 0, and replacing T (s, αs+αt)
and T (t, αs + αt) by y2(y − 1), and we compare both expressions.
Case 1: β = αs. Then we directly obtain (ψsψtψs)(eβ) = (ψtψsψt)(eβ).
Case 2: β = αs + αt. Then we directly obtain (ψsψtψs)(eβ) = (ψtψsψt)(eβ).
Case 3: 〈αs, β〉 = 0 and 〈αt, β〉 = 0. Then the equality (ψsψtψs)(eβ) = (ψtψsψt)(eβ)
is equivalent to

T (s, β) = T (t, β).

This equality follows from Lemma 3.5.
Case 4: 〈αs, β〉 = 0 and 〈αt, β〉 = b > 0. Then the equality (ψsψtψs)(eβ) =
(ψtψsψt)(eβ) is equivalent to

T (t, β) = y · T (s, β − bαt),

(1− y) · T (t, β) + y · T (s, β) = y2 · T (t, β − bαs − bαt).

The first equality follows from (D3) and the second one follows from the first one
and from (D5).
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Case 5: 〈αs, β〉 = 0 and 〈αt, β〉 = −b < 0. Then the equality (ψsψtψs)(eβ) =
(ψtψsψt)(eβ) is equivalent to

(1− y) · T (s, β) + T (s, β + bαt) = T (t, β),

y · T (s, β) = (1− y) · T (t, β + bαt) + T (t, β + bαs + bαt).

The first equality follows from (D8) and the second one from (D5).
Case 6: 〈αs, β〉 = a > 0 and 〈αt, β〉 = b > 0. Then the equality (ψsψtψs)(eβ) =
(ψtψsψt)(eβ) is equivalent to

y · T (s, β − aαs − (a + b)αt) = (1− y) · T (s, β − bαt) + T (t, β),
(1− y) · T (t, β − aαs) + T (s, β) = y · T (t, β − (a + b)αs − bαt),

T (t, β − aαs) = T (s, β + bαt).

These three equalities follow from (D3).
Case 7: 〈αs, β〉 = a > 0, 〈αt, β〉 = −b < 0, and a > b. Then the equality
(ψsψtψs)(eβ) = (ψtψsψt)(eβ) is equivalent to

y2 · T (s, β − aαs − (a− b)αt) = (1− y)2 · T (s, β) + (1− y) · T (s, β + bαt) + y · T (t, β),
T (s, β) = T (t, β − (a− b)αs + bαt),

y · T (t, β − aαs) = (1− y) · T (s, β) + T (s, β + bαt).

The second and third equalities follow from (D3), and the first one follows from
the third one and from (D7).
Case 8: 〈αs, β〉 = a > 0, 〈αs, β〉 = −b < 0, and a = b. Then the equality
(ψsψtψs)(eβ) = (ψtψsψt)(eβ) is equivalent to

y · T (s, β − aαs) = (1− y)2 · T (s, β) + (1− y) · T (s, β + aαt) + y · T (t, β),
T (t, β + aαt) = y · T (s, β),

y · T (t, β − aαs) = (1− y) · T (s, β) + T (s, β + aαt).

The second equality follows from (D3), the third one follows from (D5), and the
first one follows from the third one and from (D8).
Case 9: 〈αs, β〉 = a > 0, 〈αt, β〉 = −b < 0, and a < b. Then the equality
(ψsψtψs)(eβ) = (ψtψsψt)(eβ) is equivalent to

y(1− y) · T (s, β − aαs) + y · T (s, β − aαs + (b− a)αt)

= (1− y)2 · T (s, β) + (1− y) · T (s, β + bαt) + y · T (t, β),
y · T (s, β) = (1− y) · T (t, β + bαt) + T (t, β + (b− a)αs + bαt),

y · T (t, β − aαs) = (1− y) · T (s, β) + T (s, β + bαt).
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The second equality follows from (D3), the third one follows from (D7), and the
first one follows from the third one and from (D9).
Case 10: 〈αs, β〉=−a<0 and 〈αt, β〉=−b < 0. Then the equality (ψsψtψs)(eβ) =
(ψtψsψt)(eβ) is equivalent to

(1− y) · T (s, β + aαs) + T (s, β + aαs + (a + b)αt) = y · T (t, β),

y · T (s, β) = (1− y) · T (t, β + bαt) + T (t, β + (a + b)αs + bαt),

(1−y) · T (t, β)+T (t, β+aαs)=(1−y) · T (s, β)+T (s, β + bαt).

The first and second equalities follow from (D7), and the third one follows from
(D9). ¤

Lemma 3.8. Let s ∈ S. Then ψs is invertible.

Proof. Let ρs : V → V be the linear transformation defined by

ρs(eβ) =




x−1y−2 · eαs
if β = αs

eβ − y−2T (s, β) · eαs
if 〈αs, β〉 = 0

(1− y−1) · eβ + eβ−aαs

−y−2T (s, β − aαs) · eαs

+y−2(y−1 − 1)T (s, β) · eαs
if 〈αs, β〉 = a > 0 and β 6= αs

y−1 · eβ+aαs
− y−3T (s, β + aαs) · eαs

if 〈αs, β〉 = −a < 0

A direct case by case calculation shows that ψs ◦ ρs = ρs ◦ ψs = IdV . So, ψs is
invertible. ¤

This finishes the proof of Theorem 3.2.

4. Faithfulness

Throughout this section, Γ is again assumed to be a Coxeter graph of small type
with no triangle. Our goal here is to prove the following.

Theorem 4.1. The representation ψ : G+
Γ → Gl(V ) defined in Section 3 is faith-

ful.

Since Gl(V ) is a group, it follows:

Corollary 4.2. The homomorphism ι : G+
Γ → GΓ is injective.
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Let V+ = ⊕β∈Φ+Q[x, y]eβ denote the free Q[x, y]-module having E = {eβ ;β ∈
Φ+} as a basis. The coefficients of ψ(g) lie in Q[x, y], for all g ∈ G+

Γ , thus V+ is
invariant by the action of G+

Γ . We denote by ψ+ : G+
Γ → End(V+) the restriction

of ψ to V+.
Let V0 = ⊕β∈Φ+Reβ denote the real vector space having E as a basis. Re-

placing x by 0 and y by a value 0 < y0 < 1, the homomorphism ψ+ induces a
homomorphism ψ0 : G+

Γ → End(V0).
Let H be the vector space of formal series

∑
β∈Φ+ λβeβ , and let L(H) be

the space of linear transformations of H. Observe that ψ0(σs) defines a linear
transformation ψ∞(σs) of H, because each row has only finitely many non-zero
entries, thus ψ0 : G+

Γ → End(V0) induces a homomorphism ψ∞ : G+
Γ → L(H).

