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Applications of versal deformations to Galois theory

Frauke M. Bleher and Ted Chinburg

Abstract. In this paper we study which solutions to an embedding problem can be constructed
using a versal deformation of a group representation over an algebraically closed field of positive
characteristic. This question reduces (at least stably) to finding which representations of finite
groups have faithful versal deformations. We determine exactly when a versal deformation of a
representation of a finite group is faithful in case the representation belongs to a cyclic block and
its endomorphisms are given by scalar multiplications.
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1. Introduction

In this paper we study which solutions to an embedding problem can be con-
structed using a versal deformation of a group representation. This leads to the
problem of determining when a versal deformation of a representation of a finite
group is faithful. We give a complete solution to this problem for representations
belonging to cyclic blocks whose endomorphisms are given by scalar multiplica-
tions.

A (finite) embedding problem is specified by giving two continuous group sur-
jections π : Γ → T and λ : G → T in which Γ is a profinite group and G and T
are finite groups. A solution of this embedding problem is a continuous homomor-
phism h : Γ → G such that λ ◦ h = π. If h is surjective, then h is called a proper
solution.

In Galois theory, Γ is taken to be a quotient of Gal(N/N) by a closed subgroup,
where N is a separable closure of a field N . A proper solution h of the embedding
problem gives a G-extension N

Ker(h)
of N containing the T -extension N

Ker(π)
. One

would like to find h, and the corresponding field N
Ker(h)

, in a constructive way.
For example, one would like to describe how to find h and construct N

Ker(h)
via
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values of special functions, or from Galois representations associated to modular
forms, automorphic representations or the cohomology of algebraic varieties.

Suppose now that V is the inflation from T to Γ of a representation of T over
an algebraically closed field k with positive characteristic. A versal deformation
U(Γ, V ) associated to V (see [16, §1.2]), if it exists, is the isomorphism class of a
lift of V over a local ring R(Γ, V ) having residue field k. We recall the defining
properties of U(Γ, V ) and R(Γ, V ) in section 2. Both are known to exist if either
Γ satisfies certain finiteness conditions [16, §1.1] or if EndkΓ(V ) = k (see [7]).
If EndkΓ(V ) = k, U(Γ, V ) is actually a universal deformation, and R(Γ, V ) and
U(Γ, V ) are unique up to a unique isomorphism. In some situations of arithmetic
interest, U(Γ, V ) is conjectured or proved to be constructible via modular forms;
see [22], [9], [10] and [11].

Suppose a versal deformation U(Γ, V ) exists. We say in Definition 2.2 that
a proper solution h to the above embedding problem arises from U(Γ, V ) if the
kernel of the action of Γ on U(Γ, V ) is contained in the kernel of h. To motivate
this, suppose Γ is a quotient of Gal(N/N) as above. Then h arises from U(Γ, V ) if
and only if N

Ker(h)
is contained in the subfield N(Γ, V ) of N cut out by U(Γ, V ),

in the sense that N(Γ, V ) is the fixed field of the kernel of U(Γ, V ) acting on N .
Thus if one has a construction of N(Γ, V ), one can attempt to identify N

Ker(h)

inside this field.
It is not difficult to show (Theorem 2.5) that the question of whether all proper

solutions to an embedding problem arise from a versal deformation can be reduced
to studying when versal deformations of representations of finite groups are faith-
ful. We will show (Theorem 3.2) that if Ker(λ) is a p-group, then there is a faithful
representation V of T such that U(G,V ) is a faithful G-module. This implies (Re-
mark 3.3(b)) that each finite solvable extension of a given field can be constructed
using a finite sequence of versal deformations. We also prove (Theorem 3.4) that
one can detect when a versal deformation of a representation of a finite group is
faithful from versal deformation rings associated to quotients of the group through
which the representation factors. Our main result concerns when a versal defor-
mation of a representation of a finite group is faithful. We obtain the following
complete answer to this question for representations belonging to cyclic blocks and
having endomorphism ring equal to k.

Let V be a representation of a finite group G over k such that EndkG(V ) = k.
Let K be the kernel of the action of G on V . Suppose V belongs to a cyclic
block BG,V of kG. (For background on cyclic blocks see [1, Chapter V] and
also section 4.) The block BG,V is either a matrix algebra over k, or there is a
tree associated to BG,V , called the Brauer tree Λ(BG,V ), which can be used to
describe the composition series of all indecomposable BG,V -modules. Each vertex
of Λ(BG,V ) has a positive integral multiplicity, which is 1 except for at most one
vertex, which is called the exceptional vertex if it exists. We call Λ(BG,V ) a star
with central exceptional vertex if all edges are adjacent to one vertex, called the
center, and every vertex except possibly the center has multiplicity 1.
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We can now state our main result.

Theorem 1.1. The universal deformation U(G,V ) is a faithful representation of
G if and only if K is a p-group, the Brauer tree Λ(BG,V ) is a star with central
exceptional vertex and, in case Λ(BG,V ) has more than one edge, V is not a simple
kG-module.

We prove this theorem using the determination in [5] of the universal deformation
rings of representations belonging to cyclic blocks.

In section 5 we discuss examples which illustrate Theorem 1.1. An example
involving non-cyclic blocks, which is completed in an appendix (see section 6),
concerns the double cover Ã5 of the alternating group A5. Embedding problems
associated to Ã5 have been of longstanding interest (see [21, §2.4], [18]).

2. Versal deformations and embedding problems

Let k be an algebraically closed field of positive characteristic p. By a representa-
tion of the profinite group Γ over k we will mean a finite dimensional vector space
V over k having the discrete topology together with a continuous k-linear action
of Γ. Define W = W (k) to be the ring of infinite Witt vectors over k. Let C be
a subcategory of the category Ctop of local topological W -algebras A with residue
field k. A lift of V over A is a pair consisting of a topological AΓ-module M which
is a free A-module together with a kΓ-module isomorphism φM : k ⊗A M → V .
A deformation of V over A is an isomorphism class of lifts (see [16, 7]). We say
that with respect to C, V has a versal deformation ring R(Γ, V ) ∈ C and a versal
deformation U(Γ, V ) if for each A ∈ C and each lift M of V over A, there is a
(possibly not unique) morphism µ : R(Γ, V ) → A in C so that there is an isomor-
phism between M and A⊗R(Γ,V ),µ U(Γ, V ) which respects φM and φU(Γ,V ). If µ
is unique for all A and all M , we will say R(Γ, V ) and U(Γ, V ) are universal. If
R(Γ, V ) and U(Γ, V ) are universal, both R(Γ, V ) and U(Γ, V ) are unique up to a
unique isomorphism.

