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Invariance of Milnor numbers and topology of complex poly-
nomials
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Abstract. We give a global version of Lê–Ramanujam µ-constant theorem for polynomials.
Let (ft), t ∈ [0, 1], be a family of polynomials of n complex variables with isolated singularities,
whose coefficients are polynomials in t. We consider the case where some numerical invariants
are constant (the affine Milnor number µ(t), the Milnor number at infinity λ(t), the number
of critical values, the number of affine critical values, the number of critical values at infinity).
Let n = 2, we also suppose the degree of the ft is a constant, then the polynomials f0 and
f1 are topologically equivalent. For n > 3 we suppose that critical values at infinity depend
continuously on t, then we prove that the geometric monodromy representations of the ft are all
equivalent.
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1. Introduction

Let f : Cn −→ C be a polynomial map, n > 2. By a result of Thom [Th]
there is a finite minimal set of complex numbers B, the critical values, such that
f : f−1(C \ B) −→ C \ B is a fibration.

1.1. Affine singularities

We suppose that affine singularities are isolated i.e. that the set {x∈Cn | gradf x
= 0} is a finite set. Let µc be the sum of the local Milnor numbers at the points
of f−1(c). Let

Baff =
{
c | µc > 0

}
and µ =

∑
c∈C

µc

be the affine critical values and the affine Milnor number.
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1.2. Singularities at infinity

See [Br]. Let d be the degree of f : Cn −→ C, let f = fd + fd−1 + · · · + f0

where f j is homogeneous of degree j. Let f̄(x, x0) (with x = (x1, . . . , xn)) be the
homogenization of f with the new variable x0: f̄(x, x0) = fd(x) + fd−1(x)x0 +
. . . + f0(x)xd

0. Let

X =
{

((x : x0), c) ∈ Pn × C | f̄(x, x0)− cxd
0 = 0

}
.

Let H∞ be the hyperplane at infinity of Pn defined by (x0 = 0). The singular
locus of X has the form Σ× C where

Σ =
{

(x : 0) | ∂fd

∂x1
= · · · = ∂fd

∂xn
= fd−1 = 0

}
⊂ H∞.

We suppose that f has isolated singularities at infinity that is to say that Σ is
finite. This is always true for n = 2. For n > 2 such polynomials have been
studied by S. Broughton [Br] and by A. Parusiński [Pa]. For a point (x : 0) ∈ H∞,
assume, for example, that x = (x1, . . . , xn−1, 1). Set x̌ = (x1, . . . , xn−1) and

Fc(x̌, x0) = f̄(x1, . . . , xn−1, 1)− cxd
0.

Let µx̌(Fc) be the local Milnor number of Fc at the point (x̌, 0). If (x : 0) ∈ Σ then
µx̌(Fc) > 0. For a generic s, µx̌(Fs) = νx̌, and for finitely many c, µx̌(Fc) > νx̌.
We set λc,x̌ = µx̌(Fc)− νx̌, λc =

∑
(x:0)∈Σ λc,x̌. Let

B∞ =
{
c ∈ C | λc > 0

}
and λ =

∑
c∈C

λc

be the critical values at infinity and the Milnor number at infinity. We can now
describe the set of critical values B as follows (see [HL] and [Pa]):

B = Baff ∪ B∞.

Moreover, by [HL] and [ST], for s /∈ B, f−1(s) has the homotopy type of a wedge
of λ + µ spheres of real dimension n− 1.

1.3. Statement of the results

Theorem 1. Let (ft)t∈[0,1] be a family of complex polynomials from Cn to C whose
coefficients are polynomials in t. We suppose that affine singularities and singu-
larities at infinity are isolated. Let suppose that the integers µ(t), λ(t), #B(t),
#Baff (t), #B∞(t) do not depend on t ∈ [0, 1]. Moreover let us suppose that
critical values at infinity B∞(t) depend continuously on t. Then the fibrations
f0 : f−1

0 (C \ B(0)) −→ C \ B(0) and f1 : f−1
1 (C \ B(1)) −→ C \ B(1) are fiber

homotopy equivalent, and for n 6= 3 are differentiably isomorphic.
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Remark 1. As a consequence for n 6= 3 and ∗ /∈ B(0) ∪ B(1) the monodromy
representations

π1(C \ B(0), ∗) −→ Diff(f−1
0 (∗)) and

π1(C \ B(1), ∗) −→ Diff(f−1
1 (∗))

are equivalent (where Diff(f−1
t (∗)) denotes the diffeomorphisms of f−1

t (∗) modulo
diffeomorphisms isotopic to identity).

Remark 2. The restriction n 6= 3, as in [LR], is due to the use of the h-cobordism
theorem. The proof is based on the articles of H. V. Hà – T. S. Pham [HP] and of
D. T. Lê – C. P. Ramanujam [LR].

Remark 3. This result extends a theorem of H. V. Hà and T. S. Pham [HP] which
deals only with monodromy at infinity (which corresponds to a loop around the
whole set B(t)) for n = 2. For n 6= 3, the fact that the monodromies at infinity
are diffeomorphic is proved in [HZ] (for M-tame polynomials, with affine Milnor
number constant) and in [Ti] (for generic fibers with homotopy type equivalent to
a fixed number of (n − 1)-spheres, with the hypothesis that B(t) is included in a
compact set for all t).

Lemma 2. Under the hypotheses of the previous theorem (except the hypothesis
of continuity of the critical values), and one of the following conditions:
• n = 2, and deg ft does not depend on t;
• deg ft, and Σ(t) do not depend on t, and for all (x : 0) ∈ Σ(t), νx̌(t) is inde-

pendent of t;
we have that B∞(t) depends continuously on t, i.e. if c(τ) ∈ B∞(τ) then for all t
near τ there exists c(t) near c(τ) such that c(t) ∈ B∞(t).

