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Abstract. Let X oG be the crossed product groupoid of a locally compact group G acting on
a locally compact space X. For any X oG-algebra A we show that a natural forgetful map from
the topological K-theory Ktop

∗ (X o G; A) of the groupoid X o G with coefficients in A to the
topological K-theory Ktop

∗ (G; A) of G with coefficients in A is an isomorphism. We then discuss
several interesting consequences of this result for the Baum–Connes conjecture.
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0. Introduction and statement of the main results

Let G be a locally compact group. By a G-algebra we understand a C∗-algebra A
equipped with a (strongly) continuous action of G on A. We can follow [3] (but
see also the discussions in [6]) to compute the topological K-theory of the group
G with coefficients in A as

Ktop
∗ (G;A) = lim

Z⊆E(G)
KKG

∗ (C0(Z), A),

where E(G) denotes a universal example for the proper actions of G, Z runs
through the G-compact subsets of E(G) (i.e., Z is a G-invariant subset of E(G)
such that G\Z is compact), and KKG

∗ (C0(Z), A) denotes Kasparov’s equivariant
KK-theory (see [10]). The topological K-theory forms the left hand side of the
Baum–Connes assembly map

µG,A : Ktop
∗ (G;A) → K∗(A or G),

where A or G denotes the reduced crossed product of A and G. The Baum–
Connes conjecture asserts that µG,A should always be an isomorphism. If this
is true for a given pair (G,A), we say that G satisfies BC for A. Note that it
seems now clear that the conjecture does not hold for all pairs (G,A) (e.g., see
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[9]), but the conjecture has been shown to be valid for a fairly large class of groups
and coefficient algebras (for general surveys on recent results we refer to [17, 24]).
Perhaps, the strongest positive result has been obtained by Higson and Kasparov
in [8], where they show that every group with the Haagerup property, and, in
particular, all amenable groups satisfy BC for arbitrary coefficient algebras A.

The constructions of the topological K-theory for a group and the assembly
map have been extended to locally compact groupoids G (with Haar system) and
G-algebras A by Tu in [20], using Le Gall’s notion of equivariant KK-theory for
groupoids ([14]). Tu was also able to prove a groupoid version of the above men-
tioned result of Higson and Kasparov (see [21]). In particular, all topologically
amenable groupoids (in the sense of [1]) satisfy BC for arbitrary coefficients.

In this paper we want to show that considering the conjecture for groupoids
does indeed give extra information for groups. If G is a locally compact group
which acts continuously on a locally compact space X, then we can consider the
crossed-product groupoid X o G of X by G. An X o G-algebra is a G-algebra
A together with a G-equivariant nondegenerate ∗-homomorphism φ : C0(X) →
ZM(A), where ZM(A) denotes the center of the multiplier algebra of A. Since
every X o G-algebra is also a G-algebra, we can consider both topological K-
theories

Ktop
∗ (G;A) and Ktop

∗ (X o G;A).

Moreover, it follows easily from the definitions that the reduced crossed product
A or G coincides with the reduced groupoid crossed product A or (X o G) for
every X o G-algebra A. Thus, the Baum–Connes conjectures for G and X o G
predict that both topological K-theories should coincide. Indeed, the main result
of this paper is

Theorem 0.1. Let A be an X o G-algebra. There exists a natural forgetful map

F : Ktop
∗ (X o G;A) → Ktop

∗ (G;A),

which is an isomorphism of groups.

We remark at this point that the result is fairly easy in case X is compact (this
case was used without proof in [7], but a more general groupoid version is given
in [18, Lemma 4.1]).

We refer to §1 for more details on the construction of F . The main consequence
of Theorem 0.1 is to provide a way to connect the Baum–Connes conjecture for
groups to the conjecture for groupoids:

Corollary 0.2. Let X be a G-space and let A be an X o G-algebra. Then G
satisfies BC for A if and only if X o G satisfies BC for A.

Recall that a G-algebra A is called proper if A is an X o G-algebra for some
proper G-space X. Using the descent isomorphism [12, Theorem 5.4], we are now
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able to derive from the above corollary an elementary proof of [6, Théorème 2.2],
which is a key technical result for the γ-element approach of the Baum–Connes
conjecture:

Corollary 0.3. Assume that A is a proper G-algebra. Then G satisfies BC for A.

Most important, this result can be generalized substantially: proper G-spaces
are amenable, and as a direct application of Tu’s groupoid version of the very deep
Higson–Kasparov theorem (already mentioned above), we obtain

Corollary 0.4. Assume that X is a topologically amenable G-space (in the sense
of [1]) and let A be an X o G-algebra. Then the Baum–Connes assembly map

µG,A : Ktop
∗ (G;A) → K∗(A or G)

is an isomorphism.

Another important application uses equivalences of groupoids: Assume that X
is a locally compact space equipped with commuting free and proper actions of the
locally compact groups H and K. Assume that A is an X o (H ×K)-algebra and
let AK (resp. AH) denote the generalized fixed-point algebras of A by K (resp.
H) in the sense of Kasparov (see [10] and §4 below). Then AK is a (K\X) o H-
algebra and AH is an (H\X)oK-algebra. It follows from results of Kasparov [10]
(which have been generalized to general groupoid equivalences by Le Gall in [14])
that there are natural isomorphisms between the topological K-theory groups

Ktop
∗

(
(H\X)oK;AH

)
, Ktop

∗
(
X o (H×K);A

)
and Ktop

∗
(
(K\X)oH;AK

)
.

Applying the forgetful map to all theses groups we obtain similar isomorphisms
between

Ktop
∗ (K;AH), Ktop

∗ (H ×K;A) and Ktop
∗ (H;AK).

Since the crossed products by the above actions are all Morita equivalent by
[10, 15], they also have the same K-theories. Thus, by checking that the vari-
ous assembly maps are compatible with these isomorphisms we obtain

Theorem 0.5. Let X, H, K and A be as above. Then the following are equivalent:
(i) H ×K satisfies BC for A.
(ii) H satisfies BC for AK .
(iii) K satisfies BC for AH .

As a special case of this, we obtain a new and conceptionally easier proof of
one of the main results of [5]: Assume that H is a closed subgroup of the locally
compact group G and that B is an H-algebra. Then the induced algebra IndG

H B

can be defined as the generalized fixed-point algebra
(
C0(G)⊗ B

)H with respect
to the diagonal H-action (using right translation of H on G). Thus, putting
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A = C0(G) ⊗ B and K = G (acting by left translation on C0(G)), the above
results provide

Corollary 0.6 (cf [5, Theorem 2.5]). Let H, G and B be as above. Then H
satisfies BC for B if and only if G satisfies BC for IndG

H B. In particular, if G
satisfies BC for all coefficient algebras, the same is true for H.