For various C, Γ and V it is known that versal (respectively universal) defor-
mation rings and deformations exist. For example, if C is the full subcategory
CNoeth of complete Noetherian objects in Ctop, one always has versal R(Γ, V ) and
U(Γ, V ) provided Γ satisfies certain finiteness conditions [16, §1.1]. Furthermore,
U(Γ, V ) and R(Γ, V ) are unique up to a (not necessarily unique) isomorphism. For
arbitrary profinite Γ and C the full subcategory CProArt of objects in Ctop which
are the projective limits of their discrete Artinian quotients, it is known by [7] that
universal R(Γ, V ) and U(Γ, V ) exist if EndkΓ(V ) = k.

Suppose U(Γ, V ) is a versal deformation over R(Γ, V ). Let ρ(Γ, V ) : Γ →
AutR(Γ,V )(U(Γ, V )) be a group homomorphism determining U(Γ, V ) as Γ-module.
Here AutR(Γ,V )(U(Γ, V )) is isomorphic to GLn(R(Γ, V )).
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Lemma 2.1. Suppose, as a Γ-module, V has a versal deformation U(Γ, V ) and
a versal deformation ring R(Γ, V ) with respect to C. The kernel K(Γ, V ) ⊂ Γ of
ρ(Γ, V ) does not depend on the choice of versal deformation U(Γ, V ). Let H be
a closed normal subgroup of Γ through which the action of Γ on V factors. Then
there exists a unique closed ideal I of R(Γ, V ) which is minimal with respect to
the property that (R(Γ, V )/I) ⊗R(Γ,V ),τH

U(Γ, V ) has trivial action of H, where
τH : R(Γ, V ) → R(Γ, V )/I is the canonical surjection. Moreover, R(Γ, V )/I is
the maximal continuous quotient of R(Γ, V ) which is a versal deformation ring
for V regarded as a Γ/H-module, and (R(Γ, V )/I)⊗R(Γ,V ),τH

U(Γ, V ) is a versal
deformation for V as Γ/H-module.

We denote R(Γ, V )/I by R(Γ/H, V, τH) and (R(Γ, V )/I)⊗R(Γ,V ),τH
U(Γ, V ) by

U(Γ/H, V, τH).

Proof. The kernel K(Γ, V ) does not depend on the choice of versal deformation
U(Γ, V ), because if R(Γ, V ) → R′ is a ring homomorphism in C, then K(Γ, V ) acts
trivially on the tensor product R′ ⊗R(Γ,V ) U(Γ, V ).

The rest of the lemma follows from the fact that if I is a collection of closed
ideals J of R(Γ, V ) with the property that (R(Γ, V )/J) ⊗R(Γ,V ),νJ

U(Γ, V ) has
trivial action of H, where νJ : R(Γ, V ) → R(Γ, V )/J is the canonical surjection,
then the intersection I of all ideals in I also has this property. ¤

From now on we assume there exist versal R(Γ, V ) and U(Γ, V ) with respect
to C. Suppose that the representation V of Γ is inflated from a representation of
T via the surjection π : Γ → T . We will denote this representation of T also by V .
We may then view V as a representation of G via inflation through the surjection
λ : G → T . Lemma 2.1 insures that there exist versal R(T, V ) and U(T, V ). We
will assume that there exist versal R(G,V ) and U(G,V ) with respect to C.

Definition 2.2. A proper solution h : Γ → G to the embedding problem defined
by π : Γ → T and λ : G → T will be said to arise from a versal deformation
U(Γ, V ) if K(Γ, V ) ⊂ Ker(h).

Note that by Lemma 2.1, Definition 2.2 does not depend on the choice of
versal deformation U(Γ, V ). Since it is in general difficult to find K(Γ, V ), we
would like a sufficient condition for h to arise from U(Γ, V ) which involves only V
as a representation of the finite group G.

Definition 2.3. We will say that V distinguishes G if K(G,V ) is trivial. This
is equivalent to each versal deformation U(G,V ) of V as a representation of G
being faithful. We will say that V stably distinguishes G if there is a surjection
µ : G̃→ G of finite groups such that V inflated to G̃ distinguishes G̃.

Note that if V is a faithful representation of G, then V distinguishes G.
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Example 2.4. The construction of the universal deformation of a 1-dimensional
representation given by Mazur in [16] has the following consequences. If dimk(V ) =
1, then V defines a homomorphism χV : G → k∗ whose image is cyclic and of order
prime to p. The group G is distinguished by V if and only if it is isomorphic to
the product of this image with a finite abelian p-group. This is the case if and
only if G is stably distinguished by V .

The following result shows that studying which proper solutions to embed-
ding problems arise from versal deformations reduces to determining which versal
deformations of representations of finite groups are faithful.

Theorem 2.5. Let π : Γ → T and λ : G → T define an embedding problem, and
let V be a representation of T over k as before.

(i) If V distinguishes G, then all proper solutions h : Γ → G of the embedding
problem defined by π and λ arise from each versal deformation U(Γ, V ).

(ii) Suppose h is a proper solution of the embedding problem defined by π and
λ which arises from a versal deformation U(Γ, V ). Then there is a finite
group G̃ and a surjection µ : G̃ → G with the following properties. There is
a proper solution h̃ : Γ → G̃ to the embedding problem defined by π : Γ → T
and λ̃ = λ ◦ µ : G̃ → T such that h = µ ◦ h̃. The inflation of V to G̃
distinguishes G̃. In particular, V stably distinguishes G.

Proof. Let U(G,V ) be a versal deformation for V . In part (i) we assume V
distinguishes G, so U(G,V ) is a faithful representation of G. The inflation of
U(G,V ) via the surjection h : Γ → G must have the form R(G,V )⊗R(Γ,V )U(Γ, V )
for a continuous W (k)-algebra homomorphism R(Γ, V ) → R(G,V ). Thus the
kernel K(Γ, V ) of ρ(Γ, V ) must be contained in the kernel of the surjection h,
proving (i).

Conversely, we now suppose the hypotheses of (ii). Since ρ(Γ, V ) : Γ →
AutR(Γ,V )(U(Γ, V )) is continuous,

K(Γ, V ) = Ker(ρ(Γ, V )) =
⋂
J

Ker(ρJ (Γ, V ))

where J runs over the open ideals of R(Γ, V ) and

ρJ (Γ, V ) : Γ → AutR(Γ,V )/J(UJ (Γ, V ))

is the homomorphism induced by the Γ-module UJ(Γ, V ) = (R(Γ, V )/J) ⊗R(Γ,V )

U(Γ, V ). Since ker(h) has finite index in Γ, there is a J for which

Ker(ρJ (Γ, V )) ⊂ Ker(h). (2.1)

Let G̃ be the image of ρJ(Γ, V ). Since R(Γ, V )/J is Artinian and ρJ(Γ, V ) is
continuous, G̃ is finite. Because h is surjective, (2.1) gives canonical surjections
µ : G̃ → G and h̃ : Γ → G̃ such that h = µ ◦ h̃. Thus h̃ is a proper solution of
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the embedding problem defined by π : Γ → T and λ̃ = λ ◦ µ : G̃ → T . All that
remains to be shown is that the inflation of V to G̃ via λ̃ : G̃→T distinguishes G̃.

