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Abstract. For each closed, orientable surface Σg, we construct a local, diffeomorphism invariant
trace on the Kauffman bracket skein module Kt(Σg × I). The trace is defined when |t| is neither
0 nor 1, and at certain roots of unity. At t = −1, the trace is integration against the symplectic
measure on the SU(2) character variety of the fundamental group of Σg .
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1. Introduction

The Kauffman bracket skein module of a 3-manifold is a complex vector space
with isotopy classes of knots in the manifold as its basis, divided by the relation
corresponding to the Kauffman bracket link invariant. This relation involves a
complex parameter, t. We define the Yang–Mills measure in the Kauffman bracket
skein algebra of a cylinder over a closed surface Σg in an elementary way, and
show that it is a diffeomorphism-invariant trace. From a diagrammatic viewpoint,
the Yang–Mills measure is the extension of the Kauffman bracket to framed link
diagrams lying in any compact oriented surface.

The proof of its convergence for |t| 6= 1 uses estimates involving quantum 6j-
symbols. When the deformation parameter is a generic point on the unit circle,
then the measure does not converge. At roots of unity it coincides with Turaev’s
shadow world invariant [25], which is shown in a subsequent paper [10]. Finally,
at t=-1, the Yang–Mills measure is integration against the symplectic measure on
the space M(Σg) of conjugacy classes of representations of the fundamental group
of Σg into SU(2).

Since the introduction of quantum invariants of 3-manifolds [21, 27] the fact
that they are only defined at roots of unity has been an obstruction to analyzing
their properties. One approach has been to study the perturbative theory of quan-

This research was partially supported by NSF-DMS-9803233 and NSF-DMS-9971905.



2 D. Bullock, C. Frohman and J. Kania-Bartoszynska CMH

tum invariants [18]. However, there is ample evidence quantum invariants of three
manifolds exist as holomorphic functions on the unit disk, that diverge everywhere
on the unit circle but at roots of unity [15]. This paper takes a step towards see-
ing that this holds in general. The Yang–Mills measure is the path integral on
a topological quantization [3] of the SU(2)-characters of the fundamental group
of a closed surface. The measure displays the same convergence properties as are
expected of quantum invariants of 3-manifolds.

The definition of the symplectic structure and formulas for its computation are
in [11, 12]. The volume of M(Σg) was computed by Witten in [28] in two ways:
via the equivalence of two computations in quantum field theory, and by noting
that the symplectic measure is equal to the measure coming from Reidemeister
torsion. In Witten’s setting the Yang–Mills measure is a path integral in a lattice
model of field theory that depends on area. Forman [7] gave a direct proof that
Witten’s measure converges to the symplectic measure as the area goes to zero.

The construction in this paper is motivated by our work extending ideas of
[1, 6]. Alekseev, Grosse and Schomerus [1] conceived of a method of constructing
lattice gauge field theory based on a quantum group. This idea was further devel-
oped by Buffenoir and Roche [6] who gave a construction of the algebra, its Wilson
loops and a trace called the Yang–Mills measure that were completely analogous
to Witten’s construction. Their theory is topological when the area is set to zero.
We recognized that the algebra of observables from their theories could be under-
stood as the Kauffman bracket skein module of a cylinder over a surface [4, 5].
These considerations lead one to expect that the Yang–Mills measure exists as a
trace on the Kauffman bracket skein algebra of a closed surface. In this paper we
affirm this fact.

This paper is organized as follows. Section 2 recalls definitions, associated
formulas and the algebra structure of the Kauffman bracket skein module of a
cylinder over a surface. In Section 3 the Yang–Mills measure is defined for compact
surfaces with boundary, and is proved to be a trace. In Section 4, working with
the parameter t such that |t| 6= 1, we obtain estimates for the absolute value of the
tetrahedral coefficients and use these to show that the Yang–Mills measure can
be defined for closed surfaces. In Section 5 we define and investigate the measure
when t is a root of unity.