Note that the main ideas for the proof of Theorem 0.1 follow from the general
methods as developed in [5]: we use E(G)×E(G/G0), equipped with the diagonal
action of G, as a universal example for the proper actions of G (G0 denotes the
component of the identity of G). Since G/G0 is totally disconnected, E(G/G0)
can be realized as a locally finite simplicial complex such that the G-stabilizers of
the single simplices are almost connected. This allows, using compression and a
Mayer–Vietoris argument, to reduce the problem to the case of almost connected
groups (i.e., G/G0 is compact). Since such groups possess a γ-element by [10],
a fairly simple argument shows the validity of Theorem 0.1 in this case. Note
that all locally compact groups and spaces appearing in this paper are assumed
to be second countable and Hausdorff, and all coefficient algebras are assumed
to be separable. Moreover, all tensor products of C∗-algebras are assumed to be
spatial. The authors are very grateful to Jean Renault and George Skandalis for
some useful conversations on the topic.

Most of this work was done while the second author visited the Mathematics
Department at Université Blaise Pascal in Clermont-Ferrand. The second author
is very grateful to the members of the department (in particular to Jerome Chabert
and Hervé Oyono-Oyono) for their warm hospitality.

1. Some preliminaries and construction of the forgetful map

Let G be a locally compact group acting continuously on a locally compact space
X. The crossed-product groupoid X oG consists of all pairs (x, g) with x ∈ X, g ∈
G. Its base space is X (∼= X × {e}), and the source and range maps are given by

s((x, g)) = g−1x, r((x, g)) = x.

The composition law is (gx, g)(x, g′) = (gx, gg′) and the inversion is (x, g)−1 =
(g−1x, g−1) .

An action of the groupoid X oG on a topological space Z is given by a contin-
uous action of G on Z together with a continuous G-equivariant map p : Z → X.
Such an action is proper if and only if the underlying group action of G on Z is
proper, i.e., if and only if the structural map G × Z → Z × Z; (g, z) 7→ (g · z, z)
is proper in the sense that inverse images of compact sets are compact. A map
φ : Y → Z between two X o G-spaces Y and Z is X o G-equivariant if φ is
G-equivariant and pZ ◦ φ = pY , where pY : Y → X and pZ : Z → X denote the
underlying base maps.
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Recall that a universal example, E(G), for the proper actions of G is a locally
compact proper G-space such that for any other locally compact proper G-space
Z there exists a continuous G-equivariant map F : Z → E(G) which is unique up
to G-homotopy (see [12, 6]). Note that E(G) always exists ([12]), and it follows
from the definition that it is unique up to G-homotopy. It is straightforward to
extend this notion of universal proper space to the setting of groupoid actions (see
[20]), but here we only need it for the crossed-product groupoid X o G. For this
we let X oG act on E(G)×X via the diagonal action of G and the (G-equivariant)
second projection π : E(G)×X → X. This clearly defines a proper action of X oG
on E(G)×X and we get:

Lemma 1.1. Equipped with the action defined above, E(G) × X is a universal
example for the proper actions of the groupoid X o G.

Proof. Let Z be a proper X o G space with base map p : Z → X. Then the
group G acts properly on Z and since E(G) is a universal example for proper
actions of G , there exists a continuous equivariant map ϕ : Z → E(G). The map
Z 3 z 7→ φ(z) = (ϕ(z), p(z)) ∈ E(G) × X is then X o G-equivariant. Now if
z 7→ φ′(z) = (q1(z), q2(z)) is another X o G-equivariant map, then clearly q2 = p .
The universal property of E(G) with respect to proper G-spaces implies that q1

and ϕ are G-equivariantly homotopic. Both facts imply that φ and φ′ are X o G-
homotopic. ¤

Recall from [20] that the topological K-theory of a locally compact groupoid G
with coefficients in the G-algebra A is defined as

Ktop
∗ (G;A) = lim

Y⊆E(G)
KKG

∗ (C0(Y ), A),

where Y runs through the G-compact subsets of E(G) and KKG
∗ denotes Le Gall’s

equivariant KK-theory (see [14]). In case of the crossed-product groupoid X o G,
the X oG-equivariant KK-groups coincide with Kasparov’s RKKG(X; ·, ·)-groups
(see [14, §5] and [10, §3]). Since a subset of E(G) × X is X o G-compact if and
only if it is G-compact we obtain

Ktop
∗ (X o G;A) = lim

Y⊆E(G)×X
RKKG

∗ (X;C0(Y ), A),

for any XoG-algebra A, where Y runs through the G-compact subsets of E(G)×X.
Recall that for any pair of X o G-algebras (B,A), the cycles for RKKG(X;B,A)
consist of equivariant Kasparov triples (E ,Φ, T ), as in the construction of
KKG(B,A), but which satisfy the additional requirement that

(h · a) · (e · b) = (a · e) · (b · h) for all h ∈ C0(X), a ∈ A, e ∈ E and b ∈ B.

Thus, forgetting this extra requirement gives a natural homomorphism

f : RKKG
∗ (X;B,A) → KKG

∗ (B,A).
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In particular, for any G-compact subset Y ⊆ E(G) × X we obtain a canonical
composition of maps

RKKG
∗ (X;C0(Y ), A)

f→ KKG
∗ (C0(Y ), A) π1∗→ KKG

∗ (C0(π1(Y )), A) → Ktop
∗ (G;A),

where π1 : E(G)×X → E(G) denotes the canonical projection, which restricts to a
proper map on the G-compact set Y , and the last map follows from the definition
of the topological K-theory. Let us denote the above composition by

FY : RKKG
∗ (X;C0(Y ), A) → Ktop

∗ (G;A).

It is straightforward to check that the maps FY are compatible with taking limits,
and hence they induce a well defined group homomorphism

F : Ktop
∗ (X o G;A) → Ktop

∗ (G;A), (1.1)

which we call the forgetful map. The statement of our main theorem (Theorem
0.1) says that F is always an isomorphism.

If A is an X o G-algebra, then it follows from the definitions that the reduced
groupoid crossed product Aor (X oG) coincides with the reduced crossed product
Aor G of A by G (for a concise discussion of the definition of crossed products by
groupoids we refer to [18, §2.4]). Thus we get two assembly maps

µG,A : Ktop
∗ (G;A) → K∗(Aor G) and µXoG,A : Ktop

∗ (X oG;A) → K∗(Aor G).

We need:

Lemma 1.2 (cf [18, Lemma 4.1]). The diagram

Ktop
∗ (X o G;A) F−−−→ Ktop

∗ (G;A)

K∗(A or G)

HHHHjµXoG,A ?
µG,A (1.2)

commutes.