We need to show that each versal deformation U(G̃, V ) is faithful as a G̃-
module. Observe that since G̃ = Image(ρJ (Γ, V )), the module UJ(Γ, V ) is a
faithful deformation of V as representation of G̃ over the ring R(Γ, V )/J . By the
definition of versal deformations, there is thus a ring homomorphism R(G̃, V )→
R(Γ, V )/J such that UJ(Γ, V ) is isomorphic to (R(Γ, V )/J)⊗R(G̃,V )U(G̃, V ). Hence
the faithfulness of UJ(Γ, V ) implies U(G̃, V ) must also be faithful, as required. ¤

3. Groups distinguished by versal deformations

In view of Theorem 2.5, we are interested in when V distinguishes or stably dis-
tinguishes G. The case of greatest interest is when the kernel K of the action of
G on V is large. Let G = G/K.

Proposition 3.1. If V stably distinguishes G then K is a p-group.

Proof. One readily reduces to the case in which V distinguishes G. In this case,
the natural surjection τK : R(G,V ) → R(G,V, τK) from Lemma 2.1 has pro-p
kernel, since R(G,V ) and R(G,V, τK) are local rings with the same residue field
k. Hence the kernel of the induced homomorphism

GLn(R(G,V )) = AutR(G,V )(U(G,V )) → AutR(G,V,τK)(U(G,V, τK))

= GLn(R(G,V, τK))

is also a pro-p group. Thus if V distinguishes G, so that U(G,V ) is a faithful
G-module, the kernel K of the action of G on V must be a pro-p group. Since G
is finite, this implies K is a p-group. ¤

If π : Γ → T and λ : G → T define an embedding problem, then Ker(λ) is a
subgroup of K. Hence Proposition 3.1 shows that one will not solve embedding
problems using versal deformations, in the sense of Theorem 2.5, if Ker(λ) is not
a p-group. However, embedding problems in which Ker(λ) is a p-group are of
definite interest, for instance in trying to realize solvable groups as Galois groups
over function fields such as Q(x). To cite an interesting example, the theory
of modular towers developed by P. Bailey and M. Fried in [3] provides an infinite
family of solutions to embedding problems over Q(x) in which Ker(λ) is a p-group.

We have the following converse to Proposition 3.1.

Theorem 3.2. Let C = CNoeth, and suppose Ker(λ) is a p-group. There exists a
faithful representation V of T which distinguishes G. More precisely, there is such
a V and a lift M of InflG

T V over a local Artinian ring R with residue field k such
that M is a faithful G-module.
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Proof. Suppose first that T is trivial, so that G = Ker(λ) is a p-group. It will
suffice to show that there is an R as in the statement of the Theorem and a
faithful representation ρ : G → GLn(R) for some n ≥ 1 such that the reduction
ρ : G → GLn(R/mR) = GLn(k) of ρ is trivial.

To construct ρ, we will use the following fact: There is a finite Galois extension
L of the power series field k((t)) which is totally ramified and has Galois group
G = Gal(L/k((t)) ). One can prove this fact, even for k which are not algebraically
closed, in the following way. By [12, Thm. 3.11], there exists an étale Galois cover
X → A1

k of the affine line over k with Galois group G which is totally split over
the origin. This cover is then regular, or equivalently geometrically irreducible.
Let X be the projective closure of X, so that X is a G-cover of the projective line
P1

k which can ramify only over the point ∞ at infinity on P1
k. Let ∞′ be a point

of X over ∞, and let I∞′ ⊂ G be its inertia group. If I∞′ is a proper subgroup of
G, then a maximal proper subgroup J containing I∞′ is normal in G because G
is nilpotent. But then X/J is a non-trivial geometrically connected étale Galois
p-cover of P1

k, which does not exist by the Hurwitz Theorem. Hence X → P1
k is

totally ramified over ∞. Thus if we take t to be a uniformizing parameter for P1
k

at ∞, the completion over ∞′ of the function field of X gives an extension L of
k((t)) of the required kind.

For each finite extension F of k((t)), let BF be the integral closure of k[[t]]
in F . Define vF : BF − {0} → Z to be the surjective discrete valuation, and let
πF ∈ BF be a uniformizing parameter, so that vF (πF ) = 1. Since L/k((t)) is a
totally ramified G-extension, G must equal the first wild ramification group of this
extension. Hence by [20, Prop. IV.5],

vL

(σ(πL)
πL

− 1
)
≥ 1 (3.1)

for all non-trivial σ∈G. Choose a finite extension Z/k((t)) which is totally ram-
ified, of degree m>#G, with m prime to p. The compositum LZ is a totally ram-
ified extension of k((t)), and LZ/Z is Galois with Galois group G. We claim that

vLZ(σ(α)− α) > vLZ(πZ) = #G (3.2)

for all α ∈ BLZ . Since LZ/Z is totally ramified, any uniformizer πLZ of LZ is an
algebra generator for BLZ over BZ . Hence by [20, Lemme IV.1(c)], it will suffice to
show (3.2) when α = πLZ . Since vLZ(πL) = [Z : k((t))] = m and vLZ(πZ) = #G
are coprime, we can choose πLZ to have the form πa

L · πb
Z for some integers a and

b. Since σ ∈ G fixes Z, we have

σ(πLZ)− πLZ = (σ(πa
L)− πa

L) · πb
Z . (3.3)

From (3.1) we have vL

(σ(πa
L)

πa
L

− 1
)
≥ 1, so

vL(σ(πa
L)− πa

L) ≥ vL(πa
L) + 1. (3.4)

Using (3.4) in (3.3) gives
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vLZ(σ(πLZ)− πLZ) = vLZ(σ(πa
L)− πa

L) + vLZ(πb
Z)

= [LZ : L] · vL(σ(πa
L)− πa

L) + vLZ(πb
Z) (3.5)

≥ [LZ : L] · (vL(πa
L) + 1) + vLZ(πb

Z)
= vLZ(πa

L · πb
Z) + [LZ : L]

> vLZ(πLZ) + #G

since we chose Z so [LZ : L] = [Z : k((t))] = m > #G. This implies (3.2).
The discrete valuation ring BLZ is a free BZ-module of rank #G. The elements

of G act BZ-linearly on BLZ . This action gives a faithful representation ρ̃ : G →
GLn(BZ) with n = #G. The inequality (3.2) implies that for all σ ∈ G and all
α ∈ BLZ , σ(α)− α ∈ πZBLZ . Therefore the image of ρ̃ must be in the subgroup
of GLn(BZ) of matrices congruent to the identity matrix modulo mBZ

= πZBZ .
Since G is finite, we can now take the ring R to be a sufficiently large Artinian
quotient of BZ and ρ : G → GLn(R) to be the image of ρ̃ under the homomorphism
induced by the quotient homomorphism BZ → R. This proves Theorem 3.2 when
T is trivial.