2. Preliminaries

Let M be an orientable 3-manifold. A framed link in M is an embedding of a
disjoint union of annuli into M . Framed links are depicted by showing the core of
an annulus lying parallel to the plane of the paper (i.e. with blackboard framing).
Two framed links in M are equivalent if there is an isotopy of M taking one to the
other. Let L denote the set of equivalence classes of framed links in M , including
the empty link. Fix a complex number t 6= 0. Consider the vector space CL with
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basis L. Define S(M) to be the smallest subspace of CL containing all expressions
of the form

− t − t−1 (1)

and
©∪ L + (t2 + t−2)L, (2)

where the framed links in each expression are identical outside balls pictured in
the diagrams. The Kauffman bracket skein module Kt(M) is the quotient

CL/S(M). (3)

Elements of Kt(M) are called skeins. Let F be a compact orientable surface
and let I = [0, 1]. There is an algebra structure on Kt(F × I) that comes from
laying one framed link over the other. Suppose that α, β ∈ Kt(F × I) are skeins
represented by framed links Lα and Lβ . After isotopic deformations, to “lower”
the first framed link and “raise” the second, Lα ⊂ F × [0, 1

2 ) and Lβ ⊂ F × ( 1
2 , 1].

The skein α ∗ β is represented by Lα ∪ Lβ . This product extends to a bilinear
product on Kt(F × I). We denote the resulting algebra by Kt(F ) to emphasize
that it comes from viewing the underlying three manifold as a cylinder over F .

The notation and the formulas in this paper are taken from [14]. However, the
variable t replaces A, and we use quantum integers

[n] =
t2n − t−2n

t2 − t−2
. (4)

When t = ±1, [n] = n. Note that ∆n from [14] is equal to (−1)n[n + 1].
There is a standard convention for using a framed trivalent graph Γ ⊂ M to

model a skein. When Γ is represented by a diagram we assume blackboard framing.
An admissible coloring of Γ is an assignment of a nonnegative integer to each edge
so that the colors at trivalent vertices form admissible triples (defined below).
The corresponding skein in Kt(M) is obtained by inserting the m-th Jones–Wenzl
idempotent into each edge labeled with the letter m, inserting Kauffman triads at
the vertices, and joining up with parallel strands. Jones–Wenzl idempotents (see
[26], or [16], p.136) can be defined recursively as in Figure 1, where the coefficient
c is equal to [n−1]

[n] . A Kauffman triad (see [16, Fig. 14.7]) is pictured in Figure 2.
Recall the fusion identity:

a b

=
∑

c

(−1)c [c + 1]
θ(a, b, c)

c

a b

a b

(5)

where the sum is over all c so that the triples (a, b, c) are admissible, i.e. a + b + c
is even, a ≤ b + c, b ≤ a + c, and c ≤ a + b. The value of θ(a, b, c) is given by
equation (14) below. The fusion relation is satisfied in Kt(M) unless t is a root of
unity other than ±1.
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1 =

=n n−1 + c
n−1

n−1

Figure 1. Jones–Wenzl idempotents

a b

c

=
a b

c

Figure 2. Kauffman triad

3. The Yang–Mills measure in a handlebody

Throughout this section we assume that t is not a root of unity. The first result
is well known and comes from Przytycki’s [19] construction of examples of torsion
in skein modules.

Lemma 1 (The Sphere Lemma). Let sc be a skein represented by coloring a
trivalent framed graph in the manifold M . Suppose further that there is a sphere
embedded in M which intersects the underlying graph transversely in a single point
in the interior of an edge, and the color of that edge is not zero. Then sc = 0.

Proof. Using the “light bulb trick” isotope the framed graph sc so that it is the
same graph, but the framing on the edge intersecting the sphere has been changed
by adding two kinks. Using the formula for eliminating a kink, notice that sc is a
nontrivial complex multiple of itself. Ergo, sc represents zero in Kt(M). ¤

Consider now Kt(#gS
1 × S2), the Kauffman bracket skein module of the con-

nected sum of g copies of S1 × S2.

Proposition 1. The skein module Kt(#gS
1 × S2) is canonically isomorphic to

C. The isomorphism is given by writing each skein as a complex multiple of the
empty skein.

Proof. This follows easily from theorems of Hoste and Przytycki [13, 19, 20]. In
[13] the Kauffman bracket skein module of S1×S2 is computed over Z[t, t−1]. This
along with the results in [20] on the Kauffman bracket skein module of a connected
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sum over rational functions in t, combined with the universal coefficient theorem
stated in [19], proves the desired result.