Proof. The assembly map for X o G is defined inductively via the maps

µY : RKKG
∗ (X;C0(Y ), A) → K∗(A or G),

which, for any G-compact subset Y ⊆ E(G)×X, can be defined as the composition

RKKG
∗ (X;C0(Y ), A)

f→ KKG
∗ (C0(Y ), A) JG→ KK∗(C0(Y ) or G,A or G)

ΛY ⊗·→ K∗(A or G),

where ΛY ∈ K0(C0(Y ) or G) denotes the fundamental K-theory class correspond-
ing to the proper and G-compact G-space Y (e.g., see [4] and [20] for more details).
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Similarly, the assembly map for G is defined inductively on the G-compact
subsets Z of E(G) by the compositions

KKG
∗ (C0(Z), A) JG→ KK∗(C0(Z) or G,A or G) ΛZ⊗·→ K∗(A or G),

where ΛZ denotes the fundamental class of Z in K∗(C0(Z) or G). By construc-
tion, this fundamental class is natural with respect to G-equivariant continuous
mapping, so one has:

ΛY = Λπ1(Y ) ⊗ JG(π1∗).

This implies that the diagram

KK∗(C0(Y ) o G,A or G)
JG(π1∗)−−−−−→ KK∗(C0(π1(Y )) o G,A or G)

ΛY ⊗·
y yΛπ1(Y )⊗·

K∗(A or G) K∗(A or G)

commutes, which is enough to get the commutativity of (1.2). ¤

2. The compression isomorphism in RKKG(X, ·, ·)

For the proof of Theorem 0.1, we need an RKK-version of the compression iso-
morphism as given in [5, Proposition 5.14]. Recall that if C is a closed subgroup
of G and A is a C-algebra, then the induced C∗-algebra IndG

C A is defined as the
space {

F ∈ Cb(G,A) : F (sc) = c−1(F (s)) for all s ∈ G, c ∈ C

and
(
sC 7→ ‖F (s)‖) ∈ C0(G/C)

}
,

equipped with the pointwise operations and the supremum norm. The induced
action of G on IndG

C A is given by s · F (t) = F (s−1t).

Remark 2.1. Assume that C is a closed subgroup of G, X is a locally compact G-
space and A is a C-algebra such that IndG

C A has the structure of an XoG-algebra.
Then A has a canonical structure as an X o C-algebra, where the C0(X)-action
on A is given by the composition

C0(X)
φ−−−−→ ZM(IndG

C A) εe−−−−→ ZM(A).

Here φ : C0(X) → ZM(IndG
C A) is the given structure map for IndG

C(A), and
εe : ZM(IndG

C A) → ZM(A) denotes the morphism induced by the evaluation
IndG

C A → A;F 7→ F (e) at the unit element e of G. Since εe is C-equivariant, it
follows that the above composition is also C-equivariant. Moreover, for f ∈ C0(X),
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F ∈ IndG
C A, and s ∈ G, we get the equation:

(f · F )(s) =
(
s−1(f · F )

)
(e) =

(
s−1(f) · s−1(F )

)
(e) = s−1(f) · (s−1(F )(e)

)
= s−1(f) · (F (s)

)
.

(2.1)

Conversely, if X is a G-space and A is an X o C-algebra with C-equivariant
structure map ψ : C0(X) → ZM(A), then the induced algebra IndG

C A becomes
an X o G-algebra with structure map

Indψ : C0(X) → ZM(IndG
C A); (Indψ(f)F )(s) = ψ(s−1(f))

(
F (s)

)
,

and it is clear that, via evaluation at e in G, this induces the given C0(X)-structure
on A. It follows then from (2.1) that the above procedures give us a one-to-one
correspondence between the G-equivariant C0(X)-structures on IndG

C A and the
C-equivariant C0(X)-structures on A.

Assume now that C is open in G. Using (2.1) it is easy to check that we get
an X o C-equivariant inclusion ιA : A → IndG

C A defined by

ιA(a)(s) =
{

s−1(a) if s ∈ C
0 if s /∈ C

}
.

Thus, for any X o G-algebra B we get a natural composition of maps in RKK-
theory

RKKG
∗ (X; IndG

C A,B)
resG

C−−−−→ RKKC
∗ (X; IndG

C A,B)
ι∗A−−−−→ RKKC

∗ (X;A,B),

which we shall call the compression map denoted by

compG
C : RKKG

∗ (X; IndG
C A,B) → RKKC

∗ (X;A,B).

Proposition 2.2 (cf. [5, Proposition 5.14]). Assume that C is an open subgroup
of G. Let X be a locally compact G-space and let A be an X o C-algebra. Then
the compression map compG

C : RKKG
∗ (X; IndG

C A,B) → RKKC
∗ (X;A,B) is an

isomorphism.

Proof. We only have to check that the constructions given in the proof of [5,
Proposition 5.14] are compatible with the given C0(X)-structures. First of all,
we can replace A by A ⊗ K(L2(C)) using the X o C-equivariant Morita equiva-
lence (A⊗ L2(C), α⊗ λ) between A and A⊗K(L2(C)), where λ denotes the left
regular representation of C. The second diagram in the proof of [5, Proposition
5.14] then clearly commutes in RKK-theory. Thus, using the RKK-version of
[13, Proposition 3.2] (which is allowed by the remarks in [13, §9]), we can assume
without loss of generality that all elements (and homotopies) in RKKC(X;A,B)
are represented by Kasparov triples (E ,Φ, T ) such that Φ(A)E = E and T is a
C-equivariant operator on E . Having this, we can define a map

infG
C : RKKC(X;A,B) → RKKG(X; IndG

C A,B)



Vol. 78 (2003) Shapiro’s lemma for topological K-theory 211

by defining infG
C

(
[(E ,Φ, T )]

)
= [(Ẽ , Φ̃, T̃ )], with (Ẽ , Φ̃, T̃ ) given by exactly the

same formulas as used in [5, Proposition 5.14]. Using the computations of [5], it
follows that infG

C is well defined if we can show that the module Ẽ preserves the
C0(X)-structures, that is

f · ξ = ξ · f
for all f ∈ C0(X), ξ ∈ Ẽ , where the left and right actions of C0(X) an Ẽ are
induced from the left and right actions of IndG

C A and B. For this, recall that we
have a dense subspace in Ẽ consisting of continuous functions ξ : G → E such that

• ξ(sc) = c−1(ξ(s)) for all s ∈ G and c ∈ C;
• the map sC 7→ ‖ξ(s)‖ has finite support in G/C.

Moreover, the left and right actions of IndG
C A and B on Ẽ are given on such

functions ξ by the formulas

(Φ̃(F )ξ)(s) = Φ(F (s))(ξ(s)) and (ξ · b)(s) = ξ(s) · s−1(b), F ∈ IndG
C A, b ∈ B.

Thus, using Remark 2.1, we can compute for f ∈ C0(X):

(f · ξ)(s) = s−1(f) · (ξ(s)) = (ξ(s)) · s−1(f) = (ξ · f)(s).

