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n ]G has a finite SAGBI basis if and only if G is generated

by reflections.
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1. Introduction

Let k[x] = k[x1, . . . , xn] be the polynomial ring in n variables over a field k and
let N denotes the set of non-negative integers. If a = (a1, . . . , an) ∈ Nn, we shall
write xa in place of xa1

1 . . . xan
n . We begin by recalling the following:

Definition 1.1. A term order in k[x] is a total order Â on Nn such that
(i) a Â (0, . . . , 0) for every nonzero a ∈ Nn, and
(ii) Â is compatible with addition, i.e., if a Â b then a + c Â b + c for any

a,b, c ∈ Nn. (Equivalently, if a Â b and and c º d then a + c Â b + d.)

A prototypical example is the usual lexicographic order on Nn; other examples
can be found in, e.g, [3, Section 1.2] and [16, p. 4]. Given a non-zero element
f =

∑
cax

a ∈ k[x], we define the initial exponent in(f) of f to be the largest
exponent a (with respect to Â) such that ca 6= 0. If R is a subring of k[x] then we
define

In(R) = {in(f) : 0 6= f ∈ R} . (1)

It is easy to see that In(R) is a subsemigroup of Nn. If {in(fλ) |λ ∈ Λ} is a
generating set for this semigroup, where each fλ ∈ R, then R = k[fλ |λ ∈ Λ]. In
fact, a simple algorithm, due to Kapur–Madlener [10] and Robbiano–Sweedler [14],
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expresses a given nonzero element α ∈ R as a polynomial in fλ as follows. Write
in(α) = d1in(fλ1) + · · ·+ drin(fλr

) for some d1, . . . , dr ∈ N. Dividing the leading
coefficient of α by the leading coefficient of fd1

λ1
. . . fdr

λr
, we obtain a c ∈ k such

that the leading term of α is the same as the leading term of cfd1
λ1

. . . fdr

λr
. Set

α1 = α − cfd1
λ1

. . . fdr

λr
. If α1 = 0 then we are done; otherwise we replace α by α1

and proceed inductively. Since α1 has a smaller leading exponent than α, and
Nn is well ordered with respect to Â (see [3, Corollary 2.4.6]), this process will
terminate, resulting in an expression for α as a polynomial in fλ. We shall refer
to this procedure as the subduction algorithm.

The subduction algorithm is analogous to expressing an element of an ideal
of k[x] in terms of a Gröbner basis; for this reason a generating set for the semi-
group In(R) is called a SAGBI basis of R, where SAGBI stands for “Subalgebra
Analog to Gröbner Bases for Ideals”. (The terms “SAGBI basis” and “subduction
algorithm” were introduced by Robbiano and Sweedler in [14].) The analogy with
Gröbner bases is not perfect though because not every subring R ⊂ k[x] has a
finite SAGBI basis; see e.g., [14, 1.20 or 4.11], or [16, pp. 99–100]. It is an im-
portant open problem to determine which subrings R of k[x] have a finite SAGBI
basis; see [16, p. 100].

We will now consider a parallel situation, where R is a subring of the ring
k[x±1] = k[x±1

1 , . . . , x±1
n ] of Laurent polynomials in n variables over k. Our first

task is to define a term order in k[x±1].

Definition 1.2. By a term order in k[x±1] we shall mean a total order Â on Zn

compatible with addition. That is, if a Â b then a+c Â b+c for any a,b, c ∈ Zn.

Our requirements on Â are considerably weaker here than in Definition 1.1. In
fact, conditions (i) and (ii) of Definition 1.1 cannot both hold in an ordered group;
thus we have little choice but to drop (i).

Given a term order in k[x±1], we can define the initial exponent in(f) for every
nonzero f ∈ R and the semigroup of initial exponents In(R) in the same way as
before; cf. (1). We shall say that {fλ |λ ∈ Λ} ⊂ R is a SAGBI basis of R if

(a) in(fλ) generate In(R) as a semigroup, as λ ranges over Λ, and
(b) the subduction algorithm described above terminates for every α ∈ R.

Note that the steps in the subduction algorithm are not always uniquely deter-
mined. Each step involves writing an element of In(R) as a nonnegative integral
linear combination of in(fλ), and there may be more than one way to do this. Con-
dition (b) requires that the algorithm should terminate no matter what choices
are made.

The question we would like to address is:

Question 1.3. Which subrings R of the Laurent polynomial ring k[x±1] have a
finite SAGBI basis?

At first glance, this is a rather odd question to ask. First of all, we have to
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decide whether or not In(R) is finitely generated, and as we pointed out above, this
is an open problem even in the special case where R is contained in the polynomial
ring k[x]. Secondly, a priori the existence of a finite SAGBI basis depends on the
term order Â. Thirdly, for the purpose of performing computations, we would like
the answer to be positive. On the other hand, since Zn is not well ordered with
respect to Â, there is no reason to expect the subduction algorithm to terminate.
Thus even in those cases where we can establish that In(R) is finitely generated,
the answer appears likely to be negative.

The purpose of this paper is to show that, notwithstanding these considerations,
Question 1.3 can be completely answered in the case where R is the invariant ring
for a multiplicative group action and that for many rings of this type, the answer
is, indeed, positive, without any assumptions on the base field k or on the term
order Â.

Before stating our main results, we need to introduce some terminology. Let G
be a finite subgroup of GLn(Z). Recall that the natural (multiplicative) action of G
on k[x±1] = k[x±1

1 , . . . , x±1
n ] is defined by linearly extending the formula g(xa) =

xg(a) to all of k[x±1]; here, as usual, xa = xa1
1 . . . xan

n is a Laurent monomial.
Recall also that g ∈ GLn(R) is called a reflection if g2 = id, and the eigenvalues of
g are −1 (with multiplicity 1) and 1 (with multiplicity n − 1). We shall say that
G ⊂ GLn(R) is a reflection group if G is generated by reflections.