Under the hypothesis that there is no singularity at infinity we can prove the
stronger result:

Theorem 3. Let (ft)t∈[0,1] be a family of complex polynomials whose coefficients
are polynomials in t. Suppose that µ(t), #Baff (t) do not depend on t ∈ [0, 1].
Moreover suppose that n 6= 3 and for all t ∈ [0, 1] we have B∞(t) = ∅. Then
the polynomials f0 and f1 are topologically equivalent, that is to say, there exist
homeomorphisms Φ and Ψ such that

Cn Φ //

f0

²²

Cn

f1

²²
C

Ψ
// C.

For the proof we glue the former study with the version of the µ-constant
theorem of D. T. Lê and C. P. Ramanujam stated by J. G. Timourian [Tm]: a
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µ-constant deformation of germs of isolated hypersurface singularity is a product
family.

For polynomials in two variables we can prove the following theorem which is
a global version of Lê–Ramanujam–Timourian theorem:

Theorem 4. Let n = 2. Let (ft)t∈[0,1] be a family of complex polynomials whose
coefficients are polynomials in t. Suppose that the integers µ(t), λ(t), #B(t),
#Baff (t), #B∞(t), deg ft do not depend on t ∈ [0, 1]. Then the polynomials f0

and f1 are topologically equivalent.

It uses a result of L. Fourrier [Fo] that gives a necessary and sufficient condition
for polynomials to be topologically equivalent outside sufficiently large compact
sets of C2.

Remark 4. In theorems 3 and 4 not only f0 and f1 are topologically equivalent
but we can prove that it is a topologically trivial family.

This work was initiated by an advice of D. T. Lê concerning the article [Bo]:
“It is easier to find conditions for polynomials to be equivalent than find all poly-
nomials that respect a given condition.”

We will denote BR =
{
x ∈ Cn | ‖x‖ 6 R

}
, SR = ∂BR =

{
x ∈ Cn | ‖x‖ = R

}
and Dr(c) =

{
s ∈ C | |s− c| 6 r

}
.

2. Fibrations

In this paragraph we give some properties for a complex polynomial of n variables.
The two first lemmas are consequences of transversality properties. There are
direct generalizations of lemmas of [HP]. Let f : Cn −→ C be a polynomial with
isolated affine singularities and with isolated singularities at infinity. Let choose
r > 0 such that B is contained in the interior of Dr(0). For each fiber f−1(c) there
is a finite number of real numbers R > 0 such that f−1(c) has non-transversal
intersection with the sphere SR (see [M3], Corollaries 2.8 and 2.9). So, for a
sufficiently large number R(c), the intersection f−1(c) with SR is transversal for
all R > R(c). Let R1 be greater than the maximum of the R(c) with c ∈ B, we
also choose R1 À r. We choose a small ε, 0 < ε ¿ 1 such that for all values c in
the bifurcation set B of f and for all s ∈ Dε(c) the intersection f−1(s) ∩ SR1 is
transversal, this is possible by continuity of the transversality. We denote

K = Dr(0) \
⋃
c∈B

D̊ε(c).

Lemma 5. There exists R0 À 1 such that for all R > R0 and for all s in K,
f−1(s) intersects SR transversally.
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Proof. We have to adapt the beginning of the proof of [HP]. If the assertion is false
then we have a sequence (xk) of points of Cn such that f(xk) ∈ K and ‖xk‖ → +∞
as k → +∞ and such that there exist complex numbers λk with gradf xk = λkxk,

where the gradient is Milnor gradient: gradf =
(

∂f
∂x1

, . . . , ∂f
∂xn

)
. Since K is a

compact set we can suppose (after extracting a sub-sequence, if necessary) that
f(xk) → c ∈ K as k → +∞. Then by the Curve Selection Lemma of [NZ] there
exists a real analytic curve x :]0, ε[−→ Cn such that x(τ) = aτβ+a1τ

β+1+· · · with
β < 0, a ∈ R2n \ {0} and gradf x(τ) = λ(τ)x(τ). Then f(x(τ)) = c + c1τ

ρ + · · ·
with ρ > 0. So f(x(τ)) → c as τ → 0. Then we can redo the calculus of [HP]:

df(x(τ))
dτ

=
〈dx

dτ
, gradf x(τ)

〉
= λ̄(τ)

〈dx

dτ
, x(τ)

〉
it implies

|λ(τ)| 6 2

∣∣df(x(τ))
dτ

∣∣
d‖x(τ)‖2

dτ

.

As ‖x(τ)‖ = b1τ
β + · · · with b1 ∈ R∗+ and β < 0 we have, for small enough τ ,

|λ(τ)| 6 γ τρ−1

τ2β−1 = γτρ−2β where γ is a constant. We end the proof be using the
characterization of critical value at infinity in [Pa]:

‖x(τ)‖1−1/N‖ gradf x(τ)‖ = ‖x(τ)‖1−1/N |λ(τ)| ‖x(τ)‖ 6 γτρ−β/N

As ρ > 0 and β < 0, for all N > 0 we have that ‖x(τ)‖1−1/N‖ gradf x(τ)‖ → 0 as
τ → 0. It implies that the value c (the limit of f(x(τ)) as τ → 0) is in B∞. But
as c ∈ K it is impossible. ¤

Lemma 5 enables us to get the following result: because of the transversality
we can find a vector field tangent to the fibers of f and pointing out the spheres
SR. Integration of such a vector field gives the next lemma (see [HP] Paragraph
2.2 or [Ti] Lemma 1.8).

Lemma 6. The fibrations f : f−1(K) ∩ B̊R0 −→ K and f : f−1(K) −→K are
differentiably isomorphic.

As K̊ is diffeomorphic to C \ B we have the following fact:

Lemma 7. The fibrations f : f−1(K̊) −→ K̊ and f : f−1(C \ B) −→ C \ B are
differentiably isomorphic.

The following lemma is adapted from [LR]. For completeness we give the proof.