By continuity, the equation f · ξ = ξ · f then holds for all ξ ∈ Ẽ . Exactly the same
arguments as used in [5, Proposition 5.14] then show that infGC is an inverse for
compG

C . ¤

3. Proof of the forgetful isomorphism

We start by proving Theorem 0.1 for groups having a γ-element in the sense of [10]
and [20] (the precise requirements for a γ-element in the group case are spelled
out in [4, Definition 6.3]; the requirements in the groupoid case are similar). It
follows from [10, Theorem 5.7] that every almost connected group G (i.e., G/G0

is compact) has a γ-element. In what follows,

σD : KKG
∗ (A,B) → KKD

∗ (A⊗D,B ⊗D)

denotes the canonical homomorphism given by tensoring with the C∗-algebra D,
and

JG : KKG
∗ (A,B) → KK∗(A or G,B or G)

denotes Kasparov’s descent homomorphism in KKG-theory.

Lemma 3.1. Assume that G has a γ-element. Then the forgetful map F is an
isomorphism between Ktop

∗ (X o G;A) and Ktop
∗ (G;A).

Proof. If G has a γ-element γG ∈ KKG
0 (C, C) in the sense of [10], then µG,A is

injective and its range is the γ-part

γG ·K∗(A or G) :=
{
JG(σA(γG))⊗ x : x ∈ K∗(A or G)}
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of K∗(A or G) (see [20, Proposition 5.23]). It is easy to check that γXoG =
σC0(X)(γ), viewed as an element of RKKG

0 (X;C0(X), C0(X)), is a γ-element for
X o G in the sense of [20], so µXoG,A is also injective with range equal to the
γ-part

γXoG ·K∗(A or G) :=
{
JG(σX

A (γXoG))⊗ x : x ∈ K∗(A or G)},
where here σX

A : RKK(X;B,C) →RKK(X;B ⊗C0(X) A,C ⊗C0(X) A) is given by
taking balanced tensor products over C0(X) (see [10, Lemma 2.19]). Using the
canonical isomorphism C0(X) ⊗C0(X) A ' A, we can identify σX

A (γXoG)) with
σA(γG) and the result follows from Lemma 1.2. ¤

We now extend the result to arbitrary locally compact groups. To do this we
use the basic method of [5] by observing that if E(G) is a universal example for the
proper actions of G and E(G/G0) is a universal example for the proper actions of
G/G0, where G0 denotes the connected component of G, then E(G) × E(G/G0),
equipped with the diagonal G-action, is also a universal example for the proper
actions of G. Since G/G0 is totally disconnected, E(G/G0) may be realized as
a locally finite simplicial complex, which then allows to use a Mayer–Vietoris
argument to reduce to the case of almost connected groups.

Notations 3.2. In the following, we write N for the identity component G0 of
G. As in the discussion above, we take for E(G/N) the geometric realization of
a locally finite simplicial complex on which G/N acts properly, simplicially and
respecting the types (see the discussion following [4, Lemma 7.10]). In particular,
the interior

o

W of a single simplex is invariant under the action of an element g ∈ G

if and only if g fixes every point y ∈ o

W .
Let W denote a finite union of simplices in E(G/N), and let K denote a fixed

compact subset of X. Let T = G · (W ×K) ⊆ E(G/N)×X, Y = G ·W ⊆ E(G/N)
and Z = G ·K ⊆ X.

We denote by dimW the maximal dimension of the simplices in W , and we let
o

W be the union of the interiors of the simplices of W of dimension dimW . Set
|W | = W\ o

W , |Y | = G · |W | and |T | = T \G · ( o

W ×K) = G · (|W | ×K).

The following lemma is fundamental for the proof of Theorem 0.1:

Lemma 3.3. The C0(X)-linear epimorphism C0(T ) → C0(|T |), given by restric-
tion of functions, admits a C0(X)-linear cross section σT : C0(|T |) → C0(T ),
which can be chosen norm decreasing, G-equivariant, and completely positive.

Proof. Such section can be constructed by using the linear contraction of the sim-
plices of W which are of dimension dimW onto their barycenters. If W is a single
simplex with vertices v0, v1, ...vn and barycenter y0 =

∑n
i=0

1
n+1vi, we consider the

map W \ {y0} → |W | which sends y =
∑n

i=0 tivi to |y| = 1
1−(n+1)t

∑n
i=0(ti − t)vi,
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where t := min{t0, ...tn}. In fact, |y| is the projection of y onto the nearest face
of W . We can easily extend the definition of this map to get a G-equivariant map
G ·W \G · {y0} → G · |W |. If W is a finite union of simplices, we may apply this
procedure independently to each G ·Wi, where W1, . . . , Wk denote the simplices
of dimension dimW in W , to get a G-equivariant map Y \ Y0 → |Y | , where Y0

denotes the set of barycenters of the simplices g ·Wi, g ∈ G, 1 ≤ i ≤ k.
We now define σT : C0(|T |) → C0(T ) by

σT (f)(y, z)

=




f(y, z) if y does not belong to a simplex of dimension dimW ;
d(y,Y0)

d(|y|,Y0)
·f(|y|, z) if y belongs to a simplex of dimension dimW and y /∈Y0;

0 if y ∈ Y0,
(3.1)

where d(y, Y0) denotes the euclidean distance between y and the barycenter of the
simplex of dimension dimW to which y belongs.

By construction, we get that σT is a norm decreasing completely positive section
of the epimorphism C0(T ) → C0(|T |), given by restriction of functions. It is also
straitforward to check the G-equivariance and the C0(X)-linearity of σT . ¤

Using E(G)×E(G/N) as a realization of the universal proper G-space, we can
apply Lemma 1.1 to obtain a realization of the universal proper X o G-space as
E(G)× E(G/N)×X, all spaces being equipped with the diagonal G-action. This
allows us to compute the topological K-theories of G and X o G with coefficients
in the X o G-algebra A by the formulas

Ktop
∗ (G;A) = lim

L,W
KKG

∗
(
C0(G · (L×W )), A

)
and

Ktop
∗ (X o G;A) = lim

L,W,K
RKKG

∗
(
X;C0(G · (L×W ×K)), A

)
,

(3.2)

where L runs through the compact subsets of E(G), W runs through the finite
subcomplexes of E(G/N), and K runs through the compact subsets of X. We
have to introduce some further notation:

Definition 3.4. For any given finite subcomplex W ⊆ E(G/N) we define

Ktop
∗ (G;A)[W ] := lim

L
KKG

∗
(
C0(G · (L×W )), A

)
and

Ktop
∗ (G;A)[

o

W ] := lim
L

KKG
∗

(
C0(G · (L× o

W )), A
)
,

where L runs through the compact subsets of E(G). Similarly, we define

Ktop
∗ (X o G;A)[W ] := lim

L,K
RKKG

∗
(
X;C0(G · (L×W ×K)), A

)
and

Ktop
∗ (X o G;A)[

o

W ] := lim
L,K

RKKG
∗

(
X;C0(G · (L× o

W ×K)), A
)
,
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where L runs through the compact subsets of E(G) and K runs through the com-
pact subsets of X. Moreover, for any pair (L,K) with L ⊆ E(G), K ⊆ X compact,
we define the maps

FW
L,K : RKKG

∗
(
X;C0(G · (L×W ×K)), A

) → KKG
∗

(
C0(G · (L×W )), A

)
and

F
o

W
L,K : RKKG

∗
(
X;C0(G · (L× o

W ×K)), A
) → KKG

∗
(
C0(G · (L× o

W )), A
)

as in the definition of the forgetful map F , i.e., we first “forget” the C0(X) action
and then apply the KK-maps induced by the first projections G · (L×W ×K) →
G · (L × W ) and G · (L× o

W ×K) → G · (L× o

W ), respectively (note that both

maps are proper). The maps FW
L,K and F

o
W
L,K are compatible with inductive limits

over L and K, so they induce well defined maps

FW : Ktop
∗ (X o G;A)[W ] → Ktop

∗ (G;A)[W ] and

F
o

W : Ktop
∗ (X o G;A)[

o

W ] → Ktop
∗ (G;A)[

o

W ].