Theorem 1.4. Let R = k[x±1]G be the ring of multiplicative invariants for a finite
subgroup G of GLn(Z). Then the semigroup In(R) is finitely generated if and only
if G is a reflection group.

To place Theorem 1.4 in the context of invariant theory, consider the linear
action a finite subgroup H of GLn(k) on the polynomial ring k[x] = k[x1, . . . , xn],
where k is a field whose characteristic is prime to |H|. Recall that a nontrivial
element g of GLn(k) is called a pseudo-reflection if g has finite order and 1 is an
eigenvalue of g of multiplicity n− 1. (Note that for k ⊂ R the notions of reflection
and pseudo-reflection coincide.) The celebrated theorem of Chevalley, Shephard
and Todd asserts that H is generated by pseudo-reflections if and only if the ring
of invariants k[x]H is itself a polynomial ring; cf. e.g., [1, V.5] or [15, 2.4] . A
variant of this result in the multiplicative context is due to Farkas, who showed
that the multiplicative invariant ring k[x±1]G for a finite subgroup G ⊂ GLn(Z) is
a generalized polynomial ring (i.e., has the form k[u±1

1 , . . . , u±1
m , w1, . . . , wl], where

u1, . . . , um, w1, . . . , wl are independent variables) if and only if G is generated by
reflections and the G-lattice Zn/(Zn)G is a weight lattice in a suitable sense; see [5]
and [6]. (Farkas assumed k = C.) Theorem 1.4 may be viewed as an alternative
and perhaps complementary, analogue of the Chevalley–Shephard–Todd theorem
in the multiplicative setting. (Farkas’ results have been recently refined and ex-
tended by Lorenz [12], [13], who showed, in particular, that if G ⊂ GLn(Z) is a
reflection subgroup then k[x±1]G is a semigroup algebra; see [13, Theorem 2.4].)
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Our second main result is the following:

Theorem 1.5. Let G be a finite reflection subgroup of GLn(Z). Then the invari-
ant ring R = k[x±1

1 , . . . , x±1
n ]G has a finite SAGBI basis.

Moreover, we will show that if (Zn)G = (0) then R = k[x±1]G has a canonical
“minimal” SAGBI basis, independent of the term order Â; see Remark 7.1.

Of course, if G is not generated by reflections then, by Theorem 1.4 the invariant
ring k[x±1]G cannot have a finite SAGBI basis. Thus Theorems 1.4 and 1.5 can
be combined to give a complete answer to Question 1.3 in the case where R is a
ring of multiplicative invariants:

Theorem 1.6. Let R = k[x±1]G be the ring of invariants for the multiplicative
action of a finite group G ⊂ GLn(Z). Then the following are equivalent:

(a) In(R) is finitely generated as a semigroup,
(b) R has a finite SAGBI basis, and
(c) G is a reflection group.

We remark that the properties of having a finitely generated semigroup of
leading exponents or a finite SAGBI basis are not intrinsic to R = k[x±1]G; they
depend on the embedding of R in k[x±1]. On the other hand, Theorems 1.4-1.6
require no assumptions on the term order Â or the base field k. In fact, k can
even be replaced by a rather general ring; see Remark 7.2.

Our proofs of Theorems 1.4 and 1.5 (presented, respectively, in Sections 3-4
and 5) are quite elementary; they rely only on a few simple properties of polyhedral
cones and reflection groups in Rn. Our background references for these subjects
are, respectively, Ewald [4, Part 1] and Bourbaki [1, Chapter V]; some preliminary
definitions and results can also be found in Section 2.

To state our last main result, consider the natural (permutation) action of a
finite group H ⊂ Sn on the polynomial ring k[x] = k[x1, . . . , xn]. Göbel [7, 5.6]
showed that the invariant ring R = k[x]H has a finite SAGBI basis, with respect
to the usual lexicographic term order in k[x], if and only if H = Sn1 × · · · × Snr

for some partition n1 + · · ·+ nr = n. Göbel further conjectured [8, p. 65] that the
same should be true for an arbitrary term order in the sense of Definition 1.1 and
proved this conjecture in the case where H = An is the alternating group [9]. In
Section 6 we will prove Göbel’s conjecture, as an application of our Theorem 1.4:

Theorem 1.7. Let Â be a term order in k[x] = k[x1, . . . , xn] and let H ⊂ Sn

be a permutation group. Then the ring of invariants k[x1, . . . , xn]G has a finite
SAGBI basis with respect to Â if and only if H = Sn1×· · ·×Snr

for some partition
n1 + · · ·+ nr = n.

Independent proofs of Theorem 1.7 were recently obtained by Kuroda [11] and
Thiéry–Thomassé [17].
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2. Preliminaries

2.1. Polyhedral cones

We define the positive span Pos(X) of a subset X of Rn to be the set of points of
the form r1v1 + · · ·+rmvm, where m ranges over the positive integers, v1, . . . ,vm

range over X and r1, . . . , rm range over the non-negative reals.
If X = {v1, . . . ,vn} is a finite subset of Rn (respectively, Zn), then Pos(X) is

called a polyhedral cone (respectively an integral polyhedral cone). We shall write
Pos(v1, . . . ,vn) in place of Pos({v1, . . . ,vn}).

Lemma 2.1. (a) C ⊂ Rn is a polyhedral cone (respectively an integral polyhedral
cone) if and only if there exist finitely many linear forms (respectively, linear forms
with integer coefficients) l1, . . . , lm on Rn such that

C = {v ∈ Rn | l1(v) ≥ 0, . . . , lm(v) ≥ 0} .

(b) A polyhedral cone is closed in Rn.