Lemma 8. Let R,R′ with R > R′ be real numbers such that the intersections
f−1(K)∩SR and f−1(K)∩SR′ are transversal. Let us suppose that f : f−1(K)∩
BR′ −→ K and f : f−1(K) ∩ BR −→ K are fibrations with fibers homotopic to
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a wedge of ν (n− 1)-dimensional spheres. Then the fibrations are fiber homotopy
equivalent. And for n 6= 3 the fibrations are differentiably equivalent.

Proof. The first part is a consequence of a result of A. Dold [Do, Th. 6.3]. The first
fibration is contained in the second. By the result of Dold we only have to prove
that if ∗ ∈ ∂Dr then the inclusion of F ′ = f−1(∗) ∩BR′ in F = f−1(∗) ∩BR is a
homotopy equivalence. To see this we choose a generic x0 in Cn near the origin
such that the real function x 7→ ‖x − x0‖ has only non-degenerate critical points
of index less than n (see [M1, §7]). Then F is obtained from F ′ by attaching cells
of index less than n.

For n = 2 the fibers are homotopic to a wedge of ν circles, then the inclusion of
F ′ in F is a homotopy equivalence. For n > 2 the fibers F, F ′ are simply connected
and the morphism Hi(F ′) −→ Hi(F ) induced by inclusion is an isomorphism. For
i 6= n − 1 this is trivial since F and F ′ have the homotopy type of a wedge of
(n − 1)-dimensional spheres, and for i = n − 1 the exact sequence of the pair
(F, F ′) is

0 −→ Hn−1(F ) −→ Hn−1(F ′) −→ Hn−1(F, F ′)

with Hn(F, F ′) = 0, Hn−1(F ) and Hn−1(F ′) free of rank ν, and Hn−1(F, F ′)
torsion-free. Then the inclusion of F ′ in F is a homotopy equivalence.

The second part is based on the h-cobordism theorem. Let X = f−1(K)∩BR \
B̊R′ , then as f has no affine critical point in X (because there is no critical value in
K) and f is transversal to f−1(K)∩SR and to f−1(K)∩SR′ then, by Ehresmann
theorem, f : X −→ K is a fibration. We denote F \ F̊ ′ by F ∗. We get an
isomorphism Hi(∂F ′) −→ Hi(F ∗) for all i because Hi(F ∗, ∂F ′) = Hi(F, F ′) = 0.
For n = 2 it implies that F ∗ is diffeomorphic to a product [0, 1]× ∂F ′.

For n > 3 we will use the h-cobordism theorem applied to F ∗ to prove this.
We have ∂F ∗ = ∂F ′ ∪ ∂F ; ∂F ′ and ∂F are simply connected: if we look at the
function x 7→ −‖x − x0‖ on f−1(∗) for a generic x0, then F = f−1(∗) ∩ BR

and F ′ = f−1(∗) ∩ BR′ are obtained by gluing cells of index more or equal to
n − 1. So their boundary is simply connected. For a similar reason F ∗ is simply
connected. As we have isomorphisms Hi(∂F ′) −→ Hi(F ∗) and both spaces are
simply connected then by Hurewicz–Whitehead theorem the inclusion of ∂F ′ in
F ∗ is a homotopy equivalence.

Now F ∗, ∂F ′, ∂F are simply connected, the inclusion of ∂F ′ in F ∗ is a homo-
topy equivalence and F ∗ has real dimension 2n − 2 > 6. So by the h-cobordism
theorem, [M2], F ∗ is diffeomorphic to the product [0, 1] × ∂F ′. Then the fibra-
tion f : X −→ K is differentiably equivalent to the fibration f : [0, 1]× (f−1(K)∩
SR′) −→ K; so the fibrations f : f−1(K)∩BR′ −→ K and f : f−1(K)∩BR −→ K
are differentiably equivalent. ¤
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3. Family of polynomials

Let (ft)t∈[0,1] be a family of polynomials that verify hypotheses of theorem 1.

Lemma 9 ([HP]). There exists R À 1 such that for all t ∈ [0, 1] the affine critical
points of ft are in B̊R.

Proof. It is enough to prove it on [0, τ ] with τ > 0. We choose R À 1 such that
all the affine critical points of f0 are in B̊R. We denote

φt =
gradft

‖ gradft
‖ : SR −→ S1.

Then deg φ0 = µ(0). For all x ∈ SR, gradf0
x 6= 0, and by continuity there exists

τ > 0 such that for all t ∈ [0, τ ] and all x ∈ SR, gradft
x 6= 0. Then the maps φt

are homotopic (the homotopy is φ : SR × [0, τ ] −→ S1 with φ(x, t) = φt(x)). And
then µ(0) = deg φ0 = deg φt 6 µ(t). If there exists a family x(t) ∈ Cn of affine
critical points of φt such that ‖x(t)‖ → +∞ as t → 0, then for a sufficiently small
t, x(t) /∈ BR and then µ(t) > deg φt. It contradicts the hypothesis µ(0) = µ(t). ¤

Lemma 10. There exists r À 1 such that the subset
{
(c, t) ∈ Dr(0)× [0, 1] | c ∈

B(t)
}

is a braid of Dr(0)× [0, 1].

It enables us to choose ∗ ∈ ∂Dr(0) which is a regular value for all ft, t ∈ [0, 1].
In other words if we enumerate B(0) as {c1(0), . . . , cm(0)} then there are continuous
functions ci : [0, 1] −→ Dr(0) such that for i 6= j, ci(t) 6= cj(t). This enables us to
identify π1(C \ B(0), ∗) and π1(C \ B(1), ∗) by means of the previous braid.

Proof. Let τ be in [0, 1] and c(τ) be a critical value of fτ , then for all t near τ there
exists a critical value c(t) of ft. It is a hypothesis for critical values at infinity and
this fact is well-known for affine critical values as the coefficients of ft are smooth
functions of t, see for example [Br, Prop. 2.1].