It is clear that the topological K-theories of G and X o G with coefficients in
A can now be computed as

Ktop
∗ (G;A) = lim

W
Ktop
∗ (G;A)[W ] and Ktop

∗ (XoG;A) = lim
W

Ktop
∗ (XoG;A)[W ],

and that our forgetful homomorphism F : Ktop
∗ (X o G;A) → Ktop

∗ (G;A) can
be computed as the limit over the maps FW , where W runs through the finite
subcomplexes of E(G/N). Thus the proof of Theorem 0.1 will follow from

Proposition 3.5. For each finite subcomplex W ⊆ E(G/N), the map

FW : Ktop
∗ (X o G;A)[W ] → Ktop

∗ (G;A)[W ]

is an isomorphism of abelian groups.

Proof. We proceed by induction on dimW , the maximal dimension of the simplices
in W . If W is a finite union of simplices with dimW = n ∈ N, then |W | is a finite
union of simplices with dim |W | = n − 1. For fixed compact sets L ⊆ E(G) and
K ⊆ X consider the exact sequences

d : 0 → C0(G·(L×
o

W ×K)) → C0(G·(L×W×K)) → C0(G·(L×|W |×K)) → 0

and

δ : 0 → C0(G · (L× o

W )) → C0(G · (L×W )) → C0(G · (L× |W |)) → 0.

The construction of Lemma 3.3 applied to E(G)×X instead of X provides a com-
pletely positive C0(E(G)×X)-linear (and hence also a C0(X)-linear) G-equivariant
section which by [20, §7] (following the ideas of [2, §7]) provides an element

[d] ∈ RKKG
1

(
X;C0(G · (L× |W | ×K)), C0(G · (L× o

W ×K))
)
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such that right multiplication by [d] serves as a boundary map in a long exact
sequence for the extension d in RKKG(X; ·, A)-theory. Similarly (but this is more
easy since no C0(X)-linearity is needed here), the extension δ determines an ele-
ment

[δ] ∈ KKG
1

(
C0(G · (L× |W |)), C0(G · (L× o

W ))
)
,

which induces a boundary map in KKG(·, A)-theory. By naturality of the map f :
RKKG

∗ (X; · , · ) → KKG
∗ ( · , · ) which is obtained by forgetting the C(X)−structure,

the element

f([d]) ∈ KKG
1

(
C0(G · (L× |W | ×K)), C0(G · (L× o

W ×K))
)

induces the boundary map in KKG(·, A)-theory corresponding to d (where we
simply forget the C0(X)-structures – see [20] and [16]). The projection π1 : E(G)×
E(G/N)×X → E(G)× E(G/N) induces a morphism from the extension d to the
extension δ, and hence induces a morphism between the long exact sequences in
equivariant KK-theory corresponding to d and δ (see [16]). Together, we obtain a
morphism between the six-term sequence in RKKG(X; ·, A)-theory corresponding
to d and the six-term sequence in KKG(·, A)-theory corresponding to δ. Taking
limits over L and K, we obtain a commutative diagramy y

Ktop
∗−1(X o G;A)[|W |] F |W |

−−−−→ Ktop
∗−1(G;A)[|W |]y y

Ktop
∗ (X o G;A)[

o

W ] F
o

W−−−−→ Ktop
∗ (G;A)[

o

W ]y y
Ktop
∗ (X o G;A)[W ] FW

−−−−→ Ktop
∗ (G;A)[W ]y y

Ktop
∗ (X o G;A)[|W |] F |W |

−−−−→ Ktop
∗ (G;A)[|W |]y y

Ktop
∗+1(X o G;A)[

o

W ] F
o

W−−−−→ Ktop
∗+1(G;A)[

o

W ]y y .

Thus, using the Five Lemma and induction on dimW , the proof reduces to show
that

(1) FW : Ktop
∗ (X o G;A)[W ] → Ktop

∗ (G;A)[W ] is an isomorphism for all zero-
dimensional finite subcomplexes W of E(G/N), and
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(2) F
o

W : Ktop
∗ (X oG;A)[

o

W ] → Ktop
∗ (G;A)[

o

W ] is an isomorphism for all finite
subcomplexes W ⊆ E(G/N).

The proof of (1) is similar to the proof of (2), even a bit simpler. For this reason
we only go through the arguments for the latter.

Note that
o

W is a disjoint union of finitely many open simplices. So we take
advantage of the fact that the map respects finite direct sums to reduce to the
case where W is a single simplex of dimension n. Let C denote the stabilizer of
W under the action of G. By continuity of the action, C is an open subgroup
of G. But G acts through G/N , so C contains N , and since the action of G/N
on E(G/N) is proper, it follows that C/N is compact. Thus, since N = G0 is
connected, C is an almost connected group and we may apply Lemma 3.1 to C to
see that Theorem 0.1 holds for C.

Since C is a closed subgroup of G, it follows from [4, Remark 6.4] that E(G)×
E(G/N) is also a universal example for the proper actions of C. Since C is open
in G and since C0(G · (L× o

W ×K)) = IndG
C C0(

o

W ×C · (L × K)) (in fact, it is
straightforward to check that G · (L× o

W ×K) is the G-space induced by the C-
space

o

W ×C ·(L×K) ), we can apply the compression isomorphism of Proposition
2.2 to obtain the diagram:

RKKG
∗

(
X;C0(G · (L× o

W ×K)), A
) F

o
W−−−−→ KKG

∗
(
C0(G · (L× o

W )), A
)

comp

y ycomp

RKKC
∗

(
X;C0(

o

W ×C · (L×K)), A
) F

o
W
C−−−−→ KKC

∗
(
C0(

o

W ×C · L), A
)
,

where, for convenience, we changed the order of the factors in the direct products of
the bottom row. By the properties of the G-action on E(G/N) (see the Notations
3.2), C acts trivially on

o

W . Hence, since
o

W∼= Rn, we can use Bott periodicity to
extend the above diagram as follows:

RKKG
∗

(
X;C0(G · (L× o

W ×K)), A
) F

o
W−−−−→ KKG

∗
(
C0(G · (L× o

W )), A
)

comp

y ycomp

RKKC
∗

(
X;C0(Rn × C · (L×K)), A

)
KKC

∗
(
C0(Rn × C · L), A

)
Bott

y yBott

RKKC
∗+n

(
X;C0(C · (L×K)), A

) −−−−−−→
FC·(L×K)

KKC
∗+n

(
C0(C · L), A

)
.