Definition. Let A be a subset of Φ+. Then UA denotes the set of series
∑

λβeβ ∈
H such that:

• λβ ≥ 0 for all β ∈ Φ+;

• λβ = 0 if and only if β ∈ A.

Note that UA is nonempty, even if Φ+ \A is infinite, and one has UA ∩ UB = ∅ if
A 6= B.

Lemma 4.3. Let A ⊂ Φ+ and g ∈ G+
Γ . There exists a unique subset B ⊂ Φ+

such that ψ∞(g) · UA ⊂ UB.

Proof. The hypothesis 0 < y0 < 1 implies that the coefficients of ψ∞(σs) are≥ 0 for
all s ∈ S, thus the coefficients of ψ∞(g) are ≥ 0. Let ψ∞(g)(eβ) =

∑
γ∈Φ+ aγ,βeγ ,

and let Suppg(eβ) denote the set of γ ∈ Φ+ such that aγ,β > 0. Let

A′ = Φ+ \A, B′ = ∪β∈A′Suppg(eβ), B = Φ+ \B′.

Then ψ∞(g) · UA ⊂ UB. ¤

Definition. Let A ⊂ Φ+ and g ∈ G+
Γ . Then g ∗A = B denotes the unique subset

B ⊂ Φ+ such that ψ∞(g) · UA ⊂ UB .

Lemma 4.4. Let A ⊂ Φ+ and s ∈ S. Then

σs ∗A = {αs} ∪ {β ∈ Φ+; 〈αs, β〉 = 0 and β ∈ A}
∪ {β ∈ Φ+; 〈αs, β〉 = a > 0, β 6= αs, and β − aαs ∈ A}
∪ {β ∈ Φ+; 〈αs, β〉 = −a < 0, β ∈ A, and β + aαs ∈ A}.
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Proof. Let β ∈ Φ+. Then

Suppσs
(eβ) =




∅ if β = αs,

{β} if 〈αs, β〉 = 0,

{β − aαs} if 〈αs, β〉 = a > 0 and β 6= αs,

{β, β + aαs} if 〈αs, β〉 = −a < 0.

Let A′ = Φ+ \A and B′ = ∪β∈A′Suppσs
(eβ). Then

B′ = {β ∈ Φ+; 〈αs, β〉 = 0 and β ∈ A′}
∪ {β ∈ Φ+; 〈αs, β〉 = a > 0, and β − aαs ∈ A′}
∪ {β ∈ Φ+; 〈αs, β〉 = −a < 0, and either β ∈ A′ or β + aαs ∈ A′}

thus

σs ∗A = B = Φ+ \B′

= {αs} ∪ {β ∈ Φ+; 〈αs, β〉 = 0 and β ∈ A}
∪ {β ∈ Φ+; 〈αs, β〉 = a > 0, and β − aαs ∈ A}
∪ {β ∈ Φ+; 〈αs, β〉 = −a < 0, β ∈ A, and β + aαs ∈ A}. ¤

Remark. Let A ⊂ Φ+ and s ∈ S. Then

s(A \ {αs}) = {β ∈ Φ+; 〈αs, β〉 = 0 and β ∈ A}
∪ {β ∈ Φ+; 〈αs, β〉 = a > 0, and β − aαs ∈ A}
∪ {β ∈ Φ+; 〈αs, β〉 = −a < 0 and β + aαs ∈ A}.

In particular, one has
σs ∗A ⊂ {αs} ∪ s(A \ {αs}).

Lemma 4.5. Let A be a closed subset of Φ+ and s ∈ S. Then σs ∗ A is also a
closed subset.

Proof. Since A is finite, σs ∗A is also finite. Now, we take β1, β2 ∈ σs ∗A and we
prove:

• 〈β1, β2〉 ≥ −1;

• if 〈β1, β2〉 = −1, then β1 + β2 ∈ σs ∗A.

Assume first that β1 = αs. If 〈αs, β2〉 = −a < 0, then β2, β2 + aαs ∈ A (by
Lemma 4.4). The fact that A is closed implies

〈β2, β2 + aαs〉 = 〈β2, β2〉+ a〈β2, αs〉 = 2− a2 ≥ −1,
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and this inequality holds only if a = 1. This shows that 〈αs, β2〉 ≥ −1. Suppose
〈αs, β2〉 = −1. Then 〈αs, β2 + αs〉 = 1 and β2 ∈ A (by Lemma 4.4), thus, by
Lemma 4.4, β2 + αs ∈ σs ∗A.

Assume now that β1 6= αs and β2 6= αs. One has β1, β2 ∈ s(A \ {αs}), thus
s(β1), s(β2) ∈ A, therefore 〈β1, β2〉 = 〈s(β1), s(β2)〉 ≥ −1 (since A is closed).
Suppose now that 〈β1, β2〉 = −1.

Case 1: 〈αs, β1〉 = 0 and 〈αs, β2〉 = 0. Then 〈αs, β1 + β2〉 = 0. Moreover, one
has β1, β2 ∈ A (by Lemma 4.4), thus β1 + β2 ∈ A (since A is closed), therefore
β1 + β2 ∈ σs ∗A (by Lemma 4.4).

Case 2: 〈αs, β1〉 = 0 and 〈αs, β2〉 = b > 0. Then 〈αs, β1 + β2〉 = b > 0. Moreover,
one has β1, β2− bαs ∈ A (by Lemma 4.4) and 〈β1, β2− bαs〉 = −1, thus β1 +β2−
bαs ∈ A (since A is closed), therefore β1 + β2 ∈ σs ∗A (by Lemma 4.4).

Case 3: 〈αs, β1〉 = 0 and 〈αs, β2〉 = −b < 0. Then 〈αs, β1 + β2〉 = −b < 0.
Moreover, one has β1, β2, β2 + bαs ∈ A (by Lemma 4.4) and 〈β1, β2〉 = 〈β1, β2 +
bαs〉 = −1, thus β1 +β2, β1 +β2 + bαs ∈ A (since A is closed), therefore β1 +β2 ∈
σs ∗A (by Lemma 4.4).