We outline the actual isomorphism with the complex numbers. Choose a system
of spheres in #gS

1 × S2 that cut it down to a punctured ball. Given a skein in
#gS

1×S2, represent it as a linear combination of colored, framed, trivalent graphs
intersecting the spheres transversely in interior of edges, and so that each graph
intersects any sphere at most once. This is done by fusing multiple edges passing
through the same sphere. By the sphere lemma, we can assume the graphs miss
the spheres. Now take the Kauffman bracket of the skein in the punctured ball to
write it as a complex multiple of the empty skein. ¤

Given a handlebody H of genus g, its double is #gS
1 × S2. There is a linear

functional YM : Kt(H) → C computed by taking the inclusion of H into #gS
1 ×

S2 followed by taking the “Kauffman bracket” as above. Let F be a compact,
oriented surface with boundary. Since F × I is a handlebody the linear functional

YM : Kt(F ) → C, (6)

is defined. We call this the Yang–Mills measure.
Choose a trivalent spine of F . Skeins given by the admissible colorings of that

spine form a basis for Kt(F ). The skein modules of the disk and annulus are
exceptions; the first is spanned by the empty skein and the latter is described in
Section 4. In terms of this basis the Yang–Mills measure is just the coefficient of
the skein coming from labeling all the edges of the spine with 0.

Proposition 2. The Yang–Mills measure is a trace, that is

YM(α ∗ β) = YM(β ∗ α). (7)

Furthermore, the trace is invariant under the action of the diffeomorphisms of
F × I on Kt(F ).

Proof. Let L be the link ∂F × {1/2}. The result of removing L from the double
of F × I is homeomorphic to the Cartesian product of the interior of F with a
circle. Given any skein in F × I we can represent it by a linear combination of
framed links that miss L. Hence, the Yang–Mills measure factors through the
skein module of F × S1. In F × S1 the skeins α ∗ β and β ∗ α are the same.

The group of diffeomorphisms of the handlebody F × I acts on Kt(F ) in the
obvious way. If f : F × I → F × I is a diffeomorphism then it can be extended
to Df : #gS

1 × S2 → #gS
1 × S2. Since the image of the empty skein under a

diffeomorphism is the empty skein, the action of Df on Kt(#gS
1 × S2) is trivial.

Therefore, YM(f(α)) = YM(α). ¤

The final commonly used property of the Yang–Mills measure is that it is local.
Suppose that k is a proper arc in F . Cut F along k to get a surface F ′. If we write
a skein α as a linear combination of skeins given by admissibly colored graphs,
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each one intersecting k transversely in at most a single point, in evaluating the
Yang–Mills measure of that skein we can throw out any graph such that the edge
intersecting k carries a nonzero label. This yields a skein in F ′, denoted by αk.
Then YM(α) = YM(αk).

4. The Yang–Mills measure on a closed surface

Throughout this section assume that |t| 6= 1. In fact, we only work with 0 < t < 1.
However, the same proofs are valid when 1 < t since the formulas are symmetric
in t and t−1. Finally, the arguments extend to the case where t is not real by
replacing the estimates for t ∈ R by estimates of the absolute value of t ∈ C.

Recall the Kauffman bracket skein algebra of a cylinder over an annulus A.
The central core of the annulus can be seen as a link by giving it the blackboard
framing. Let si be the skein in the annulus which is the result of coloring the
core with the i-th Jones-Wenzl idempotent. The skein module Kt(A) is the vector
space with basis {si}, where i runs from zero to infinity. The product with respect
to this basis is given by

si ∗ sj =
∑

q∈Ii,j

sq, (8)

where Ii,j = {q | |i− j| ≤ q ≤ i + j, q ≡ i + j mod 2}.
Use the Yang–Mills measure on Kt(A) to define a pairing:

〈α, β〉 = YM(α ∗ β). (9)

The si form an orthonormal basis with respect to (9). This pairing identifies the
linear dual of Kt(A) with series of the form

∑
i αisi, where the αi are complex

numbers. Note that: 〈 ∞∑
i=0

αisi,
n∑

j=0

βjsj

〉
=

n∑
i=0

αiβi. (10)

Let Σg,1 denote the compact orientable surface of genus g with one boundary
component. There is a pairing,

Kt(A)⊗Kt(Σg,1) → Kt(Σg,1) (11)

given by representing the skein in Kt(Σg,1) by a linear combination of links disjoint
from some collar of the boundary, and plugging the skein in Kt(A) into the collar.
The Yang–Mills measure can then be applied to give a pairing,