This diagram is commutative and compatible with taking inductive limits over L
and K. In the limit, the bottom arrow of this diagram becomes an isomorphism
by Lemma 3.1. Further, by Bott periodicity and Proposition 2.2 we know that
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the vertical arrows are always isomorphisms. Hence, it follows that the top arrow
becomes an isomorphism in the limit. This finishes the proof. ¤

We close this section with some corollaries of the preceding results. The first
follows directly from Theorem 0.1 and Lemma 1.2:

Corollary 3.6. Let X be a G-space and let A be an X o G-algebra. Then G
satisfies BC for A if and only if X o G satisfies BC for A.

The second corollary deals with proper algebras. A G-algebra A is called proper
if A is an X o G-algebra for some proper G-space X.

Corollary 3.7. Assume that A is a proper G-algebra. Then G satisfies BC for A.

The result follows from Corollary 3.6 and

Lemma 3.8. Assume A is an X o G-algebra for some proper G-space X. Then
the assembly map µXoG,A : Ktop

∗ (X o G;A) → K∗(A o G) is an isomorphism.

Proof. Since X is a proper G-space, it follows easily from the definition of the
universal proper spaces that X itself serves as a universal example for proper XoG-
spaces. Consider the set of open subsets V of X which have G-compact closures
V . Then we can write A as the direct limit A = lim AV , with AV := C0(V ) ·A.

For each such V and any G-compact subset Z ⊆ X containing V , we have a
canonical identification

RKKG(X;C0(Z), AV ) ∼= RKKG(Z;C0(Z), AV ),

given by the identity map on the cycles (E ,Φ, F ). Since Z is G-compact, it follows
from [12, Theorem 5.4] (see also [22, Proposition 1.1]) thatRKKG(X;C0(Z), AV ) ∼=
K∗(AV o G) via the assembly map. Taking limits over Z (with V fixed) we see
that

µXoG,AV
: Ktop

∗ (X o G;AV ) → K∗(AV o G)

is an isomorphism for each V . Consider now the commutative diagram

Ktop
∗ (X o G;AV )

µXoG,AV−−−−−−→ K∗(AV o G)y y
Ktop
∗ (X o G;A) −−−−−→

µXoG,A

K∗(A o G),

whose upper row is bijective by what we have seen above. Since A = lim AV , it fol-
lows from [5, Proposition 7.1] that Ktop

∗ (XoG;A)∼=Ktop
∗ (G;A)∼=lim Ktop

∗ (G;AV )∼=
lim Ktop

∗ (XoG;AV ). Thus, passing to the limits on both sides and using the conti-
nuity of K-theory, we obtain a diagram where all columns are bijective, too. Hence
the bottom line has to be bijective. ¤
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Replacing Lemma 3.8 by a very deep result of Tu (see [20, Theorem 0.1]), which
says that the Baum–Connes conjecture with coefficients holds for all amenable
(Hausdorff) groupoids, Corollary 3.6 can be generalised substantially by

Corollary 3.9. Assume that X is a topologically amenable G-space (in the sense
of [1]) and that A is any X o G-algebra. Then G satisfies BC for A.

4. Applications to the symmetric imprimitivity theorem

Let H and K be two locally compact groups and let X be an H × K-space in
such a way that the restrictions of the action to the groups H and K on X are
free and proper. Let us fix once and for all an X o (H × K)-algebra A. Let
φ : C0(X) → ZM(A) denote the corresponding G-equivariant homomorphism
(see the introduction for the notation). Consider the closed subalgebra of M(A)
defined by

ÃK = {a ∈ M(A) : k · a = a for all k ∈ K and φ(C0(X))a ⊆ A}

and put AK = φ(C0(K\X))ÃK . As a consequence of Cohen’s factorization theo-
rem one can show that AK is a closed H-invariant subalgebra of M(A), and the
obvious homomorphism φK : C0(K\X) → ZM(AK) gives AK the structure of an
K\X o H-algebra. By symmetry, we can similarly define the H\X o K-algebra
AH (cf [10, Definition on p. 164]). In what follows, we say that AK and AH are
the generalized fixed-point algebras of A by K and H, respectively. Note that if
A = C0(X), then we have AK = C0(K\X) and AH = C0(H\X).

It is shown in [10, Theorem 3.15] (but see also [15]) that the crossed products

AK or H, A or (H ×K), and AH or H

are all Morita equivalent (a similar result holds for the full crossed products). For
each X o (H ×K)-algebra B, Kasparov constructs in [10, Theorem 3.4] a descent
isomorphism

λK : RKKH×K
∗ (X;B,A)

∼=→RKKH
∗ (K\X;BK , AK),

and similarly for H and K reversed. We now want to use this isomorphism to
construct natural isomorphisms between the topological K-theories

Ktop
∗ (H;AK), Ktop

∗ (H ×K;A), and Ktop
∗ (K;AH),

respectively. Since the results of the following two lemmas are true without our
general second countability assumption, we drop this assumption for those lemmas.



Vol. 78 (2003) Shapiro’s lemma for topological K-theory 219

Lemma 4.1. Let X o(H×K) be as above. Suppose that Z is any proper H-space.
Then X × Z equipped with the commuting actions of H and K defined by

h · (x, z) = (h · x, h · z) and k · (x, z) = (k · x, z) (4.1)

is a proper H ×K-space.

Proof. It suffices to show that, whenever (hi, ki)i∈I is a net in H×K and (xi, zi)i∈I

is a convergent net in X × Z such that (hi, ki) · (xi, zi) = (hikixi, hizi) also con-
verges to some (x, z) ∈ X × Z, then (hi, ki)i∈I has a convergent subnet. But
(hikixi, hizi) → (x, z) implies that (zi)i∈I is a convergent net in Z with hizi → z,
and since H acts properly on Z, we may pass to a subnet in order to assume that
hi → h for some h ∈ H. It then follows that (kixi, zi) → (h−1x, h−1z), and since
(xi)i∈I is a convergent net in X and K acts properly on X we may pass to another
subnet to assume that (ki)i∈I converges in K. ¤

Lemma 4.2. Let Xo(H×K) be as above. If Y is a proper Xo(H×K)-space, then
K\Y is a proper K\XoH-space. The assignment Y 7→ K\Y determines a natural
equivalence between the category of proper X o (H ×K)-spaces and the category
of proper K\X oH-spaces with morphisms given by equivariant continuous maps.
In particular, if E is a universal example for the proper X o (H×K)-actions, then
K\E is a universal example for the proper K\X o H-actions.