Case 4: 〈αs, β1〉 = a > 0 and 〈αs, β2〉 = b > 0. Then 〈αs, β1 + β2〉 = a + b > 0.
Moreover, one has β1−aαs, β2−bαs ∈ A (by Lemma 4.4) and 〈β1−aαs, β2−bαs〉 =
−1, thus β1 + β2 − (a + b)αs ∈ A (since A is closed), therefore β1 + β2 ∈ σs ∗ A
(by Lemma 4.4).

Case 5: 〈αs, β1〉 = a > 0 and 〈αs, β2〉 = −b < 0. Note first that β2, β2 + bαs ∈ A
(by Lemma 4.4), thus 〈β2, β2 + bαs〉 = 2 − b2 ≥ −1 (since A is closed), therefore
b = 1.

Suppose a = 1. Then 〈αs, β1 + β2〉 = 0. One has β1 − αs, β2 + αs ∈ A (by
Lemma 4.4) and 〈β1 − αs, β2 + αs〉 = −1, thus β1 + β2 ∈ A (since A is closed),
therefore β1 + β2 ∈ σs ∗A (by Lemma 4.4).

Suppose a ≥ 2. Then 〈αs, β1 +β2〉 = a− 1 > 0. One has β1−aαs, β2 +αs ∈ A
(by Lemma 4.4) and 〈β1−aαs, β2 +αs〉 = −1, thus β1 +β2− (a−1)αs ∈ A (since
A is closed), therefore β1 + β2 ∈ σs ∗A (by Lemma 4.4).

Case 6: 〈αs, β1〉 = −a < 0 and 〈αs, β2〉 = −b < 0. Then β1, β2 + bαs ∈ A (by
Lemma 4.4) and 〈β1, β2 + bαs〉 = −1 − ab < −1. This contradicts the definition
of a closed subset, thus this case does not hold. ¤

Corollary 4.6. Let A be a closed subset of Φ+ and g ∈ G+
Γ . Then g ∗ A is also

a closed subset.

Lemma 4.7. Let w ∈ W and s ∈ S such that l(sw) = l(w) − 1, and let A be
a closed subset of Φ+. One has Φw ⊂ {αs} ∪ s(A \ {αs}) if and only if w <
L(σs · (τ ◦ C)(A)).

Proof. The equality l(sw) = l(w) − 1 implies, by Proposition 2.4, that Φw =
{αs}ts ·Φsw. So, the inclusion Φw ⊂ {αs}∪s(A\{αs}) is equivalent to s(Φsw) ⊂
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s(A \ {αs}), which is equivalent to Φsw ⊂ A (we cannot have αs ∈ Φsw because
l(sw) < l(w)). This inclusion is equivalent to sw < C(A), which is equivalent to
τ(sw) < (τ ◦ C)(A), which is equivalent to σs · τ(sw) = τ(w) < σs · (τ ◦ C)(A),
which is equivalent to w < L(σs · (τ ◦ C)(A)). ¤

Lemma 4.8. Let A and B be two closed subsets of Φ+ and s ∈ S. If {αs} ⊂ B ⊂
{αs} ∪ s(A \ {αs}), then B ⊂ σs ∗A.

Proof. By Lemma 4.4 and the remark preceding Lemma 4.5, it suffices to show
that: if β ∈ B is such that 〈αs, β〉 = −a < 0, then β ∈ A. One has αs, β ∈ B
and B is a closed subset, thus 〈αs, β〉 = −1 and β + αs ∈ B. It follows that
s(β) = αs + β ∈ B \ {αs} ⊂ s(A \ {αs}), thus β ∈ A. ¤

Lemma 4.9. Let A be a closed subset of Φ+ and g ∈ G+
Γ . Then

C(g ∗A) = L(g · (τ ◦ C)(A)).

Proof. We argue by induction on l(g). Assume first that l(g) = 1. Then g = σs for
some s ∈ S. Let w1 = C(σs ∗ A) and w2 = L(σs · (τ ◦ C)(A)). Since αs ∈ σs ∗ A,
one has Φs = {αs} ⊂ σs ∗ A, thus s < w1, namely, l(sw1) = l(w1)− 1. Moreover,
Φw1 ⊂ σs ∗ A ⊂ {αs} ∪ s(A \ {αs}), thus, by Lemma 4.7, w1 < w2. One has
τ(s) = σs < σs · (τ ◦ C)(A), thus s < w2, namely, l(sw2) = l(w2) − 1. By
Lemma 4.7, it follows that {αs} ⊂ Φw2 ⊂ {αs} ∪ s(A \ {αs}) and so, by Lemma
4.8, Φw2 ⊂ σs ∗A. This implies that w2 < w1.

Assume now that l(g) ≥ 2. We write g = σsg1 where s ∈ S and l(g1) = l(g)−1.
Then, by induction and by Proposition 2.3,

C(g ∗A) = C(σs ∗ (g1 ∗A)) = L(σs(τ ◦ C)(g1 ∗A))
= L(σs(τ ◦ L)(g1(τ ◦ C)(A))) = L(g(τ ◦ C)(A)). ¤

Definition. Let C denote the set of closed subsets of Φ+. For w ∈ W we set

Uw =
⋃

A∈C, C(A)=w

UA.

Note that Uw 6= ∅ (since it contains UΦw
), and one has Uu ∩ Uv = ∅ if u 6= v.

Lemma 4.10. Let g ∈ G+
Γ and w ∈ W . Then

ψ∞(g) · Uw ⊂ UL(g·τ(w)).

Proof. Let A ∈ C such that C(A) = w. One has ψ∞(g)·UA ⊂ Ug∗A, and, by Lemma
4.9, C(g ∗A) = L(g · (τ ◦C)(A)) = L(g · τ(w)), thus ψ∞(g) ·UA ⊂ UL(g·τ(w)). This
shows that ψ∞(g) · Uw ⊂ UL(g·τ(w)). ¤
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Proof of Theorem 4.1. Let f, g ∈ G+
Γ such that ψ(f) = ψ(g). We write f = τ(u)f1

and g = τ(v)g2, where u = L(f), v = L(g), and f1, g1 ∈ G+
Γ . Note that u = 1

if and only if f = 1, and v = 1 if and only if g = 1. Lemma 4.10 implies that
ψ∞(f)·U1 ⊂ UL(f) = Uu, and that ψ∞(g)·U1 ⊂ UL(g) = Uv. Since ψ∞(f) = ψ∞(g),
and since Uu ∩ Uv = ∅ if u 6= v, it follows that u = v.