Proof. (a) is proved in [4, Theorem V.2.10]. (b) is an immediate consequence of
(a). ¤

Lemma 2.2. Let C = Pos(v1, . . . ,vm) be an integral polyhedral cone for some
vi = (xi1, . . . , xin) ∈ Zn. Denote the (positive) least common multiple of the non-
zero minors of the m×n-matrix (xij) by δ. Then for any lattice point w ∈ C ∩Zn

there exist nonnegative integers n1, . . . , nr such that δw = n1v1 + · · ·+ nmvm.

Proof. By Carathéodory’s theorem (see, e.g., [4, Theorem I.2.3(b)]), we can write w
as a positive linear combination of a linearly independent subset of {v1, . . . ,vm}.
Thus we may assume without loss of generality that v1, . . . ,vm are linearly inde-
pendent and w = r1v1 + · · · + rmvm, where r1, . . . , rm > 0. Now Cramer’s rule
tells us that |det(M)|(r1, . . . , rm) ∈ Zm for some nonsingular m × m-submatrix
M of (xij). Moreover, since r1, . . . , rm > 0 we have

|det(M)|(r1, . . . , rm) ∈ Nm .

Consequently, δ(r1, . . . , rm) ∈ Nm, as claimed. ¤

2.2. Saturated semigroups

We shall call a subsemigroup S of Zn saturated if na ∈ S implies a ∈ S for any
a ∈ S and any integer n ≥ 1.

Lemma 2.3. Let S be a saturated subsemigroup of Zn. Then S = Pos(S) ∩ Zn.
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Proof. Clearly S ⊂ Pos(S) ∩ Zn. To prove the opposite inclusion, note that by
Lemma 2.2, for every w ∈ Pos(S) ∩ Zn there exists a positive integer δ such that
δw ∈ S. Since S is saturated, w ∈ S, as claimed. ¤

Proposition 2.4. Let S be a saturated subsemigroup of Zn. Then the following
are equivalent:

(a) S is finitely generated (as a semigroup),
(b) Pos(S) is an integral polyhedral cone.

Proof. (a) =⇒ (b): If S is generated by x1, . . . ,xm then clearly

Pos(S) = Pos(x1, . . . ,xm)

is an integral polyhedral cone.
(b) =⇒ (a): By Lemma 2.3, S = Pos(S) ∩ Zn. The desired result now follows

from Gordan’s Lemma [4, V.3.4] which says that Pos(S)∩Zn is finitely generated.
¤

2.3. The sets AÂ and XÂ

Definition 2.5. Given a finite subgroup G of GLn(Z), we define

AÂ(G) = {a ∈ Zn |a º g(a) for any g ∈ G}
and

XÂ(G) = Pos(AÂ(G)) .

If the reference to G is clear from the context, we shall write AÂ and XÂ in place
of AÂ(G) and XÂ(G) respectively.

Lemma 2.6. Let G be a finite subgroup of GLn(Z) and let R = k[x±1]G. Then
(a) In(R) = AÂ(G).
(b) In(R) is a saturated subsemigroup of Zn.
(c) In(R) is a finitely generated semigroup if and only if XÂ(G) is an integral

polyhedral cone.

Proof. (a) Suppose a ∈ In(R), i.e., a = in(f) for some f ∈ R. Then xa enters into
f ∈ R with a non-zero coefficient, and hence, so does xg(a) for every g ∈ G. Since
xa is the initial term of f , a º g(a) for any g ∈ G. Hence, a ∈ AÂ(G).

Conversely, suppose a ∈ AÂ(G). Then f =
∑

xg(a) is a non-zero element of R
and a = in(f) ∈ In(R).

(b) follows from (a), since AÂ(G) is clearly a saturated subsemigroup of Zn;
cf. Definition 2.5.

(c) is immediate from (b) and Proposition 2.4. ¤
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We remark that Lemma 2.6(b) fails if we consider a linear (rather than a
multiplicative) action of a finite group G, either on the polynomial ring k[x]
or on the Laurent polynomial ring k[x±1]. For example, suppose n = 1, and
G = {1, τ} ' Z/2Z acts by τ(x1) = −x1. Then neither In(k[x]G) = 2N nor
In(k[x±1]G) = 2Z is a saturated subsemigroup of Z.

2.4. Fundamental sets

Definition 2.7. Suppose a group G is acting on a set E. We shall call F ⊂ E
a fundamental set for this action if each G-orbit in F intersects E in exactly one
point. Equivalently, F is a fundamental set for the G-action on E if the following
conditions are satisfied.

(i) ∪g∈G g(F ) = E and
(ii) If g(a) ∈ F for some a ∈ F and g ∈ G, then g(a) = a.

Note the we are not assuming anything about the topology of F (or E); for
this reason we are prefer the term “fundamental set” to the more commonly used
“fundaments region” or “fundamental domain”.

Lemma 2.8. Let G be a finite subgroup of GLn(Z).
(a) AÂ is a fundamental set for the G-action on Zn.
(b) If XÂ is an integral polyhedral cone then XÂ is a fundamental set for the

G-action on Rn.

Proof. (a) Immediate from the definition of AÂ, since every G-orbit in Zn has a
unique maximal element with respect to Â.

(b) To prove (i), set V = ∪g∈G g(XÂ). Then V contains ∪g∈G g(AÂ), which
is equal to Zn by part (a). Since V is a positive cone, i.e., rV = V for every real
number r > 0, V contains Qn. Since V is closed in Rn (cf. Lemma 2.1(b)), this
implies V = Rn, as claimed.

To prove (ii), suppose g(v) ∈ XÂ for some v ∈ XÂ; in other words, v ∈
XÂ ∩ g−1(X). We want to show g(v) = v. By Lemma 2.1(a), XÂ ∩ g−1(XÂ)
is an integral polyhedral cone, i.e., XÂ ∩ g−1(XÂ) = Pos(v1, . . . ,vm) for some
v1, . . . ,vm ∈ Zn. Thus it is enough to show that v1, . . . ,vm are fixed by g.
In other words, we may assume without loss of generality that v = vi for some
i = 1, . . . , m. But then v ∈ XÂ ∩ Zn = AÂ (cf. Lemma 2.3), and the desired
identity, g(v) = v, follows from part (a). ¤

Corollary 2.9. AÂ (and thus XÂ) cannot be covered by a finite union of hyper-
planes in Rn.