Moreover there can not exist critical values that escape at infinity i.e. a τ ∈
[0, 1] such that |c(t)| → +∞ as t → τ . For affine critical values it is a consequence
of lemma 9 (or we can make the same proof as we now will perform for the critical
values at infinity). For B∞(t) let us suppose that there are critical values that
escape at infinity. By continuity of the critical values at infinity with respect to
t we can suppose that there is a continuous function c0(t) on ]0, τ ] (τ > 0) with
c0(t) ∈ B∞(t) and |c(t)| → +∞ as t → 0. By continuity of the critical values
at infinity, if B∞(0) = {c1(0), . . . , cp(0)} there exist continuous functions ci(t) on
[0, τ ] such that ci(t) ∈ B∞(t) for all i = 1, . . . , p. And for a sufficiently small
t > 0, c0(t) 6= ci(t) (i = 1, . . . , p) then #B∞(0) < #B∞(t) which contradicts the
constancy of #B∞(t).

Finally there can not exist ramification points: suppose that there is a τ such
that ci(τ) = cj(τ) (and ci(t), cj(t) are not equal in a neighborhood of τ). Then if
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ci(τ) ∈ Baff (τ) \ B∞(τ) (resp. B∞(τ) \ Baff (τ), B∞(τ) ∩ Baff (τ)) there is a jump
in #Baff (t) (resp. #B∞(t), #B(t)) near τ which is impossible by assumption. ¤

Let R0,K,Dr(0), Dε(c) be the objects of section 2 for the polynomial f = f0.
Moreover we suppose that R0 is greater than the R obtained in lemma 9.

Lemma 11. There exists τ ∈]0, 1] such that for all t ∈ [0, τ ] we have the proper-
ties:
• ci(t) ∈ Dε(ci(0)), i = 1, . . . , m;
• for all s ∈ K, f−1

t (s) intersects SR0 transversally.

Proof. The first point is just the continuity of the critical values ci(t). The second
point is the continuity of transversality: if the property is false then there exist
sequences tk → 0, xk ∈ SR0 and λk ∈ C such that gradftk

xk = λkxk. We
can suppose that (xk) converges (after extraction of a sub-sequence, if necessary).
Then xk → x ∈ SR0 , gradftk

xk → gradf0
x, and λk = 〈gradftk

xk |xk〉/‖xk‖2 =
〈gradftk

xk | xk〉/R0
2 converges towards λ ∈ C. Then gradf0

x = λx and the
intersection is non-transversal. ¤

Lemma 12. The fibrations f0 : f−1
0 (K)∩BR0−→ K and fτ : f−1

τ (K)∩BR0−→ K
are differentiably isomorphic.

Proof. Let
F : Cn × [0, 1] −→ C× [0, 1], (x, t) 7→ (ft(x), t).

We want to prove that the fibrations

F0 : Σ0 = F−1(K × {0}) ∩ (BR0 × {0}) −→ K, (x, 0) 7→ f0(x)

and

Fτ : Στ = F−1(K × {τ}) ∩ (BR0 × {τ}) −→ K, (x, τ) 7→ fτ (x)

are differentiably isomorphic. Let denote [0, τ ] by I. Then F has maximal rank
on F−1(K × I) ∩ (B̊R0 × I) and on the boundary F−1(K × I) ∩ (SR0 × I). By
Ehresmann theorem F : F−1(K × I) ∩ (BR0 × I) −→ K × I is a fibration.

As in [HP] we build a vector field that gives us a diffeomorphism between the
two fibrations F0 and Fτ . Moreover it provides a control of the diffeomorphism
near SR0 that we will need later. Let 0 < η ¿ 1 be a real number. We build a
vector field v1:
• which is defined on F−1(K × I) ∩ (∪R0−2η<R<R0SR × I),
• such that dzF.v1(z) = (0, 1) for all z,
• and such that v1(z) is tangent to SR × I for z ∈ SR × I, R0 − 2η < R < R0.

This is possible because F is a fibration on F−1(K × I) ∩ (BR0 × I). On the set
F−1(K× I)∩ (B̊R0−η × I) we build a second vector field v2 such that dzF.v2(z) =
(0, 1).
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By gluing these vector fields v1 and v2 by a partition of unity and by integrating
the corresponding vector field we obtain integral curves

pz : [0, 1] −→ F−1(K × I) ∩BR0 × I

such that pz(0) = z ∈ Σ0 and pz(τ) ∈ Στ . It induces a diffeomorphism Φ : Σ0 −→
Στ such that F0 = Fτ ◦ Φ; that makes the fibrations isomorphic. ¤

Proof of theorem 1. It is sufficient to prove the theorem for a family (ft) parame-
terized by t in an interval [0, τ ] for a small τ > 0. We choose τ as in lemma 11.
By lemma 7, f0 : f−1(C \ B(0)) −→ C \ B(0) and f0 : f−1

0 (K̊) −→ K̊ are differen-
tiably isomorphic fibrations. Then by lemma 6, the fibration f0 : f−1

0 (K) −→ K

is differentiably isomorphic to f0 : f−1
0 (K) ∩ B̊R0 −→ K which is, by lemma 12

differentiably isomorphic to fτ : f−1
τ (K) ∩ B̊R0 −→ K.

By continuity of transversality (lemma 11) f−1
τ (K) has transversal intersection

with SR0 . Lemma 5 applied to fτ gives us a large real number R, such that f−1
τ (K)

intersects SR transversally, R may be much more greater than R0. The fibration
fτ : f−1

τ (K)∩B̊R0 −→ K is fiber homotopy equivalent to fτ : f−1
τ (K)∩B̊R −→ K:

it is the first part of lemma 8 because the fiber f−1
τ (∗) ∩ B̊R0 is homotopic to a

wedge of µ(0) + λ(0) spheres and the fiber f−1
τ (∗) ∩ B̊R is homotopic to a wedge

of µ(τ)+λ(τ) spheres; as µ(0)+λ(0) = µ(τ)+λ(τ) we get the desired conclusion.
Moreover for n 6= 3 by the second part of lemma 8 the fibrations are differentiably
isomorphic.