Suppose now that T is not trivial. We have shown that there is an integer n ≥ 1
so that if V0 is the n-dimensional trivial representation of the p-group A = Ker(λ),
then there is a lift M0 of V0 over a local Artinian ring R with residue field k
such that M0 is a faithful A-module. Define V = IndG

AV0. Then V is a faithful
representation of T = G/A over k, and M = IndG

AM0 is a lift of V over R which
is a faithful G-module. This completes the proof. ¤

Remark 3.3.
(a) When Ker(λ) in Theorem 3.2 is abelian, we can take the ring R to be the

group ring k[Ker(λ)] and V to be IndG
Ker(λ)k. This is because the multipli-

cation action of Ker(λ) on R makes R a lift of the trivial representation k
of Ker(λ), and M = IndG

Ker(λ)R is a lift of V over R which is faithful as a
G-module.

(b) Theorem 3.2 implies that if G is solvable, and L is a G-extension of a given
field N , there is a finite increasing sequence {Lj}r

j=1 of Galois subfields over
N such that L1 = N , Lr = L, and Lj+1 is contained in the fixed field of
a versal deformation of the inflation of a representation of Gal(Lj/N). In
this sense, finite solvable extensions of a given field can be constructed using
versal deformations, giving an alternative to the usual construction of such
extensions by radicals.

We now give a criterion for when V distinguishes G using versal deformation
rings. Consider the following condition.

For all nontrivial normal subgroups J of G contained in K, (3.6)
the natural surjection of rings τJ : R(G,V ) → R(G/J, V, τJ )
given in Lemma 2.1 is not the identity.
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Theorem 3.4. The module V distinguishes G if and only if Condition (3.6) holds.

Proof. Since V is a faithful representation of G, V distinguishes G. Suppose V
does not distinguish G, so U(G,V ) is not faithful as a representation of G. Let J =
K(G,V ). Then J ⊆ K, because U(G,V, τK) = R(G,V, τK)⊗R(G,V ),τK

U(G,V ) is a
faithful representation of G. Let Q be the kernel of τJ : R(G,V ) → R(G/J, V, τJ ).
Then InflG

G/JU(G/J, V, τJ ) = R(G/J, V, τJ )⊗R(G,V ),τJ
U(G,V ) is annihilated by Q.

Since U(G,V ) is a G/J-module, it follows that there exists a ring homomorphism
µ : R(G/J, V, τJ ) → R(G,V ) so that

U(G,V ) = R(G,V )⊗R(G/J,V,τJ ),µ InflG
G/JU(G/J, V, τJ ).

Hence U(G,V ) is also annihilated by Q. Since U(G,V ) is a free R(G,V )-module,
it follows that Q = {0} and τJ is the identity.

On the other hand if there is a nontrivial normal subgroup J of G, J ⊆ K such
that τJ : R(G,V ) → R(G/J, V, τJ ) is the identity, then

U(G,V ) = R(G/J, V, τJ )⊗R(G,V ),τJ
U(G,V ) = InflG

G/JU(G/J, V, τJ ).

So U(G,V ) is not faithful. ¤

4. Cyclic blocks

In this section we want to determine when a representation belonging to a cyclic
block of the group ring of a finite group has a faithful versal deformation. We will
prove Theorem 1.1, which gives a complete answer to this problem for representa-
tions having endomorphism ring k. The proof relies on results proved in [5].

For the convenience of the reader we recall from [1, Chapter V] some properties
of cyclic blocks. Suppose G is a finite group and B is a block of kG having cyclic
defect groups. If B has trivial defect groups, then B is isomorphic to a matrix
algebra over k. Otherwise there is a tree, Λ(B), associated to B which is called
the Brauer tree of B. The edges of Λ(B) correspond to the isomorphism classes
of simple B-modules. A leaf vertex of Λ(B) is a vertex which adjoins exactly
one edge, and an edge is called a leaf edge if it adjoins a leaf vertex. An edge
which is not a leaf edge is called an interior edge. The tree Λ(B) has at most one
distinguished vertex, called the exceptional vertex, with multiplicity m > 1. All
nonexceptional vertices have multiplicity 1. The tree Λ(B) is called a star if all
edges are adjacent to one vertex, called the center. If additionally the exceptional
vertex is the center or all vertices are nonexceptional, we say Λ(B) is a tree with
central exceptional vertex.

Suppose V is a representation of G over k such that EndkG(V ) = k. Let K
be the kernel of the action of G on V , and let G = G/K. We assume that K
is nontrivial. Then with respect to the category C = CProArt, R(G,V ), U(G,V ),
R(G,V ) and U(G,V ) exist and are universal (see [7]). In particular, they are
all unique up to a unique isomorphism. Condition (3.6) is thus equivalent to the
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condition

For all nontrivial normal subgroups J of G contained in K, (4.1)
the ring homomorphism R(G,V ) → R(G/J, V ) associated to
the natural surjection G → G/J is not an isomorphism.

Suppose V belongs to a block BG,V of kG with cyclic defect group DG. Then V
belongs to a block BG,V of kG which also has cyclic defect groups (see [5, Lemma
9.2]), one of which will be called DG. By [5, Lemma 9.2], DG/J is contained in a
conjugate of the image of DG in G/J for each normal subgroup J of G contained
in K. Hence all such DG/J are cyclic and of order at least that of DG.

To prove Theorem 1.1, we first analyze Condition (4.1) in the following two
propositions.

Proposition 4.1. Suppose DG is nontrivial and that Condition (4.1) is satisfied.
Then it follows that for all J in Condition (4.1), the map Λ(BG/J,V ) → Λ(BG,V )
induced by inflation is a graph isomorphism of stars with different multiplicities
located at the center of the star.

Proof. Let J be as in Condition (4.1). By the remarks just preceding the statement
of Proposition 4.1, DG/J is cyclic and nontrivial. So the Brauer tree Λ(BG/J,V )
is well-defined. By [5, Lemma 9.2] it follows that the map Λ(BG/J,V ) → Λ(BG,V )
induced by inflation is a graph isomorphism of trees. Because of the description of
the indecomposable modules for cyclic blocks in [13, 14], it follows that this graph
isomorphism sends the exceptional vertex of Λ(BG/J,V ) to the exceptional vertex
of Λ(BG,V ) if the multiplicity of Λ(BG/J,V ) is greater than 1.