We prove now that f = g by induction on l(f). If l(f) = 0, then f = 1, thus
u = v = 1, therefore g = 1. Suppose l(f) > 0. Then l(f1) < l(f) and

ψ(f1) = ψ(τ(u))−1ψ(f) = ψ(τ(v))−1ψ(g) = ψ(g1).

By the inductive hypothesis, it follows that f1 = g1, thus f = τ(u)f1 = τ(v)g1 = g.
¤

5. The general case

Now, we assume that Γ is any Coxeter graph. The goal of this section is to prove
the following.

Theorem 5.1. There exists an injective homomorphism φ : G+
Γ → G+

Γ̃
from G+

Γ

to an Artin monoid G+
Γ̃

associated to a Coxeter graph Γ̃ of small type with no
triangle.

Since we already know by Corollary 4.2 that ι : G+
Γ̃
→ GΓ̃ is injective, Theorem

5.1 finishes the proof of Theorem 1.1.
We start summarizing some well known properties of G+

Γ that can be found in
[BS] and [Mic].

We say that g ∈ G+
Γ is a common multiple of a finite subset F = {f1, . . . , fn} ⊂

G+
Γ if fi < g for all i = 1, . . . , n. If F = {f1, . . . , fn} has a common multiple,

then it has a least common multiple, which is obviously unique, and which will be
denoted by f1 ∨ · · · ∨ fn.

Let s, t ∈ S. The subset {σs, σt} has a common multiple if and only if ms,t <
+∞. In that case, one has σs ∨ σt = prod(σs, σt;ms,t). More generally, for a
subset T ⊂ S, the set ΣT = {σt; t ∈ T} has a common multiple if and only if
the subgroup WT of W generated by T is finite. In that case, the least common
multiple of ΣT is denoted by ∆T . It is equal to τ(wT ), where wT denotes the
element of maximal length in WT . If W is finite, namely, if Γ is of spherical type,
then we will denote by ∆ = ∆(Γ) the least common multiple of Σ = {σs; s ∈ S}.

Let T ⊂ S and f, g ∈ G+
Γ . If f and g have a common multiple and both lie

in the submonoid generated by ΣT = {σt; t ∈ T}, then f ∨ g also lies in this
submonoid.

Definition. Let Γ and Γ′ be two Coxeter graphs, let S be the set of vertices of
Γ, and let φ : G+

Γ → G+
Γ′ be a homomorphism. We say that φ respects lcm’s if
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• φ(σs) 6= 1 for all s ∈ S;
• {φ(σs), φ(σt)} has a common multiple if and only if ms,t < +∞;
• if ms,t < +∞, then φ(σs ∨ σt) = φ(σs) ∨ φ(σt).

The following theorem can be found in [Cri, Thm. 1.3].

Theorem 5.2 (Crisp). If a homomorphism φ : G+
Γ → G+

Γ′ between Artin monoids
respects lcm’s, then it is injective.

Proof of Theorem 5.1. Let An be the Coxeter graph of Figure 1. Let f, g be the
elements of G+

An
defined by f = σ1σ3σ5 . . . and g = σ2σ4σ6 . . . . It is shown in

[BS, Lem. 5.8] that

prod(f, g;n + 1) = prod(g, f ;n + 1) = ∆(An). (1)

n1 2 3 n-1

Figure 1. The Coxeter graph An

Let m ≥ 3, and let Γ(m) denote the Coxeter graph illustrated in Figure 2.
It is a bipartite graph whose set of vertices is the disjoint union I t J , where
|I| = |J | = m− 1. As a Coxeter graph, Γ(m) is the disjoint union of two copies of
Am−1. Let f, g be the elements of G+

Γ(m)
defined by f =

∏
i∈I σi and g =

∏
j∈J σj .

Then, by (1), one has

prod(f, g;m) = prod(g, f ;m) = ∆(Γ(m)). (2)

J

I

Figure 2. The Coxeter graph Γ(m)

Let k ∈ N. We denote by kΓ(m) the disjoint union of k copies of Γ(m). It
is a bipartite graph whose set of vertices is the disjoint union kI t kJ , where kI
denotes the disjoint union of k copies of I, and kJ denotes the disjoint union of
k copies of J . Let f, g be the elements of G+

kΓ(m)
defined by f =

∏
i∈kI σi and

g =
∏

j∈kJ σj . Then, by (2), one has

prod(f, g;m) = prod(g, f ;m) = ∆(kΓ(m)). (3)
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Let Γ(∞) denote the Coxeter graph illustrated in Figure 3. It is bipartite graph
whose set of vertices is the disjoint union ItJ , where I = {i1, i2} and J = {j1, j2}.
Let f, g be the elements of G+

Γ(∞)
defined by f = σi1σi2 and g = σj1σj2 . A common

multiple of f and g would be a common multiple of {σi1 , σi2 , σj1 , σj2}. But Γ(∞)
is not of spherical type, thus such a common multiple does not exist. So, f and g
have no common multiple.

Let k ∈ N. We denote by kΓ(∞) the disjoint union of k copies of Γ(∞). It
is a bipartite graph whose set of vertices is the disjoint union kI t kJ , where kI
denotes the disjoint union of k copies of I, and kJ denotes the disjoint union of k
copies of J . Let f and g be the elements of G+

kΓ(∞)
defined by f =

∏
i∈kI σi and

g =
∏

j∈kJ σj . Then, as before, f and g have no common multiple.

2

i i

j j

1 2

1

Figure 3. The Coxeter graph Γ(∞)

Now, let Γ be any Coxeter graph. Let N be the least common multiple of
{ms,t − 1; s, t ∈ S, s 6= t,ms,t < +∞}. For all s ∈ S we take an abstract set I(s)
with 2N elements. We construct a Coxeter graph of small type Γ′ as follows.

• The set of vertices of Γ′ is the disjoint union of the I(s), s ∈ S.

• If ms,t = 2, then there is no edge joining two vertices in I(s) t I(t).

• If 3 ≤ ms,t < +∞, then the full subgraph of Γ′ generated by I(s)tI(t) is iso-

morphic to
(

2N
ms,t−1

)
Γ(ms,t) with an isomorphism which takes I(s) to

(
2N

ms,t−1

)
I

and I(t) to
(

2N
ms,t−1

)
J .