By applying lemmas 6 and 7 to fτ , the fibration fτ : f−1
τ (K̊) ∩ B̊R −→ K̊ is

differentiably isomorphic to fτ : f−1
τ (C \ B(τ)) −→ C \ B(τ). As a conclusion the

fibrations f0 : f−1
0 (C \ B(0)) −→ C \ B(0) and fτ : f−1

τ (C \ B(τ)) −→ C \ B(τ) are
fiber homotopy equivalent, and for n 6= 3 are differentiably isomorphic ¤

4. Around affine singularities

We now work with t ∈ [0, 1]. We suppose in this paragraph that the critical
values B(t) depend analytically on t ∈ [0, 1]. This enables us to construct a
diffeomorphism χ such that:

• χ : C× [0, 1] −→ C× [0, 1],
• χ(x, t) = (χt(x), t),
• χ0 = id,
• χt(B(t)) = B(0).

We denote χ1 by Ψ, so that Ψ : C −→ C verifies Ψ(B(1)) = B(0). Moreover we
can suppose that χt is equal to id on C \Dr(0) because all the critical values are
in Dr(0). Finally χ defines a vector field w of C× [0, 1] by ∂χ

∂t .

We need a non-splitting result of the affine singularities, this principle has been
proved by C. Has Bey ([HB], n = 2) and by F. Lazzeri ([La], for all n).
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Lemma 13. Let x(τ) be an affine singular point of fτ and let Uτ be an open
neighborhood of x(τ) in Cn such that x(τ) is the only affine singular point of fτ

in Uτ . Suppose that for all t closed to τ , the restriction of ft to Uτ has only one
critical value. Then for all t sufficiently closed to τ , there is one, and only one,
affine singular point of ft contained in Uτ .

This lemma is a local lemma; it enables to enumerate the singularities: if we
denote the affine singular points of f0 by {xi(0)}i∈J then there are continuous
functions xi : [0, 1] −→ Cn such that {xi(t)}i∈J is the set of affine singularities of
ft. Let us notice that there can be two distinct singular points of ft with the same
critical value.

We suppose
• that (ft) verifies the hypotheses of theorem 1,
• that n 6= 3,
• and B(t) depends analytically on t.

This and lemma 13 imply that for all t ∈ [0, 1] the local Milnor number of ft

at x(t) is equal to the local Milnor number of f0 at x(0). The improved version
of Lê–Ramanujam theorem by J. G. Timourian [Tm] for a family of germs with
constant local Milnor number proves that (ft) is locally a product family.

Theorem 14 (Lê–Ramanujam–Timourian). Let x(t) be a singular point of ft.
There exist Ut, Vt neighborhoods of x(t), ft(x(t)) respectively and a homeomor-
phism Ωin such that if U =

⋃
t∈[0,1] Ut×{t} and V =

⋃
t∈[0,1] Vt×{t} the following

diagram commutes:

U
Ωin

//

F

²²

U0 × [0, 1]

f0×id

²²
V χ

// V0 × [0, 1].

In particular it proves that the polynomials f0 and f1 are locally topologi-
cally equivalent: we get a homeomorphism Φin such that the following diagram
commutes:

U1
Φin //

f1

²²

U0

f0

²²
V1

Ψ
// V0.

By lemma 9 we know that for all t ∈ [0, 1], B(t) ⊂ Dr(0). Now we redefine the
radius R0 and R1 of section 2. By continuity of transversality and compactness of
[0, 1] we choose R1 such that

∀c ∈ B(0) ∀R > R1 f−1
0 (c) t SR and ∀t ∈ [0, 1] ∀c ∈ B(t) f−1

t (c) t SR1 .
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r rC

Cn

?
ft

¾-ε K

c c′

f−1
t (c′)

BR0

BR1

B′
t

For a sufficiently small ε we denote

K(0) = Dr(0) \
⋃

c∈B∞(0)

D̊ε(c), K(t) = χ−1
t (K(0))

and we choose R0 > R1 such that

∀s ∈ K(0) ∀R > R0 f−1
0 (s) t SR and ∀t ∈ [0, 1] ∀s ∈ K(t) f−1

t (s) t SR0 .

We denote

B′
t =

(
f−1

t (Dr(0)) ∩BR1

) ∪ (
f−1

t (K(t)) ∩BR0

)
, t ∈ [0, 1].

Lemma 15. There exists a homeomorphism Φ such that we have a commutative
diagram:

B′
1

Φ //

f1

²²

B′
0

f0

²²
Dr(0)

Ψ
// Dr(0).
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Proof. We denote by U ′
t a neighborhood of x(t) such that Ū ′

t ⊂ Ut. We denote by
Ut (resp. U ′t), the union (on the affine singular points of ft) of the Ut (resp. U ′

t).
We set

B′′
t = B′

t \ U ′t, t ∈ [0, 1].

We can extend the homeomorphism Φ of lemma 12 to Φout : B′′
1 −→ B′′

0 . We just
have to extend the vector field of lemma 12 to a new vector field denoted by v′

such that
• v′ is tangent to ∂U ′t,
• v′ is tangent to SR1 × [0, 1] on F−1(Dr(0) \K(t)× {t}) for all t ∈ [0, 1],
• v′ is tangent to SR0 × [0, 1] on F−1(K(t)× {t}) for all t.
• dzF.v′(z) = w(F (z)) for all z ∈ ⋃

t∈[0,1] B
′′
t × {t}, which means that Φout

respects the fibrations (w is defined by ∂χ
∂t ).

If we set B′′ =
⋃

t∈[0,1] B
′′
t × {t} the integration of v′ gives Ωout and Φout such

that:

B′′ Ωout
//

F

²²

B′′
0 × [0, 1]

f0×id

²²
Dr(0)× [0, 1]

χ
// Dr(0)× [0, 1],

B′′
1

Φout //

f1

²²

B′′
0

f0

²²
Dr(0)

Ψ
// Dr(0).