Suppose the multiplicities of the exceptional vertices of Λ(BG/J,V ) and Λ(BG,V )
were equal. Then #DG = #DG/J (see [1, Chapter V]). By [5, Theorem 1.2], the
only cases when the isomorphism type of R(G,V ) (respectively R(G/J, V )) does
not determine #DG (respectively #DG/J) are when V lies in the orbit under the
Heller operator of a leaf edge S in Λ(BG,V ) (respectively in Λ(BG/J,V )) which does
not have an exceptional leaf vertex. Hence, because we assume Condition (4.1)
to be satisfied, V must be as in one of these cases. But then, since Λ(BG/J,V )
and Λ(BG) are isomorphic trees which have the same exceptional vertex, it follows
that S defines in both Λ(BG,V ) and Λ(BG/J,V ) a leaf edge which does not have an
exceptional leaf vertex. So R(G/J, V ) = W = R(G,V ) by [5, Theorem 1.2]. This
contradicts Condition (4.1). Hence the multiplicites of the exceptional vertices of
Λ(BG/J,V ) and Λ(BG,V ) are different. In particular, the multiplicity of Λ(BG,V )
has to be strictly greater than 1.

Suppose Λ(BG,V ) is not a star with central exceptional vertex. Then there
exists either (a) a path of two edges S,U where S is a leaf edge with exceptional
leaf vertex, or (b) a path of three edges R,S, U where the common vertex of R and
S is exceptional. Consider the projective cover PS,G/J of S as a G/J-module. The
description of the indecomposable modules for cyclic blocks as given in [13, 14]
shows that no indecomposable BG,V -module can be isomorphic to the inflation of
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PS,G/J from G/J to G. This is a contradiction. So the Brauer trees of BG,V and
BG/J,V are stars with different multiplicities located at the center of the star. ¤

Define dj(V ) = dimkĤj(G,Homk(V, V )) for j ∈ Z, where Ĥj denotes the j-th
Tate cohomology group. The following result shows to what extent the converse
of Proposition 4.1 holds.

Proposition 4.2. Assume that K is a p-group. Suppose DG is nontrivial and
Λ(BG,V ) is a star with central exceptional vertex. Then for all nontrivial normal
subgroups J of G which are contained in K it follows that Λ(BG/J,V ) is a star with
central exceptional vertex of strictly smaller multiplicity than the one of Λ(BG,V ).

One has dj(V ) ≤ 1 for all j ≥ 0. If d1(V ) 6= 0 or d2(V ) 6= 0, then Condition
(4.1) is satisfied. If d1(V ) = 0 = d2(V ), then R(G,V ) = W = R(G,V ), and
Condition (4.1) is not satisfied.

Proof. By the remarks just prior to Proposition 4.1, DG/J is cyclic nontrivial and of
order at most that of DG. By [5, Lemma 9.2] it follows that the map Λ(BG/J,V ) →
Λ(BG,V ) induced by inflation is a bijection of trees, and the multiplicity of the
exceptional vertex of Λ(BG/J,V ) is bounded by that of the exceptional vertex of
Λ(BG,V ). Because of the description of the indecomposable modules for cyclic
blocks in [13, 14], it follows that this graph isomorphism sends the exceptional
vertex of Λ(BG/J,V ) to the exceptional vertex of Λ(BG,V ) if the multiplicity of
Λ(BG/J,V ) is greater than 1. Hence the exceptional vertex of Λ(BG/J,V ) is at
the center. Suppose the multiplicities of the exceptional vertices of Λ(BG,V ) and
Λ(BG/J,V ) were equal. Then every projective indecomposable Λ(BG,V )-module
would be inflated from G/J . However, J is a nontrivial normal p-subgroup of
G, so J does not act trivially on any projective indecomposable Λ(BG,V )-module.
This contradiction shows the exceptional vertex of Λ(BG/J,V ) has strictly smaller
multiplicity than that of Λ(BG,V ).

By [5, Theorem 1.2], dj(V ) ≤ 1 for all j ≥ 0. The explicit determination
of the universal deformation rings in [5, Theorem 1.2] shows that the universal
deformation rings are nonisomorphic for G and G/J unless d1(V ) = 0 = d2(V ),
in which case the universal deformation rings are in both cases the ring of Witt
vectors W . ¤

Remark 4.3. The conditions for dj(V ) in Proposition 4.2 can also be expressed
using the stable Auslander–Reiten quiver associated to BG,V (see [5, Section 3]).
For background on Auslander–Reiten quivers see, for example, [2]. Let eG be
the number of isomorphism classes of simple BG,V -modules. If eG = 1 then
EndkT (V ) = k implies V is isomorphic to the unique simple BT,V -module. For
such V one has d1(V ) 6= 0 6= d2(V ). Suppose now that eG > 1 and as before that
EndkT (V ) = k. Then d1(V ) 6= 0 or d2(V ) 6= 0 if and only if V lies at distance d
with 1 ≤ d ≤ eG − 1 from the boundary of the stable Auslander–Reiten quiver of
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BG,V . Also d1(V ) = 0 = d2(V ) if and only if V lies at the boundary of the stable
Auslander–Reiten quiver.

Propositions 4.1 and 4.2 need the assumption that DG is nontrivial. For blocks
BG,V with trivial defect group DG, we have the following result.

Lemma 4.4. If DG is trivial and DG is nontrivial, then V corresponds to a leaf
edge of Λ(BG,V ) which has a nonexceptional leaf vertex.

Proof. See the proof of [5, Theorem 1.6] in section 9 in [5]. ¤

The following theorem gives some insight into the possible behaviors of the
kernel K of V as a normal subgroup of G.

Theorem 4.5. Let Kp be a Sylow p-subgroup of K. Further let K ′ = Ker(ρ(G,V ))
be the kernel of U(G,V ) as a representation of G. So K ′ ≤ K.

(i) One has Kp ≤ sDGs−1 for some s ∈ G.
(ii) If DG is trivial, then Kp = sDGs−1 for some s ∈ G.
(iii) Suppose that d1(V ) 6= 0 or d2(V ) 6= 0. Then the group K ′ is a p′-group,

and the quotient group K/K ′ is a p-group. So K is a semidirect product
K = K ′×Kp.

Proof. Since V is relatively DG-projective, as a G-module, V is a direct summand of
IndG

DG
ResG

DG
V . By Mackey’s Theorem (see for example [1, Lemma 8.7]), ResG

Kp
V

is a direct summand of ⊕
s∈Kp\G/DG

IndKp

Kp∩sDGs−1 s⊗ (ResG
DG

V ).