• If ms,t = +∞, then the full subgraph of Γ′ generated by I(s) t I(t) is
isomorphic to NΓ(∞) with an isomorphism which takes I(s) to NI and I(t) to
NJ .

Such a graph always exists but is not unique in general. By the above consid-
erations, there is a well defined homomorphism φ : G+

Γ → G+
Γ′ which sends σs to∏

i∈I(s) σi for all s ∈ S, and this homomorphism respects lcm’s, so, is injective by
Theorem 5.2. Note also that: if Γ is of small type, then one can choose N = 1
rather than the above N = 2, and at least one of the Γ′ thus obtained is bipar-
tite, and therefore has no triangle. So, applying twice the above construction,
one gets a Coxeter graph Γ̃ of small type with no triangle and a monomorphism
φ : G+

Γ → G+
Γ̃

. ¤
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6. Two lemmas

Lemma 3.3. Let s ∈ S and β ∈ Φ+ such that 〈αs, β〉 = 0 and dp(β) ≥ 2. Then
the definition of T (s, β) does not depend on the choice of the t ∈ S such that
dp(t · β) = dp(β)− 1.

Proof. We argue by induction on dp(β). We take t, r ∈ S, t 6= r, such that
dp(t ·β) = dp(r ·β) = dp(β)− 1. By Proposition 2.6, we can write 〈αt, β〉 = b > 0
and 〈αr, β〉 = c > 0.
Case 1: 〈αs, αt〉 = 0, 〈αs, αr〉 = 0, and 〈αt, αr〉 = 0. We cannot have dp(β) = 2 in
this case. Suppose dp(β) ≥ 3. Then, by induction,

y · T (s, β − bαt) = y2 · T (s, β − bαt − cαr) by (D4)
= y · T (s, β − cαr) by (D4).

Case 2: 〈αs, αt〉 = 0, 〈αs, αr〉 = 0, and 〈αt, αr〉 = −1. Suppose dp(β) = 2. Then
β = αt + αr, b = c = 1, and

y · T (s, β − αt) = y · T (s, αr) = 0 = y · T (s, αt) = y · T (s, β − αr) by (D2).

We cannot have dp(β) = 3 in this case. Suppose dp(β) ≥ 4. Then, by induction

y · T (s, β − bαt) = y2 · T (s, β − bαt − (b + c)αr) by (D4)
= y3 · T (s, β − (b + c)αt − (b + c)αr) by (D4)
= y · T (s, β − cαr) by symmetry.

Case 3: 〈αs, αt〉 = 0, 〈αs, αr〉 = −1, and 〈αt, αr〉 = 0. We cannot have dp(β) ≤ 3
in this case. Suppose dp(β) ≥ 4. Then, by induction,

y ·T (s, β−bαt) = y(y − 1) · T (s, β − bαt − cαr)

+ y2 · T (r, β − cαs − bαt − cαr) by (D5)

= ydp(β)−1(y − 1)2

+ y2 · T (r, β − cαs − bαt − cαr) by (D3)

= (y−1)·T (s, β−cαr)+y ·T (r, β−cαs−cαr) by (D3) and (D4).

Case 4: 〈αs, αt〉 = 0, 〈αs, αr〉 = −1, and 〈αt, αr〉 = −1. We cannot have dp(β) ≤ 5
in this case. Suppose dp(β) ≥ 6. Then, by induction,

y · T (s, β − bαt)
= y(y − 1) · T (s, β − bαt − (b + c)αr)

+ y2 · T (r, β − (b + c)αs − bαt − (b + c)αr) by (D5)
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= ydp(β)−1(y − 1)2 + y2(y − 1)·
· T (r, β − (b + c)αs − (b + c)αt − (b + c)αr)

+ y3 · T (t, β − (b + c)αs − (b + c)αt − (b + 2c)αr) by (D3) and (D5)

= ydp(β)−1(y − 1)2 + ydp(β)−2(y − 1)2

+ y3 · T (t, β − (b + c)αs − (b + c)αt − (b + 2c)αr) by (D3)

= ydp(β)−1(y−1)2 + y(y−1) · T (r, β−cαs−(b + c)αt−cαr)

+ y2 · T (t, β − cαs − (b + c)αt − (b + 2c)αr) by (D3) and (D4)
= (y − 1) · T (s, β − cαr) + y · T (r, β − cαs − cαr) by (D3) and (D5).

Case 5: 〈αs, αt〉 = −1, 〈αs, αr〉 = −1, and 〈αt, αr〉 = 0. We cannot have dp(β) ≤ 5
in this case. Suppose dp(β) ≥ 6. Then, by induction,

(y − 1) · T (s, β − bαt) + y · T (t, β − bαs − bαt)

= ydp(β)−1(y − 1)2

+ y2 · T (t, β − bαs − bαt − (b + c)αr) by (D3) and (D4)

= ydp(β)−1(y − 1)2 + y2(y − 1)·
· T (t, β − (b + c)αs − bαt − (b + c)αr)

+ y3 · T (s, β − (b + c)αs − (b + c)αt − (b + c)αr) by (D5)

= ydp(β)−1(y − 1)2 + ydp(β)−2(y − 1)2

+ y3 · T (s, β − (b + c)αs − (b + c)αt − (b + c)αr) by (D3)
= (y − 1) · T (s, β − cαr) + y · T (r, β − cαs − cαr) by symmetry. ¤

Lemma 3.4. Let s ∈ S and β ∈ Φ+ such that dp(β) ≥ 2 and 〈αs, β〉 = −a < 0.
Then the definition of T (s, β) does not depend on the choice of the t ∈ S such that
dp(t · β) = dp(β)− 1.

Proof. We argue by induction on dp(β). We take t, r ∈ S, t 6= r, such that
dp(t ·β) = dp(r ·β) = dp(β)− 1. By Proposition 2.6, we can write 〈αt, β〉 = b > 0
and 〈αr, β〉 = c > 0.

Case 1: 〈αs, αt〉 = 0, 〈αs, αr〉 = 0, and 〈αt, αr〉 = 0. We cannot have dp(β) = 2 in
this case. Suppose dp(β) ≥ 3. Then, by induction,

y · T (s, β − bαt) = y2 · T (s, β − bαt − cαr) by (D6)
= y · T (s, β − cαr) by (D6).