Kt(A)⊗Kt(Σg,1) → C (12)

by letting 〈α, σ〉 = YM(α ∗ σ). Topologize Kt(A) by giving it the weak topology
from this pairing. That is, a sequence σn ∈ Kt(A) is Cauchy if for every skein
α ∈ Kt(Σg,1), the sequence of complex numbers YM(α ∗ σn) is Cauchy. Embed
Kt(A) into the equivalence classes of Cauchy sequences in the standard way and



Vol. 78 (2003) The Yang–Mills measure in the Kauffman bracket skein module 7

take its closure to form a completion. A linear functional on Kt(Σg,1) that comes
from an element of this completion via the pairing (12) is called a distribution. It
is interesting to note that the weak topology on Kt(A) depends on the genus of
the surface.

There is a map of Kt(Σg,1) into Kt(Σg) induced by inclusion. The kernel of this
map is spanned by handle-slides. A handle-slide is a skein that is represented by
the difference of two links such that one can be obtained from the other by a slide
across an imagined disk filling the boundary of Σg,1. If g > 1 there is a distribution
on Kt(Σg,1) which annihilates all handle-slides. This linear functional descends
to the skein module of the closed surface. The Yang–Mills measure on a closed
surface is the result of evaluating this distribution followed by a normalization.

Let’s think about what a skein in Kt(A) would be like if it annihilated all
handle-slides. Begin by writing it as

∑
i αisi and solve for the αi. A simple

computation shows that if α0 is zero then all αi are zero. Normalize so that α0 = 1.
Notice that if our skein annihilates handle-slides then the skein s1 + [2]s0 must be
annihilated. Using the rules for multiplication (8) we see that the coefficient α1 is
equal to −[2]. Continuing on this way we see that this skein has to be

∞∑
i=0

(−1)i[i + 1]si, (13)

which is of course not in Kt(A).
The first goal is to show that for g > 1 the sequence of partials sums

∑n
i=0(−1)i[i+

1]si is Cauchy in the weak topology from Y , and so defines a distribution.

a

b e

c

d
f

a

b

c

Figure 3. Tet and theta

The notation Tet
(

a b e
c d f

)
stands for the value of the skein pictured in Figure 3

on the left, in the skein space of a ball, identified with the complex numbers. The
explicit formula is given in [14]. We also need the quantity θ(a, b, c) which is the
value of the skein modeled on the colored graph on the right in Figure 3. In terms
of quantum integers

θ(a, b, c) = (−1)
a+b+c

2
[a+b+c

2 + 1]![a+b−c
2 ]![ b+c−a

2 ]![ c+a−b
2 ]!

[a]![b]![c]!
. (14)
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Another quantity, called a 6j symbol, is derived from the tetrahedral evaluation.
Specifically,

{
a b e
c d f

}
=

Tet
(

a b e
c d f

)
(−1)e[e + 1]

θ(a, d, e)θ(c, b, e)
. (15)

The 6j symbols are the coefficients of the change of basis matrix for recoupling on
graphs [14]. As a consequence they satisfy an orthogonality equation:

∑
e

{
a b e
c d f

}{
d a g
b c e

}
= δg

f , (16)

where δg
f is the Kronecker delta, and the sum is over all e such that triples (b, c, e),

(a, d, e) are admissible.
The following proposition seems quite weak, but turns out to be a powerful

tool for gauging the convergence of series of Kauffman brackets.

Proposition 3.

∣∣∣∣Tet
(

a b e
c d f

)∣∣∣∣ ≤
√

θ(b, c, e)θ(a, d, e)θ(a, b, f)θ(c, d, f)
(−1)e+f [e + 1][f + 1]

(17)

Proof. In order for all the triples at the vertices of a tetrahedron to be admissible,
the parity of the sum of the entries in any two columns of

Tet
(

a b e
c d f

)
(18)

has to be the same. Use (15) to expand the formulas for the 6j symbols in the
orthogonality relation (16), with g = f . The tetrahedral evaluations are equal and
the signs of the θ’s and the (−1)e+f cancel so that each term in the sum is positive.
Hence every term in the sum is less than 1. Fixing e and putting everything except
for the tetrahedral evaluations on the right hand side, and taking square roots
yields the desired result. ¤