We now explain how to glue Φin and Φout together. We can suppose that there
exist spheres St centered at the singularities x(t) such that if S =

⋃
t∈[0,1] St×{t}

then we have Ωin : S −→ S0 × [0, 1] and Ωout : S −→ S0 × [0, 1]. It defines
Ωin

t : St −→ S0 and Ωout
t : St −→ S0. On S1 we have Ωin

1 = Φin and Ωout
1 = Φout.

Now we define

Θt : S1 −→ S0, Θt = Ωin
t ◦ (Ωout

t )−1 ◦ Φout.

Then Θ0 = Φout and Θ1 = Φin. On a set homeomorphic to S × [0, 1] included in⋃
t∈[0,1] Ut \U ′

t we glue Φin to Φout, moreover this gluing respects the fibrations f0

and f1. We end by doing this construction for all affine singular points. ¤

Proof of theorem 3. In the hypotheses of this theorem we supposed that there
is no critical value at infinity. In order to apply the results of this section we
have to prove that affine critical values are analytic functions of t. Let c(0) ∈
Baff (0), by lemma 10 it defines a continuous function c : [0, 1] −→ C. The set
C =

{
(c(t), t) | t ∈ [0, 1]

}
is a real algebraic subset of C× [0, 1] as all affine critical

points are contained in BR0 (lemma 9). In fact there is a polynomial P ∈ C[x, t]
such that C is equal to (P = 0) ∩ (C× [0, 1]). Because the set of critical values is
a braid of C× [0, 1] (lemma 10) then c : [0, 1] −→ C is an analytic function.

If we suppose that B∞(t) = ∅ for all t ∈ [0, 1] then by lemma 6 we can extend
Φ : B′

1 −→ B′
0 to Φ : f−1

1 (Dr(0)) −→ f−1
0 (Dr(0)). And as B(t) ⊂ Dr(0) by a

lemma similar to lemma 7 we can extend the homeomorphism to the whole space.
¤
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Remark. We can improve the end of the proof of lemma 15 in order to get
a trivialization of the whole family, that is to say (ft)t∈[0,1] is topologically a
product family. For each t ∈ [0, 1] we thicken the sphere St in a set St× [0, 1]. We
parameterize this interval [0, 1] by s. Let

Λ : S × [0, 1] −→ S0 × [0, 1]× [0, 1], Λ(x, t, s) 7→ (Λt,s(x), t, s)

where Λt,s is a map defined by

Λt,s : St −→ S0, Λt,s = Ωin
s×t ◦ (Ωout

s×t)
−1 ◦ Ωout

t .

By fixing s = 0 the map Λ can be identified with Ωout and for s = 1 it can be
identified with Ωin. So we are able to glue together the trivializations in order to
get a homeomorphism Ω with a commutative diagram:

B′ Ω //

F

²²

B′
0 × [0, 1]

f0×id

²²
Dr(0)× [0, 1]

χ
// Dr(0)× [0, 1],

where B′ =
⋃

t∈[0,1] B
′
t × {t}. Now if B∞(t) is empty for all t ∈ [0, 1], then we can

extend Ω in order to get:

Cn × [0, 1] Ω //

F

²²

Cn × [0, 1]

f0×id

²²
C× [0, 1]

χ
// C× [0, 1].

5. Polynomials in two variables

We set n = 2. We recall a result of L. Fourrier [Fo]. Let f : C2 −→ C with set
of critical values at infinity B∞. Let ∗ /∈ B and Z = f−1(∗) ∪⋃

c∈B∞ f−1(c). The
total link of f is Lf = Z ∩ SR for a sufficiently large R.

To f we associate a resolution φ : Σ −→ P1,

C2 //

f

²²

P2

f̃

²²

Σ
πoo

φÄÄ~~
~~

~~
~~

C // P1

where f̃ is the map coming from the homogenization of f ; π is the minimal blow-
up of some points on the line at infinity L∞ of P2 in order to obtain a well-defined
morphism φ : Σ −→ P1. The components of the divisor π−1(L∞) on which φ is
surjective are the dicritical components. For each dicritical component D we have
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a branched covering φ : D −→ P1. If the union of dicritical components is Ddic we
then have the restriction φdic : Ddic −→ P1 of φ. The 0-monodromy representation
is the representation

π1(C \ B) −→ Aut
(
φ−1

dic(∗)
)
.

The set φ−1
dic(∗) is in bijection with the boundary components of f−1(∗). Then

the 0-monodromy representation can be seen as the action of π1(C \ B) on the
boundary components of f−1(∗).

Theorem 16 (Fourrier). Let f, g be complex polynomials in two variables with
equivalent 0-monodromy representations and equivalent total links. Then there
exist compact sets C,C ′ of C2 and homeomorphisms Φ∞ and Ψ∞ that make the
diagram commute:

C2 \ C
Φ∞ //

f

²²

C2 \ C ′

g

²²
C

Ψ∞
// C.

Let ft : C2 −→ C such that the coefficients of this family are algebraic in t.
We suppose that the integers µ(t), λ(t), #B(t), #Baff (t), #B∞(t) do not depend
on t ∈ [0, 1]. We also suppose the deg ft does not depend on t. For our family
(ft), by theorem 1 we know that the geometric monodromy representations are
all equivalent, then they act similarly on the boundary components of f−1

t (∗). It
implies that all the 0-monodromy representations of (ft) are equivalent. Moreover
if we suppose that for any t, t′ ∈ [0, 1] the total links Lft

and Lft′ are equivalent,
then by theorem 16 the polynomials ft and ft′ are topologically equivalent out of
some compact sets of C2. We need a result a bit stronger which can be proved by
similar arguments than in [Fo] and we will omit the proof:

Lemma 17. Let (ft)t∈[0,1] be a polynomial family such that the coefficients are
algebraic functions of t. We suppose that the 0-monodromy representations and
the total links are all equivalent. Then there exist compact sets C(t) of C2 and a
homeomorphism Ω∞ such that if C =

⋃
t∈[0,1] C(t) × {t} we have a commutative

diagram:

C2 × [0, 1] \ C Ω∞ //

F

²²

(
C2 \ C(0)

)× [0, 1]

f0×id

²²
C× [0, 1]

χ
// C× [0, 1].