Proof. It is straightforward to check the first assertion. To prove the second asser-
tion we define a functor Z 7→ X ×K\X Z from the category of proper K\X o H-
spaces to the category of proper X o (H × K)-spaces which inverts the functor
Y 7→ K\Y up to isomorphism. Let q : X → K\X denote the quotient map and
let p : Z → K\X denote the structural map for the given K\X o H-action on Z.
Define

X ×K\X Z = {(x, z) ∈ X × Z : q(x) = p(z)},

with H×K-action as defined in (4.1) and with structural map r : X×K\X Z → X
given by the projection to the first factor. It follows then from Lemma 4.1 that
X ×K\X Z is a proper X o (H ×K)-space (since it is a closed subset of X × Z).
Moreover, if φ : Z → Z ′ is a continuous K\XoH-equivariant map, then it induces
a continuous X o (H × K)-equivariant map φX : X ×K\X Z → X ×K\X Z ′ by
putting φX(x, z) := (x, φ(z)).

It is fairly easy to check that K\(X×K\X Z
)

is K\XoH-equivariantly isomor-
phic to Z via projection on the second factor. So we only show that X×K\X (K\Y )
is X o (H×K)-equivariantly isomorphic to Y , for any given proper X o (H×K)-
space Y . For this let p : Y → X denote the corresponding structural map, and
let ṗ : K\Y → K\X denote the map induced by p. We are going to define two
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X o (H ×K)-equivariant maps

f : Y → X ×K\X (K\Y ) and g : X ×K\X (K\Y ) → Y

which are inverse to each other. The definition of f is easy: we just put f(y) =
(p(y),K · y). To define its inverse g let (x,K · y) ∈ X ×K\X (K\Y ). Then
q(x) = ṗ(K · y) = q(p(y)), where, as above, q : X → K\X denotes the quotient
map. Since K acts freely and properly on X, there exists a unique k ∈ K such
that x = k · p(y) and we define

g(x,K · y) := k · y.

Using the H×K-equivariance of p, it is easy to check that g is indeed well-defined,
and a short computation shows that f and g are inverse to each other. Thus it
only remains to check that g is continuous:

For this let (xi,K · yi) → (x,K · y) in X ×K\X (K\Y ). It suffices to show that
there exists a subnet (xj ,K ·yj)j∈J such that g

(
(xj ,K ·yj)

) → g
(
(x,K ·y)

)
. Since

the quotient map Y → K\Y is open, we may assume, after replacing yi by an
element in the same K-orbit and passing to a subnet, that yi → y. For all i ∈ I
let ki ∈ K such that xi = ki · p(yi) and let k ∈ K such that x = k · p(y). Since K
acts properly on X, we may assume, after passing to another subnet if necessary,
that (ki)i∈I converges in K, and since K also acts freely on X it then follows that
ki → k. Hence

g
(
(xi,K · yi)

)
= ki · yi → k · y = g

(
(x,K · y)

)
.

The final assertion is now a straightforward consequence of the above. ¤

Remark 4.3. Note that the above result has an easy extension to the case of
general actions of H . Indeed, exactly the same proof as given above shows that
the functor Y 7→ K\Y determines a natural equivalence between the category of
all X o (H×K)-spaces and the category of all K\X oH-spaces, where the action
of K on X is free and proper. Actually, this is an H-equivariant version of the
pull-back construction for a principal bundle (e.g see [19] I.10).

We should point out, however, that the above lemma and its extension to
arbitrary X o (H ×K)-spaces is a very special case of a general construction of
Le Gall in [14]. Indeed he shows that whenever we have two (Morita) equivalent
groupoids G and H, then there exists a natural equivalence between the category
of G-algebras and the category of H-algebras. In the situation of the equivalent
groupoids X o (H×K) and K\X oH one can check that this equivalence is given
by the functor A 7→ AK , which, for spaces, restricts to the functor Y 7→ K\Y as
considered above. Since the constructions in [14] are quite technical, it would have
taken more time to extract the result of Lemma 4.2 from [14] than presenting the
above arguments.

Corollary 4.4. Let A be an Xo(H×K)-algebra. For each H×K-compact subset
Y ⊆ E(

H ×K
)×X , let
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λK
Y : RKKH×K

∗ (X;C0(Y ), A) → RKKH
∗ (K\X;C0(K\Y ), AK)

denote Kasparov’s descent isomorphism of [10, Theorem 3.4]. Then these maps
induce a natural (in A) descent isomorphism

λK : Ktop
∗ (X o (H ×K);A) → Ktop

∗ (K\X o H;AK).

Proof. The result follows directly from Lemma 4.2 and the naturality of Kasparov’s
descent isomorphism in both variables. ¤

Definition and Remark 4.5. By symmetry, we also get a descent isomorphism

λH : Ktop
∗ (X o (H ×K);A) → Ktop

∗ (H\X o K;AH).

Combining these isomorphisms with the forgetful maps of Theorem 0.1, we obtain
a diagram

Ktop
∗ (H\XoK;AH) λH

←−−−− Ktop
∗ (Xo(H×K);A) λK

−−−−→ Ktop
∗ (K\XoH;AK)

F
y F

y yF
Ktop
∗ (K;AH) νH

←−−−− Ktop
∗ (H ×K;A) νK

−−−−→ Ktop
∗ (H;AK),

(4.2)
where νH and νK are chosen such that the left and right squares commute. Since
all other maps in the above diagram are isomorphisms, the same is true for the
maps νH and νK .

In what follows next, we want to give a direct description of the homomorphisms
νH and νK as defined above. Again, by symmetry, it is enough to do it for νK . For
this let x ∈ KKH

0 (C0(K\Y ), C0(Y )or K) be the element given by the fundamental
C0(K\Y ) − C0(Y ) o K-module ΛH×K,K

Y,K as defined in [4, Lemma 5.9], and let
y ∈ KKH

0 (A or K,AK) denote the invertible element given by the H-equivariant
Morita equivalence as provided by [10, Theorem 3.13 and 3.15]. Note that if the
action of K on Y is also free, then x is also given by a Morita equivalence, but in
general we have to deal with arbitrary proper H×K-spaces here. (If Y is actually
an X o (H ×K)-space, then the action of K on Y is automatically free!) Now, if
Y is any H ×K-compact proper H ×K-space, we may consider the composition
of maps

KKH×K
∗ (C0(Y ), A) JK−−−−→KKH

∗ (C0(Y )orK,Aor K)
x⊗·⊗y−−−−→KKH

∗ (C0(K\Y ), AK),
(4.3)

which we denote by ν̃K [Y ]. Since K\Y is an H-compact proper H-space, there
exists a continuous H-equivariant map F : K\Y → E(H) which induces a homo-
morphism

F∗ : KKH
∗ (C0(K\Y ), AK) → Ktop

∗ (H;AK).
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It follows then from [5, Lemma 1.5] that the compositions F∗ ◦ ν̃K [Y ] are natural
in Y and hence induce a well defined map

ν̃K : Ktop
∗ (H ×K;A) → Ktop

∗ (H;AK).

Remark 4.6. In [4, §5] the first two authors constructed a partial assembly map

µH×K,K
K,A : Ktop

∗ (H ×K;A) → Ktop
∗ (H;A or K).