Corollary 1. There is a real valued function C(k1, k2, k3) so that for all t, 0 <
t < 1, ∣∣∣∣Tet

(
i i i
k1 k2 k3

)∣∣∣∣√|θ(i, i, k1)θ(i, i, k2)θ(i, i, k3)|
(19)

is less than tiC(k1, k2, k3) whenever the graphs corresponding to the functions in
the formula are admissibly labeled.
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Proof. Substitute into inequality (17) from Proposition 3 to get,∣∣∣∣Tet
(

i i i
k1 k2 k3

)∣∣∣∣ ≤
√

θ(k1, k2, k3)θ(i, i, k1)θ(i, i, k2)θ(i, i, k3)
(−1)i+k3 [k3 + 1][i + 1]

. (20)

Shift
√|θ(i, i, k1)θ(i, i, k2)θ(i, i, k3)| to the left hand side. Use the fact that 1

[i+1] ≤
t2i to make the right hand side bigger. Finally, note that the remaining factor on
the right hand side is a function of k1, k2 and k3. ¤

Theorem 1. The sequence
∑n

i=0(−1)i[i + 1]si defines a distribution for g > 1.
That is, the limit

YMD(α) = lim
n→∞YM(α ∗

n∑
i=0

(−1)i[i + 1]si) (21)

exists and gives a well defined trace on Kt(Σg,1) when g > 1.

Proof. Choose a trivalent spine for Σg,1 with 4g−2 vertices and 6g−3 edges. Basis
elements sc for Kt(Σg,1) correspond to labeling the edges admissibly with integers
kj , where j runs from 1 to 6g − 3. Let A denote an annulus which is a collar of
the boundary of Σg,1. Let si denote the core of A labeled with the i-th Jones-
Wenzl idempotent. In order to compute YM(sc ∗si) place both skeins in the same
diagram. Choose a system of arcs, each intersecting this configuration transversely
in three points, that isolate the vertices from one another. The transverse points
of intersection are labeled i, kj , i as you traverse each arc. Fuse along these arcs,
until the resulting graphs intersect each arc in at most one point. Discard any
term where the label on an edge intersecting an arc is not zero. Given a vertex v,
let (kv1, kv2, kv3) be the triple of colors appearing there. The resulting answer is:

YM(sc ∗ si) =
6g−3∏
j=1

1
θ(i, i, kj)

∏
v

Tet
(

i i i
kv1 kv2 kv3

)
. (22)

Each edge appears at exactly two vertices, so (22) can be written as a product
of 4g− 2 factors like (19). By Corollary 1 the absolute value of YM(sc ∗ si) is less
than C(kj)ti(4g−2), where C(kj) is a number depending only on the kj . The n-th
partial sum for YMD(sc) is

n∑
i=0

(−1)i[i + 1]
6g−3∏
j=1

1
θ(i, i, kj)

∏
v

Tet
(

i i i
kv1 kv2 kv3

)
. (23)

Note that [i + 1] is less than (i + 1)t−2i. Hence the i-th summand is less than
(i+1)(−1)iC(kj)ti(4g−4). The ratio test implies that the sequence of partial sums
is absolutely convergent for 0 < t < 1.

Finally, YMD is a trace since the partial sums
∑n

i=0(−1)i[i + 1]si can be seen
as lying in the center of Kt(Σg,1). ¤
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k

k − 1

k

Figure 4

Theorem 2. YMD descends to give a well defined trace

YM : Kt(Σg) → C. (24)

Proof. There is a homomorphism Kt(Σg,1) → Kt(Σg) induced by inclusion, since
the surface Σg is the result of adding a disk to the boundary of surface Σg,1.
The kernel of this homomorphism consists of all skeins that can be written as a
linear combination of handle-slides [19]. The next step is to show that the linear
functional YMD annihilates all handle-slides. To this end we analyze the difference
of the two skeins in the annulus (relative to a pair of points in the boundary).

n∑
i=0

(−1)i[i + 1]




 i − i




(25)

The analysis of the diagram (25) is due to Lickorish, [16]. It is equal to:

(−1)n[n + 1]




n

n+1
−

n

n+1



. (26)

This diagram needs to be set in place. Using standard arguments as in [2]
yields that we only need to check handle-slides of the following form. Take a skein
corresponding to a colored spine, and separate one strand along an edge as in
Figure 4.