Proof. Assume the contrary: AÂ ⊂ H1 ∪ · · · ∪Hr, where each Hi is a hyperplane.
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By Lemma 2.8(a), Zn = ∪g∈G g(AÂ). Thus Zn is covered by the (finitely many)
hyperplanes g(Hi), where g ∈ G and 1 ≤ i ≤ r, a contradiction. ¤

3. Proof of Theorem 1.4: the “if” direction

In view of Lemma 2.6(c), it suffices to prove the following:

Proposition 3.1. Suppose G is a finite reflection subgroup of GLn(Z). Then XÂ

is an integral polyhedral cone.

Proof. We will denote the reflections in G by s1, . . . , sm ∈ G. Let ei be an
eigenvector of si associated to the eigenvalue −1. Since si ∈ GLn(Z), we can
choose ei ∈ Zn; moreover, after possibly replacing ei by −ei, we may assume
ei º (0, . . . , 0). Define linear forms l1, . . . , lm : Rn −→ R by li(v) = <v, ei>,
where

<x,y> =
∑
g∈G

g(x) · g(y) . (2)

is a G-invariant positive-definite bilinear form on Rn. (Here x · y is the standard
inner product on Rn.) Note that si is an orthogonal (with respect to < · , ·>)
reflection in the hyperplane Hi = {v ∈ Rn | li = 0} and that the linear forms li
have integer coefficients.

Let C = {v ∈ Rn | li(v) ≥ 0 for i = 1, . . . , m}. By Lemma 2.1(a), C is an
integral polyhedral cone. Our goal is to prove that XÂ = C.

First we will show that XÂ ⊂ C. Recall that XÂ is defined as Pos(AÂ); thus
it is enough to show that AÂ ⊂ C. Assume the contrary: there exists a v ∈ AÂ

such that v 6∈ C, i.e., li(v) < 0 for some i = 1, . . . , m. Then by our choice of ei

si(v) = v − 2
li(v)

<v,v>
ei Â v ,

contradicting v ∈ AÂ. This proves that XÂ ⊂ C.
To prove the opposite inclusion, recall that by Corollary 2.9 XÂ is not contained

in a finite union of hyperplanes. Since XÂ ⊂ C, neither is C. Thus

C0 = {v ∈ Rn | li(v) > 0 for i = 1, . . . , m}
is non-empty and is a chamber for the collection of hyperplanes H1, . . . ,Hm; cf. [1,
V.3.1]. Consequently, C = C0 (see [1, V.1.3, formula (6)]) and C ⊂ Rn is a
fundamental set for the G-action on Rn (see [1, V.3.3, Theorem 2]).

We are now ready to show that C ⊂ XÂ. Suppose C = Pos(v1, . . . ,vt) for
some v1, . . . ,vt ∈ Zn. Then it is enough to show that each vi lies in AÂ. Set
v = vi and choose a g ∈ G such that g(v) ∈ AÂ; cf. Lemma 2.8(a). Since
AÂ ⊂ XÂ ⊂ C, both v and g(v) lie in C. Since C is a fundamental set for the
G-action on Rn, this implies v = g(v). In particular, v ∈ AÂ, as claimed. This
completes the proof of Proposition 3.1. ¤
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4. Proof of Theorem 1.4: the “only if” direction

Assume that In(k[x±1]G) is a finitely generated semigroup for some G ⊂ GLn(Z).
We want to show that G is generated by reflections. By Lemma 2.6(c), XÂ is an
integral polyhedral cone. Thus in order to complete the proof of Theorem 1.4 it
suffices to establish the following:

Proposition 4.1. Suppose X is a fundamental set for the natural action of a
finite subgroup G ⊂ GLn(R) on Rn. If X is a polyhedral cone then G is generated
by reflections.

For the purpose of proving Theorem 1.4, we only need a special case of Proposi-
tion 4.1, where G ⊂ GLn(Z) and X = XÂ(G) is an integral polyhedral cone. Note
however, that if G ⊂ GLn(Z) and X(G) is a polyhedral cone then Propositions 3.1
and 4.1 imply that X(G) is automatically integral.

The rest of this section will be devoted to proving Proposition 4.1. Let < · , ·>
be the G-invariant positive-definite bilinear from on Rn given by (2).

Since X is a fundamental set for the G-action on Rn, X is not contained in a
hyperplane; thus dim(X) = n. Let h1, . . . , hm be the (closed) facets (i.e., (n− 1)-
dimensional faces) of X, Hi = SpanR(hi) be the hyperplane in Rn containing hi,
and si be the orthogonal (with respect to < · , ·>) reflection in Hi.

Lemma 4.2. (a) The boundary of X is contained in Y = ∪g(X) 6=Xg(X).
(b) si ∈ G for any i = 1, . . . , m.

Proof. (a) Assume the contrary: a boundary point v of X does not lie in Y . Since
Y is a closed subset of Rn (cf. Lemma 2.1(b)), B ∩ Y = ∅ for some open ball B
centered at v. Since v is a boundary point of X (cf. Lemma 2.1(b)), there exists
a w ∈ B−X. Thus w 6∈ Y ∪X. On the other hand, since X is a fundamental set
for the G-action on Rn, we know that Y ∪X = Rn, a contradiction.