On the level of a given H × K-compact set Y , this map was defined via the
composition (denoted µH×K,K

K,A [Y ])

KKH×K
∗ (C0(Y ), A) JK−→ KKH

∗ (C0(Y )orK,AorK) x⊗·−−→KKH
∗ (C0(K\Y ), AorK)

(see [4, Definition 5.11 and 5.14]). Thus it follows directly from the constructions
that

ν̃K [Y ](z) = µH×K,K
K,A [Y ](z)⊗ y and ν̃K(u) = µH×K,K

K,A (u)⊗ y, (4.4)

for all z ∈ KKH×K
∗ (C0(Y ), A) and u ∈ Ktop

∗ (H ×K;A), respectively.

Proposition 4.7. The maps

νK : Ktop
∗ (H×K;A) → Ktop

∗ (H;AK) and ν̃K : Ktop
∗ (H×K;A) → Ktop

∗ (H;AK)

coincide.

Proof. We have to show that the diagram

Ktop
∗ (X o (H ×K);A) λK

−−−−→ Ktop
∗ (K\X o H;AK)

F
y F

y
Ktop
∗ (H ×K;A) −−−−→

ν̃K
Ktop
∗ (H;AK)

commutes. For this let Y be an H ×K-compact proper X o (H ×K)-space. It
follows from [10, Theorem 3.14], that the diagram

RKKH×K
∗ (X;C0(Y ), A)

λK
Y−−−−→∼= RKKH

∗ (K\X;C0(K\Y ), AK)

JK◦f
y yf

KKH
∗ (C0(Y ) or K,A or K) −−−−→

x⊗·⊗y
KKH

∗ (C0(K\Y ), AK)

(4.5)

commutes, where f : RKKG
∗ (X; · , · ) → KKG

∗ ( · , · ) is obtained by forgetting
the C0(X)-structure. Let us map the lower right corner of the diagram into
Ktop
∗ (H;AK) via any continuous H-equivariant map F : K\Y →E(H). Then, if

z ∈ Ktop
∗ (Xo(H×K);A) is represented by an element z′∈RKKH×K

∗ (X;C0(Y ), A),
where Y is an H × K-compact invariant subspace of E(H ×K) × X, the image
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of z in Ktop
∗ (H;AK) under the mapping F ◦ λK is given by first applying the

upper horizontal arrow to z′ and then applying the right vertical arrow followed
by F∗. On the other hand, since ν̃K [Y ] is natural in Y , the following diagram is
commutative

KKH×K
∗ (C0(Y ), A)

ν̃K [Y ]−−−−→ KKH
∗ (C0(K\Y ), AK) −−−−→ Ktop

∗ (H;A)y y ∥∥∥
KKH×K

∗ (C0(π1(Y )), A) −−−−−−−→
ν̃K [π1(Y )]

KKH
∗ (C0(K\π1(Y )), AK) −−−−→ Ktop

∗ (H;A),

where the first two vertical arrows are induced by π : E(H ×K)×X → E(H ×K)
and the right horizontal arrows are induced by any continuous H-equivariant maps
K\Y → E(H) and K\π1(Y ) → E(H). The right square commutes by the universal
properties of E(H) (any two continuous H-equivariant maps from K\Y → E(H)
are homotopic). Thus, the image of z under the composition ν̃K ◦ F is given by
first applying the left vertical arrow in diagram (4.5) to z′ and then the lower
horizontal arrow of (4.5) followed by F∗. This gives the result. ¤

We are now ready to consider the assembly maps. Notice that the following
proposition clearly finishes the proof of Theorem 0.5.

Proposition 4.8. Suppose that A is an X o (H ×K)-algebra. Then the diagram

Ktop
∗ (H ×K;A) νK

−−−−→ Ktop
∗ (H;AK)

µH×K,A

y yµH,AK

K∗
(
A or (H ×K)

) −−−−→∼= K∗(AK or H)

commutes, where the bottom isomorphism is given via the Aor (H×K)−AK or H
Morita equivalence of [10, Theorem 3.15].

Proof. Note that the invertible class in KK0(Aor (H×K), AK orH) corresponding
to the equivalence constructed in [10, Theorem 3.15] is just JH(y), where y ∈
KKH

0 (Aor K,AK) is the class used in the above explicit construction of ν̃K = νK .
Consider the diagram

Ktop
∗ (H ×K;A)

µH×K,K
K,A−−−−−→ Ktop

∗ (H;A or K)
µH,AorK−−−−−−→ K∗((A or K) or H)

νK

y ·⊗y

y y·⊗JH(y)

Ktop
∗ (H;AK) Ktop

∗ (H;AK) −−−−→
µH,AK

K∗(AK or H),

where µH×K,K
K,A : Ktop

∗ (H×K;A) → Ktop
∗ (H;Aor K) denotes the partial assembly

map of [4]. It follows from Remark 4.6 that the left square commutes and it follows
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from the compatibility of the assembly map under passing to Morita equivalent
coefficient algebras (e.g. see [4, Proposition 5.6]) that the right square commutes.
By [4, Proposition 5.15] we know that the composition of the upper horizontal
arrows coincides with the assembly map

µH×K,A : Ktop
∗ (H ×K;A) → K∗(A or (H ×K)) ∼= K∗((A or K) or H).

This finishes the proof. ¤

We are now going to look at the special case of induced algebras. For this
suppose that H is a closed subgroup of G and let B be an H-algebra. Then, as
in §2, we can define the induced G-algebra IndG

H B. In [5] the first two authors
constructed a natural induction homomorphism

IG
H : Ktop

∗ (H;B) → Ktop
∗ (G; IndG

H B).

One of the main results of [5] was to show that this homomorphism is always an
isomorphism, and that, up to the isomorphism K∗(B or H) ∼= K∗(IndG

H B or G)
given by the standard Morita equivalence, it is compatible with the assembly maps.
As a consequence, we obtained

Corollary 4.9 (cf [5, Theorem 2.5]). Let H,G and B be as above. Then H
satisfies BC for B if and only if G satisfies BC for IndG

H B. In particular, if G
satisfies BC for arbitrary coefficients, the same is true for H.

We now give an alternative proof of the above result using Theorem 0.5.

Proof of Corollary 4.9. Put X := G with action of G given by left translation and
action of H given by right translation. Then X o(H×G) satisfies all requirements
of Theorem 0.5. Let A = C0(X,B) viewed as a X o (G × H) algebra, with
action of G given by (g · f)(x) = f(g−1x) and H-action defined by (h · f)(x) =
h ·(f(xh)), f ∈ C0(X,A). It is then fairly straightforward to check that C0(X,B)G

is H-equivariantly isomorphic to B via evaluation at e ∈ G (= X), and that
C0(X,B)H is G-equivariantly isomorphic to IndG

H B. Thus the result follows as a
direct consequence of Theorem 0.5 with G playing the role of K. ¤
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