Now slide the strand over the added disk, locally the diagram looks like Fig-
ure 5.

Multiplying each of the diagrams in Figures 4 and 5 by
∑n

i=0(−1)i[i + 1]si,
taking their difference, and using the identity (25)=(26), we get a difference of
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k

k − 1

k

Figure 5

k

k − 1

v

u u

k

u

Figure 6

two terms like the one in Figure 6. In the first one the label u = n and the label
v = n + 1, and in the second one u = n + 1 and v = n.

Fusing to isolate the vertices of this diagram requires two more cross cuts than
the diagrams we have been working with up till now. We get the product of

(−1)n[n + 1]
1

θ(u, k, u)θ(u, k − 1, v)
Tet

(
u u v
1 k − 1 k

)
Tet

(
u v u
1 k k − 1

)
(27)

with the standard product,
6g−3∏
j=1

1
θ(u, u, kj)

∏
v

Tet
(

u u u
kv1 kv2 kv3

)
. (28)

The product (28) is smaller than a global constant, depending on the kj , times
tn(4g−2). It remains to ascertain that the term (27) is not too large. Direct
application of the inequality from Proposition 3, together with the fact that θ(a+
1, a, 1) = [a + 2], yields that ( regardless of whether u = n and v = n + 1, or
u = n + 1 and v = n) the absolute value of (27) is less than [n+1][n+2][k+1]√

[n+1][n+2][k][k+1]

which is less than a constant depending on k times t−2n.
As long as the genus of the surface is greater than 1, the full product goes to
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zero as n goes to infinity. So, in the limit, all handle-slides are annihilated. ¤

The case of a surface of genus 1 is slightly different. To get a nontrivial conver-
gent distribution we need to divide the partial sum

∑n
i=0(−1)i[i + 1]si by n. The

sequence is then Cauchy and defines a distribution on Kt(T 2). That is, the limit

YMD(α) = lim
n→∞YM

(
α ∗ 1

n

n∑
i=0

(−1)i[i + 1]si

)
(29)

exists and gives a well defined trace on the algebra of a torus with one boundary
component. This trace descends to a well defined trace on Kt(T 2).

The algebra Kt(T 2) is very nice for working examples. If (p, q) is a pair of
integers that are relatively prime there is an obvious skein s(p,q) in Kt(T 2) corre-
sponding to the (p, q) curve on the torus. Define a family of skeins based on (p, q)
by using the following iterative scheme: s(p,q)0 = 2s(0,0), that is, twice the empty
skein, and s(p,q)1 = s(p,q). For d > 1 define:

s(p,q)d
= s(p,q) ∗ s(p,q)d−1 − s(p,q)d−2 . (30)

Finally, if d = gcd{p, q}, let

c(p,q) = s(p/d,q/d)d
. (31)

In the special case of (0, 0) let c(0,0) = 2s(0,0) Using this notation the product in
Kt(T 2) is given by

c(p,q) ∗ c(u,v) = t

∣∣∣∣∣∣
p q
u v

∣∣∣∣∣∣
c(p+u,q+v) + t

−
∣∣∣∣∣∣
p q
u v

∣∣∣∣∣∣
c(p−u,q−v). (32)

The formula (32) is proven in [8].
There is a map

µ : Kt(T 2) → C∅ ⊕ CH1(T 2;Z2) (33)

introduced in [17]. Let

µ


∑

(p,q)

a(p,q)c(p,q)


 = a(0,0)∅+

∑
(p,q) 6=(0,0)

a(p,q)[(p, q)], (34)

where [(p, q)] is the Z2-homology class in H1(T 2;Z2) corresponding to d = gcd{p, q}
copies of a (p/d, q/d) curve on the torus. The map µ has as its kernel the sub-
module of all commutators. Hence any linear functional on the five dimensional
space that is the image of µ is a trace. It is easy to check that there is a three
dimensional family of traces that are invariant under diffeomorphism. In this set
up

YM

∑

(p,q)

a(p,q)c(p,q)


 = a(0,0). (35)
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This is the same trace as the one induced from the inclusion of Kt(T 2) into the
non-commutative torus [8].