(b) Suppose v lies in a facet hi of X. By part (a), g−1(v) ∈ X, for some
1 6= g ∈ G. Since X is a fundamental set for G, this is only possible if g−1(v) = v.
In other words, every facet hi lies in the union of the linear spaces Lg, where

Lg = (Rn)g = {x ∈ Rn | g(x) = x} (3)

and g ranges over those g ∈ G for which g(X) 6= X. But then each supporting
hyperplane Hi also lies in ∪g∈GLg. Since Hi cannot be covered by a finite number
of proper linear subspaces, we conclude that Hi ⊂ Lgi

for some 1 6= gi ∈ G. Since
dim(Hi) = n− 1 and dim(Lgi

) ≤ n− 1, this is only possible if Hi = Lgi
. Since gi

preserves < · , ·> and fixes each point of Hi, we conclude that gi is the orthogonal
reflection in Hi, i.e., gi = si. Thus si ∈ G, as claimed. ¤

We are now ready to complete the proof of Proposition 4.1. Let G0 be the
subgroup of G generated by s1, . . . , sm, and let F be the collection of hyperplanes
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of the form g0(Hi), where g0 ∈ G0 and i = 1, . . . , m. Note that F is a G0-invariant
collection of hyperplanes in Rn and that G0 contains the orthogonal reflection
g0sig

−1
0 in the hyperplane g0(Hi).

Since X is a fundamental set for the G-action on Rn, it cannot be covered by
finitely many hyperplanes. Thus we can choose a point v in X such that g(v) 6= v
for any 1 6= g ∈ G. In particular v 6∈ H for any hyperplane H ∈ F ; otherwise
s(v) = v, where s ∈ G0 ⊂ G is the orthogonal reflection in H. Now let C be the
(unique) chamber, relative to the collection of hyperplanes F , such that v ∈ C.
Since H1, . . . , Hm ∈ F , we have C ⊂ X. Moreover, since X is closed in Rn (cf.
Lemma 2.1(b)), C ⊂ X. By [1, Lemma V.3.1.1], C is a fundamental set for the
action of G0 on Rn. In particular, every point in Rn can be written in the form
g0(c) for some c ∈ C and g0 ∈ G0.

We claim that G = G0. Indeed, suppose g ∈ G. Write g(v) as g0(c) for some
c ∈ C. Since X is a fundamental set for the action of G on Rn and both v and
c = g−1

0 g(v) lie in X, we conclude that v = c, or equivalently g−1
0 g ∈ StabG(v).

But StabG(v) = {1} by our choice of v. Thus g = g0 ∈ G0. This shows that
G = G0, i.e., G is generated by reflections. ¤

5. Proof of Theorem 1.5

We now return to the situation of Section 3; we begin by recalling the notations
introduced there. Let G be a finite subgroup of GLn(Z). Denote the reflections
contained in G by s1, . . . , sm; we shall assume that these elements generate G. For
each i = 1, . . . , m choose an eigenvector ei ∈ Zn of si associated to eigenvalue −1.
After possibly replacing ei by −ei, we may assume ei Â (0, . . . , 0) for every i. We
fix a G-invariant positive-definite bilinear form < · , ·> defined over Z; cf. (2). For
i = 1, . . . , m, set li(v) = <v, ei> and Hi = {v ∈ Rn | li(v) = 0}; note that each li
is a linear form on Rn with integer coefficients. In Section 3 we showed that

C0 = {v ∈ Rn | li(v) > 0 for i = 1, . . . , m}
is a chamber for the collection of hyperplanes H1, . . . , Hm and

XÂ = C0 = {v ∈ Rn | li(v) ≥ 0 for i = 1, . . . , m}. (4)

After possibly renumbering the reflections s1, . . . , sm, we may assume that the
hyperplanes H1, . . . , Ht are the walls of C0 for some t ≤ m. That is,

XÂ = {v ∈ Rn | li(v) ≥ 0 for i = 1, . . . , t}. (5)

Lemma 5.1. <ei, ej> ≤ 0 for any distinct i, j = 1, . . . , t.

Proof. Since AÂ is not contained in a finite union of hyperplanes (see Corollary 2.9),
there exists a point v ∈ AÂ ∩ C0. Now by the definition of AÂ,

ni = si(v)− v = −2
li(v)

<v,v>
ei
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is an inward normal vector to Hi. Note that li(v) > 0, because v lies in C0. Thus
ni is a negative multiple of ei for every i = 1, . . . , t. The lemma now follows from
by [1, Proposition V.3.4.3(iii)], which says that <ni,nj> ≤ 0. ¤

Lemma 5.2. Suppose v ∈ Zn. Then the following are equivalent:
(a) g(v) = v for every g ∈ G,
(b) both v and −v lie in AÂ,
(c) both v and −v lie in XÂ,
(d) li(v) = 0 for every i = 1, . . . , m,
(e) li(v) = 0 for every i = 1, . . . , t.

Proof. (a) ⇔ (b): By Definition 2.5, v ∈ AÂ iff v º g(v) for every g ∈ G. Thus
−v ∈ AÂ iff v ¹ g(v) for every g ∈ G, and v,−v both lie in AÂ iff v = g(v) for
every g ∈ G, i.e., v ∈ (Zn)G.

(b) ⇔ (c) follows from the fact that AÂ = XÂ ∩ Zn; cf. Lemma 2.3.
(c) ⇔ (d) follows from (4).
(c) ⇔ (e) follows from (5). ¤

Lemma 5.3. (a) (Rn)G = SpanR(e1, . . . , em)⊥ = SpanR(e1, . . . , et)⊥, where W⊥

denotes the orthogonal complement of a subspace W in Rn.
(b) (Zn)G = (0) if and only if e1, . . . , et span Rn.

Proof. (a) is an immediate consequence of Lemma 5.2. (b) Follows from (a) and
the fact that the vector space (Rn)G is defined over Q. ¤

Remark 5.4. In the language of [4], Lemma 5.3(b) can be restated as follows:
(Zn)G = (0) if and only if XÂ has an apex at (0); cf. [4, Lemma V.2.2(c)].

Proposition 5.5. AÂ ∩ SpanR(e1, . . . , et) is well ordered with respect to Â.