Since ResG
Kp

V is a trivial Kp-module, by Krull–Remak–Schmidt, there is an s ∈
Kp\G/DG such that IndKp

Kp∩sDGs−1 s ⊗ (ResG
DG

V ) has a summand with trivial
Kp-action. Since the trivial module for Kp has a Sylow p-subgroup as vertex and
Kp is a p-group, it follows that Kp ∩ sDGs−1 = Kp which is (i).

We now turn to the proof of (ii). If DG is trivial, then Kp is as well by part
(i), so (ii) holds. We now suppose DG is nontrivial. Considering the projection
π : kG → kG, it follows that π(BG,V ) is a sum of blocks of kG. If one of these
blocks had a nontrivial defect group, there would be a bijection between the Brauer
trees of this block and of BG,V by [5, Lemma 9.2], which is impossible. So all
these blocks have defect 0. Since K is the kernel of V , V is an indecomposable
kG-module and thus a projective simple kG-module. This means that V is also
a simple kG-module. By Lemma 4.4, the module V corresponds to a leaf edge of
the Brauer tree of BG,V which has a nonexceptional leaf vertex. Thus [5, Theorem
3.2] implies V lies at the boundary of the stable Auslander–Reiten quiver of BG,V .
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Claim. There is an indecomposable BG,V -module which lies at the boundary of
the stable Auslander–Reiten quiver of BG,V and which has vertex DG.

Proof of Claim. Let D1 be the unique subgroup of DG of order p, let N1 be
the normalizer of D1 in G. Let B1 be the Brauer correspondent of BG,V in
kN1, so B1 also has DG as a defect group. By the proof of [4, Theorem 6.5.5],
the Green correspondence defines an isomorphism between the stable Auslander–
Reiten quivers of BG,V and B1. Thus to prove the claim, we are free to replace
G by N1, so that D1 becomes normal in G and Λ(BG,V ) is a star with central
exceptional vertex. If DG = D1, any simple module X for BG,V = B1 lies at
the boundary of the stable Auslander–Reiten quiver, and X must have vertex
DG because it is not projective. Suppose now that D1 is a proper subgroup of
DG. Then D1 acts trivially on each simple BG,V -module X, since D1 is a normal
p-subgroup of G. The block BG/D1,X of k(G/D1) to which X belongs has non-
trivial defect group DG/D1 (see the proof of [6, Lemma 8.7]). By induction there
exists an indecomposable BG/D1,X -module Y which lies at the boundary of the
stable Auslander–Reiten quiver of BG/D1,X and which has vertex DG/D1. Since
Λ(BG/D1,X) is a star with central exceptional vertex, X lies in the orbit of Y under
the Heller operator, so also has vertex DG/D1 as BG/D1,X -module. It follows that
the inflation of X to G has vertex DG as BG,V -module, which proves the Claim.

We continue now with the proof of part (ii). Since the application of the Heller
operator does not change vertices of modules and since V lies at the boundary
of the stable Auslander–Reiten quiver of BG,V , it follows that V has vertex DG.
Since V is a projective kG-module, it follows that V , as a G-module, is relatively
K-projective, and thus relatively Kp-projective. This means DG is conjugate to
a subgroup of Kp. On the other hand, part (i) shows that Kp is conjugate to a
subgroup of DG. So Kp and DG are conjugate in G. This proves (ii).

For part (iii) we assume that d1(V ) 6= 0 or d2(V ) 6= 0. From [5, Theorem
1.2], it follows that the order of DG can be retrieved from the isomorphism type
of R(G,V ). Since K ′ is the kernel of the universal deformation U = U(G,V ), U
is also a universal deformation U(G/K ′, V ) for G/K ′ with universal deformation
ring R(G/K ′, V ) ∼= R(G,V ). Suppose the order of K ′ is divisible by p. Because
K ′

p is contained in Kp, and Kp is contained in a conjugate of DG by part (i), the
order of the defect groups changes when going from G to G/K ′. But this means
that R(G,V ) and R(G/K ′, V ) cannot be isomorphic. So K ′ is a p′-group. Since
U = U(G,V ) is faithful as a G/K ′-module it follows as in the proof of Proposition
3.1 that K/K ′ is a p-group. This proves (iii). ¤

Remark 4.6. Theorem 4.5 shows that if BG,V has nontrivial cyclic defect groups,
there are two possibilities. If V distinguishes G, then the kernel of V , as a G-
module, is a p-group lying inside a defect group of the block BG,V to which V
belongs. If V does not distinguish G, then there is a normal subgroup K ′ of
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G which lies inside the kernel of V so that V distinguishes G/K′. Moreover, if
d1(V ) 6= 0 or d2(V ) 6= 0, then K ′ is a p′-group.

We are now able to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose first that V distinguishes G. Then by Proposition
3.1, K is a p-group. By Theorem 3.4, Condition (4.1) is satisfied. If DG is
nontrivial, Proposition 4.1 shows that Λ(BG,V ) is a star with central exceptional
vertex. So by Proposition 4.2, since Condition (4.1) is satisfied, it follows that
d1(V ) 6= 0 or d2(V ) 6= 0. Consider now the case when Λ(BG,V ) has more than
one edge. If V were simple, then V would correspond to a leaf edge of Λ(BG,V )
with a nonexceptional leaf vertex, since Λ(BG,V ) is a star with central exceptional
vertex. Hence d1(V ) and d2(V ) would both be zero by [5, Proposition 1.3]. This
is a contradiction. Hence V is not simple if Λ(BG,V ) has more than one edge.
If DG is trivial, then by [5, Theorem 1.2], R(G,V ) = W . If DG were trivial,
then also R(G,V ) = W and Condition (4.1) would not be satisfied. Hence DG

is nontrivial. By Lemma 4.4, V corresponds to a leaf edge of Λ(BG,V ) having
a nonexceptional leaf vertex. If Λ(BG,V ) has only one edge, Λ(BG,V ) is a star
with central exceptional vertex. If Λ(BG,V ) had more than one edge, then by [5,
Proposition 1.3], R(G,V ) = W and Condition (4.1) would not be satisfied. This
is a contradiction. Therefore, Λ(BG,V ) has the required form.