We now prove a strong version of the continuity of critical values.
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Lemma 18. The critical values are analytic functions of t. Moreover for c(t) ∈
B(t), the integers µc(t) and λc(t) do not depend on t ∈ [0, 1].

Proof. For affine critical values, refer to the proof of theorem 3. The constancy
of µc(t) is a consequence of lemma 9 and lemma 13. For critical values at infinity
we need a result of [Ha] and [HP] that enables to calculate critical values and
Milnor numbers at infinity. As deg ft is constant we can suppose that this degree
is degy ft. Let denote ∆(x, s, t) the discriminant Discy(ft(x, y) − s) with respect
to y. We write

∆(x, s, t) = q1(s, t)xk(t) + q2(s, t)xk(t)−1 + · · ·
First of all ∆ has constant degree k(t) in x because k(t) = µ(t) + λ(t) + deg ft − 1
(see [HP]). Secondly by [Ha] we have

B∞(t) =
{
s | q1(s, t) = 0

}
then we see that critical values at infinity depend continuously on t and that critical
values at infinity are a real algebraic subset of C × [0, 1]. For the analyticity we
end as in the proof of theorem 3. Finally, for a fixed t, we have that λc =
k(t)− degx ∆(x, c, t). In other words qi(c, t) is zero for i = 1, . . . , λc and non-zero
for i = λc + 1. For c(t) ∈ B∞(t) we now prove that λc(t) is constant. The former
formula proves that λc(t) is constant except for finitely many τ ∈ [0, 1] for which
λc(τ) > λc(t). But if λc(τ) > λc(t) then λ(τ) =

∑
c∈B∞(τ) λc >

∑
c∈B∞(t) λc = λ(t)

which contradicts the hypotheses. ¤

To apply lemma 17 we need to prove:

Lemma 19. For any t, t′ ∈ [0, 1] the total links Lft
and Lf ′t are equivalent.

Proof. The problem is similar to the one of [LR] and to lemma 8. Let c(t) ∈
B∞(t)∪{∗}. As in lemma 15 we have R1 À 1 such that f−1

0 (c(0))∩SR1 is the link
at infinity of f−1

0 (c(0)). Moreover by lemma 15 we know that the link at infinity
f−1
0 (c(0)) ∩ SR1 is equivalent to the link f−1

1 (c(1)) ∩ SR1 . But f−1
1 (c(1)) ∩ SR1 is

not necessarily the link at infinity for f−1
1 (c(1)).

We now prove this fact; let denote c = c(1). Let R2 > R1 such that for
all R > R2, f−1

1 (c) t SR, then f−1
1 (c) ∩ SR2 is the link at infinity of f−1

1 (c).
We choose η, 0 < η ¿ 1 such that f−1

1 (Dη(c)) has transversal intersection with
SR1 and SR2 and such that f−1

1 (∂Dη(c)) has transversal intersection with all SR,
R ∈ [R1, R2]. Notice that η is much smaller than the ε of the former paragraphs
and that f−1

1 (s) ∩ SR2 is not the link at infinity of f−1
1 (s) for s ∈ ∂Dη(c). We fix

R0 smaller than R1 such that f−1
1 (Dη(c)) has transversal intersection with SR0 .

We denote f−1
1 (Dη(c)) ∩BRi

\ B̊R0 by Ai, i = 1, 2.
The proof is now similar to the one of lemma 8. Let A1 and A2 be connected

components of A1 and A2 with A1 ⊂ A2. By Ehresmann theorem, we have
fibrations f1 : A1 −→ Dη(c), f1 : A2 −→ Dη(c). From one hand f−1

1 (c) ∩ BR1 is
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diffeomorphic to f−1
0 (c(0)) ∩ BR1 . So by Suzuki formula (see [HL]) f−1

1 (c) ∩ BR1

has Euler characteristic 1−µ−λ+µc(0) +λc(0). From the other hand f−1
1 (c)∩BR2

has Euler characteristic 1− µ− λ + µc(1) + λc(1) by Suzuki formula. By lemma 18
we have that µc(0) + λc(0) = µc(1) + λc(1), with c = c(1). So the fiber f−1

1 (c)∩BR1

and f−1
1 (c)∩BR2 have the same Euler characteristic. As the number of connected

components of f−1
1 (c)∩BR is constant for R ∈ [R1, R2] we have that f−1

1 (c)∩BR1

and f−1
1 (c) ∩ BR2 are homotopic. It implies that the fibrations f1 : A1 −→

Dη(c) and f1 : A2 −→ Dη(c) are fiber homotopy equivalent, and even more are
diffeomorphic.

It provides a diffeomorphism Ξ : A1 ∩ SR1 = A2 ∩ SR1 −→ A2 ∩ SR2 and we
can suppose that Ξ(f−1

1 (c) ∩ A1 ∩ SR1) is equal to f−1
1 (c) ∩ A2 ∩ SR2 . By doing

this for all connected components of A1, A2, for all values c ∈ B∞(1)∪{∗} and by
extending Ξ to the whole spheres we get a diffeomorphism Ξ : SR1 −→ SR2 such
that Ξ(f−1

1 (c)∩SR1) = f−1
1 (c)∩SR2 for all c ∈ B∞(1)∪{∗}. Then the total links

for f0 and f1 are equivalent. ¤

Proof of theorem 4. By lemma 17 we have a trivialization Ω∞ : C2 × [0, 1] \ C −→
(C2\C(0))×[0, 1]. We can choose the R1 (before lemma 15) such that C̊(t) ⊂ BR1 .
And then the proof of lemma 15 gives us an Ωout :

⋃
t∈[0,1] B

′′(t)×{t} −→ B′′(0)×
[0, 1]. By gluing Ωout and Ω∞ as in the proof of lemma 15, we obtain Φ : C2 −→ C2

such that:

C2 Φ //

f1

²²

C2

f0

²²
C

Ψ
// C.