Proof. (a) Assume the contrary: there exists an infinite strictly decreasing sequence

a1 Â a2 Â a3 Â . . . (6)

in AÂ ∩ SpanR(e1, . . . , et). Note that l1(ai) is a non-negative integer for every
i ≥ 1. Thus we can choose i1 ≥ 1 so that l1(ai1) ≤ l1(ai) for every i ≥ 1. Now
choose i2 so that l1(ai2) ≤ l1(aj) for all j ≥ i1 + 1, i3 so that l1(ai2) ≤ l1(ah) for
all h ≥ i2 +1, etc. Thus after replacing the sequence (6) by a subsequence we may
assume that l1(a1) ≤ l1(a2) ≤ . . . . Proceeding inductively (with l1 replaced by
l2, then l3, etc.), we conclude that, after replacing (6) by a subsequence, we may
assume lj(ai+1) ≥ lj(ai) for every j = 1, . . . , t and every i ≥ 1.

Now consider the element b = a2 − a1 ≺ (0, . . . , 0). Since we are assuming
that a1 and a2 lie in SpanR(e1, . . . , et), we can write b = r1e1 + · · · + rtet,
where r1, . . . , rt are rational numbers. Since lj(b) ≤ 0 for every j = 1, . . . , t, and
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<ei, ej> ≤ 0 whenever i 6= j, [1, Lemma V.3.5.6] says that each ri ≥ 0, i.e.,
ri = pi

q , where p1, . . . , pt, q ∈ N and q 6= 0. Now

qb = p1e1 + · · ·+ ptet .

The left hand side ≺ (0, . . . , 0), and the right hand side is º (0, . . . , 0) by our
choice of the vectors ei. This contradiction shows that AÂ is well ordered. ¤

Corollary 5.6. Suppose G ⊂ GLn(Z) is a finite reflection group and (Zn)G = (0).
If the initial exponents of the elements fλ ∈ k[x±1]G generate In(k[x±1]G) then
{fλ} is a SAGBI basis of k[x±1]G.

Proof. By Lemma 5.3(b), SpanR(e1, . . . , et) = Rn and by Proposition 5.5

AÂ = AÂ ∩ SpanR(e1, . . . , et)

is well ordered. The subduction algorithm will create a strictly decreasing sequence
of leading terms in AÂ; this sequence has to terminate. Thus the algorithm will
terminate as well. ¤

Note that by Theorem 1.4 there exists a finite collection of elements fλ ∈
k[x±1]G such that in(fλ) generate In(k[x±1]G) as a semigroup. Thus in the case
where (Zn)G = (0), Theorem 1.5 is an immediate consequence of Corollary 5.6.
We now turn to the general case, i.e., to the case where (Zn)G may not be trivial.

Example 5.7. Let n = 1 and G = {1}, so that k[x±1]G = k[x±1] (here x = x1).
Of course, ZG = Z 6= (0). The initial exponents, 1 and −1, of the elements f1 = x
and f2 = x−1 − x−2 generate In(k[x±1]G) = Z. We also have k[x±1]G = k[x±1] =
k[f1, f2]. Assume for simplicity that k is a field of characteristic 0.

We will now attempt to apply the subduction algorithm to express α = x−1 as
a polynomial in f1 and f2. The first step yields α1 = α − f2 = x−2, the second
α2 = α1 − f2

2 = 2x−3 − x−4, etc. If we carry our the subduction algorithm by
subtracting off scalar multiple of a power of f2 at each stage, the “remainder” αi

after i steps will have leading exponent−i−1, and the algorithm will not terminate.
We conclude that f1 and f2 do not form a SAGBI basis of k[x±1] = k[x±1]G. ¤

Example 5.7 shows that Corollary 5.6 fails if (Zn)G 6= (0). Fortunately, it can
be salvaged in this more general situation, if we choose our elements fλ a little
more carefully.

Recall that XÂ = Pos(AÂ) is an integral polyhedral cone. Write XÂ =
Pos(v1, . . . ,vr), where v1, . . . ,vr ∈ XÂ ∩ Zn = AÂ, and let

fi =
∑
g∈G

xg(vi) .

The following Proposition completes the proof of Theorem 1.5.
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Proposition 5.8. f1, . . . , fr form a SAGBI basis of k[x±1]G.

Proof. By our construction the initial forms in(f1), . . . , in(fr) generate AÂ =
In(k[x±1]G) as a semigroup. To show that they form a SAGBI basis, suppose
we apply the subduction algorithm to express a given element α ∈ k[x±1]G in
terms of f1, . . . , fr. This algorithm will produce a sequence of elements α0 =
α, α1, α2, α3 . . . with leading terms

in(α0) Â in(α1) Â in(α2) Â . . . . (7)

Our goal is to show that this sequence will terminate. The idea of the proof is
to consider the orthogonal decomposition in(αi) = bi + zi, where bi ∈ (Rn)G

and zi ∈ SpanR(e1, . . . , et); cf. Lemma 5.3(a). We would then like to show that
the sequence {zi} terminates because of Proposition 5.5 and the sequence {bi}
terminates because it can only assume finitely many values. Since we are working
over Z, rather than R, this needs to be done with some care (in particular, the bi ∈
(Rn)G and zi ∈ SpanR(e1, . . . , et) defined below are the orthogonal components of
|G| in(αi), rather than in(αi)), but this is the idea behind the argument to follow.

Assume, to the contrary, that the sequence (7) of initial terms does not termi-
nate. Let p : Rn −→ (Rn)G be given by

p(v) =
∑
g∈G

g(v) .

We claim that for every monomial xv that appears in α there exists a monomial xw

that appears in α1, such that p(v) = p(w). Indeed, suppose α1 = α− cfd1
1 . . . fdr

r ,
where 0 6= c ∈ k, d1, . . . , dr ∈ N, and

d1v1 + · · ·+ drvr = in(α) .