Case 2: 〈αs, αt〉 = 0, 〈αs, αr〉 = 0, and 〈αt, αr〉 = −1. We cannot have dp(β) ≤ 3
in this case. Suppose dp(β) ≥ 4. Then, by induction,
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y · T (s, β − bαt) = y2 · T (s, β − bαt − (b + c)αr) by (D6)
= y3 · T (s, β − (b + c)αt − (b + c)αr) by (D6)
= y · T (s, β − cαr) by symmetry.

Case 3: 〈αs, αt〉 = 0, 〈αs, αr〉 = −1, 〈αt, αr〉 = 0, and c > a. We cannot have
dp(β) ≤ 3 in this case. Suppose dp(β) ≥ 4. Then, by induction,

y · T (s, β − bαt)
= y(y − 1) · T (s, β − bαt − cαr)

+ y2 · T (r, β − (c− a)αs − bαt − cαr) by (D7)

= ydp(β)−1(y − 1)2

+ y2 · T (r, β − (c− a)αs − bαt − cαr) by (D3)
= (y − 1) · T (s, β − cαr) + y · T (r, β − (c− a)αs − cαr) by (D3) and (D6).

Case 4: 〈αs, αt〉 = 0, 〈αs, αr〉 = −1, 〈αt, αr〉 = 0, and c = a. We cannot have
dp(β) = 2 in this case. Suppose dp(β) ≥ 3. Then, by induction,

y · T (s, β − bαt)
= y · T (r, β − bαt − aαr) + y(y − 1) · T (s, β − bαt − aαr) by (D8)
= T (r, β − aαr) + (y − 1) · T (s, β − aαr) by (D6) and (D4).

Case 5: 〈αs, αt〉 = 0, 〈αs, αr〉 = −1, 〈αt, αr〉 = 0, and c < a. We cannot have
dp(β) = 2 in this case. Suppose dp(β) ≥ 3. Then, by induction,

y · T (s, β − bαt)

= y2 · T (s, β − bαt − cαr) + y · T (r, β − bαt − cαr) + ydp(β)−1(1− y) by (D9)

= y · T (s, β − cαr) + T (r, β − cαr) + ydp(β)−1(1− y) by (D6).

Case 6: 〈αs, αt〉 = 0, 〈αs, αr〉 = −1, 〈αt, αr〉 = −1, and c > a. We cannot have
dp(β) ≤ 5 in this case. Suppose dp(β) ≥ 6. Then, by induction,

y · T (s, β − bαt)
= y(y − 1) · T (s, β − bαt − (b + c)αr)

+ y2 · T (r, β − (b + c− a)αs − bαt − (b + c)αr) by (D7)

= ydp(β)−1(y − 1)2 + y2(y − 1)·
· T (r, β − (b + c− a)αs − (b + c)αt − (b + c)αr)

+ y3 · T (t, β − (b + c− a)αs − (b + c)αt − (b + 2c− a)αr) by (D3) and (D7)

= ydp(β)−1(y − 1)2 + ydp(β)−2(y − 1)2

+ y3 · T (t, β − (b + c− a)αs − (b + c)αt − (b + 2c− a)αr) by (D3)
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= ydp(β)−1(y − 1)2 + y(y − 1)·
· T (r, β − (c− a)αs − (b + c)αt − cαr)

+ y2 · T (t, β − (c− a)αs − (b + c)αt − (b + 2c− a)αr) by (D3) and (D6)
= (y − 1) · T (s, β − cαr) + y · T (r, β − (c− a)αs − cαr) by (D3) and (D7).

Case 7: 〈αs, αt〉 = 0, 〈αs, αr〉 = −1, 〈αt, αr〉 = −1, and c = a. Suppose dp(β) = 2.
Then a = b = c = 1, β = αt + αr, and

y · T (s, β − αt) = y · T (s, αr) = 0 by (D2)
T (r, β−αr) + (y − 1) · T (s, β−αr) = T (r, αt) + (y − 1) · T (s, αt) = 0 by (D2).

We cannot have dp(β) ∈ {3, 4} in this case. Suppose dp(β) ≥ 5. Then, by
induction,

y · T (s, β − bαt)
= y(y − 1) · T (s, β − bαt − (b + a)αr)

+ y2 · T (r, β − bαs − bαt − (b + a)αr) by (D7)

= ydp(β)−1(y − 1)2 + y2 · T (t, β−bαs−(b + a)αt−(b + a)αr)

+ y2(y − 1) · T (r, β − bαs − (b + a)αt − (b + a)αr) by (D3) and (D8)

= ydp(β)−2(y−1)2+y2 ·T (t, β−bαs−(b+a)αt−(b + a)αr)

+ ydp(β)−2(y − 1)3

+ y2(y − 1) · T (r, β − bαs − (b + a)αt − (b + a)αr)

= ydp(β)−2(y − 1)2 + y2 ·T (t, β − bαs − (b + a)αt − (b + a)αr)

+ y(y − 1)2 · T (s, β − (b + a)αt − (b + a)αr)

+ y2(y − 1) · T (r, β − bαs − (b + a)αt − (b + a)αr) by (D3)

= ydp(β)−2(y − 1)2

+ y2 · T (t, β − bαs − (b + a)αt − (b + a)αr)
+ y(y − 1) · T (s, β − (b + a)αt − aαr) by (D5)

= (y − 1) · T (r, β − (b + a)αt − aαr)
+ y · T (t, β − (b + a)αt − (b + a)αr)
+ y(y − 1) · T (s, β − (b + a)αt − aαr) by (D3) and (D6)

= T (r, β − aαr) + (y − 1) · T (s, β − aαr) by (D7) and (D4).

Case 8: 〈αs, αt〉 = 0, 〈αs, αr〉 = −1, 〈αt, αr〉 = −1, c < a, and b + c > a. We
cannot have dp(β) ≤ 4 in this case. Suppose dp(β) ≥ 5. Then, by induction,
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y · T (s, β − bαt)
= y(y − 1) · T (s, β − bαt − (b + c)αr)

+ y2 · T (r, β − (b + c− a)αs − bαt − (b + c)αr) by (D7)

= ydp(β)−1(y − 1)2 + y3·
· T (r, β − (b + c− a)αs − (b + c)αt − (b + c)αr)

+ y2 · T (t, β − (b + c− a)αs − (b + c)αt − (b + c)αr)

+ ydp(β)−2(1− y) by (D3) and (D9)

= ydp(β)−1(y − 1)2

+ y3 · T (r, β − (b + c− a)αs − (b + c)αt − (b + c)αr)

+ ydp(β)−2(y − 1)2

+ y2 · T (t, β − (b + c− a)αs − (b + c)αt − (b + c)αr)

+ ydp(β)−1(1− y)

= y2(y − 1) · T (s, β − (b + c)αt − (b + c)αr)

+ y3 · T (r, β − (b + c− a)αs − (b + c)αt − (b + c)αr)

+ ydp(β)−2(y − 1)2

+ y · T (t, β − (b + c)αt − (b + c)αr) + ydp(β)−1(1− y) by (D3) and (D6)

= y2 · T (s, β − (b + c)αt − cαr) + (y − 1)·
· T (r, β − (b + c)αt − cαr)

+ y · T (t, β − (b + c)αt − (b + c)αr) + ydp(β)−1(1− y) by (D7) and (D3)

= y · T (s, β − cαr) + T (r, β − cαr) + ydp(β)−1(1− y) by (D6) and (D7).