Towards uniqueness of the Yang–Mills measure, it should be normalized, just
as the symplectic measure on moduli space needs to be normalized. It should also
be invariant under diffeomorphism, and be local. Locality is made up by two rules.
One for removing a point from a closed surface, and one for cutting a surface
with boundary along an arc. To be curt, locality for a closed surface Σg is the
statement that the Yang–Mills measure is derived from the Yang–Mills measure
on a surface with boundary, as we have done in this paper. That is, there is a
surjection Kt(Σg,1) → Kt(Σg) where Σg,1 is the result of removing an open disk
from Σg. The Yang–Mills measure on Kt(Σg) pulls back to YMD : Kt(Σg,1) → C.
If g > 1, the value of the map YMD on any α is YM (

α ∗∑
i(−1)i[i + 1]si

)
. If

g = 1, the map YMD is defined as in (29). The map YMD could be characterized
more abstractly than this, but it would lead to analytic complications that are
not appropriate for this exposition. When the surface Σ has boundary and κ is a
properly embedded arc in Σ, let Σ′ be the result of cutting Σ along κ. Let Nt(Σ) be
the linear subspace of Kt(Σ) spanned by skeins that are represented by admissibly
colored trivalent graphs that intersect κ in a single point of transverse intersection,
so that the edge intersecting κ carries a nonzero label. Let ι : Kt(Σ′) → Kt(Σ) be
the natural inclusion map. Then

Kt(Σ) = im(ι)⊕Nt(Σ). (36)

Locality is the statement that YM is zero on Nt(Σ) and its restriction to im(ι)
pulls back to YM on Kt(Σ′).

Theorem 3. Let Σ be a compact surface. The Yang–Mills measure is the unique,
local, diffeomorphism invariant trace on Kt(Σ) such that

• YM(∅) = 1 when Σ has boundary and when Σ is a torus;
• YM(∅) =

∑∞
i=0

1
[i+1](2g−2) when Σ is a closed surface of genus g > 1.

Proof. Since Kt(D2) = C, up to normalization there is only one trace. For more
complicated surfaces with boundary we argue by induction on the Euler character-
istic, using locality for surfaces with boundary for the inductive step. Uniqueness
for closed surfaces follows from the other form of locality. This trace is diffeomor-
phism invariant by Proposition 2. ¤

5. Roots of unity

Fusion no longer holds in Kt(M) when t is a root of unity. However, when t = e
πi
2r

then one can take a quotient, where an appropriate form of the fusion identity
is true. This can be done be taking the quotient of Kt(M) by the submodule
spanned by skeins corresponding to trivalent graphs where some edge carries the
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label r − 1. The quotient is denoted Kr,f (M). The reduced skein Kr,f (M) is a
central object in the construction of quantum invariants of 3-manifolds [9, 22, 23].

The Yang–Mills measure on a surface with boundary is obtained the same way
as for other values of t. Since [r] = 0, the iterative procedure for finding a skein
in the annulus that annihilates handle-slides terminates, to yield

r−2∑
i=0

(−1)i[i + 1]si. (37)

There is an induced trace,

YM : Kr,f (Σg) → C, (38)

constructed the same way as for other t except that there is no need to take a
limit because the formula is a finite sum.

Notice that Σg is the boundary of some handlebody Hg. There is an action of
Kr,f (Σg) on Kr,f (Hg) given by gluing skeins in Σg×I into a collar of the boundary
of Hg. The action gives a map

φ : Kr,f (Σg) → End(Kr,f (Hg)). (39)

As we are working at a root of unity, Kr,f (Hg) is a finite dimensional vector space.
Denote its dimension by d and let ω = YM(∅) =

∑r−2
i=0

1
[i+1]2g−2 .

Proposition 4. The Yang–Mills measure YM : Σg → C is given by:

YM(α) =
ω

d
tr(φ(α)). (40)

Proof. From [24] the map φ is injective and onto. Hence we can identify Kr,f (Σg)
with End(Kr,f (Hg)). The Yang–Mills measure is zero on commutators. Thus it
factors through

End(Kr,f (Hg))/[End(Kr,f (Hg)),End(Kr,f (Hg))]. (41)

This quotient is a 1-dimensional vector space. Hence any two linear functionals
that factor through this quotient are equal if they agree on the identity matrix.
The trace also vanishes on commutators, thus it factors through the commutator
quotient. The normalization in the formula causes the two induced linear func-
tionals to be the same. ¤