Suppose now that K is a p-group, Λ(BG,V ) is a star with central exceptional
vertex, and, in case Λ(BG,V ) has more than one edge, that V is not simple. In
particular, DG is nontrivial. By [5, Theorem 1.2 and Proposition 1.3], this means
that d1(V ) 6= 0 or d2(V ) 6= 0. By Theorem 3.4, it suffices to verify Condition (4.1).
If DG is nontrivial, this follows from Proposition 4.2. If DG is trivial, Lemma
4.4 shows that V is a leaf edge of Λ(BG,V ) with nonexceptional leaf vertex. In
particular, V is a simple kG-module. Because of the assumptions, this means that
Λ(BG,V ) has only one edge. Hence [5, Proposition 1.3] shows that R(G,V ) =
WDG and R(G,V ) = W . Further, for all normal nontrivial subgroups J of G
which lie inside K, R(G/J, V ) = WDG/J . It follows from Theorem 4.5 that
K = DG. Therefore, by the remarks just prior to the statement of Proposition
4.1, DG/J is conjugate to a subgroup of DG/J . Hence Condition (4.1) is satisfied.
This completes the proof of Theorem 1.1.

5. Examples

In this section we want to study a few examples of embedding problems and the
question of whether all their proper solutions arise from versal deformations. For
simplicity, we will consider those representations V of T with EndkT (V ) = k, since
under this condition we have universal deformations with respect to the category
CProArt (see [7]). Additionally, Condition (3.6) can be replaced by Condition (4.1).
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In view of Theorem 2.5 we consider whether there is a representation V of
T with EndkT (V ) = k so that V distinguishes G. We will use Theorem 1.1
and Theorem 3.4 with Condition (3.6) replaced by Condition (4.1) to determine
whether V distinguishes G.

Our first two examples deal with cyclic blocks. The third example looks at a
tame block case.

Example 5.1. We first suppose T is the cyclic group T = (Z/pZ)∗, and G is a
semidirect product G = (Z/pZ)×δ(Z/pZ)∗ where a ∈ (Z/pZ)∗ acts on (Z/pZ) by
multiplication by aδ, 1 ≤ δ ≤ p − 1. Further let V be a faithful 1-dimensional
kT -module.

Since G has a unique normal Sylow p-subgroup which is isomorphic to the cyclic
group Z/pZ, all blocks of kG have cyclic defect groups. By [5, Example 8.4], kG
has gcd(δ, p − 1) blocks whose Brauer trees are all stars with central exceptional
vertex and (p − 1)/gcd(δ, p − 1) edges. If δ < p − 1, then each Brauer tree has
more than one edge. If δ = p− 1, then each Brauer tree has exactly one edge. By
Theorem 1.1, since V is a simple kG-module, V does not distinguish G if δ < p−1.
If δ = p−1, then V distinguishes G. Note that for δ = p−1, G is a direct product
G = (Z/pZ)× (Z/pZ)∗.

Example 5.2. In our second example we suppose p ≥ 3, d ≥ 2 and that G is a
semidirect product G = (Z/pdZ)×(Z/pZ)∗, where we assume that (Z/pZ)∗ acts
faithfully on Z/pdZ. Let T be the quotient group (Z/pZ)×(Z/pZ)∗ of G. Then, by
[5, Example 8.4], Λ(kG) and Λ(kT ) are both stars with central exceptional vertex
and p − 1 edges. Note that the multiplicity of the exceptional vertex of Λ(kG)
(respectively Λ(kT )) is pd−1 + · · ·+ p + 1 (respectively 1).

Λ(kG):
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¡
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Λ(kT ):
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Let V be a 2-dimensional uniserial kT -module. So for example V =
S1

S2
. Then

it follows that V is a faithful kT -module, since otherwise the kernel of V would
be Z/pZ. But then V would be a representation of (Z/pZ)∗ and thus would be
the direct sum of two simple modules. This is a contradiction. So V is a faithful
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kT -module. By Theorem 1.1, V distinguishes G.

An arithmetic instance of Examples 5.1 and 5.2 arises from considering how
to construct cyclic degree pd extensions L of Q(ζp) which are Galois over Q and
such that Gal(Q(ζp)/Q) ∼= (Z/pZ)∗ acts on Gal(L/Q(ζp)) ∼= Z/pdZ via a particu-
lar character. If d = 1, Example 5.1 shows one cannot construct all such L from
universal deformations of indecomposable representations of T = Gal(Q(ζp)/Q).
If d ≥ 2, Example 5.2 shows that one can construct all such L from the univer-
sal deformation of any 2-dimensional indecomposable representation V of T =
Gal(L′/Q), where L′ is the degree p extension of Q(ζp) contained in L. When L is
unramified, solving these embedding problems is of classical interest in connection
with the eigenspaces of the p-part of the ideal class group of Q(ζp) (see [23], [19],
[15]).

Example 5.3. In our third example we consider the case when p = 2, T is the
alternating group A5 of degree 5 and G is its double cover G = Ã5

∼= SL2(Z/5Z).
Suppose V is one of the two 2-dimensional simple kT -modules. Then V is a faithful
kT -module since T is simple. By [4, Section 6.6], V belongs to the principal block
B0 of kT which has Kleinian 4-groups as defect groups and is thus a tame block.
Note that the principal block of kG has quaternion defect groups of order 8 and
is also tame.

By [4, Theorem 6.6.3], B0 has 3 simple modules and Ext1kT (V, V ) = 0. This
means that k⊗W R(T, V ) = k (see [7, Section 5]). So R(T, V ) is a quotient ring of
W . Because A5 has no ordinary irreducible character of degree 2, it follows that
R(T, V ) = W/2nW for some integer n ≥ 1. Since G = SL2(Z/5Z) does have an
ordinary irreducible character of degree 2 which reduces to V modulo 2, it follows
that, as G-module, V does have a lift over W . This means that R(G,V ) properly
surjects onto R(T, V ). So Condition (4.1) is satisfied and V distinguishes G by
Theorem 3.4.

We show in the next section that in fact R(T, V ) = k and R(G,V ) = W . The
construction of a G = Ã5 extension L/N which contains a given T = A5 extension
L′/N is a famous problem and has been studied by many authors. For example,
it is shown in [21, Section 2.4] that the obstruction to being able to construct
such a G-extension is the second Stiefel–Whitney class of the trace form of L′/N .
When N = Q(t) and t is an indeterminate, some calculations of this obstruction
are given in [18].

6. Appendix: The double cover of A5

In this section we adopt the notations of Example 5.3 of section 5. Thus T is the
alternating group A5

∼= SL2(F4) and G is its double cover G = Ã5. For V we take
one of the two 2-dimensional irreducible representations of T over an algebraically
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closed field k of characteristic p = 2. Our goal is to prove:

Proposition 6.1. The universal deformation rings R(T, V ) and R(G,V ) are iso-
morphic to k and to W , respectively.