Case 9: 〈αs, αt〉 = 0, 〈αs, αr〉 = −1, 〈αt, αr〉 = −1, c < a, and b + c = a. We
cannot have dp(β) ≤ 3 in this case. Suppose dp(β) ≥ 4. Then, by induction,

y · T (s, β − bαt)
= y · T (r, β − bαt − aαr) + y(y − 1) · T (s, β − bαt − aαr) by (D8)

= y2 · T (r, β − aαt − aαr) + y · T (t, β − aαt − aαr)

+ ydp(β)−2(1− y)

+ y2(y − 1) · T (s, β − aαt − aαr) by (D9) and (D4)

= y2 · T (r, β − aαt − aαr) + y2(y − 1)·
· T (s, β − aαt − aαr) + ydp(β)−2(y − 1)2

+ y · T (t, β − aαt − aαr) + ydp(β)−1(1− y)
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= y2 · T (s, β − aαt − cαr) + (y − 1) · T (r, β − aαt − cαr)

+ y · T (t, β − aαt − aαr) + ydp(β)−1(1− y) by (D8) and (D3)

= y · T (s, β − cαr) + T (r, β − cαr) + ydp(β)−1(1− y) by (D6) and (D7).

Case 10: 〈αs, αt〉 = 0, 〈αs, αr〉 = −1, 〈αt, αr〉 = −1, c < a, and b + c < a. We
cannot have dp(β) ≤ 3 in this case. Suppose dp(β) ≥ 4. Then, by induction,

y · T (s, β − bαt)

= y2 · T (s, β − bαt − (b + c)αr)
+ y · T (r, β − bαt − (b + c)αr)

+ ydp(β)−1(1− y) by (D9)

= y3 · T (s, β − (b + c)αt − (b + c)αr)

+ y2 · T (r, β − (b + c)αt − (b + c)αr)
+ y · T (t, β − (b + c)αt − (b + c)αr)

+ ydp(β)−2(1− y) + ydp(β)−1(1− y) by (D6) and (D9)

= y3 · T (s, β − (b + c)αt − (b + c)αr)

+ y2 · T (r, β − (b + c)αt − (b + c)αr)

+ ydp(β)−1(1− y) + ydp(β)−2(y − 1)2

+ y · T (t, β − (b + c)αt − (b + c)αr) + ydp(β)−1(1− y)

= y2 · T (s, β − (b + c)αt − cαr)
+ (y − 1) · T (r, β − (b + c)αt − cαr)

+ y · T (t, β − (b + c)αt − (b + c)αr) + ydp(β)−1(1− y) by (D9) and (D3)

= y · T (s, β − cαr) + T (r, β − cαr) + ydp(β)−1(1− y) by (D6) and (D7).

Case 11: 〈αs, αt〉 = −1, 〈αs, αr〉 = −1, 〈αt, αr〉 = 0, b > a, and c > a. We cannot
have dp(β) ≤ 5 in this case. Suppose dp(β) ≥ 6. Then, by induction,

(y − 1) · T (s, β − bαt) + y · T (t, β − (b− a)αs − bαt)

= ydp(β)−1(y − 1)2 + y2·
· T (t, β − (b− a)αs − bαt − (b + c− a)αr) by (D3) and (D6)

= ydp(β)−1(y − 1)2 + y2(y − 1)·
· T (t, β − (b + c− a)αs − bαt − (b + c− a)αr)

+ y3 · T (s, β−(b + c−a)αs−(b + c−a)αt−(b + c−a)αr) by (D7)

= ydp(β)−1(y − 1)2 + ydp(β)−2(y − 1)2 + y3·
· T (s, β−(b + c−a)αs−(b + c−a)αt−(b + c−a)αr) by (D3)
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= (y − 1) · T (s, β − cαr) + y · T (r, β − (c− a)αs − cαr) by symmetry.

Case 12: 〈αs, αt〉 = −1, 〈αs, αr〉 = −1, 〈αt, αr〉 = 0, and b > c = a. We cannot
have dp(β) ≤ 4 in this case. Suppose dp(β) ≥ 5. Then, by induction,

(y − 1) · T (s, β − bαt) + y · T (t, β − (b− a)αs − bαt)

= ydp(β)−1(y − 1)2 + y2 · T (t, β − (b− a)αs − bαt − bαr) by (D3) and (D6)

= ydp(β)−1(y − 1)2 + y2·
· T (s, β − bαs − bαt − bαr)

+ y2(y − 1) · T (t, β − bαs − bαt − bαr) by (D8)

= ydp(β)−2(y − 1)2 + y2 · T (s, β − bαs − bαt − bαr)

+ ydp(β)−2(y − 1)3

+ y2(y − 1) · T (t, β − bαs − bαt − bαr)
= y(y − 1) · T (r, β − bαs − bαt − aαr)

+ y2 · T (s, β − bαs − bαt − bαr) + ydp(β)−2(y − 1)3

+ y(y − 1) · T (t, β − bαs − bαt − aαr) by (D3) and (D4)

= y · T (r, β − bαt − aαr) + (y − 1)2 · T (s, β − bαt − aαr)
+ y(y − 1) · T (t, β − bαs − bαt − aαr) by (D7) and (D3)

= T (r, β − aαr) + (y − 1) · T (s, β − aαr) by (D6) and (D5).