Next we address the cases of t = ±1. Since the formula for the measure of
a skein represented by a colored framed trivalent spine is an even function of t,
we only need to consider one value. The value t = −1 is more convenient as the
correspondence between K−1(F ) and the SU(2)-characters of π1(F ) is simpler.
The skein of the disjoint union of curves ci corresponds to the function that sends
the representation ρ to ∏

i

−tr(ρ(ci)). (42)
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Theorem 4. The Yang–Mills measure is well defined on K±1(Σg) for g > 1. Let
sc be the skein in Kt(Σg) corresponding to an admissibly colored trivalent spine of
Σg,1. If tn, with |tn| 6= 1, is a sequence of complex numbers converging to ±1 then

lim
n→∞YMtn

(sc) = YM±1(sc). (43)

Proof. Recall (23) that the measure of a skein sc in Ktn
(Σg) is given by

YMtn
(sc) = lim

k→∞

k∑
i=0

(−1)i[i + 1]
6g−3∏
j=1

1
θ(i, i, kj)

∏
v

Tet
(

i i i
kv1 kv2 kv3

)
, (44)

and YM−1(sc) is given by the same formula as (44) except that quantized integers
are replaced by ordinary integers in all the quantities involved.

The quantities for working with skeins in K−1(F ) are the same as the ones for
|t| 6= 1 except that quantized integers are replaced by ordinary integers. These
formulas are the limits as t → −1 of the values we have been using. Revisiting the
fundamental estimate (20), we see that,∣∣∣∣Tet

(
i i i
k1 k2 k3

)∣∣∣∣√|θ(i, i, k1)θ(i, i, k2)θ(i, i, k3)|
≤

√
θ(k1, k2, k3)

(−1)i+k3(k3 + 1)(i + 1)
(45)

from which we conclude that the right hand side is less than or equal to

C(k1, k2, k3)√
i + 1

. (46)

Considering the series for the Yang–Mills measure of a spine, comparison to the
p-series implies that it converges as long as the surface has genus greater than 1.
Similarly, the Yang–Mills measure is invariant under handle-slides.

In order to prove the convergence statement (43) choose ε > 0. The funda-
mental estimate allows us to find K such that, for any tn as well as for t = −1,
the absolute value of the tail of the sum (44) starting with i = K is less than
ε/4. Since the terms of the series for YMtn

(sc) converge to the respective terms
of the series for YM−1(sc) as tn → −1, there exists δ > 0 such that if |tn + 1| < δ
then the absolute value of the difference of the first K terms of both series is less
than ε/2. Finally, choose N so that n ≥ N implies that |tn + 1| < δ, and use the
triangle inequality to see that

|YMtn
(sc)− YM−1(sc)| < ε (47)

for n ≥ N . ¤

For a surface of genus 1 we divide the partial sums, as before, by the number
of terms in the sum, and the series then converges.

Theorem 5. The Yang–Mills measure at t = −1 is the symplectic measure on
M(Σg).
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Proof. Using Weyl orthogonality to compute Witten’s Yang–Mills measure for a
surface of area ρ yields that its value on the spine sc is given by the series

∞∑
i=0

(−1)i(i + 1)e−ρc2(i)

6g−3∏
j=1

1
θ(i, i, kj)

∏
v

Tet
(

i i i
kv1 kv2 kv3

)
, (48)

where the edges of sc carry colors ki, and kvi
are the colors of the edges ending

at the vertex v, and c2(i) is the value of the quadratic Casimir operator on the
(i + 1)-dimensional irreducible representation of SU(2). As both Witten’s series
and our series converge absolutely, and Witten’s formula converges term by term
to our formula as ρ → 0, the limit of Witten’s Yang–Mills measure is equal to our
Yang–Mills measure at t = −1. Finally, Forman [7] showed that the limit as ρ → 0
of Witten’s measure is the symplectic measure on M(Σg), normalized as in [7]. ¤

Suppose now that |t| = 1 and t is not a root of unity. Evaluation of the Yang–
Mills measure on the empty skein on a surface of genus g yields

∑∞
i=0

1
[i+1]2g−2 . As

t is not a root of unity the number [i + 1]2g−2 gets arbitrarily close to 1 infinitely
often, which means that the series does not converge. Therefore the Yang–Mills
measure does not exist away from roots of unity on the unit circle.
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