The decomposition matrix for the principal block of kÃ5 is given in [8, p. 305].
This matrix shows that there is an absolutely irreducible ordinary character χ
of Ã5 whose image under the decomposition map is the Brauer character of V .
Further the values of χ lie in W , since W contains all roots of unity of order
prime to 2. The decomposition matrix also shows χ occurs with multiplicity 1 in
the character of the projective W Ã5-cover of V . Hence χ is the character of a
representation λ̃ : Ã5 → GL2(W ) which lifts V over W . Since χ is irreducible and
A5 has no 2-dimensional ordinary irreducible representation, it must be the case
that λ̃(−1) = −I where −1 is the nontrivial element of the center of Ã5 and I is
the identity matrix in GL2(W ). Let H be the subgroup of GL2(W/4W ) which is
the inverse image of SL2(F4) under reduction modulo 2. We conclude that there
is a commutative diagram

1 → {±1} → Ã5 → A5 → 1
↓ ↓ λ ↓ φ

1 → 1 + 2M2(W/4W ) → H → SL2(F4) → 1
(6.1)

in which φ : A5 → SL2(F4) is a matrix representation afforded by V , and λ is the
reduction of λ̃ modulo 4. Thus in particular, φ is an isomorphism. In the bottom
row of this diagram, one has an isomorphism

δ : 1 + 2M2(W/4W ) → M2(k)+ (6.2)

sending 1 + 2α mod 4 to α mod 2, where M2(k)+ is the additive group of M2(k).

Lemma 6.2. Let β ∈ H2(A5,M2(k)+) be the extension class defined by the bottom
row of Diagram (6.1) and the inverse of the map δ in (6.2). To prove Proposition
6.1, it will suffice to show that the extension class β is nontrivial.

Proof. By Example 5.3 of section 5, R(T, V ) = W/pnW for some integer n ≥ 1,
where T = A5. Thus to show R(T, V ) = k = W/pW , it will suffice to show that
V has no lift as a representation of T over W/4W . The existence of such a lift is
equivalent to the splitting of the bottom row of Diagram (6.1), which is equivalent
to the triviality of β. As for R(G,V ) when G = Ã5, we have already seen that as a
representation of G, V has a lift over W . Thus to prove R(G,V ) = W , it will suffice
to show that H1(G,Homk(V, V )) = {0}, since then R(G,V )/p(R, V ) = k. So to
complete the proof of Lemma 6.2, we will show that if H1(G,Homk(V, V )) 6= {0}
then β = 0. Suppose h : G → Homk(V, V ) is a one-cycle which is not a one-
boundary. If h were trivial on the nontrivial element −1 of the center of G = Ã5,
then h would be the inflation of a one-cycle of A5. However, we showed in Example
5.3 of section 5 that H1(A5,Homk(V, V )) = Ext1kA5

(V, V ) = {0}. Thus if h(−1) =



62 F. M. Bleher and T. Chinburg CMH

0 then h would be a boundary, contrary to assumption. Therefore h(−1) must be
nontrivial. Because h is a one-cycle and −1 is central, we find from the definition
of one-cycles that then conjugation action of Ã5 on Homk(V, V ) is trivial on h(−1).
Therefore h(−1) is a scalar matrix, and since it is nonzero, we can multiply h by a
scalar in order to be able to assume that h(−1) = I is the multiplicative identity
of Homk(V, V ). We now use h to define a splitting s : SL2(F4) → H of the bottom
row of Diagram (6.1) in the following way. Let γ̃ be an element of Ã5, with image
γ in A5. Define

s(γ) = λ̃(γ̃) · δ−1(h(γ̃))

where δ is as in (6.2). Using the fact that λ̃(−1) = −I, it follows that s is well-
defined and a splitting of the bottom row of Diagram (6.1), hence β = 0. ¤

We now define kA5-modules C and C ′ by the diagram

0 → {0, I} → M2(k)+ → C → 0
↓ a ↓ b ↓ c

0 → k → M2(k)+ → C ′ → 0
(6.3)

in which I in the upper left corner is the identity matrix in M2(k)+, the left arrow
a is the natural inclusion, the middle arrow b is the identity map, and c is the
induced map on cokernels.

Lemma 6.3. To show that the extension class β defined in Lemma 6.2 is not
trivial, it will suffice to prove that H1(A5, C

′) = 0.

Proof. Let β0 ∈ H2(A5, {±1}) be the extension class of the top row of Diagram
(6.1), so that β0 is the unique nontrivial element of order two in H2(A5, {±1}).
We have a commutative diagram

H2(A5, {±1} → H2(A5, 1 + 2M2(W/4W ))
↓ ↓

H2(A5, {0, I}) → H2(A5,M2(k)+)
(6.4)

in which the vertical arrows are isomorphisms induced by the isomorphism δ of
(6.2). The image of β0 under the composition of the homomorphisms in the top
row and the right column of Diagram (6.4) is the class β of Lemma 6.2. Hence
to show β is nontrivial, it will suffice to show that the map in the bottom row of
Diagram (6.4) is injective. By the long exact cohomology sequence of the top row
of Diagram (6.3), it will thus suffice to show H1(A5, C) = 0. The right column of
Diagram (6.3) gives an exact sequence

0 → C ′′ → C → C ′ → 0 (6.5)

in which C ′′ ∼= k/{0, I} has trivial A5-action. Therefore

H1(A5, C
′′) = Hom(A5, C

′′) = 0.



Vol. 78 (2003) Applications of versal deformations to Galois theory 63

Hence the long exact cohomology sequence of (6.5) shows H1(A5, C) = 0 if
H1(A5, C

′) = 0. ¤

Completion of the proof of Proposition 6.1. To show that H1(A5, C
′) = 0 we look

at the exact sequence

0 → U → C ′ = M2(k)+/k
tr→ k → 0 (6.6)

where tr is the usual trace map. A simple matrix calculation shows that as a
kA5-module, C ′ has no submodule isomorphic to k with trivial A5-action. This
means that U has to be one of the two irreducible 2-dimensional kA5-modules,
and H0(A5, C

′) = 0. In the long exact cohomology sequence of (6.6)

· · · → H0(A5, C
′) → H0(A5, k) → H1(A5, U) → H1(A5, C

′) → H1(A5, k) → · · ·
we also have H0(A5, k) = k and H1(A5, k) = Hom(A5, k) = 0. Thus to show
that H1(A5, C

′) = 0 it suffices to show that dimkH1(A5, U) = 1. By [4, Theorem
6.6.3(ii)], the two irreducible 2-dimensional kA5-modules occur both with multi-
plicity 1 in rad(P1)/rad2(P1), where P1 is the projective cover of the trivial simple
kA5-module k and rad denotes the Jacobson radical. Since U is one of the two
2-dimensional irreducible kA5-modules, this means that

H1(A5, U) = Ext1kA5
(k, U) = HomkA5(rad(P1)/rad2(P1), U) = k.
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