Every monomial that occurs in α1 either (i) occurs in α or (ii) occurs in fd1
1 . . . fdr

r

(or both). In case (i) the claim is trivial: we can take w = v. In case (ii), v has
the form

v = d1g1(v1) + · · ·+ drgr(vr)

for some g1, . . . , gr ∈ G. Thus

p(v) = d1p(v1) + · · ·+ drp(vr) = p(d1v1 + · · ·+ drvr) = p(in(α)) ,

so that in case (ii), we can take w = in(α). This proves the claim.
Let E = {p(v)}, where xv ranges over the monomials of α and let bi =

p(in(αi)). Applying the claim inductively, we see that bi ∈ E for every i ≥ 1.
Since E is a finite set, there is an infinite subsequence w1 Â w2 Â . . . of the
sequence of initial terms (7) such that p(w1) = p(w2) = . . . , say, p(wi) = b for
every i ≥ 1.

We claim that this is impossible. Consider the sequence zi = |G|wi − b for
i ≥ 1. Then

(i) z1 Â z2 Â z3 Â . . . ,
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(ii) zi ∈ AÂ for each i ≥ 1, and
(iii) zi ∈ SpanR(e1, . . . , et) for each i ≥ 1.
(i) is obvious because wi form a strictly decreasing sequence. To prove (ii),

note that wi ∈ AÂ, i.e., wi º g(wi) for any g ∈ G. Multiplying both sides by the
positive integer |G| and subtracting b = g(b), we obtain zi º g(zi), as desired.
To prove (iii), we only need to show that zi is orthogonal to every c ∈ (Rn)G; cf.
Lemma 5.3(a). Indeed,

<zi, c> = |G|<wi, c>−<p(wi), c> = |G|<wi, c>−
∑
g∈G

<g(wi), g(c)> = 0 .

This proves (iii).
Thus {zi} is a strictly decreasing sequence in AÂ ∩ SpanR(e1, . . . , et), contra-

dicting Proposition 5.5. This shows that the subduction algorithm will terminate,
i.e., f1, . . . , fr form a SAGBI basis of k[x±1]Â, as claimed. ¤

6. Proof of Theorem 1.7

In this section we will deduce Göbel’s conjecture (Theorem 1.7) from Theorem 1.4.
Elements of H may be viewed as n × n-permutation matrices; this gives a

natural inclusion H ⊂ GLn(Z). However, since we are interested in polynomial
invariants of H, we will apply Theorem 1.4 not to H itself but to the larger group
G = <H,D> ⊂ GLn(Z), where D is the subgroup of diagonal matrices in GLn(Z).
(In other words, D = {diag(ε1, . . . , εn)}, where each εi = ±1.) It is easy to see
that G ' D >/ H is a finite group.

The idea of the proof is to relate In(k[x]H) to In(k[x±1]G), where k[x±1] =
k[x±1

1 , . . . , x±1
n ] is the Laurent polynomial ring. To define In(k[x±1]G), we need to

extend our term order Â from k[x] to k[x±1]. There is a unique such extension
(which, by abuse of notation, we shall continue to denote by Â): for any a and
b ∈ Zn we define

a Â b iff a + m(1, . . . , 1) Â b + m(1, . . . , 1) for some m À 0. (8)

One easily checks that this definition is independent of the choice of m, as long
as a + m(1, . . . , 1) and b + m(1, . . . , 1) ∈ Nn, and that the resulting order is a
term order in k[x±1] in the sense of Definition 1.2. Moreover, relative to this term
order, In(k[x]H) = In(k[x±1]G); indeed, both are equal to

{a = (a1, . . . , an) ∈ Zn | a1, . . . , an ≥ 0 and h(a) º a for every h ∈ H}.
Theorem 1.4 now tells us that In(k[x]H) = In(k[x±1]G) has a finite SAGBI basis
if and only if G is a reflection group. Theorem 1.7 is thus a consequence of the
following group-theoretic lemma.

Lemma 6.1. Let H ⊂ Sn and G = D >/ H ⊂ GLn(Z) be as above. Then the
following conditions are equivalent:
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(a) G is a reflection group,
(b) H is generated by transpositions,
(c) H = Sn1 × · · · × Snr

for some partition n1 + · · ·+ nr = n.

The equivalence (b) ⇐⇒ (c) is a simple exercise in finite group theory; we leave
it to the reader.

(b) =⇒ (a): D is clearly generated by reflections. Since a transposition in H
(viewed as an element of GLn(Z)) is a reflection, (b) says that H is also generated
by reflections. Hence, so is G = <D,H>.

Our proof of the implication (a) =⇒ (b) relies on the following claim: Write
g = dh, where d ∈ D and h ∈ H. If g is a reflection then h = id or h is a
transposition. Indeed, since G = D >/ H, id = g2 = (dhdh−1)h2 implies (i)
h2 = id, i.e., h is a product of, say, r disjoint transpositions, and (ii) dhdh−1 = id,
i.e., d and h commute. It is now easy to see that the only eigenvalues of g are −1
and 1, and that −1 occurs with multiplicity ≥ r. If g is a reflection, this implies
r ≤ 1, i.e., h = id or h is a transposition. This proves the claim.

Now suppose G is generated by reflections g1 = d1h1, . . . , gm = dmhm, where
each di ∈ D and each hi ∈ H. Then H = G/D is generated by h1, . . . , hm.
The claim tells us that each hi = id or a transposition. Thus H is generated by
transpositions. This completes the proof of Lemma 6.1 and thus of Theorem 1.7.

7. Final remarks

Remark 7.1. Suppose G ⊂ GLn(Z) is a finite reflection group and (Zn)G = (0).
Then there is a canonical choice of a SAGBI basis {f1, . . . , fr} in R = k[x±1]G

independent of the term order Â.
Indeed, in this case the integral polyhedral cone XÂ has an apex at 0 (cf.