Then f0 and f1 are topologically equivalent. ¤

Remark. As in the remark after the proof of theorem 3, we can glue Ωout and
Ω∞ in order to get a topologically product family.

6. Continuity of the critical values at infinity

We now give a proof of the second part of lemma 2 in the introduction. The first
part has been proven in lemma 18.

Lemma 20. Let (ft)t∈[0,1] be a family of polynomials such that the coefficients are
polynomials in t. We suppose that:
• the total affine Milnor number µ(t) is constant;
• the degree deg ft is constant;
• the set of critical points at infinity Σ(t) is finite and does not vary: Σ(t) = Σ;
• for all (x : 0) ∈ Σ, the generic Milnor number νx̌(t) is independent of t.
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Then the critical values at infinity depend continuously on t, i.e. if c(t0) ∈ B∞(t0)
then for all t near t0 there exists c(t) near c(t0) such that c(t) ∈ B∞(t).

Let f be a polynomial. For x ∈ Cn we have (x : 1) in Pn and if xn 6= 0 we
divide x by xn to obtain local coordinates at infinity (x̌′, x0). The following lemma
explains the link between the critical points of f and those of Fc. It uses Euler
relation for the homogeneous polynomial part of f of degree d.

Lemma 21.

• Fc has a critical point (x̌′, x0) with x0 6= 0 of critical value 0 if and only if f
has a critical point x with critical value c.

• Fc has a critical point (x̌′, 0) of critical value 0 if and only if (x : 0) ∈ Σ.

Proof of lemma 20. We suppose that critical values at infinity are not continuous
functions of t. Then there exists (t0, c0) such that c0 ∈ B∞(t0) and for all (t, c) in
a neighborhood of (t0, c0), we have c /∈ B∞(t). Let P be the point of irregularity
at infinity for (t0, c0). Then µP (Ft0,c0) > µP (Ft0,c) (c 6= c0) by definition of
c0 ∈ B∞(t0) and by semi-continuity of the local Milnor number at P we have
νP (t0) = µP (Ft0,c) > µP (Ft,c) = νP (t), (t, c) 6= (t0, c0).

We consider t as a complex parameter. By continuity of the critical points and
by conservation of the Milnor number for (t, c) 6= (t0, c0) we have critical points
M(t, c) near P of Ft,c that are not equal to P . This fact uses that deg ft is a
constant, in order to prove that Ft,c depends continuously on t.

Let denote by V ′ the algebraic variety of C3 × Cn defined by (t, c, s, x) ∈ V ′

if and only if Ft,c has a critical point x with critical value s (the equations
are gradFt,c(x) = 0, Ft,c(x) = s). If µP (Ft,c) > 0 for a generic (t, c) then{
(t, c, 0, P ) | (t, c) ∈ C2

}
is a subvariety of V ′. We define V to be the closure

of V ′ minus this subvariety. Then for a generic (t, c), (t, c, 0, P ) /∈ V . We call
π : C3 × Cn −→ C3 the projection on the first factor. We set W = π(V ). Then
W is locally an algebraic variety around (t0, c0, 0). For each (t, c) there is a non-
zero finite number of values s such that (t, c, s) ∈ W . So W is locally an equi-
dimensional variety of codimension 1. Then it is a germ of hypersurface of C3. Let
R(t, c, s) be the polynomial that defines W locally. We set Q(t, c) = R(t, c, 0). As
Q(t0, c0) = 0 then in all neighborhoods of (t0, c0) there exists (t, c) 6= (t0, c0) such
that Q(t, c) = 0. Moreover there are solutions for t a real number near t0 and we
now suppose that t is a real parameter.

Then for (t, c) 6= (t0, c0) we have that: Q(t, c) = 0 if and only if Ft,c has a
critical point M(t, c) 6= P with critical value 0. The point M(t, c) is not equal to
P because for t 6= t0, (t, c, 0, P ) /∈ V : it uses that c /∈ B∞(t) for t 6= t0, and that
νP (t) = νP (t0). Let us notice that M(t, c) → P as (t, c) → (t0, c0).

We end the proof be studying the different cases:

• if we have M(t, c) in H∞ (of equation (x0 = 0)) then M(t, c) ∈ Σ which
provides a contradiction because then it is equal to P ;
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• if we have points M(t, c), not in H∞, with t 6= t0 then there are affine critical
points M ′(t, c) of ft (lemma 21), and as M(t, c) tends towards P (as (t, c) tends
towards (t0, c0)) we have that M ′(t, c) escapes at infinity. It contradicts the
fact that the critical points of ft are bounded (lemma 9).

• if we have points M(t0, c), not in H∞, then there are infinitely many affine
critical points for ft0 , which is impossible since the singularities of ft0 are
isolated. ¤

7. Examples

Example 1. Let ft = x(x2y + tx + 1). Then Baff (t) = ∅, B∞(t) = {0}, λ(t) = 1
and deg ft = 4. Then by theorem 4, f0 and f1 are topologically equivalent. These
are examples of polynomials that are topologically but not algebraically equivalent,
see [Bo].

Example 2. Let ft = (x + t)(xy + 1). Then f0 and f1 are not topologically
equivalent. One has B∞(t) = ∅, Baff (t) = {0, t} for t 6= 0, but B∞(0) = {0},
Baff (0) = ∅. In fact the two affine critical points for ft “escape at infinity” as t
tends towards 0.

Example 3. Let ft = x
(
x(y+ tx2)+1

)
. Then f0 is topologically equivalent to f1.

We have for all t ∈ [0, 1], Baff (t) = ∅, B∞(t) = {0}, and λ(t) = 1, but deg ft = 4
for t 6= 0 while deg f0 = 3.
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9 (1984), 21–32.
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Apartat 50
08193 Bellatera
Spain
e-mail: abodin@crm.es

(Received: January 14, 2002)

To access this journal online:
http://www.birkhauser.ch