Case 13: 〈αs, αt〉 = −1, 〈αs, αr〉 = −1, 〈αt, αr〉 = 0, and b > a > c. We cannot
have dp(β) ≤ 3 in this case. Suppose dp(β) ≥ 4. Then, by induction,

(y − 1) · T (s, β − bαt) + y · T (t, β − (b− a)αs − bαt)

= ydp(β)−1(y − 1)2

+ y2 · T (t, β − (b− a)αs − bαt − (b + c− a)αr) by (D3) and (D6)

= ydp(β)−1(y − 1)2

+ y3 · T (t, β − (b + c− a)αs − bαt − (b + c− a)αr)

+ y2 · T (s, β − (b + c− a)αs − bαt − (b + c− a)αr)

+ ydp(β)−2(1− y) by (D9)

= ydp(β)−1(y − 1)2

+ y3 · T (t, β − (b + c− a)αs − bαt − (b + c− a)αr)

+ ydp(β)−2(y − 1)2

+ y2 · T (s, β − (b + c− a)αs − bαt − (b + c− a)αr)

+ ydp(β)−1(1− y)
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= ydp(β)−1(y − 1)2 + y2 · T (t, β − (b + c− a)αs − bαt − cαr)
+ y(y − 1) · T (r, β − (b + c− a)αs − bαt − cαr)

+ y2 · T (s, β − (b + c− a)αs − bαt − (b + c− a)αr)

+ ydp(β)−1(1− y) by (D6) and (D3)
= y(y − 1) · T (s, β − bαt − cαr)

+ y2 · T (t, β − (b + c− a)αs − bαt − cαr)

+ y · T (r, β − bαt − cαr) + ydp(β)−1(1− y) by (D3) and (D7)

= y · T (s, β − cαr) + T (r, β − cαr) + ydp(β)−1(1− y) by (D7) and (D6).

Case 14: 〈αs, αt〉 = −1, 〈αs, αr〉 = −1, 〈αt, αr〉 = 0, and a = b = c. We cannot
have dp(β) ≤ 3 in this case. Suppose dp(β) ≥ 4. Then, by induction,

T (t, β − aαt) + (y − 1) · T (s, β − aαt)

= y · T (t, β − aαt − aαr) + (y − 1)2 · T (s, β − aαt − aαr)
+ y(y − 1) · T (r, β − aαs − aαt − aαr) by (D6) and (D5)

= y · T (s, β − aαs − aαt − aαr)
+ y(y − 1) · T (t, β − aαs − aαt − aαr)

+ ydp(β)−2(y−1)3 + y(y−1) · T (r, β−aαs−aαt−aαr) by (D8) and (D3)
= T (r, β − aαr) + (y − 1) · T (s, β − aαr) by symmetry.

Case 15: 〈αs, αt〉 = −1, 〈αs, αr〉 = −1, 〈αt, αr〉 = 0, and a = b > c. We cannot
have dp(β) ≤ 3 in this case. Suppose dp(β) ≥ 4. Then, by induction,

T (t, β − aαt) + (y − 1) · T (s, β − aαt)

= y · T (t, β − aαt − cαr) + (y − 1)2 · T (s, β − aαt − cαr)
+ y(y − 1) · T (r, β − cαs − aαt − cαr) by (D6) and (D5)

= y2 · T (t, β − cαs − aαt − cαr)

+ y · T (s, β − cαs − aαt − cαr) + ydp(β)−2(1− y)

+ ydp(β)−2(y − 1)3 + y(y − 1) · T (r, β − cαs − aαt − cαr) by (D9) and (D3)

= ydp(β)−1(y − 1)2 + y2 · T (t, β − cαs − aαt − cαr)
+ y · T (s, β − cαs − aαt − cαr)

+ y(y − 1) · T (r, β − cαs − aαt − cαr) + ydp(β)−1(1− y)
= y(y − 1) · T (s, β − aαt − cαr)

+ y2 · T (t, β − cαs − aαt − cαr)

+ y · T (r, β − aαt − cαr) + ydp(β)−1(1− y) by (D3) and (D8)
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= y · T (s, β − cαr) + T (r, β − cαr) + ydp(β)−1(1− y) by (D7) and (D6).

Case 16: 〈αs, αt〉 = −1, 〈αs, αr〉 = −1, 〈αt, αr〉 = 0, a > b, a > c, and b + c > a.
We cannot have dp(β) ≤ 3 in this case. Suppose dp(β) ≥ 4. Then, by induction,

y · T (s, β − bαt) + T (t, β − bαt) + ydp(β)−1(1− y)

= y(y − 1) · T (s, β − bαt − cαr)

+ y2 · T (r, β − (b + c− a)αs − bαt − cαr)

+ y · T (t, β − bαt − cαr) + ydp(β)−1(1− y) by (D7) and (D6)

= ydp(β)−1(y − 1)2 + y2 · T (r, β − (b + c− a)αs − bαt − cαr)

+ y2 · T (t, β − (b + c− a)αs − bαt − cαr)

+ y · T (s, β − (b + c− a)αs − bαt − cαr) + ydp(β)−2(1− y)

+ ydp(β)−1(1− y) by (D3) and (D9)

= y · T (s, β − cαr) + T (r, β − cαr) + ydp(β)−1(1− y) by symmetry.

Case 17: 〈αs, αt〉 = −1, 〈αs, αr〉 = −1, 〈αt, αr〉 = 0, and a = b + c. We cannot
have dp(β) = 2 in this case. Suppose dp(β) ≥ 3. Then, by induction,

y · T (s, β − bαt) + T (t, β − bαt) + ydp(β)−1(1− y)
= y · T (r, β − bαt − cαr) + y(y − 1) · T (s, β − bαt − cαr)

+y · T (t, β − bαt − cαr) + ydp(β)−1(1− y) by (D8) and (D6)

= y · T (s, β − cαr) + T (r, β − cαr) + ydp(β)−1(1− y) by symmetry.

Case 18: 〈αs, αt〉 = −1, 〈αs, αr〉 = −1, 〈αt, αr〉 = 0, and a > b + c. We cannot
have dp(β) = 2 in this case. Suppose dp(β) ≥ 3. Then, by induction,

y · T (s, β − bαt) + T (t, β − bαt) + ydp(β)−1(1− y)

= y2 · T (s, β − bαt − cαr)

+ y · T (r, β − bαt − cαr) + ydp(β)−1(1− y)

+ y · T (t, β − bαt − cαr) + ydp(β)−1(1− y) by (D9) and (D6)

= y · T (s, β − cαr) + T (r, β − cαr) + ydp(β)−1(1− y) by symmetry.
¤
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