Remark 5.4); thus by [4, Lemma V.3.5], In(R) = AÂ = XÂ ∩ Zn has a unique
minimal system of (semigroup) generators v1, . . . ,vr. Now define

fi =
∑
g∈G

xg(vi) ;

for i = 1, . . . , r. These elements form a SAGBI basis by Corollary 5.6 (or alter-
natively, by Proposition 5.8). To see that this SAGBI basis is independent of the
term order, let Â′ be another term order in k[x±1], v1

′, . . . ,vr
′ be a minimal set

of generators for AÂ
′
= XÂ′ ∩ Zn and

f ′i =
∑
g∈G

xg(v′i) .

If s1, . . . , sm are the reflections in G, set Hi = (Rn)si , as before. Since XÂ and
XÂ′ are both chambers for the G-invariant collection of hyperplanes H1, . . . , Hm,
there exists a g0 ∈ G such that XÂ′ = g0(XÂ); see [1, Lemma V.3.1.2]. Then
g0(v1), . . . , g0(vr) is another minimal system of generators of AÂ

′
; thus, up to
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renumbering, vi
′ = g0(vi) for i = 1, . . . , r. Consequently, fi = f ′i for every i =

1, . . . , r, as claimed.

Remark 7.2. The arguments we used in proving Theorems 1.4 and 1.5 are quite
insensitive to the base field k. Informally speaking, the action takes place in the
exponents of monomials (both literally and metaphorically), and the coefficients
of these monomials play only a minor role in our considerations. In fact,

(a) Theorems 1.4 and 1.7 remain true if the base field k is replaced by a (not
necessarily commutative) ring. Our only requirements are that k should be non-
trivial (i.e., k 6= (0)) and should have no zero divisors (otherwise, In(R) may not
be a semigroup). The proof remains the same, with one exception: if k does not
have a unit element, then f =

∑
xg(a) in the proof of Lemma 2.6(a) should be

redefined as f =
∑

cxg(a), where c is a nonzero element of k.
(b) Theorem 1.5, Theorem 1.6 and Proposition 5.8 remain true if k is assumed

to be a ring with a unit element 1 and without zero divisors, provided that we
modify the definition of the subduction algorithm (as described in the Introduc-
tion) as follows: each fλ is required to be monic i.e., its initial terms should have
coefficient 1. (Otherwise we will have trouble defining the subduction algorithm,
before we can even ask whether it terminates or not.) Corollary 5.6 remain true,
if we impose this additional requirement on {fλ}. The proofs remain unchanged.

We conclude this paper with the example that originally motivated Theo-
rem 1.4.

Example 7.3. Let C2 = {1, τ} be a group of order 2. Consider the action of
Gn = Sn × C2 on

Ln = {a = (a1, . . . , an) ∈ Zn | a1 + · · ·+ an = 0} ' Zn−1 ,

where Sn acts by permuting the coordinates and C2 acts via τ(a) = −a. For
n ≥ 3, the resulting integral representation G −→ GL(Ln) is easily seen to be
faithful; thus we can think of Gn as a finite subgroup of GL(Ln) = GLn−1(Z).
This representation and the ring of multiplicative invariants Rn = k[Ln]Gn (here
k[Ln] = k[x±1

1 , . . . , x±1
n−1]) arise in crystallography; in particular, one would like to

know whether or not this ring has a SAGBI basis; cf. [2].
It is easy to see that Gn is generated by reflections if and only if n ≤ 4. Indeed,

the reflections in G3 are (ij) and (ij)τ , where 1 ≤ i < j ≤ 3; these elements
clearly generate G3. The reflections in G4 are elements of the form (ij) where
1 ≤ i < j ≤ 4 and (ij)(hl)τ , where {i, j, h, l} = {1, 2, 3, 4}; these elements generate
G4. For n ≥ 5 the only reflections in Gn are transpositions in Sn; the subgroup
they generate is Sn, not all of Gn. Thus Theorem 1.4 tells us that the semigroup
AÂ = In(Rn) is not finitely generated for any n ≥ 5. The following direct proof
of this fact, in the case where Â is the restriction of the usual lexicographic order
of Zn to Ln, was shown to us by J. Friedman:
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Denote the j-th component of a ∈ Zn by a[j], so that a = (a[1], . . . , a[n]). The
semigroup of initial terms AÂn = In(k[Ln]Gn) with respect to this order consists of
elements a ∈ Zn satisfying the following conditions:

(i) a ∈ Ln, i.e., a[1] + · · ·+ a[n] = 0,
(ii) a[1] ≥ · · · ≥ a[n], and
(iii) (a[1], . . . , a[n]) º (−a[n], . . . ,−a[1])

Assume the contrary: there exists a finite set F of generators for AÂn . Write
F = F0 ∪ F1 ∪ F2 ∪ . . . , where Fi consists of those f ∈ F with f [1] + f [n] = i.

Consider the element a = (t2 + 1, t, t, 0, . . . , 0,−2t− 1,−t2) of AÂ, where t ≥ 2
is an integer parameter, to be specified later. Write a = f1 + ... + fN as a sum of
(not necessarily distinct) elements of F . Since a[1] + a[n] = 1, exactly one of the
elements fi (say, fN) lies in F1, and all others lie in F0. On the other hand, for
any f ∈ F0, f [2] + f [n− 1] ≥ 0. Thus

−t− 1 = a[2] + a[n− 1] = (f1[2] + f1[n− 1]) + · · ·+ (fN [2] + fN [n− 1]) ≥
fN [2] + fN [n− 1] ≥ min

f∈F1
(f [2] + f [n− 1]) .

The last inequality cannot hold for sufficiently large t, a contradiction. Thus AÂ

is not finitely generated for any n ≥ 5. ¤
Theorem 1.5 also tells us that LGn

n has a finite SAGBI basis for n = 3 and
4. Explicit SAGBI bases in these cases and some computations with them can be
found in [2]. ¤
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